
Frames by Iterations and Invariant Subspaces
Alejandra Aguilera

Department of Mathematics
FCEyN UBA and

IMAS UBA-CONICET
Buenos Aires, Argentina

aaguilera@dm.uba.ar

Carlos Cabrelli
Department of Mathematics

FCEyN UBA and
IMAS UBA-CONICET

Buenos Aires, Argentina
cabrelli@dm.uba.ar

Diana Carbajal
Faculty of Mathematics

University of Vienna
Vienna, Austria

diana.agustina.carbajal@univie.ac.at

Victoria Paternostro
Department of Mathematics

FCEyN UBA and
IMAS UBA-CONICET

Buenos Aires, Argentina
vpater@dm.uba.ar

Abstract—This paper presents a characterization of systems
of iterations that generate frames of abstract separable Hilbert
spaces. The characterization is achieved through a correspon-
dence with a canonical system of iterations that form Parseval
frames of certain subspaces of the space of vector-valued func-
tions L2(T,K), where K is a Hardy space with multiplicity. These
subspaces possess the property of being invariant under two shift
operators with multiplicity.

Furthermore, we provide a clear description of the subspaces
generated by these canonical systems of iterations.

I. INTRODUCTION

In recent years, there has been extensive research on systems
of iterations that generate frames. One of the driving factors
behind this research is the application of such systems to
the Dynamical Sampling (DS) problem [5], [6], [7], which
involves the reconstruction of a signal from its time-space
samples. For applications of DS see [8], [9], [10], [12], [19].

The DS problem asks whether it is possible to reconstruct an
element f of a separable Hilbert space H in a stable manner
from a set of samples {〈T jf, vi〉 : i ∈ I, j ∈ J}, where
T : H → H is a linear and bounded operator, I and J are at
most countable index sets, and {vi}i∈I ⊂ H is a set of vectors.
It can be shown that answering this question is equivalent to
finding conditions on T , I , J and {vi}i∈I ⊂ H such that the
set
{
T ∗jvi : i ∈ I, j ∈ J

}
forms a frame of H [5].

This motivates the problem of characterizing systems of
iterations by a single operator acting on a set of vectors that
generate frames of Hilbert spaces. For example, in [5], this
problem was completely solved for the finite-dimensional case.
The infinite-dimensional case for normal operators and several
generators was also solved. See [4], [5], [11], [16], [17]. There,
the authors provide a characterization of those frames using
tools from complex analysis, making the first connection with
Hardy spaces and interpolation sets.

Later on, for general operators, the authors in [18] found
that the orbit of one vector by a single operator in a separable
Hilbert space forms a frame if and only if the operator is
similar to the compression of the shift in a model space of
the Hardy space in the open unit disk. The isomorphism that
gives the similarity is given by the restriction of the synthesis
operator to the model space. This was later extended in [17] to
the case of several generators, which involves Hardy spaces
with multiplicity. These results are valid for the two cases:

when the iteration runs over N (unilateral case) and over Z
(bilateral case). However, the bilateral case only applies when
the iterated operator is invertible.

In the case of shift-invariant spaces (SIS) (i.e. spaces
invariant under translation along Z) in L2(R), the functions
Φ = {φi}i∈I that give a frame by translations have been com-
pletely characterized some years ago, by several authors, see
for example [14], [20]. In [1], the authors address the problem
of the existence of a second linear and bounded operator L,
that acts on the SIS and commutes with translations (known in
the literature as shift-preserving operator). They ask whether
the operator L can be used to form a frame if the translations
of the functions in Φ do not suffice. That is, they look for
conditions on L and Φ such that the system of translations of
the iterations of L on Φ forms a frame of the SIS. Sufficient
and necessary conditions were found for the case when L is
normal and the SIS is finitely generated.

The latter question was extended in [2] to the general case of
an abstract separable Hilbert space H, considering the system
of orbits of a set of vectors {vi}i∈I ⊂ H by iterations of two
bounded commuting operators T and L acting on H (see (1)).
Here, T is an invertible operator but not necessarily unitary. A
characterization of such systems that form a frame of H was
obtained with different techniques to those in [1].

The primary approach used in [3] involves examining the
kernel of the synthesis operator in a suitable space. This
kernel can be viewed as a subspace of L2(T, H2

`2(I)), and
it is demonstrated that it reduces the bilateral shift while
being invariant under the local action of the unilateral shift
(as defined in III.2). This observation raised the question of
identifying the subspaces of L2(T, H2

K) with similar invariant
properties, where K is a separable Hilbert space. This question
was answered in [3].

The characterization of invariant subspaces of the unilateral
shift operator in the Hardy space H2 was initially achieved by
Beurling [13] and later generalized by Lax [23] and Halmos
[21] to include Hardy spaces with multiplicity. Helson and
Lowdenslager [22] subsequently characterized the subspaces
of L2(T,K) which reduce the bilateral shift. The characteri-
zation presented in [3] follows the same framework as these
influential theorems.

In this note, we provide a survey of the results obtained in
[2] (Section IV) and [3] (Section V). We refer the reader to



the original articles for a more comprehensive development of
the results presented here.

II. NOTATION AND DEFINITIONS

In this article, we will write N0 := N ∪ {0}, the letters H
and K will denote separable complex Hilbert spaces. The set
of linear and bounded operators from H to K will be denoted,
as usual, by B(H,K) and B(H) := B(H,H).

Let M be a closed subspace of H. We say that M is
invariant under an operator T ∈ B(H) if T (M) ⊆ M. In
the case when M is invariant under T and also under its
adjoint operator T ∗, it is said that M reduces T (or that M
is a reducing subspace for T ).

III. SPACES OF MEASURABLE VECTOR-VALUED
FUNCTIONS

In this section we give an introduction to the basic theory of
vector-valued functions that we need in the following sections.

Definition III.1. A vector-valued function f : T → K is
said to be measurable if for each x ∈ K, the complex-valued
function λ 7→ 〈f(λ), x〉K is measurable on T.

Denote by L2(T,K) the Hilbert space of all measurable
vector-valued functions f : T → K such that

∫
T ‖f(λ)‖2K dλ

is finite, equipped with the inner product

〈f, g〉 =

∫
T
〈f(λ), g(λ)〉K dλ.

Observe that any v ∈ K induces a vector-valued function,
namely the function that is constantly v over T. Thus, K can
be seen as a subspace of L2(T,K).

If we choose an orthonormal basis B = {εi}i∈I of K, then
we have the following expansion of a function f ∈ L2(T,K):

f(λ) =
∑
i∈I
〈f(λ), εi〉K εi, a.e λ ∈ T.

We define the i-th coordinate function of f with respect to
the basis B as fi := 〈f(·), εi〉K. It can be easily seen that
fi ∈ L2(T) for all i ∈ I .

The Hardy space with multiplicity is denoted by H2
K and

it can be defined as the space of all vector-valued functions
f ∈ L2(T,K) such that their coordinates functions {fi}i∈I
(with respect to any orthonormal basis B of K) belong to the
scalar Hardy space H2, where

H2 :=

{
f ∈ L2(T) :

∫
T
f(z)z−n dz = 0 for n < 0

}
.

Acting on these spaces we can consider three fundamental
shift operators.

Definition III.2. Let K be a separable Hilbert space.
1) The bilateral shift with multiplicity is the operator U :

L2(T,K)→ L2(T,K), defined by

Uf(λ) = λf(λ), a.e λ ∈ T and f ∈ L2(T,K).

2) The unilateral shift with multiplicity is the operator S :
H2
K → H2

K given by the restriction of U to H2
K.

3) The pointwise shift is the operator defined by
Ŝ : L2(T, H2

K)→ L2(T, H2
K),

Ŝf(λ) = S(f(λ)), a.e λ ∈ T and f ∈ L2(T, H2
K).

Observe that with these operators one can construct or-
thonormal bases of L2(T,K), H2

K and L2(T, H2
K), formed

by the iterations over an orthonormal basis of the underlying
space K (see, for instance, [2]).

Proposition III.1. Let B = {εi}i∈I be an orthonormal basis
of K. Then,

1) The set {Ukεi : k ∈ Z, i ∈ I} is an orthonormal basis
of L2(T,K).

2) The set {Sjεi : j ∈ N0, i ∈ I} is an orthonormal basis
of H2

K.
3) The set {UkŜjεi : k ∈ Z, j ∈ N0, i ∈ I} is an

orthonormal basis of L2(T, H2
K).

IV. FRAMES BY ITERATIONS OF TWO OPERATORS

The main goal of this section is to review the necessary
and sufficient conditions, found in [2], on two commuting
operators T and L acting on a separable Hilbert space H,
and an at most countable set of vectors {vi}i∈I ⊂ H, in order
that the system of iterations{

T kLjvi : k ∈ Z, j ∈ N0, i ∈ I
}

(1)

forms a frame of the corresponding space H.
The characterization consists in establishing a corres-

pondence between the system (1) and a canonical system
of iterations that forms a Parseval frame of L2(T,K), for a
convenient Hilbert space K.

Definition IV.1. For l = 1, 2, let Hl be a separable Hilbert
space. Let Tl, Ll ∈ B(H) be such that Tl is invertible and
TlLl = LlTl. Let {vi}i∈I ⊂ H1 and {wi}i∈I ⊂ H2 be two
sets of vectors, where I is an at most countable index set.

We say that the systems of iterations{
T k1 L

j
1vi : k ∈ Z, j ∈ N0, i ∈ I

}
(2)

and {
T k2 L

j
2wi : k ∈ Z, j ∈ N0, i ∈ I

}
(3)

are equivalent if there exists an isomorphism Ψ ∈ B(H1,H2)
such that Ψ(vi) = wi for every i ∈ I , and the following
intertwining properties hold

ΨT1 = T2Ψ and ΨL1 = L2Ψ.

In the case when Ψ is unitary, we say that the systems (2)
and (3) are unitarily equivalent.

We have the following lemma.

Lemma IV.1 ([2]). The frame property is preserved under
equivalent systems of iterations. Moreover, if two equivalent
systems of iterations are Parseval frames of their correspond-
ing Hilbert space, then they are unitarily equivalent.



Assuming that the system (1) is a Bessel sequence in H, its
associated synthesis operator can be defined by

C : L2(T, H2
`2(I))→ H, Cf =

∑
k,j,i

f ik,jT
kLjvi (4)

where f ik,j := 〈f, UkŜjδi〉 and {δi}i∈I is the canonical
orthonormal basis of `2(I). Typically, C is defined on the
space of sequences `2(Z × N0 × I), but in view of item 3)
of Proposition III.1, we have that the space `2(Z × N0 × I)
is isometrically isomorphic to the space L2(T, H2

`2(I)) via the
correspondence f 7→ {〈f, UkŜjδi〉}.

Below, we enumerate some properties of C, which are key
for establishing the main result.

Proposition IV.1 ([2]). Let C be the synthesis operator
associated to the system (1), given by (4). Then,

1) If {δi}i∈I is the canonical orthonormal basis of `2(I),
then C(δi) = vi for all i ∈ I . Moreover, C satisfies the
following intertwining properties

CU = TC, CU∗ = T−1C and CŜ = LC.

2) The subspace ker(C)⊥ ⊆ L2(T, H2
`2(I)) reduces U and

is invariant for Ŝ∗.

For a closed subspace N ⊆ L2(T, H2
`2(I)), we define the

compression of Ŝ to N as the operator AN : N → N , given
by

AN := PN Ŝ|N ,

where PN is the orthogonal projection from L2(T, H2
`2(I))

onto N .

Lemma IV.2 ([2]). If N 6= {0} is a closed subspace of
L2(T, H2

`2(I)) that reduces U and is invariant for Ŝ∗, then
the system {

UkAjNPN δi : k ∈ Z, j ∈ N0, i ∈ I
}

(5)

forms a Parseval frame of N .

From now on, any frame of the form (5) will be called a
canonical system of iterations.

Proposition IV.2 ([2]). Let N1 and N2 be two closed sub-
spaces of L2(T, H2

`2(I)) that reduce U and are invariant for
Ŝ∗, and for all i ∈ I , let ϕ1

i = PN1δi and ϕ2
i = PN2δi. If the

canonical systems of iterations{
UkAjN1

ϕ1
i : k ∈ Z, j ∈ N0, i ∈ I

}
(6)

and {
UkAjN2

ϕ2
i : k ∈ Z, j ∈ N0, i ∈ I

}
(7)

are equivalent, then N1 = N2 and hence ϕ1
i = ϕ2

i for all
i ∈ I .

In the following, we formulate the main result of this section
which characterizes the systems of iterations that form a frame
(a Parseval frame or a Riesz basis) of the corresponding Hilbert

space, in terms of the equivalence relation given by Definition
IV.1.

The key is to observe that if the system (1) is a frame, then
the synthesis operator C is surjective. Thus, we can consider
the restriction of C to the subspace ker(C)⊥, which induces by
Proposition IV.1 an equivalence relation between the system
(1) and the canonical system of iterations associated to N =
ker(C)⊥.

Theorem IV.1 ([2]). The following statements hold:
1) The system of iterations (1) forms a frame of H if and

only if it is equivalent to a canonical system of iterations.
2) The system of iterations (1) forms a Parseval frame of
H if and only if it is unitarily equivalent to a canonical
system of iterations.

3) The system of iterations (1) forms a Riesz basis of
H if and only if it is equivalent to the canonical
system of iterations corresponding to the whole space
L2(T, H2

`2(I)). This means that the system (1) is equiv-
alent to the orthonormal basis{

UkŜjδi : k ∈ Z, j ∈ N0, i ∈ I
}
.

Observe that by Proposition IV.2, the canonical system of
iterations equivalent to (1) is unique.

Remark IV.1. Theorem IV.1 can be also stated when conside-
ring systems of iterations of T and L over Z, i.e., systems of
the form {

T kLjvi : k, j ∈ Z, i ∈ I
}
, (8)

taking into account that L is now assumed to be invertible. To
do that, it is useful to observe that `2(Z2× I) is isometrically
isomorphic to L2(T2, `2(I)). Consider two shift operators U1

and U2 acting on L2(T2, `2(I)) defined by

Uif(z1, z2) = zif(z1, z2), i = 1, 2

for every f ∈ L2(T2, `2(I)) and a.e. (z1, z2) ∈ T2. Thus, in
this case, a canonical system of iterations will be a system of
the form {

U1|kNU2|jNϕi : k ∈ Z, j ∈ N0, i ∈ I
}

(9)

where N is a closed subspace of L2(T2, `2(I)) that reduces
U1 and U2 simultaneously and ϕi = PN δi for each i ∈ I . See
[2] for more details.

V. REDUCING AND INVARIANT SUBSPACES UNDER TWO
SHIFT OPERATORS

Motivated by the characterization achieved in Theorem IV.1,
the structure of the subspaces of L2(T, H2

K) that reduce U and
are invariant for Ŝ, for some separable Hilbert space K, was
investigated in [3]. Here, we provide an overview of the results
obtained.

To do this we recall some aspects on the theory of reducing
subspaces for U and its connection with range functions.
We remark that these are particular cases of multiplication-
invariant subspaces discussed by Bownik and Ross in [15].



Definition V.1. A range function J in K is a mapping

J : T→ {closed subspaces of K}.

We say that J is measurable if for each x, y ∈ K the
complex-valued function λ 7→ 〈PJ(λ)x, y〉 is measurable,
where PJ(λ) denotes the orthogonal projection of K onto J(λ).

We have the following characterization theorem for the
subspaces of L2(T,K) that reduce U .

Theorem V.1 ([15]). A closed subspace M ⊆ L2(T,K)
reduces U if and only if there exists a measurable range
function J such that

M =
{
f ∈ L2(T,K) : f(λ) ∈ J(λ) for a.e. λ ∈ T

}
.

Identifying the range functions which are equal almost
everywhere, the correspondence between reducing subspaces
for U and measurable range functions is one-to-one and onto.

In order to provide a description of the closed subspaces
of L2(T, H2

K) that are reducing for U and invariant for Ŝ, we
need to introduce the subclass of the closed subspaces that are
reducing for U and Ŝ simultaneously.

Definition V.2. Let J be a measurable range function in K.
The full-Hardy subspace with base J is the unique closed
subspace W of L2(T, H2

K) that reduces U whose range
function is given by λ 7→ H2

J(λ) for a.e. λ ∈ T.

The full-Hardy subspaces reduce U and Ŝ, even more, they
are the only subspaces with that property, as we establish
below.

Theorem V.2 ([3]). A subspace W ⊂ L2(T, H2
K) is reducing

for U and Ŝ if and only if W is a full-Hardy subspace.

Finally, we state the main theorem of this section. We recall
that an operator T ∈ B(H) is said to be a partial isometry if
T is an isometry in ker(T )⊥.

Theorem V.3 ([3]). Let M be a closed subspace of
L2(T, H2

K). The following statements are equivalent:

1) M is reducing for U and invariant for Ŝ.
2) There exists a full-Hardy space W ⊂ L2(T, H2

K) and
a partial isometry Φ : L2(T, H2

K) → L2(T, H2
K) with

ker(Φ) =W⊥, that commutes with U and Ŝ, and such
that Φ(W) =M.

The idea behind this result builds over the observation that
if M reduces U and is invariant for Ŝ, then its associated
range function J in H2

K satisfies that J(λ) is an invariant
subspace for S, for a.e. λ ∈ T. It may appear that one
can derive the desired characterization by directly applying
Beurling-Lax-Halmos (BLH) Theorem to each subspace J(λ)
and then transferring the results back toM, a common strategy
known as the fiberization technique. However, this approach is
not possible due to measurability issues. Instead, the strategy
is to reconstruct the isometries of the type of BLH for each
J(λ), in a measurable way with respect to λ ∈ T.
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