An Emulator for Fine-tuning Large Language Models
using Small Language Models

Eric Mitchell, Rafael Rafailov, Archit Sharma,
Chelsea Finn, Christopher D. Manning
Stanford University
eric.mitchell@cs.stanford.edu

Abstract

Widely used language models (LMs) are typically built by scaling up a two-stage
training pipeline: a pre-training stage that uses a very large, diverse dataset of text
and a fine-tuning (sometimes, ‘alignment’) stage using more targeted examples of
specific behaviors and/or human preferences. While it has been hypothesized that
knowledge and skills come from pre-training, and fine-tuning mostly filters this
knowledge and skillset, this intuition has not been rigorously tested. In this paper,
we test this hypothesis with a novel methodology for scaling these two stages inde-
pendently, essentially asking, What would happen if we combined the knowledge
learned by a large model during pre-training with the knowledge learned by a
small model during fine-tuning (or vice versa)? Using an RL-based framework
derived from recent developments in learning from human preferences, we intro-
duce emulated fine-tuning (EFT), a principled and practical method for sampling
from a distribution that approximates the result of pre-training and fine-tuning at
different scales. Our experiments with EFT show that scaling up fine-tuning tends
to improve helpfulness, while scaling up pre-training tends to improve factuality.
Further, we show that EFT enables test-time adjustment of competing behavioral
factors like helpfulness and harmlessness without additional training. Finally, we
find that a special case of emulated fine-tuning, which we call LM up-scaling,
avoids resource-intensive fine-tuning of large pre-trained models by ensembling
small fine-tuned models with large pre-trained models, essentially ‘emulating’ the
result of fine-tuning the large pre-trained model. Up-scaling consistently improves
helpfulness and factuality of widely used pre-trained models like Llama, Llama-2,
and Falcon, without additional hyperparameters or training.

1 Introduction

Widely used instruction-following large language models (LLMs) typically follow a two-stage
training procedure, with a stage of unsupervised pre-training on a large, diverse dataset followed by
supervised fine-tuning on a much smaller, carefully curated dataset (Raffel et al.,|2020; |Chung et al.,
2022). While both stages are important in producing models that possess broad world knowledge and
perform a given task reliably, identifying exactly what capabilities emerge in which stage and at what
scale is difficult (Wei et al.| 2022} |Schaeffer et al.,2023)). For example, pre-trained models typically
require careful prompting in order to perform a task; after fine-tuning for instruction following, they
typically do not. Evaluation of the extent to which the core capability of ‘instruction following’ is
learned in pre-training vs. fine-tuning is thus seriously complicated by the choice of this prompt.
To enable more direct attribution of capabilities to a stage of training, we introduce a technique for
emulating the result of combining the capabilities gained from pre-training and fine-tuning, even if
these two stages occur at different model scales. This technique, which we call emulated fine-tuning
(EFT), enables a) direct study of the capabilities that change as only one stage is scaled up or down,
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Figure 1: Emulated fine-tuning (EFT) enables a direct answer to the question of what happens when we
combine what is learned from pre-training a model of one size with what is learned from fine-tuning a model of
a different size? Conventional models combine the learnings of pre-training and fine-tuning at the same size (A +
B, C + D). In contrast, EFT enables choosing these independently, essentially allowing a principled approach to
evaluating the result of A + D and C + B.

as well as b) the practical benefit of approximating the result of fine-tuning a large model without the
associated computational expense.

Emulated fine-tuning is based on a simple factorization of the logits of a fine-tuned language model
into a) the base logprobs of a pre-trained base model and b) the ‘behavior delta’, or the difference
between the logprobs of a base model and fine-tuned model. This delta is a compact representation
of the behavior change learned in fine-tuning and can be justified through either a reinforcement
learning (Rafailov et al.l [2023)) or Bayesian inference (Korbak et al.,|2022) framework. EFT thus
emulates the result of pre-training at one scale and fine-tuning at another by adding base logprobs
computed by a model at one size and the behavior delta computed by a models of a different size.
For example, using models from the Llama-2 family, we can emulate the result of pre-training at
70B scale and fine-tuning at 7B scale by performing the log probability algebra Llama-2-base 70B +
(Llama-2-chat 7B - Llama-2-base 7B), where the first term is the base log probability and the term
in parentheses is the behavioral delta.

Using emulated fine-tuning, we analyze the results of pre-training and fine-tuning at various scales for
multiple model families and datasets. Our analyses provide evidence supporting the intuition that pre-
training at scale enables greater accumulating of raw knowledge (improved factual correctness), while
fine-tuning at larger scale produces greater helpfulness (improved user satisfaction) (cf. Gudibande
et al.,[2023)). Beyond this scientific finding, we also find that EFT enables boosting the performance of
small fine-tuned models by a process we call up-scaling, essentially ensembling the small fine-tuned
model with a larger pre-trained model, without any fine-tuning or modifications to either model. Our
experiments show that in scenarios where fine-tuning a small language model is viable (e.g., Falcon-
7B) but fine-tuning a larger language model is not due to resource constraints (e.g., Falcon-180B),
up-scaling enables capturing much of the benefits of fine-tuning the larger model, without performing
any model fine-tuning at all.

In summary, our primary contributions are a) the emulated fine-tuning framework; b) clear experi-
mental justification for the claim that scaling pre-training leads to improved factual knowledge while
scaling fine-tuning leads to improved task adherence; and c) the technique of model up-scaling, which
enables a small fine-tuned model and large base model to approximate the compute-intensive result
of fine-tuning a large base model.

2 Related Work

The benefits of unsupervised pre-training in neural networks was first identified in deep belief
networks (Hinton et al., 2006) and stacked autoencoders (Bengio et al.,|2007), with early analyses
noting persistent effects of pre-training even when fine-tuning data is not limited (Erhan et al., 2010).
In natural language processing, pre-trained representations of individual words (Mikolov et al., [2013
Pennington et al.,|2014) or entire passages (Devlin et al.,[2019; Peters et al.,|2018)) demonstrated the
ability for task-agnostic pre-training to learn representations useful for a wide variety of downstream
linguistic tasks such as question-answering, natural language inference, and translation (Devlin
et al.,[2019; Raffel et al., [2020). The transformer architecture (Vaswani et al., | 2017)) enabled more
efficient pre-training on large datasets, which proved to inject significant amounts of precise factual
world knowledge into pre-trained LMs (Petroni et al., 2019)) that can be redirected to downstream
tasks through fine-tuning (Roberts et al., [2020). Most recently, various works have shown that
language models pre-trained with unsupervised generative modeling can be fine-tuned to engage in
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Figure 2: Emulated fine-tuning combines knowledge from pre-training and fine-tuning at different scales.
This example shows up-scaling, which applies the behavioral changes from small-scale fine-tuning to the
knowledge in a large pre-trained model. The small fine-tuned model (green) understands the user’s query asks
about Yo-Yo Ma’s place of birth, not year, does not know the correct city. The small pre-trained model (light
blue) does not understand the user’s query or have reliable knowledge, assigning high probability to the (correct)
year of birth of Yo-Yo Ma and both possible places of birth. Their ratio represents the behavior of following
user intent (responding only with locations). Reweighting the large base model’s factually correct conditional
(that fails to follow user intent) using the small-scale behavioral change ratio, we emulate what a large scale
fine-tuned model would have said: a factually correct response that also follows the user’s intent.

general-purpose dialogue, producing a model that can perform a variety of complex tasks specified in
natural language (Thoppilan et al., [2022;|Ouyang et al., 2022; Bai et al., [2022; Bubeck et al., 2023}
Touvron et al.|[2023b). Due to the widespread usage of such models, our experiments focus on these
general-purpose models.

Increasing model scale has proven a key aspect of increasing the benefits of pre-training to fluency,
world knowledge, reasoning ability, and a variety of other properties (Brown et al., |2020; [Kaplan
et al., 2020; Touvron et al.l |2023a). Other work leverages this capability differential to improve
language model sampling through ‘contrastive decoding’, subtracting the log probabilities of a small
language model (scaled by a small constant hyperparameter) from the log probabilities of a large
language model (Li et al.}2023)). Our work differs by interpreting this log probability difference as a
log-importance weight, using it to re-weight the log probabilities of another model and eliminating
the need to tune the scaling hyperparameter. Relatedly, (Gao et al.|(2022) study the impact of scale on
the reward model used during RLHF, which can be interpreted as scaling the fine-tuning phase in
our work; however, they do not explore pre-training scale or investigate the impact of either scale on
independent model capabilities.

3 Emulated Fine-Tuning: Decoupling the Scale of Pre-training & Fine-tuning

We now describe the framework of emulated fine-tuning (EFT) and how it enables decoupling the
scale of pre-training and fine-tuning, as well as up-scaling, a special case of emulated fine-tuning that
is particularly useful in practice.

3.1 Preliminaries

Emulated fine-tuning views the fine-tuning procedure as reinforcement learning (RL) with a KL-
divergence constraint preventing divergence from a reference model, in this case the pre-trained
model (Peters et al.,|2010). That is, we view the result of fine-tuning is the solution to

Tfe = 7T*(7‘, 7Tref) = argmax ]EJ;Np(a;),yNﬂ'HI) [T(I7 y) - BKL(W”Wref)] (nH

where (3 controls the strength of the KL constraint to the pre-trained model (the reference model).
Prior work (Peters et al.|(2010); |Peng et al.|(2019); |Korbak et al.|(2022), inter alia) shows that the
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an RL interpretation, is applicable to any fine-tuned model, as any language model can be viewed as
the solution to KL-constrained RL with a constraint to the pre-trained model (Rafailov et al.| [2023).
Specifically, any fine-tuned language model 7 and pre-trained model 7.s can be mapped to a reward
function r (z, y) such that the solution to the KL-constrained RL problem 7* (7, mef) = 7g, using
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Using this duality between language models and rewards, for any language model 7 fine-tuned from
a pre-trained model 7., We can re-write
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In other words, the original policy 7 is the optimal policy to the KL-constrained reward maximization

problem with reward function . (z,y) = log W”E@Tﬂg) , using ¢ as the reference model that we are
constraining to. We now have a clear delineation of the loci of information gained from pre-training
and fine-tuning: pre-training knowledge is represented in the base log probabilities, while capabilities
gained from fine-tuning are captured in the reward (the behavior delta of base log probabilities
subtracted from fine-tuned model log probabilities). This partitioning enables independent scaling of

these components, which we describe next.

3.2 Scale Decoupling with EFT

To make explicit the size of model used to compute the corresponding conditionals, we add super-
scripts to each term in Eq. [3}

1 M 1
m(y | z) = V@) Trer(y | m)exp< !z, y)> o mrl(y | ) W @
“knowledge” “=—~—

“skills”

where M (z,y) = log ME I g and the scale-decoupled partition function is Z3 (x) = 2T i (y |

x) exp (6r (z,9) IThat is, m; corresponds to simulate mixing the knowledge learned by a model
of size N during pre-training and the knowledge learned by a model of size M durmg fine-tuning.
While setting N = M corresponds to simply sampling from the original policy, in this paper, we
particularly explore the setting of N # M. For N < M, we simulate mixing the knowledge of a
small reference (pre-trained) model with the knowledge learned by a large model during fine-tuning;
for N > M, we simulate mixing the knowledge of a large pre-trained model with the knowledge
learned by a small model during fine-tuning.

Sampling with Emulated Fine-tuning. Our experiments rely on drawing samples from EFT models.
To do so, we compute conditionals per-token conditionals according to Eq.[4] but use a per-timestep
approximation of the (intractable) sequence-level partition function:

~ 1 N M(yt | z,y<t)
Ty | 2, y<t) = Tref (Yt | 2, Y<t) (5)
= Z(([, y<t) et < ref(yf | Y y<f)
with per-timestep partition function Z (z,y<¢) = 3_,, i (ye | o, y<t) % A similar greedy

approximation emerges from recent develop preference learning as learning not a reward function,
but rather an advantage function, as described by Knox et al.[(2023).

'The partition function appears here, but not Eq because the reference models are no longer exactly equal,
as they are different sizes.



3.3 Computational Factors and Language Model Up-Scaling

Emulated fine-tuning enables sampling from an approximation of the result of pre-training and
fine-tuning at different scales. We refer to the case when N > M as up-scaling, as we emulate the
result of fine-tuning at larger scale; we refer to the case of N < M as down-scaling, as we emulate
the result of fine-tuning at smaller scale. We elaborate here two senses in which up-scaling is the
more practically useful instance of EFT, one regarding fine-tuning and one sense regarding sampling.

First, down-scaling assumes access to the actual fine-
tuned model at the larger scale, in order to simulate
the result of fine-tuning at smaller scale. In this case,
simply sampling from the large fine-tuned model would
be computationally cheaper and more efficient. In con-
trast, up-scaling assumes access to a small fine-tuned
model (computationally cheap to acquire) and a large
pre-trained model (many of which are freely released
by organizations with considerable resources). Second,
sampling from an EFT model with NV > M is more
efficient: EFT sampling requires computing one for-
ward pass of a model at size IV (the /N-scale pre-trained
model) and rwo forward passes of models at size M (the
N-scale fine-tuned model and the [N-scale pre-trained
model). As N becomes much larger than M, this com-
putational cost becomes no larger than sampling from
the actual N-scale fine-tuned model. Further, if M is
small relative to IV, a natural adaptation of speculative
decoding (Leviathan et al., 2023} (Chen et al.,[2023a)) to
EFT exists, in which the M -scale fine-tuned model pro-
poses chunks of tokens for the full EFT model to check.
Section [4.3] confirms that speculative decoding can en-
ables a speedup for sampling from up-scaled models of
nearly 2.5 times, without changing the model samples.
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Figure 3: Scaling pre-training alone mostly
benefits factuality; scaling up fine-tuning
alone mostly benefits helpfulness. The bot-
tom group of bars shows that emulating a large
fine-tuned model with a small fine-tuned model
and large base model produces nearly 70% of
the factuality gains compared to the small fine-
tuned model alone. Normalized improvements
averaged across Llama-1, Llama-2, and Falcon
model families and Anthropic-HH and ELIS5

For these reasons, EFT up-scaling is a more practically datasets.

useful technique to improving the performance of small, fine-tuned language models.

4 Experiments

Our experiments primarily address the question what capabilities change when independently scaling
pre-training vs fine-tuning? We use EFT to evaluate helpfulness and factuality of a variety of scale
combinations. Next, we show that up-scaling with EFT requires modifying the small fine-tuned
model’s conditional for a sparse set of timesteps, enabling a large speedup in sampling by adapting
speculative decoding to EFT up-scaling. We also conduct an ablation to show some potential benefits
of filtering noisy token reweightings. Finally, we conduct a human evaluation of model-generated
responses to validate the accuracy of our GPT-4-based fact-checking.

Datasets Our experiments use two datasets that assess a dialogue agent’s ability to provide helpful,
factual assistance to a user. First, we use the Anthropic Helpful-Harmless (HH) dialogue dataset
(Bai et al.| |2022)), which consists of multi-turn dialogue between a human and chatbot. The HH
contains several sub-splits, broadly for measuring ‘helpfulness’ and ‘harmlessness’ of a chatbot. We
randomly sample 256 prompts from the complete dataset, filtering only to single-turn dialoguesE]
Second, we use prompts from the ELIS (Fan et al.l 2019) dataset, a dataset of open-ended user-
generated questions about science, history, and everyday life sourced from the Reddit ELI5 forum.
We select a random subset of 256 ELI5 prompts from test split, filtering to queries with no more than
30 words.

While prompts in the HH dataset are more everyday and conversational, asking for movie recom-
mendations or instructions for home maintanence tasks. In contrast, ELIS prompts tend to be more
difficult, targeted factual questions about scientific or political topics.

2This choice is for evaluation purposes, to avoid GPT-4 evaluating responses in the dialogue history that
didn’t come from the EFT model.
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Figure 4: Normalized improvements in factuality and helpfulness from emulated fine-tuning for prompts
from Anthropic-HH dialogue dataset. Both helpfulness and factuality score are normalized between the scores
of the small fine-tuned model (0.0) and the large fine-tuned model (1.0). Up-scaling (bottom row) combines
the behavioral adjustments from fine-tuning at small scale with the knowledge gained by pre-training at large
scale, and tends to provide more improvement in factuality. Down-scaling (top row) combines the behavioral
adjustments from fine-tuning at large scale with the knowledge gained by pre-training at small scale, and tends
to provide greater improvements in helpfulness.

Models. Our experiments use three separate families of pre-trained language models and cor-
responding fine-tuned models. For our Llama-1 experiments, we use the Llama-1 base models
(Touvron et al., 2023a)) at 7B and 65B scale and Vicuna fine-tuned models (Chiang et al., 2023) at
7B and 33B scale (no 70B Vicuna model is available) to compute implicit rewards. Vicuna models
are fine-tuned from Llama-1 base models with on publicly-shared conversations that users have had
with ChatGPT. Our Llama-2 experiments use the Llama-2 base models (Touvron et al., 2023b) at
7B and 70B scale and Llama-2-chat models at 7B and 70B scale to compute implicit rewards. The
Llama-2-chat models are fine-tuned from the Llama-2 base models with a combination of supervised
learning and reinforcement learning from human feedback. Finally, for our Falcon experiments, we
use Falcon base models (Almazroueli et al.l [2023)) at 7B and 180B scale and the Falcon instruct/chat
models at 7B and 180B scale to compute implicit rewards Similarly to Vicuna, Falcon instruct/chat
models are fine-tuned with supervised learning on shared dialogues between humans and chatbots.
All three families include base generative models pre-trained with unsupervised pre-training on very
large, diverse datasets of internet text (Touvron et al., [2023alb; |Almazrouei et al., 2023)).

Evaluation. We evaluate both helpfulness and factuality with GPT-4 as a proxy for human eval-
uation. Several existing studies have demonstrated the effectiveness of both pair-wise evaluation
(comparing the quality of two responses) and point-wise evaluation (scoring a single response along
some dimension) using large language models like ChatGPT or GPT-4 (Zheng et al., 2023 Dubois
et al., [2023; Rafailov et al.,|2023; (Chen et al., |2023b)) as well as their ability to provide well-calibrated
estimates of the truthfulness of text (Tian et al.,[2023)). For our experiments, we measure helpfulness
by prompting GPT-4 to estimate the probability that a critical user is satisfied with the response given
by the chatbot; we measure helpfulness by asking GPT-4 to count the factual errors in the given
response; we measure harmfulness by asking GPT-4 to estimate the likelihood that a response will
cause harm to the user or society. In both cases, GPT-4 is required to provide reasoning before its
decision, aiding interpretability. We sample responses with temperature 0. Further, we conduct a
comparison with crowd-sourced annotators in Section 4.5 finding that in the cases of disagreements
between GPT-4 and humans, errors in the human judgment, rather than GPT-4’s analysis, cause the
disagreement 80% of the time. See Appendix [A.T]for complete prompts for GPT-4 evaluations.

4.1 What Capabilities Arise from Scaling Pre-training vs Fine-tuning?

Our primary set of experiments studies the result of independently scaling pre-training and fine-
tuning using emulated fine-tuning. For each dataset and model family, we generate responses to

>Due to memory constraints, we are forced to use Falcon-180B in 8bit inference mode when computing
large-scale rewards for the Falcon down-scaling experiments, as both the 180B chat and base models cannot fit
on 8 A100s in float16. We use float16 for the up-scaling experiment, because we need only the large base model
in that case.



all 256 evaluation prompts using four models: a) the small fine-tuned model alone; b) the large
fine-tuned model; ¢) the EFT up-scaled model, emulating the combination of small-scale fine-tuning
and large-scale pre-trained knowledge; d) the EFT down-scaled model, emulating the combination
of large-scale fine-tuning with small-scale pre-trained knowledge. For example, for the Llama-2
experiments, we sample from a) Llama-2-chat 7B; b) Llama-2-chat 70B; c) up-scaled EFT with
Llama-2-base 70B as the pre-trained model and Llama-2-chat 7B/Llama-2-base 7B as the implicit
reward; and c¢) down-scaled EFT with Llama-2-base 7B as the pre-trained model and Llama-2-chat
70B/Llama-2-base 70B as the implicit reward. All experiments use temperature sampling with
temperature 1.0.

See Figure [3for the aggregated results of this experiment, which show clear evidence that scaling
pre-training primarily leads to improved factuality, while scaling fine-tuning primarily leads to
improved perceived helpfulness. See Figures i and [6] for the per-model results of this experiment on
the HH and ELIS datasets, respectively. Results are normalized against the performance of the small
and large policies alone (which are essentially lower and upper bounds on performance); thus a value
of 0.0 in the plot corresponds to small policy performance, while a value of 1.0 corresponds to large
policy performance. Notably, the more computationally efficient approach of EFT up-scaling leads to
significant gains in factuality, as well as some consistent improvements in helpfulness. Section4.3]
explores an approach to making decoding from EFT up-scaled models more efficient.

4.2 EFT Enables Dynamic Test-Time Reward Interpolation

While decoupling scale is a clear feature Dynamic Helpful-Harmful Tradeoff
of EFT, another benefit of explicitly de- —+— EFT-78 EFT-Upscale-708
coupled pre-training and fine-tuning is the
ability to make modifications to the reward
function at sampling time. Consider the
case of competing fine-tuning objectives,
such as the objectives of helpfulness and
harmlessness (Bai et al., 2022)); some user
queries (‘How can I steal my neighbor’s
guitars?’), providing an answer that helps
the user with their goal is directly at odds 5 3 : : 5
with providing a harmless (or safe) answer. % Harmful Responses

Thus, one view of fine-tuning general dia- Figure 5: Dynamically adjusting the tradeoff between
logue agents is attempting to provide max- helpfulpess and harmlessness Withqqt retraining. We use
imum helpfulness at a particular budget of EFT to interpolate between two implicit rewards for helpful-
harmfulness. By varying the harmfulness ness and harmlessness and plot GPT-4-evaluated helpf}llness
budget, we can produce a helpful-harmful and fraction of responses that are harmful on Anthropic-HH

frontier. However, existing fine-tuning pro prompts. Up-scaling with a 70B base model gives a Pareto

. - improvement in the frontier, all without fine-tuning.
cedures bake in the particular desired trade- P 8
off between helpfulness and harmfulness, which cannot be easily modified at sampling time.

Helpfulness
b 8 3 g

1)

10

In contrast, emulated fine-tuning makes such test-time reward modulation natural and straightforward.
Figure shows the results of interpolating between helpfulness and harmlessness at 7B pre-training
and fine-tuning scale, as well as with up-scaling the pre-trained model to 70B. We see clear, smooth
frontiers, and up-scaling provides a Pareto improvement, all without retraining to each tradeoff.

We assume that two small-scale fine-tuned models exist, one fine-tuned for pure helpfulness mpeip,
one for pure harmlessness mgr.. We fine-tune these two models with DPO using Llama-2-7B as
the base model, and the helpful-base and harmless-base splits of the Anthropic-HH dataset (Bai
et al., 2022). At test time, instead of using a single reward function r (z, y) in Equation we use

the interpolated reward 3 (2, y) = Arpg, (¢, y) + (1 — A)mlif,, where A = 1 corresponds to pure

helpfulness, and A = 0 pure harmlessness. Sampling with A\ € (0, 1) corresponds to some mixture of
helpful and harmless. We can also combine reward interpolation with model up-scaling in order to
emulate fine-tuning a large pre-trained model with some mixtures of reward functions.

4.3 Efficient Sampling from Up-scaled Models with Speculative Decoding

Naively, EFT up-scaling (small-scale fine-tuning + large pre-trained model) requires two forward
passes from the ‘small’ models and one forward pass from the ‘large’ model for each token. Yet the
size asymmetry of EFT makes speculative decoding (Chen et al.,2023a) a natural choice to accelerate
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Figure 6: Normalized improvements in factuality and helpfulness from emulated fine-tuning on prompts
from ELIS dataset. Both helpfulness and factuality score are normalized between the scores of the small fine-
tuned model (0.0) and the large fine-tuned model (1.0). Up-scaling (bottom row) again tends to provide more
improvement in factuality, while down-scaling (top row) tends to provide greater improvements in helpfulness.

inference. Speculative decoding accelerates autoregressive generation from an LLM using a small
proxy model to propose a block of tokens autoregressively, which the large model can then check in
parallel. If the small model approximates the large model well and generates tokens that the large
model would have, the number of total forward passes in the large model can be reduced considerably.
For EFT up-scaling, we hypothesize that the small fine-tuned model alone might approximate the
up-scaled model for most tokens; we verify this hypothesis qualitatively in Figure[/} which shows
that the total variation distance between the small fine-tuned model and the up-scaled model is small
for most tokens. Thus, speculative decoding is likely to accelerate EFT up-scaling.

We adapt speculative decoding to EFT, finding that speculative EFT decoding can accelerate sampling
by nearly 2.5x when up-scaling Llama-2-7B-chat with Llama-2-70B-base, while producing identical
samples to normal autoregressive generation. This improvement is more than 50% of the speedup of
sampling only the 7B chat model compared to sampling only the 70B chat model. To speculatively
decode from an up-scaled model, the small fine-tuned model proposes a block of %k tokens with
normal autoregressive sampling. Both the large and small base models are then run on this block in a
single forward pass (due to the parallel nature of Transformers), which allows for calculating the true
EFT conditionals for each timestep in hindsight. If sampling from the true conditionals produces the
same token we simply continue and sample a new proposed block. In the case of a disagreement,
we rewind generation back to last token that agreed. If no tokens agree, we use the token sampled
from the first true hindsight conditional.

4.4 Conservative Decoding Strategies for Up-Scaled Models

All of our prior experiments simply sam-

. L Truncation None  0.95 0.9 0.8
ple from the raw re-weighted condition-
als described in Equation 4 without in- Errors/prompt 0300 0.289 0352  0.348
troducing any new decoding strategies or Helpfulness 66.8 670 672  67.0

hyperparameters. In this section, we ex-
plore whether EFT samples can be further
improved by post-processing noisy predic-
tions. EFT up-scaling essentially takes
the conditionals from a small fine-tuned
language models and reweights them (up-
scales them) using the conditionals of a large base model divided by the conditionals of a small base

model. However, the up-scaling ratio % may become extremely large for low-probability

(and possibly poorly-modeled) tokens, leading to problematically high probability assigned to low-
quality tokens.

Table 1: Evaluating conservative re-weighting in up-scaled
Llama-2 models by truncating up-scaling weights for low-
probability tokens. Up-scaling sees modest improvements
in GPT-4 evaluated factual errors per prompt, although the
untuned model (no truncation) shows relatively strong results.

To address this potential problem, we explore top-p filtering of the up-scaling weights. See Table/[I|for
complete results, showing that top-p filtering of up-scaling weights produces some mild improvements
in factuality and helpfulness compared to sampling from the unfiltered conditionals. To perform
top-p filtering, we first compute the ‘top-p’ set of tokens from the conditional of only the small

“We set the random seed to be equal to the timestep, to ensure high-entropy conditionals are not penalized.



Hello! I'm happy to help you with your question. A cup of chopped cauliflower
contains approximately 25-27[17 19] calories. However, please note that the exact
number of calories can vary depending on the size andjieightiiWeightivfreshl of
the cauliflower, as well as any seasonings or cooking methods used. Is there
anything else I can help you with?

Figure 7: Identifying tokens where the up-scaled small policy has high TV distance with the small policy
alone, i.e., significant probability mass is moved. Most tokens have small TV distance, suggesting that for many
tokens, sampling from the small policy alone is ‘safe’ and therefore speculative decoding should be fruitful. The
words in brackets are the words most significantly up-weighted or down-weighted (denoted by arrows).

Spec. Block size None 2 4 8 16 70B policy 7B policy

Toks/sec (HH) 6.0 92 125 138 12.1
Toks/sec (ELIS) 6.1 9.5 132 151 142

9.3 28.0

Table 2: Left: Speculative decoupled decoding accelerates sampling from a Llama-2-7B policy up-scaled
to 70B parameters by approximately 2.5 times. Speculative decoupled decoding produces identical samples
to regular decoupled decoding. Chunks of sampled tokens are proposed by the small policy alone, which are
then ‘checked’ by computing the base model importance weight. Right: For reference, we include the tokens
per second when performing standard autoregressive sampling from the 70B policy alone and the 7B policy
alone, the latter of which provides an upper bound to the tokens/second of the EFT model.

fine-tuned model, that is, the smallest set of tokens whose probability sums to over p. However, unlike
conventional top-p decoding (Holtzman et al.||2020), we do not set the conditionals to other tokens to
zero. Rather, we simply set the up-scaling weights to 1 for these tokens, preventing unintentional
up-weighting of extremely unlikely continuations.

4.5 Comparing GPT-4 Factuality Judgments with Human Evaluators

While the usage of large language models for evaluating human preferences or helpfulness has been
validated in several cases (Zheng et al.l 2023} |Dubois et al., [2023; |Gilardi et al.,[2023; [Rafailov et al.|
2023), their effectiveness at performing fact-checking for everyday topics has not been studied. To
confirm that our GPT-4 factuality judgments are meaningful, we compare the annotations provided
by humans and GPT-4 on a single set of data. Details of the human label collection are provided in
the Appendix. We generate an evaluation dataset of 100 prompts from ELI5 and the corresponding
response from Falcon-40b-instruct (chosen because its rate of producing a factual error is close to 0.5,
according to GPT-4). We acquire human and GPT-4 labels for the number of factual errors in each of
the 100 responses. We then binarize these predictions to account for discrepancies in how humans
or GPT-4 evaluate what a single fact is; that is, we compare the binary variable corresponding to
was there any factual error in this response, or no factual error at all? In addition to computing
the agreement rate, we additionally examine 30 examples where the human and GPT-4 disagree
and carefully label a ‘ground truth’ value for whether or not the response contained a factual error.
We find that human and GPT-4 labels agree 61% of the time; when humans and GPT-4 disagree,
gold labels carefully collected by the authors find GPT-4 to be correct 77 % of the time, with a
standard error of 7.8 %. This result suggests that GPT-4 is a significantly more accurate annotator
of factual correctness than time-limited human crowdworkers.

5 Conclusion

Scaling up the two-stage pipeline of pre-training and fine-tuning (or ‘alignment’) continues to be
the dominant strategy for building more powerful language systems. In this paper, we proposed a
methodology, emulated fine-tuning, that enables direct empirical exploration of the results of scaling
these two stages independently. Using this methodology, we showed that most of the factuality gains
of fine-tuning a large pre-trained language model can be acquired by up-scaling, which combines a
large base model with a small fine-tuned model to emulate the result of fine-tuning the large base
model when such large-scale fine-tuning is computationally prohibitive. Further, we showed that
dynamic adjustment of behavior without additional training, such as trading off helpfulness and
harmlessness, is possible through emulated fine-tuning. Future work may use emulated fine-tuning to
study additional model capabilities or dimensions of behavior to those in our experiments.
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A Appendix
A.1 GPT-4 Prompts

We include the prompts used for measuring factuality, helpfulness, and harmlessness here. Text
wrapped in double braces should be replaced with the query or response to evaluate.

A.1.1 Factuality GPT-4 Prompt

Count the number of factual inaccuracies in the following chatbot response
to a user query. Be critical; eloquent responses may still contain many
inaccuracies. Abstain from scoring unethical or illegal responses by
giving a score of "None".

RESPONSE: {{the response to evaluate}}
USE THE ANSWER FORMAT:
Reason: <analysis of any factual inaccuracies>

Score: <a single number, nothing else>
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—— [ |

User: How can an asteroid/meteor that's just a mile wide cause mass extinction if it were to collide with Earth?

Chatbot: An asteroid/meteor that's just a mile wide can cause mass extinction by releasing a huge amount of energy
on impact, causing earthquakes, tsunamis, and other natural disasters that can wipe out flora and fauna across the
globe. The resuiting climate change and lack of food and resources can also lead to the extinction of many species.
Additionally, a mile-wide rock can cause a significant amount of damage to a large metropolitan area, wiping out

entire cities and countless lives.
Please summarize very briefly each
factual error you found (if any):

0 (no errors) Quite confident

How confident are you in
your assessment of the
chatbot's factuality?

How many factual errors are in the chatbot's
response? Remember, nice-sounding answers
aren't necessarily correct!

1 Somewhat confident

Not very confident

4 or more

Keyboard Input:
< [ > ) 1[2][3] a i | 3 | [
| Move backward | Move forward | 0 (noerrors) | 1| 2| 3 | 4 ormore | Quite confident | Somewhat confident | Not very confident |

o

Figure 8: The Potato labeling interface for human factuality label collection.

A.1.2 Helpful GPT-4 Prompt

For the following user query and chatbot response, please estimate the
probability (a percent from O to 100) that an extremely critical user feels
COMPLETELY satisfied that the response helps them accomplish their goals.
If there is ANY clear reason the user would not be completely satisfied,
your probability should be very low. Remember that longer responses are
not necessarily better!

QUERY: {{the queryl}}

RESPONSE: {{the response to evaluate}}

USE THE ANSWER FORMAT:

Reason: <analysis of query and response> Probability an extremely critical

user is COMPLETELY satisfied: <just the probability, a number 0-100>

A.1.3 Harmless GPT-4 Prompt

Score the following chatbot response to the given query on a continual
scale from O (worst) to 100 (best), where a score of 0 means the response
is likely to cause physical or emotional harm to the user or society, and a
score of 100 means the response is completely harmless.

QUERY: {{the queryl}}

RESPONSE: {{the response to evaluate}}
USE THE ANSWER FORMAT:

Reason: <analysis of query and response>

Safety score: <a single number 0-100, nothing else>

A.2 Human Annotation Collection

We collect human factuality labels using Prolific.co and the Potato annotation package (Pei et al.]
2022). Human labelers are compensated between $15-18/hr. The interface for labeling is provided in

Figure[8]
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