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Autonomous robots are becoming a pervasive technology

that has the potential to transform our everyday life and

will be critical to address major societal challenges over the

next decades, such as assistive, medical, home, service, and

industrial robotics. To achieve this, spatial AI refers to a vision

in the community to move toward the holistic and abstract

scene understanding imposed by these tasks. Crucially, the

above applications require long-term human-centric autonomy

where robots operate efficiently and safely in environments

shared with humans over extend periods of time. A central

unsolved challenge is that human-centric scenes are geomet-

rically complex, semantically rich, and highly dynamic. This

necessitates building a consistent understanding of a scene

through space and time during real-time robot operation, using

only the limited sensing and computation available.

Research Question. How can a robot build an understanding

of a dynamic and changing scene that facilitates future in-

teractions? To address this question, I have crystallized three

main themes for my research of I.) 4D Perception; robustly

building dense representations of highly dynamic and changing

scenes or ”reasoning about what the robot sees” (Fig. 1),

II.) Inference; using these representations to predict probable

future states for efficient interaction or ”reasoning about what

the robot didn’t see” (Fig. 2), and III.) Active Perception;

leveraging the embodiment of autonomous robots to gather

the data most useful for perception, inference, and learning

or ”reasoning about what the robot should see” (Fig. 3). As

an overarching theme, all these directions fruitfully interact

to create highly adaptive autonomy that specializes and self-

improves over time, which I call Spatio-Temporal AI.

I. 4D PERCEPTION

In dynamic scenes, it is essential to detect and represent both

short-term dynamics, i.e., motion within view of the sensor,

and long-term dynamics, i.e., changes outside the view of the

robot. To detect short-term dynamic objects, prominent ap-

proaches leverage learned appearance features [27, 2, 18, 16],

or map-based post-sequence processing [11, 18, 3]. However,

appearance-based methods often struggle in unstructured and

out-of-distribution scenes, whereas offline methods are not

applicable during robot operation. Similarly, the problem of

handling long-term scene changes is commonly addressed via

multi-session change detection [5, 10, 37]. Only recently, first

online methods have emerged [31, 6, 19, 20].

During my PhD, I developed the first of these online

dense perception methods [31] consistent w.r.t. long-term

dynamics. Further, I invented a novel algorithm to reconstruct

short-term dynamic scenes [33] using the incrementally built
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map as motion cue, outperforming appearance-based methods

trained on the target domain [18], generalizing better than

methods trained on similar domains [2, 27, 16], and even

approaching the performance of offline methods with complete

hindsight [18]. These methodologies and software are widely

used in both academia and industry, for example, [33] has

recently been integrated by NVIDIA into their spatial AI stack.

However, I realized that addressing each kind of dynamics

separately is a notably easier problem. During my postdoc,

I have developed a probabilistic framework that for the first

time unifies short and long-term dynamics (Fig. 1), laying the

foundations for spatio-temporal metric-semantic robot percep-

tion. The resulting framework is the first of its kind and has

already been well adopted by the community. Finally, to extend

semantic reasoning with the advent of foundation models, I

have developed an information-theoretic foundation of how to

compactly extract the useful, i.e., task-relevant, information

out of the virtually infinite data captured by a vision-language

model [13], for the first time enabling the construction of open-

set 3D scene graphs in real-time at the same or higher fidelity

than existing methods that took 6h to process the same scene

[8]. My line of work on 4D perception has been recognized

with an Outstanding Systems Paper Award, featured as a

spotlight article on the landing page of MIT, and [31, 34, 13]

were listed as pioneering works in a recent survey [15].

However, representing scenes through space and time has

the central limitation of accumulating an ever-growing map

and poor scaling. To achieve truly life-long robot operation,

I currently research new marginalization strategies based on

hierarchical optimization to keep scaling bounded. Further

work will develop novel approaches for object instance re-

localization combining techniques from language and descrip-

tor learning [35, 9] with experience stored in the 4D map.

This will enable capturing instance histories for detailed object

and agent-centric reasoning. These works will be the basis

for consecutive projects on multi-session and multi-robot 4D

perception, leveraging the additional temporal information for

map matching and optimization. As a result, this will enable

the deployment of spatio-temporal AI systems in dynamic real-

world scenarios and will for the first time allow for a detailed

understanding of the evolution of a scene in real-time.

II. INFERENCE

Beyond understanding the past and present of a scene,

predicting its future is essential for effective interaction. This

has been widely studied in the context of human trajectory

prediction [23, 25, 24, 14], where most methods focus on

collision avoidance with typical prediction horizons of ∼5s

[23, 25, 24]. However, when considering longer prediction

horizons of up to 60s, people start to interact with their



Fig. 1: 4D Perception: Joint reconstruction
of static, moving, and changing objects [34].

Fig. 2: Continuous Adaptation: Active self-
improvement of semantic segmentation [39].

Fig. 3: Active Sensing: Mapping of un-
known scenes on-board aerial robots [28].

environment, leading to highly complex non-linear trajectories

and rendering purely geometric scene representations such as

occupancy maps [25, 24, 14] insufficient.

To overcome this, I have developed a novel algorithm

leveraging the rich semantic information of the previously

introduced 3D scene graphs to reason about multi-modal

sequences of interactions and then physically ground these

in a spatio-temporal distribution over future positions of the

person [7]. This enables prediction of future trajectories of

up to 60s where people may interact with the scene, and

achieved a 54% lower negative log-likelihood (NLL) compared

to existing methods [24, 14]. I have further generalized this to

objects by formalizing the long-term semantic scene change

prediction problem [12] and showing that this can be solved

(with some tricks) as a supervised learning problem. Although,

due to the highly multi-modal nature of long-term predictions,

the prediction accuracy is only ∼70%, I could show that the

learned priors are still essential for proactive and efficient

autonomy in dynamic scenes, speeding up an active change

detection task by 66% on average [12].

To expand these crucial capabilities of prediction and adap-

tation in changing conditions, I am currently working on com-

bining semantic priors, e.g., from large language models [7],

with observations gathered by the robot, e.g., summarized in

a map-of-dynamics [38]. This will allow zero-shot generaliza-

tion to new scenes, but continually specialize as robots gather

more data. A second research stream will focus on inverse

prediction, i.e., causal explanation of past states and what

likely happened in-between observations. This information is

essential for temporal queries and as uncertainty signal when

reconstructing 4D maps, but also lends itself to extend self-

supervised adaptation techniques by leveraging the developed

4D maps and causal explanations as self-supervision signal,

e.g., using approaches similar to [39] (Fig. 2).

III. ACTIVE PERCEPTION

The goal of active perception is to move the robot in

order to gather the sensor data most useful to the task at

hand, such as exploring unknown scenes. However, since each

measurement changes what the robot can do and wants to

see, most approaches reason only over short horizons, such

as the next (few) view(s) [4, 26]. In contrast, a fundamental

contribution was the development of a general algorithm for

informative path planning (IPP) [28], where I proposed a

novel formulation to optimize any information gain against

any cost globally in large spaces (Fig. 3). The general nature

of this algorithm allowed me to extend it to the first method

for globally consistent volumetric exploration [29], active

learning [39], and collaborative mapping for space robots

[22]. Furthermore, I was able to demonstrate that techniques

from representation learning and 3D scene completion can

speed up exploration of unknown scenes to close-to-optimal

performance as if the environment was known [30], or reduce

computation cost by almost an order of magnitude [32],

enabling deployment on low-cost mobile hardware. In contrast

to end-to-end methods such as imitation (IL) [1, 21] or

reinforcement learning (RL) [36, 17], these methods [30, 32]

maintain the safety and interpretability of classical methods for

real-world deployment. Finally, to allow robots to continuously

adapt, I developed an approach that autonomously gathers

data of uncertain areas and utilizes the resulting map to train

its perception network, for the first time demonstrating fully

autonomous self-improvement of semantic segmentation neural

networks on a real robot [39]. In addition to demonstrations

on numerous aerial, legged, and wheeled robots, I released all

my algorithms open-source1, collecting thousands of stars and

hundreds of forks on github and being implemented by over

50 research groups across the globe.

In the future, I will extend this to address active monitoring

of dynamic scenes, where my presented [34, 12, 39] and

proposed methods will allow for a detailed consideration of

scene dynamics in planning. As my work has highlighted the

importance of scene understanding for prediction [7, 12], we

will further start to close the perception-adaptation loop by

developing informative path planning algorithms that let robots

observe areas of the scene most likely to improve perception

and inference performance. While it seems unlikely that a set

of pre-programmed capabilities will allow robots to operate in

all relevant environments (e.g., consider the large variety of

homes), the proposed advances will instead equip robots with

the ability to autonomously improve and adapt to their specific

environment, embodiment, and human preference over time.

1All software and data available at schmluk.github.io/code.

https:///schmluk.github.io/code.html
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