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Abstract

Parameter-Efficient Fine-Tuning (PEFT) is a popular class of techniques that
strive to adapt large models in a scalable and resource-efficient manner. Yet,
the mechanisms underlying their training performance and generalization remain
underexplored. In this paper, we provide several insights into such fine-tuning
through the lens of linearization. Fine-tuned models are often implicitly encouraged
to remain close to the pretrained model. By making this explicit, using an ℓ2-
distance inductive bias in parameter space, we show that fine-tuning dynamics
become equivalent to learning with the positive-definite neural tangent kernel
(NTK). We specifically analyze how close the fully linear and the linearized fine-
tuning optimizations are, based on the strength of the regularization. This allows
us to be pragmatic about how good a model linearization is when fine-tuning
large language models (LLMs). When linearization is a good model, our findings
reveal a strong correlation between the eigenvalue spectrum of the NTK and the
performance of model adaptation. Motivated by this, we give spectral perturbation
bounds on the NTK induced by the choice of layers selected for fine-tuning. We
empirically validate our theory on Low Rank Adaptation (LoRA) on LLMs. These
insights not only characterize fine-tuning but also have the potential to enhance
PEFT techniques, paving the way to better informed and more nimble adaptation
in LLMs.

1 Introduction

Foundational large language models (LLMs) [1, 2] have emerged as general-purpose models that are
then adapted to various NLP tasks through fine-tuning. Due to the enormous number of trainable
parameters in these models, full fine-tuning can be expensive in terms of time and other computational
resources [3]. Parameter-Efficient Fine-tuning (PEFT) [4–8] is a particularly popular set of techniques
that strive to tackle this computational burden. They aim to reduce the effective number of trained
parameters, making choices such as focusing on certain layers only or applying rank-limited updates,
all while maintaining how well the model adapts to the task. However, these methods often lack a
fundamental understanding of the dynamics behind these choices, making informed exploration of
the algorithmic space difficult.

In this paper, we introduce linearized fine-tuning, which establishes a foundation for rigorously
understanding adaptation in large models through the lens of Neural Tangent Kernel (NTK) regression.
Said simply, linearizing the fine-tuning process reduces the problem to one closely aligned with NTK
regression. This, in turn, allows us to predict the performance of various fine-tuning decisions using
the properties of the NTK kernel. Linearization can be achieved by regularizing fine-tuning to remain
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close to the original model, which is empirically found to be non-restrictive, because most methods
already encourage this proximity between the fine-tuned and original models [9].

Linearized approximations to guide fine-tuning have previously been explored in [10–14]. In [10], a
linearized approximation is used to introduce two scores for selecting models from a zoo of models
to be fine-tuned for a specific task. In [11], a linear model is constructed that combines network
activation with the gradient features. In [12], it is demonstrated that linearized models, governed
by the NTK, outperform their nonlinear counterparts in fine-tuning. All these works, however,
do not quantify the closeness of fine-tuning dynamics to the linear approximation. Instead, they
only hypothesize that the model will remain close to the pretrained model and that, therefore, the
fine-tuning dynamics can be approximated by a Taylor expansion of the model around the pretrained
parameters. This shortcoming motivates the present paper to introduce an explicit inductive bias that
enables quantifying the extent to which linearity is preserved during fine-tuning. In particular, we
provide a theoretical upper bound on the distance between the fine-tuned model and its linearized
approximation, which in turn firmly supports predictions of fine-tuning performance based on
linearization. The work in [13] explores the loss landscape in the NTK regime; however, it does
not determine under what conditions fine-tuning falls within this regime. In contrast, our work
proves both theoretically and empirically that, although necessarily in the NTK (linearization) regime,
fine-tuning can be constrained to it by regularizing the process towards the pretrained model.

Our work builds on prior results that establish conditions under which linearity holds. Jacot et al. [15]
showed that in the infinite width limit, the network function follows a linear differential equation
during training. Moreover, they proved that for wide networks, the NTK remains constant during
training; hence, they called this regime lazy training. Later, Bach et al. [16] suggested that lazy
training is not limited to infinite-width networks.

More recently, and of particular relevance here, Malladi et al. in [17] extended the NTK theory
to characterize kernel-based dynamics specifically for fine-tuning language models. They adapted
infinite-width analysis to account for pretrained initialization and proved that prompt-based fine-
tuning in complex architectures like transformers can exhibit kernel behavior under certain conditions.
They demonstrated the critical role of meaningful prompts in achieving kernel behavior and explained
how these dynamics describe fine-tuning trajectories. Additionally, they proved the effectiveness of
Low Rank Adaptation (LoRA) by bounding the difference between the kernel of full fine-tuning and
the kernel of LoRA. In [17], the authors assume that fine-tuning can be explained by linearization, and
their results also confirm that linearization does not always appear in fine-tuning (see Fig. 1 of [17]).
In our work, however, by introducing an explicit inductive bias for fine-tuning, which is essentially
a weight decay toward the original model parameter, we induce lazy training. Consequently, the
fine-tuning performance can be approximated by the linearized model [9, 18]. The evolution of the
model is described by the neural tangent kernel (NTK), which stays constant during fine-tuning. This
property makes it possible to study the generalization properties of a fine-tuned model based on the
spectral properties of the NTK. Specifically, our main contributions are:

• We show that having an explicit inductive bias toward the pretrained model results in
linearized fine-tuning; more precisely, it brings fine-tuned and linearized models closer.

• Leveraging the linearization of fine-tuning, we formulate the fine-tuning problem as a neural
tangent kernel regression and use the eigenvalue decomposition of the neural tangent kernel
to derive bounds on the empirical risk of the end result of fine-tuning, prior to its execution.

• We provide bounds on the spectral perturbation on the NTK when a set of trainable parame-
ters is added to fine-tuning. In particular, to the best of our knowledge, we present the first
spectrum perturbation results due to layer selection and introduce an algorithm that provides
new insights to guide fine-tuning design.

• Through extensive experiments, we validate our theoretical results. We evaluate the condition
number of NTK as an at-initialization metric to anticipate the performance of LoRA before
training. Even though our experiments focus on LoRA, the technical tools we introduce
could be equally used in the context of other PEFT methods.

The paper is organized as follows. In §2, we present the problem formulation and notation. In §3, we
detail the linearization framework. In §4, we give an NTK regression formulation for the linearized
fine-tuning and related performance to the kernel’s spectrum. In §5, we show how layer choices
affect this spectrum. We then validate our findings through experiments in §6 and conclude in §7.
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2 Problem Formulation

In the fine-tuning problem, we are given a pretrained model fθ0
(·), a target task dataset DT =

(xi,yi)
n
i=1 for the downstream task, and a loss function L(·, ·) : R × R → R. The most basic

fine-tuning solution is to minimize the target empirical risk via gradient descent, when initialized
at fθ0(·). This implicitly finds solutions close to the pretrained model. In this paper, we make this
explicit via an inductive bias toward the pretrained model. We denote the regularized fine-tuned
model by fθ⋆(·) : Rd → R, and we define it as minimizing the regularized empirical risk.

θ⋆ = minimize
θ

R̃(θ) + λ

2
∥θ − θ0∥22, where (1)

R̃(θ) =
n∑

i=1

L(fθ(xi),yi). (2)

θ denotes the trainable fine-tuning parameters, θ0 denotes the parameters of the pretrained model,
R̃(θ) the original objective function, and λ the regularization strength hyperparameter. When θ0 = 0,
(1) reduces to an ordinary weight decay. This regularization reduces the deviation between the fine-
tuned and pretrained models, and is a simple instance of proximal methods often used in fine-tuning.
We assume L(·, ·) is the squared loss, and thus the risk is the MSE. By representing DT using the
data matrices (x∗,y∗), we write the risk as

R̃(θ) = ∥fθ(x∗)− y∗∥2. (3)

We split the optimization (1) using gradient descent at step t with learning rate η into two steps:

θ̃t = θt−1 − η∇R̃(θt−1)
⊤, (4)

θt = θ̃t − λ η
(
θ̃t − θ0

)
, (5)

where the first step is the gradient descent on R̃(θ) and the second step is the gradient descent on the
regularization term λ

2 ∥θ − θ0∥2.

3 Proximity to the Pretrained Model Promotes Linearity

F

H
fθ0

fθ∗

fθt

∇θfθ0

Figure 1: The NTK defines a linear function space
H tangent to the non-linear function space F defined
by the model. Regularized fine-tuning in the lazy
regime is close to kernel regression on the tangent
space. fθ⋆(x) is the fine-tuned model obtained by em-
pirical risk minimization. If fine-tuning remains in
the linearized regime, then after T steps of training
fθ⋆(x) ≈ fθ0(x) + ⟨∇θfθ0(x),θT − θ0⟩ is a good
approximation.

We first justify why we regularize for proximity
to the pretrained model by showing that this
promotes similarity between the final fine-tuned
solution and its linearized counterpart. For any
(x,y) ∈ DT , the latter is defined as

f̄θ̄t
(x) = fθ0(x) +

〈
∇fθ0(x), θ̄t − θ0

〉
, (6)

where θ̄ denotes the parameters of the linearized
model. We set θ̄0 = θ0 and, therefore, for any
x ∈ DT , f̄θ̄0

(x) = fθ0
(x).

We list and discuss our main theorems toward
this goal, and defer the proofs to the appendix.
In Theorem 1, we provide conditions for mono-
tonicity of updates in regularized fine-tuning,
and use it to slightly modify gradient descent
to ensure monotonicity. In Theorem 2, we de-
rive an upper bound on the distance between
the parameters at a step t of the regularized
fine-tuned model and the pretrained model, i.e.,
∥θt − θ0∥. In Theorem 3, we find the distance
between the inference of the regularized fine-tuned model fθ(x∗) and the linearized model f̄θ̄(x

∗)
i.e., ∥fθ(x∗)− f̄θ̄(x

∗)∥, which is the primary contribution of this section.
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Theorem 1. Under the squared loss, for any t > 0, if λ > 0 and ∇θR̃(θt) (θt − θ0) ≥ 0, then

d

dt
∥fθt(x∗)− y∗∥2 ≤ 0. (7)

Moreover, if ∇θR̃(θt) (θt − θ0) < 0, then λ = 0 is a sufficient condition for (7) to hold.

Proof. See Appendix B.

In fine-tuning, the objective in (1) is non-convex in the parameters. However, according to Theorem 1,
a sufficient condition for regularized fine-tuning to have non-increasing ∥fθt(x∗)− y∗∥22, is that at
step t, we have ∇θt

R̃(θt) (θt − θ0) ≥ 0 or λ = 0. Therefore, we modify the regularization step
in (5) as

θt =

{
θ̃t − λ η

(
θ̃t − θ0

)
if ∇θt

R̃(θt) (θt − θ0) ≥ 0,

θ̃t if ∇θt
R̃(θt) (θt − θ0) < 0

. (8)

This is a selective regularization scheme, which decides on regularization of each trainable parameter
based on the direction of its gradient. Intuitively, the inner product ∇θtR̃(θt) (θt − θ0) reflects
how aligned the current progress is with the negative gradient update direction. A negative inner
product signals consistent improvement in loss, while a positive value suggests movement toward a
higher-loss region. As a result, in order to have non-increasing loss at step t, (8) regularizes only the
trainable parameters with positive inner product values [9].
Theorem 2. Consider the selectively regularized fine-tuning solution, under squared loss. Denote
the instantaneous value of the regularization parameter by λt, which can be either 0 or λ. If fθ(x∗)
is Lip(f)-Lipschitz in an ℓ2-ball of radius r around pretrained parameters θ0, we have

∥θt − θ0∥ ≤ 2 Lip(f) ∥fθ0
(x∗)− y∗∥

∫ t

0

e−(Λt−Λs) ds, where Λt =

∫ t

0

λsds. (9)

In the special case when λt = λ (remains constant), we obtain

∥θt − θ0∥ ≤ 2Lip(f)∥fθ0
(x∗)− y∗∥1− e−λt

λ
. (10)

Proof. See Appendix C.

Intuitively, one can think of (9) as placing the “average” λ, 1
tΛt in (10). In what follows, we adhere

to (10), for simplicity. Note that in conventional fine-tuning, λ = 0. Since limλ→0
1−e−λt

λ = t the
bound in (10) recovers

∥θt − θ0∥ ≤ 2Lip(f) ∥fθ0
(x∗)− y∗∥ t, (11)

which follows Theorem 2.3 in [16], in the case when the rescaling parameter is one. In other words,
regularization and rescaling both manifest the lazy training phenomenon, but regularization maintains
much closer proximity, since 1−e−λt

λ is bounded, unlike t.

Theorem 2 is primarily a building block for Theorem 3; it simply says that while the solution may
deviate from the origin under regularization, we can bound that deviation. Theorems 3 and 4 show
that we can jump from a deviation from the initialization bound, which is the direct objective of
regularization, to a bound on how far the NTK solution and the regularized fine-tuning solutions are,
i.e., the indirect but main benefit of regularization. This is what allows us to place the approximation
of Section §4 on a stronger footing than prior works [10–13] that assume that such proximity simply
holds. For simplicity, we consider the λ constant case to prove Theorems 3 and 4.
Theorem 3. Under the squared loss, if fθ(x∗) and ∇fθ(x∗) are Lip(f)-Lipschitz and Lip(∇f)-
Lipschitz in an ℓ2-ball of radius r around θ0 respectively, we have

∥fθt(x
∗)− f̄θ̄t

(x∗)∥ ≤ b

(
t− 1− e−λt

λ

)
, where (12)

b = 2 Lip(f)2∥fθ0(x
∗)− y∗∥

(
4

λ
Lip(∇f)∥fθ0(x

∗)− y∗∥+ 1

)
. (13)
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Proof. See Appendix D.

In the following theorem, we show that, for a proper choice of the regularization parameter λ,
linearization of fine-tuning only depends on the local properties of fθ(x∗) around θ0.
Theorem 4. Let the loss be the squared loss, fθ(x∗) and∇fθ(x∗) be Lip(f)-Lipschitz and Lip(∇f)-
Lipschitz, respectively, in an ℓ2-ball of radius r around θ0. Define

λ◦ =
2∥fθ0(x

∗)− y∗∥ Lip(f)
r

.

• If λ ≥ λ◦, then for all t, the following holds.

• If λ < λ◦, then the following holds for t ≤ 1
λ ln 1

1−λ/λ◦

In particular, for λ ≥ λ◦, the bound from Theorem 3 always holds and simplifies to:

∥fθt(x
∗)− f̄θ̄t

(x∗)∥ ≤ 2Lip(f)R̃(θ0) (2rLip(∇f) + Lip(f)) t.

Proof. See Appendix E.

While the distance between the pretrained and fine-tuned models can be substantial, the results
illustrate that this gap can be effectively constrained through regularization. Under this condition,
fine-tuning can be modeled by NTK regression [15], as discussed in the following section.

The takeaway of Theorem 4 is that the regularization determines the time scale at which the ap-
proximation holds, as well as how tight the approximation is. Theorem 4, at first glance, seems to
suggest that a larger value of λ is better to bring NTK and regularized trajectories together. However,
a larger λ means that we effectively force ourselves to remain in an even smaller ball around θ0
and may suffer in terms of fine-tuning performance (see λ = 50 in Table 1). The “sweet spot”
regularization parameter can be read from Theorem 4. It should be proportional to the smoothness of
f , the pretrained error, and inversely proportional to the radius where the smoothness assumptions
hold. While λ◦ is in terms of Lip(f), Theorem 3 and (13) show that there are also diminishing returns
for pushing λ beyond Lip(∇f), due to the +1 in this term.

4 Fine-Tuning Meets Neural Tangent Kernel Regression

We formally define the fine-tuning problem as a regularized function estimation in the reproducing
kernel Hilbert space (RKHS),H, generated by the NTK, k(x,x′) = ∇fθ(x)∇fθ(x′)⊤.

As shown in the previous section, regularized fine-tuning is in the linearized regime. Therefore,
fθ⋆(·) can be approximated by its dual in the tangent space, as shown in Figure 1. We can interpret
the linearized model as a kernel method with a feature map given by ϕ(x) = ∇θfθ0

(x). The
corresponding kernel induced by this feature map is the NTK. Jacot et al. in [15], showed that
gradient descent with an infinitesimally small learning rate is equivalent to performing kernel
regression with the fixed NTK. Thus, the empirical risk minimization (1) is approximated by kernel
regression when the kernel is the NTK [15].

Despite the fact that NTK analysis often considers the entire model, it is straightforward to specialize
it to the fine-tuning case, which we do here for completeness. When using mean squared error,
fine-tuning with the linear model is similarly equivalent to solving the kernel regression problem
presented in (14). LetH be the reproducing kernel Hilbert space (RKHS) endowed with a positive
definite kernel function k(·, ·), i.e.,

H =

{
f(·) =

n∑
i=1

αik(·,xi)

}
.

Assuming the solution lies in or close to this Hilbert space, then as an alternative to (1), we solve

minimize
f∈H

1

n

∑
(x,y)∈DT

∥f (x)− y∥2 + σ∥f∥2H, (14)
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where ∥ · ∥H is the norm corresponding to the inner product ⟨·, ·⟩H defined on the RKHS H. The
parameter σ > 0 regularizes the problem toward minimum-norm solutions and is qualitatively
inversely related to the number of gradient descent steps in the original problem. We thus effectively
formulate the fine-tuning problem as a regularized function estimation in the RKHS,H, generated by
the NTK, k(x,x′) = ∇fθ0

(x)∇fθ0
(x′)⊤. According to the representer theorem [19], the problem

(14) on training dataset DT = {xi,yi}ni=1 possesses the closed-form solution

f∗(·) =
n∑

i=1

αik (·,xi) = α⊤K(·,x∗), (15)

where K(·,x∗) = [k(·,x1), . . . ,k(·,xn)] ∈ R1×n . Substituting (15) in (14), we have

minimize
α

E(x,y)∼DT

∥∥α⊤K(·,x∗)− y∗∥∥2 + σ∥f∥2H, (16)

which is a convex problem with α∗ =
[
K
(
x∗
, x

∗)+ σI
]−1

y∗ as the solution. Equivalently,

f∗(·) = K (·,x∗)
[
K
(
x∗
, x

∗)+ σI
]−1

y∗, (17)

where x∗ = [x1,x2, . . . ,xn]
⊤ is a n× d matrix, y∗ = [y1,y2, . . . ,yn]

⊤ is a n× 1 matrix, n is the
sample size of the training dataset, and [K(x∗,x∗)]i,j = k(xi,xj). For the sake of brevity, hereafter,
we use K(x∗,x∗) and K interchangeably.

Under linearity, we now show through Theorem 5 that the spectrum of the NTK directly affects the
empirical risk, making it a tool that can be used for making fine-tuning decisions.
Theorem 5. The empirical risk is bounded as(

σ ∥y∗∥
σ + λmax(K)

)2

≤ R(θ) ≤
(

σ ∥y∗∥
σ + λmin(K)

)2

, (18)

where λmin(K) and λmax(K) are the minimum and maximum eigenvalues of K(x∗,x∗), respectively.

Proof. See Appendix F.

Theorem 5 motivates us to study the regularized condition number κ(K + σI) = λmax(K)+σ
λmin(K)+σ as

an at-initialization metric for predicting the performance of fine-tuning. To show how this can be
useful, for example, in selecting what subset of parameters to tune, we next study the randomized
kernel specifically for fine-tuning, which enables us to investigate the training dynamics based on the
influence of each individual trainable parameter on the bounds in Theorem 5.

5 Spectral Perturbation of Layers

We have shown that (i) regularized fine-tuning is well-approximated by its fully linearized counterpart,
(ii) that optimizing the linearized fine-tuning is equivalent to NTK kernel regression, and (iii) that
the kernel’s spectrum is predictive of the fine-tuning performance. To put these facts to use, in this
section, we study the effect of layer selection on the spectrum of the NTK, and consequently on the
empirical risk of fine-tuning. Let θl be the parameters of the layer l from the pretrained model and
θ = {θ1, . . . ,θL} be the set of parameters of the L layers from the pretrained model. The NTK,
when the parameters in θ are chosen for fine-tuning, is [K]i,j =

∑L
l=1∇θlfθ (xi)∇θlfθ(xj)

⊤. The
kernel induced by θl is Sl ∈ RN×N , where

[Sl]i,j = ∇θlfθ (xi)∇θlfθ(xj)
⊤. (19)

One can infer that the NTK induced by all layers is K =
∑L

l=1 Sl.

The following theorems quantify the effect of adding a set of trainable parameters on the spectrum of
the NTK.
Theorem 6. Let K be the NTK with respect to the set of selected fine-tuning parameters, and S be
the kernel with respect to the parameters of the candidate layers, to add to the fine-tuning parameters.
Then

(1− η)λi(K) ≤ λi(K+ S) ≤ (1 + η)λi(K), (20)

where η = ∥K−1/2S K−1/2∥.
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Dataset Hyper-Parameter λ 50 10 5 2 1 0.5 0.1 0.0

CoLA

∥θt − θ0∥2 0.280 0.350 0.404 0.5263 0.6148 0.6946 0.8223 0.960
∥fθt

(x∗)− f̄θ̄t
(x∗)∥2 1.06 1.12 1.39 1.25 1.27 1.32 1.28 1.47

KL Divergence 0.1060 0.1377 0.200 0.1613 0.1788 0.1961 0.1599 0.210
Evaluation Accuracy of fθt

(x) 74.59 79.57 80.44 79.38 80.24 80.15 80.15 79.67

SST-2

∥θt − θ0∥2 0.292 0.336 0.369 0.424 0.520 0.700 1.589 2.519
∥fθt

(x∗)− f̄θ̄t
(x∗)∥2 1.712 2.303 2.635 2.957 3.217 3.331 3.397 2.791

KL Divergence 0.320 0.433 0.476 0.517 0.545 0.560 0.578 0.540
Evaluation Accuracy of fθt(x) 0.893 0.912 0.915 0.924 0.928 0.930 0.924 0.916

Table 1: Sweep over the hyperparameter (λ). Increasing regularization strength, i.e., larger λ, reduces the
deviation between the regularized fine-tuning and linearized models at one snapshot of fine-tuning at step t.
Accuracy is largely unaffected by regularization.

Proof. See Appendix G.

The spectral perturbation bounds of Theorem 6 can interact with the risk bounds given by Theorem 5,
to help us further understand the relative merits of parameter choices. We denote by R(θ) and
R(θ ∪ θ̂), respectively, the empirical risk of the model fine-tuned with parameters θ and θ ∪ θ̂.
Theorem 7. Let K be the NTK induced by the trainable parameters in θ, then if κ(K+ σI) ≤ c, we
have

λmax(K+ S+ σI)

aλmax(K+ σI)
≤

(
R(θ ∪ θ̂)

R(θ)

) 1
2

≤ aλmax(K+ S+ σI)

λmax(K+ σI)
, (21)

where a = c
(1−η)2 , η = ∥K−1/2SK−1/2∥ and S is the kernel induced by θ̂ with [S]i,j =

∇θ̂fθ (xi)∇θ̂fθ(xj)
⊤.

Proof. See Appendix H.

The above result implies that, by incorporating an additional layer to the parameters being fine-tuned,
one can expect 1

2 log
R(θ∪θ̂)
R(θ) ∈

[
log λmax(K+S)+σ

λmax(K)+σ − log a, log λmax(K+S)+σ
λmax(K)+σ + log a

]
.

Corollary 1. When we have two candidate layers θ̂1 and θ̂2, mutatis mutandis, we have

λmax(K+ S1 + σI)

bλmax(K+ S2 + σI)
≤

(
R(θ ∪ θ̂1)

R(θ ∪ θ̂2)

) 1
2

≤ bλmax(K+ S1 + σI)

λmax(K+ S2 + σI)
, (22)

where b = a1a2, a
l
= c

(1−η
l
)2 , η

l
= ∥K−1/2S

l
K−1/2∥ for l ∈ {1, 2}, and Sl is the kernel induced

by θ̂l with [Sl]i,j = ∇θ̂lfθ (xi)∇θ̂lfθ(xj)
⊤.

As such, one can evaluate the candidacy of layers for fine-tuning based on Corollary 1. In order
to anticipate the empirical risk of fine-tuning, at initialization we look at a confined interval, i.e.,
1
2 log

R(θ∪θ̂1)

R(θ∪θ̂2)
∈
[
log λmax(K+S1)+σ

λmax(K+S2)+σ − log b, log λmax(K+S1)+σ
λmax(K+S2)+σ + log b

]
.

6 Experiments

We now demonstrate that insights from our theory apply in practice, despite moving from squared loss
to cross-entropy and from gradient descent to the AdamW optimizer, which we use for all fine-tuning
in conjunction with the selective regularization (8). In our experiments, we implement LoRA on
RoBERTa base and evaluate its performance on the General Language Understanding Evaluation
(GLUE) benchmark [20], IMDb [21], and Yelp [22] datasets.

6.1 Model, Datasets and Optimizer

RoBERTa base incorporates several key modifications to the pretraining process, such as using larger
batch sizes, longer sequences, and more diverse data than its antecedents like BERT [23]. Despite
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its relatively compact size of 125M parameters, RoBERTa base has proven to be one of the most
powerful models for various NLP tasks, including text classification, question answering, and named
entity recognition, especially on the GLUE benchmark.

The GLUE benchmark is a collection of diverse tasks that test a model’s natural language understand-
ing abilities. The tasks included in our experiments are linguistic acceptability judgment (CoLA [24])
and sentiment analysis (SST-2 [25]). The GLUE benchmark provides a comprehensive evaluation of
a model’s performance across various NLP challenges, assessing its ability to understand and reason
about language in different contexts.

The IMDb dataset is a large dataset for binary sentiment classification, containing 50k highly popular
movie reviews from the Internet Movie Database (IMDb). The Yelp dataset contains customer reviews
from Yelp, a popular platform for crowd-sourced reviews about businesses, primarily restaurants. This
dataset originally contains reviews with ratings from 1 to 5. To convert it into a binary classification
task, we consider reviews with ratings less than 3 as label 0 (negative sentiment) and those with
ratings greater than or equal to 3 as label 1 (positive sentiment).

Table 9 in Appendix N shows specific hyperparameters for RoBERTa base across various benchmarks,
including GLUE tasks (CoLA, SST-2), Yelp, and IMDb. For all experiments, we use LoRA on the
RoBERTa-base model from the Hugging Face transformers library [26], and report its performance
on different tasks. We implemented our code on NVIDIA Tesla V100 GPUs. Following Hu et al.
(2022), we mostly use the weights of the query and value layers, Wq ∈ Rm×p and Wv ∈ Rm×p for
fine-tuning. In our experiments, we apply LoRA with r = 8, which has (m+ p)× r = 2× 768× 8
trainable parameters per selected layer for each of the query, key, and value projection matrices in the
self-attention mechanism in the RoBERTa base model.
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Figure 2: (a)-(b) Illustrate the positive correlation between the convergence rate of optimization steps of LoRA
over 10 epochs and κ(K + σI) of NTK at initialization. {Wq,Wv} of layers {0, 5, 11} are fine-tuned. (c)
Illustrates the negative correlation between evaluation accuracy after 10 epochs of training and the condition
number of NTK. LoRA with r = 8 is used to fine-tune {Wk} of the layers {0, 5, 11}.

Dataset Selected Layers Selected Parameters Condition Number Train Loss Evaluation Loss Evaluation Accuracy

CoLA

{0} {Wq,Wv} 11,618 0.5271 0.5265 73.15
{0,11} {Wq,Wv} 9,490 0.5174 0.5293 73.15

{0,5,11} {Wq,Wv} 7,503 0.5093 0.5272 73.44
{0,5,11} {Wk} 2,320 0.5128 0.5357 73.25

SST-2

{0} {Wq,Wv} 5,195 0.4794 0.3871 83.48
{0,11} {Wq,Wv} 6,413 0.4677 0.3916 82.79

{0,5,11} {Wq,Wv} 6,792 0.5078 0.3913 82.68
{0,5,11} {Wk} 450.64 0.4717 0.3893 83.60

Yelp

{0} {Wq,Wv} 274 0.29 0.2597 88.20
{0,11} {Wq,Wv} 4,167 0.2882 0.2596 88.24
{0, 5, 11} {Wq,Wv} 1,336 0.2885 0.2596 88.21
{0,5,11} {Wk} 39.33 0.2865 0.2596 88.23

IMDb

{0} {Wq,Wv} 179 0.3512 0.2702 89.56
{0,11} {Wq,Wv} 5,899 0.3597 0.2717 89.50
{0, 5, 11} {Wq,Wv} 1,277 0.3709 0.2727 89.49
{0,5,11} {Wk} 9.605 0.3642 0.2719 89.49

Table 2: RoBERTa-base model’s performance on GLUE tasks, condition number of the NTK, train loss, and
evaluation loss at one snapshot of the training at 10-th epoch. LoRA with r = 8 is used for fine-tuning. The
condition number is calculated as κ(K+ σI) = λmax(K)+σ

λmin(K)+σ
, and σ = 1e−4 is fixed among all tasks.
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6.2 Linearization of Fine-Tuning

In Table 1, we analyze how regularization impacts the fine-tuning of models on the CoLA and SST-2
datasets, using several metrics, including the deviation of fine-tuned parameters from the pretrained
parameters, ∥θt − θ0∥, KL divergence between predictions of the regularized fine-tuned model
and its linearized counterpart, the ℓ2 norm ∥fθt(x

∗)− f̄θ̄t
(x∗)∥2, evaluation accuracy. The results

indicate that increasing the regularization strength, λ, reduces both the deviation in parameters and
prediction divergence, measured by KL divergence and ∥fθt(x

∗)− f̄θ̄t
(x∗)∥, implying that stronger

regularization keeps the fine-tuning behavior closer to its linearized approximation. Conversely, as
regularization weakens, λ→ 0, parameter deviations and divergences from linearization increase,
suggesting a more significant departure from the linear regime. This is well aligned with the bounds
in Theorems 2 and 4. Notably, the overall accuracy remains largely unaffected by the regularization,
and its fluctuations are within the error margin for λ up to 10.

The key takeaways from Table 1 are that, as long as we don’t overregularize (λ not too large, e.g.,
smaller than 50), we simultaneously: (1) encourage the model not to deviate (the direct objective of
regularization), (2) encourage the NTK solution and the regularized fine-tuning solutions to become
closer (the indirect main objective of regularization), and (3) do not sacrifice much on performance.
We conjecture that the reason we don’t sacrifice much on performance is that the fine-tuning solution
is already relatively close to the initial model and that there are equivalently good NTK solutions in
the same neighborhood. (The choice of λ is similar to searching for solutions within sequentially
smaller neighborhoods around the initialization, as λ increases.) The trifecta of easy implementation,
no performance sacrifice, and theoretical compatibility with the NTK framework makes our proposed
regularization an especially attractive choice.

6.3 NTK Evaluation

We verify our proposition that by calculating the condition number of the NTK matrix for the LoRA
model at initialization, we can predict the generalization error, including evaluation loss and accuracy.
Table 2 presents training loss, evaluation loss, accuracy, condition number of the NTK before fine-
tuning, based on the snapshot at epoch 10. We vary LoRA parameters across different layers ({0},
{11}, {0,11}, {0,5,11}) for query and value parameters, and layers {0,5,11} for key parameters, across
various tasks and datasets. We collected x∗ = [x1,x2, . . . ,xn]

⊤ using n = 32 samples, randomly
selected from the training datasets and computed k(xi,xj) with respect to trainable parameters, A
and B of LoRA. The final empirical NTK matrix is K(x∗,x∗) ∈ R32×32. Our work is not specifically
studying optimal sketching of the kernel matrix; however, in Appendix I, we empirically illustrate
that our numerical results are robust to the choice of NTK samples. Note that the number of samples
used for calculation of the empirical NTK is orders of magnitude smaller than the training dataset for
sampling. This shows that the results remain valid even with a sketch of the full kernel. This finding
highlights the great potential of kernel methods for large language models (LLMs), particularly in
terms of efficiency.

At first glance, in Table 2, the highest condition number does not correspond to the lowest accuracy.
However, one may notice that this is an issue primarily when the nature (query/value vs. key) and
number of parameters change . When this is the case, the effective complexity of the fine-tuned model
changes, and since the NTK parameter σ is inversely proportional to the complexity, it affects the
regularized condition number. In the table, we have fixed σ and so this change is not being reflected
and it is only fair to compare instead cases where the nature and number of parameters are the same,
e.g., fixing a layer and varying tasks among CoLA, SST2, IMDB, YeLP. The correlation is perfect
for {0, 11}, but also mostly tracks for other fixed choices. This also holds when varying the same
number of layers like {0, 7}, {0, 11} for CoLA and SST2 in Fig. 3. It would be very interesting to
factor the change of σ into the layer selection methodology, but that is a great direction for future
research. More extensive numerical results for decoder-only models, such as GPT-2 and OPT-125M,
are provided in Appendix J.

Training time and NTK calculation time are reported in Table 3 for fine-tuning {Wk} in layers
{0, 5, 11}. For this scenario, the number of total trainable parameters (TTPs) is 0.628M, and the
number of chosen NTK parameters is 36.8k. As shown in the table, fine-tuning, even with just
10 epochs, has significantly higher computational overhead than computing the NTK. This finding
supports the advantage of the present approach in terms of time complexity when comparing the
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risks of different datasets without training. Additionally, since Yelp and IMDb are larger datasets,
it is evident that fine-tuning on them requires more time compared to the others. Figure 2(a)-(b)
illustrates the positive correlation between the condition number of the NTK matrix at initialization
and training loss for different tasks. In all datasets, the attention parameters of layers {0, 5, 11} are
fine-tuned, and evaluation accuracy was reported. Although for CoLA, it is customary to report
Matthew’s correlation coefficients [27], we adhere to reporting the evaluation accuracy for all tasks in
Figure 2(c), to maintain consistency in the evaluation metric across different datasets. Figure 2(c)
starkly illustrates an inverse relationship between the condition number of the NTK and the model’s
evaluation accuracy. In our experiments, we observed that λmin(K) is almost always close to zero
and the regularized condition number, κ(K + σI), is tracing the spectral norm or λmax(K). For
instance, the CoLA task, which exhibits the highest training loss, also shows the largest condition
number. This suggests that by computing the NTK matrix before training, we can identify which
tasks are well-conditioned, i.e., a lower condition number indicates lower training and evaluation loss.

Dataset Fine-tuning Time NTK Calculation Time
CoLA 187 33
SST-2 794 63
Yelp 46,096 245

IMDb 1,541 55

Table 3: Fine-tuning time(s), NTK calculation time(s),
{Wk} of layers {0, 5, 11} are fine-tuned. In all datasets,
only 32 random samples from the training set are used
calculating the NTK.

Figure 3 in Appendix L evaluates the bounds
of Theorem 7, where θ represents the weights
{Wk} of layer {0}, and θ̂ denotes the candidate
layers. The empirical risk ratio and maximum
eigenvalue ratio closely follow each other in
most cases. Theorem 4 conveys that the spec-
trum of the NTK directly affects the empirical
risk. Therefore, we propose to select the layers
based on the eigenvalues they induce in the NTK.
For instance, as seen in Figure 3, for the CoLA
dataset, the eigenvalue analysis at-initialization
suggests that layers {0, 7} should be selected for fine-tuning, and it also shows the least empirical
risk compared to others. Similarly, for SST-2, {0, 5, 11} is the optimal choice by eigenvalues and is
once again consistent with the empirical risk after fine-tuning.

7 Conclusion and Limitations

In this paper, we tackled the challenge of guiding design decisions in parameter-efficient fine-tuning by
offering insights through linearization. Fine-tuned models are often implicitly close to the pre-trained
model. We made this proximity explicit and showed that it results in a model that remains close to
the linearization of the pre-trained model. We used the linear model’s NTK regression formulation to
show that the NTK kernel spectrum can be a predictor of fine-tuning performance, at-initialization
(before actual tuning). We then analyzed how this spectrum is affected through layer selection and
showed how this can experimentally guide the decision of which layers to tune, saving valuable time
and computational resources. Some of the limitations of the theory are that it applies to squared loss
and gradient descent, though the experiments show that the insights carry to other losses (such as
cross-entropy) and stochastic solvers (such as AdamW). The experiments on RoBERTa with LoRA
across multiple datasets (GLUE, IMDb, and Yelp tasks) demonstrate reasonable correspondence
between theory and practice, despite some theoretical assumptions differing from experimental
conditions. Discussion on the implications of the assumptions is provided in Appendix M.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We support our claims with theoretical proofs, which are further validated by
numerical results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Appendix A, includes the definitions and lemmata that are repeatedly used in
the theorems. Moreover, the proofs of all the theorems are provided in the Appendix. Where
an assumption is made, it is clearly stated in the proofs and in the main text.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The models, datasets, optimizer and hyperparameters are clearly explained in
the main text and in appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The codes will be uploaded as supplemental material and references to the
datasets, which are open access, is provided in the main text.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The optimizer and hyperparameters are clearly explained in the main text and
appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We support the main claims of the paper with a comprehensive set of experi-
ments over different datasets and hyperparameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: It is stated in the paper that "we implemented our codes on NVIDIA Tesla
V100 GPUs". Moreover, computation times are provided in Table 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms to NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work contains foundational research and not tied to particular applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not contain models or datasets that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Code, data and models used in this paper are open access and explicitly
mentioned and properly referred to as below:
RoBERTa-base – Licensed under the [MIT License](https://opensource.org/licenses/MIT)

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The assets are well-documented in the paper and the accompanied codes.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

18

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not used in this works.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Definitions and Lemmas

In all the following proofs, we apply the notations and definitions below. Given the data matrices
(x∗,y∗), x∗ ∈ Rn×d and y∗ ∈ Rn×1 we define the models inference at time step t as

y(t) = fθt
(x∗) ∈ Rn×1, (23)

The gradient ∇θtfθt
(x∗), by convention, is in Rn×dim(θ). The gradient of (3), the mean squared

error, is

∇θt
R̃(θt) = 2 (y(t)− y∗)

⊤∇fθt
(x∗). (24)

On the other hand, the inference of the linearized model is defined as

ȳ(t) = f̄θ̄t
(x∗) = fθ0

(x∗) +
〈
∇fθ0

(x∗), θ̄t − θ0
〉
, (25)

where θ̄ denotes the parameters of the linearized model, and we assume θ̄0 = θ0 and therefore
f̄θ̄0

(x∗) = fθ0
(x∗).

For all vectors, we use the ℓ2-norm. For all matrices, we use the ℓ2 induced norm, or spectral norm,
defined as ∥A∥ = sup{∥Av∥2 : ∥v∥2 ≤ 1}, which is also equal to sup{∥uA∥2 : ∥u∥2 ≤ 1} and
the largest singular value of A.
Lemma 1. If for all θ in a given range, fθ(x

∗) is Lip(f)-Lipschitz in θ (w.r.t. the ℓ2-norm)
and ∇fθ(x∗) is Lip(∇f)-Lipschitz in θ (w.r.t. the ℓ2 induced norm), then kθ (x

∗,x∗) =
∇fθ (x∗)∇fθ(x∗)⊤ ∈ Rn×n is Lip(k)-Lipschitz in θ (w.r.t. the ℓ2 induced norm), with

Lip(k) ≤ 2Lip(f)Lip(∇f). (26)

Proof. First, since fθ is Lip(f)-Lipschitz, it follows that the ℓ2 induced norm of ∇fθ is bounded by
Lip(f). To see this, for any dim(θ)-dimensional vector w, introduce the single parametrized family
θ(s) = θ + sw. Then d

dsfθ(s) = ∇fθ(s)w. By Lipschitzness, ∥fθ(δ) − fθ(0)∥ ≤ Lip(f)δ∥w∥.
Taking the limit δ → 0 we obtain that ∥∇fθw∥ ≤ Lip(f)∥w∥.
Recall that kθ (x

∗,x∗) is the NTK matrix. Since all arguments of kθ, fθ, and ∇fθ are x∗, we
omit them for clarity. To show that kθ is Lipschitz and to compute its Lipschitz constant, given any
n-dimensional unit vector v, we need to bound

∥(kθ − kζ)v∥ = ∥
(
∇fθ∇f⊤

θ −∇fζ∇f⊤
ζ

)
v∥. (27)

We write
(kθ − kζ)v = ∇fθ

(
∇f⊤

θ −∇f⊤
ζ

)
v + (∇fθ −∇fζ)∇f⊤

ζ v, (28)
which yields, by the triangle inequality, norm bounds, and Lipschitzness,

∥(kθ − kζ)v∥ ≤
∥∥∇fθ (∇f⊤

θ −∇f⊤
ζ

)
v
∥∥+ ∥∥(∇fθ −∇fζ)∇f⊤

ζ v
∥∥ (29)

≤ ∥∇fθ∥
∥∥(∇f⊤

θ −∇f⊤
ζ

)
v
∥∥+ ∥∇fθ −∇fζ∥ ∥∥∇f⊤

ζ v
∥∥ (30)

≤ Lip(f) ∥∇fθ −∇fζ∥+ Lip(∇f)∥θ − ζ∥ ∥∇fζ∥ (31)
≤ Lip(f)Lip(∇f)∥θ − ζ∥+ Lip(∇f)∥θ − ζ∥Lip(f) (32)
= 2Lip(f)Lip(∇f)∥θ − ζ∥, (33)

which proves the claim.

Lemma 2. The NTK matrix K ∈ Rn×n, defined by [K]i,j = k(xi,yj), is positive semidefinite.

Proof. For all v ∈ Rn, we have v⊤Kv = v⊤∇fθ∇f⊤
θ v = ∥∇f⊤

θ v∥ ≥ 0. Therefore, K is positive
semi-definite.

Lemma 3. Let θt be the gradient flow limit of the regularized fine-tuning gradient descent described
in (8). If we assume that λ switches at most countably often and denote its instantaneous value by λt,
then θt satisfies the following differential equation:

d

dt
θt = −∇R̃(θt)⊤ − λt (θt − θ0) . (34)
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Proof. Subtracting θ0 from both sides of (5) yields

θt − θ0 = θ̃t − θ0 − λ η
(
θ̃t − θ0

)
, (35)

or equivalently, (8) becomes

θt = θ0 + (1− λt η)
(
θ̃t − θ0

)
, (36)

where

λt =

{
λ if ∇θtR̃(θt) (θt − θ0) ≥ 0,

0 otherwise.
. (37)

On the other hand, by combining (4) and (5) for t+ 1 we have

θt+1 = θt − η∇R̃(θt)⊤ − λt+1 η
(
θ̃t+1 − θ0

)
, (38)

= θt − η∇R̃(θt)⊤ −
λt+1 η

1− λt+1 η
(θt+1 − θ0) , (39)

where we replaced θ̃t+1−θ0 = 1
1−λt+1 η (θt+1 − θ0) from (36) in (38) to obtain (39). By rearranging

the terms we have

θt+1 = (1− λt+1 η)

(
θt − η∇R̃(θt)⊤ +

λt+1 η

1− λt+1 η
θ0

)
, (40)

= (1− λt+1 η)θt − η(1− λt+1 η)∇R̃(θt)⊤ + λt+1 η θ0. (41)

Subtracting θt from both sides and division by η yields

θt+1 − θt
η

= −λt+1θt − (1− λt+1 η)∇R̃(θt)⊤ + λt+1θ0, (42)

d

dt
θt = −∇R̃(θt)⊤ − λt (θt − θ0) . (43)

To obtain the last equation, we take the limit as η → 0 from both sides such that θt+1−θt

η → dθ(t)
dt

and 1− λη → 1.

B Proof of Theorem 1

From Lemma 3, we reproduce (34), assuming for the moment a constant λ:

d

dt
θt = −∇R̃(θt)⊤ − λ (θt − θ0) . (44)

Using chain rule on (23), and substituting for ∇R̃(θt) using (24), we have

d

dt
y(t) = ∇ fθt

(x∗)
d

dt
θt,

= −2∇ fθt(x
∗)∇f⊤

θt
(x∗) (y(t)− y∗)− λ∇ fθt(x

∗) (θt − θ0) ,

= − (2kt (y(t)− y∗) + λ∇fθt
(x∗) (θt − θ0)) , (45)

To reduce clutter, we again remove the explicit dependency of the kernel on input and denote
kt(x

∗,x∗) by kt, hereafter. By replacing y(t) = fθt
(x∗) and (45) in below equation, we have

1

2

d

dt
∥y(t)− y∗∥22 =

1

2

d

dt

(
(y(t)− y∗)⊤(y(t)− y∗)

)
= (y(t)− y∗)⊤

d

dt
y(t), (46)

= −2(y(t)− y∗)⊤kt (y(t)− y∗)− λ (y(t)− y∗)⊤∇ fθt
(x∗) (θt − θ0) , (47)

= −2⟨kt (y(t)− y∗), (y(t)− y∗)⟩ − λ (y(t)− y∗)⊤∇ fθt
(x∗) (θt − θ0) . (48)

Finally

1

2

d

dt
∥y(t)− y∗∥22 = −2⟨kt (y(t)− y∗), (y(t)− y∗)⟩ − λ

2
∇θR̃(θt) (θt − θ0) . (49)
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Since kt = ∇fθt(x
∗)∇f⊤

θt
(x∗) is positive semidefinite, we have ⟨kt (y(t)−y∗), (y(t)−y∗)⟩ ≥ 0.

To ensure that the error ∥y(t) − y∗∥ does not increase over time, it is sufficient that the gradient
∇θR̃(θt) is aligned with the parameter update direction, i.e.,

∇θR̃(θt)(θt − θ0) ≥ 0.

If this condition is not satisfied, then we should set λ = 0. This condition is aligned with the selective
ℓ2 regularization introduced in [9].

C Proof of Theorem 2

Once again, use (3), to substitute ∇θR̃(θt) = 2 (y(t)− y∗)
⊤∇ fθt

(x∗) in (34), yielding

d

dt
θt = − 2∇ fθt

(x∗)⊤ (y(t)− y∗) − λt (θt − θ0) . (50)

Let ut = θt − θ0 and w(t) = ∥ut∥2. The dynamics can be rewritten as

d

dt
ut = − 2∇ fθt

(x∗)⊤ (y(t)− y∗) − λt ut. (51)

Since ut is continuous, w(t) is a.e. differentiable and, for ut ̸= 0,

ẇ(t) =
u⊤
t

∥ut∥2
d

dt
ut. (52)

Substituting (51) into (52) and writing the unit vector ût = ut/∥ut∥2,

ẇ(t) = − 2 û⊤
t ∇ fθt

(x∗)⊤ (y(t)− y∗) − λt w(t). (53)

By Cauchy–Schwarz and recalling that the ℓ2 induced norm ∥∇fθt
(x∗)∥ ≤ Lip(f) (see the proof of

Lemma 1),

−û⊤
t ∇ fθt(x

∗)⊤ (y(t)− y∗) ≤ ∥∇fθt(x
∗)∥ ∥y(t)− y∗∥2 ≤ Lip(f) ∥y(t)− y∗∥2. (54)

Therefore, we have

ẇ(t) ≤ −λt w(t) + 2Lip(f) ∥y(t)− y∗∥2, (55)
ẇ(t) + λt w(t) ≤ 2Lip(f) ∥y(t)− y∗∥2. (56)

Let

Λt =

∫ t

0

λτ dτ. (57)

We multiply (56) by the integrating factor eΛt and use the product rule

d

dt

(
eΛtw(t)

)
≤ 2Lip(f) eΛt ∥y(t)− y∗∥2. (58)

We integrate (58) from 0 to t as

eΛtw(t)− w(0) ≤ 2Lip(f)
∫ t

0

eΛs ∥y(s)− y∗∥2 ds. (59)

Then we divide by eΛt to obtain

w(t) ≤ e−Λt w(0) + 2Lip(f)
∫ t

0

e−(Λt−Λs) ∥y(s)− y∗∥2 ds, (60)

≤ e−Λt w(0) + 2Lip(f)∥y(0)− y∗∥2
∫ t

0

e−(Λt−Λs) ds, (61)

where the last inequality follows from Theorem 1.
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Special case 1. If λt = λ > 0, then Λt = λt therefore we have

∥ut∥2 ≤ e−λt ∥u0∥2 + 2Lip(f)∥y(0)− y∗∥2
∫ t

0

e−λ(t−s) ds, (62)

≤ e−λt ∥u0∥2 + 2Lip(f)∥y(0)− y∗∥2
1− e−λt

λ
. (63)

Since ut = θt − θ0, ∥u0∥2 = 0, and y(0) = fθ0
(x∗), we have

∥θt − θ0∥2 ≤ 2Lip(f) ∥fθ0(x
∗)− y∗∥2

1− e−λt

λ
, (64)

lim sup
t→∞

∥θt − θ0∥2 ≤
2Lip(f) ∥fθ0(x

∗)− y∗∥2
λ

. (65)

Special case 2. If λt = 0, from (61), we have

∥ut∥2 ≤ ∥u0∥2 + 2Lip(f) ∥y(0)− y∗∥2
∫ t

0

e0 ds. (66)

Therefore,

∥θt − θ0∥2 ≤ 2Lip(f) ∥fθ0(x
∗)− y∗∥2 t. (67)

D Proof of Theorem 3

For simplicity, we consider the lambda constant case to prove Theorems 3 and 4. For y(t) = fθt(x
∗)

and ȳ(t) = f̄θ̄t
(x∗), we define ∆(t) = ∥y(t)− ȳ(t)∥2. We have

1

2

d

dt
∆(t)2 =

1

2

d

dt
∥y(t)− ȳ(t)∥22 (68)

=
1

2
⟨y′(t)− ȳ′(t),y(t)− ȳ(t)⟩+ 1

2
⟨y(t)− ȳ(t),y′(t)− ȳ′(t)⟩

= ⟨y′(t)− ȳ′(t),y(t)− ȳ(t)⟩
= ⟨−kt2 (y(t)− y∗) − λ∇fθt

(x∗) (θt − θ0) + k0 2 (ȳ(t)− y∗) ,y(t)− ȳ(t)⟩ ,

where the last equality follows from (45) in the proof of Theorem 1. We simplify the following term
in the last equation as

− kt2 (y(t)− y∗) + k0 2 (ȳ(t)− y∗) (69)
= −kt2 (y(t)− y∗) + k02 (y(t)− y∗)− k02 (y(t)− y∗) + k0 2 (ȳ(t)− y∗)

= (k0 − kt) 2 (y(t)− y∗) + k0 (2 (ȳ(t)− y∗)− 2 (y(t)− y∗)) ,

where in the first equality we added and subtracted k02 (y(t)− y∗). Substituting (69) in (68) yields

1

2

d

dt
∆(t)2 = ⟨(k0 − kt) 2 (y(t)− y∗)− λ∇fθt(x

∗) (θt − θ0) ,y(t)− ȳ(t)⟩

+ ⟨k0 (2 (ȳ(t)− y∗)− 2 (y(t)− y∗)) ,y(t)− ȳ(t)⟩ , (70)

since k0 = ∇fθ0
(x∗)∇fθ0

(x∗)⊤ is positive semidefinite, the second term on the left hand side is
non-positive, i.e.,

⟨k0 (2 (ȳ(t)− y∗)− 2 (y(t)− y∗)) ,y(t)− ȳ(t)⟩
= −2(y(t)− ȳ(t))⊤k0(y(t)− ȳ(t)) ≤ 0. (71)

As a result of (99) and (71), we have

1

2

d

dt
∆(t)2 ≤ ⟨(k0 − kt) 2 (y(t)− y∗)− λ∇fθt

(x∗) (θt − θ0) ,y(t)− ȳ(t)⟩. (72)
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Noting that 1
2

d
dt∆(t)2 = ∆(t)d∆(t)

dt and taking norms on both sides of the above, then clearly using
(36), we have

d

dt
∆(t) = ∥ (k0 − kt) 2 (y(t)− y∗)− λ∇fθt(x

∗) (θt − θ0) ∥ (73)

≤ ∥ (k0 − kt) 2 (y(t)− y∗) ∥+ λ∥∇fθt
(x∗) (θt − θ0) ∥ (74)

≤ Lip(k)∥ (θt − θ0) ∥∥2 (y(t)− y∗) ∥+ λ Lip(f) ∥θt − θ0∥ (75)
≤ 2Lip(k)∥ (θt − θ0) ∥∥y(0)− y∗∥+ λ Lip(f) ∥θt − θ0∥ (76)

≤ 4Lip(k)Lip(f)∥y(0)− y∗∥2
(
1− e−λt

)
λ

(77)

+ 2Lip2(f)∥y(0)− y∗∥
(
1− e−λt

)
≤ −2Lip(f)∥y(0)− y∗∥

(
2

λ
Lip(k)∥y(0)− y∗∥+ Lip(f)

)
e−λt (78)

+ 2Lip(f)∥y(0)− y∗∥
(
2

λ
Lip(k)∥y(0)− y∗∥+ Lip(f)

)
.

(75) follows from Lipschitz properties of fθ(x∗) and kt which was shown in Lemma 1. Due to the
non-increasing property of ∥y(t)− y∗∥ shown in Theorem 1, we replaced y(t) with y(0) to obtain
the upper bound. We also used (10) in Theorem 2 to obtain the last inequality.

Using Lemma 1 and (78), we have

d

dt
∆(t) ≤ b− be−λt, (79)

where

b = 2Lip(f)2∥y(0)− y∗∥
(
4

λ
Lip(∇f)∥y(0)− y∗∥+ 1

)
. (80)

By taking the integral of both sides of (79), we obtain

∆(t) ≤ b

(
t+

1

λ
e−λt − 1

λ

)
. (81)

Consequently, we have (12).

E Proof of Theorem 4

From Theorem 2, we have

∥θt − θ0∥ ≤
2 ∥y(0)− y∗∥Lip(f)

λ

(
1− e−λt

)
(82)

In order for the regularizer to satisfy the Lipschitz continuity assumptions, mainly that ∥θ− θ0∥ ≤ r,
this shows that there are two phases of behavior depending on how large λ is. The threshold is given
by:

λ◦ =
2∥y(0)− y∗∥ Lip(f)

r

In particular, if λ ≥ λ◦, then θt remains in the r-ball around θ0 for all t. Otherwise, it remains in this
ball only as long as

t ≤ 1

λ
ln

1

1− λ/λ◦
.

Based on Theorem 3, we get that

∆(t) ≤ 2Lip(f)2∥y(0)− y∗∥
(
4

λ
Lip(∇f)∥y(0)− y∗∥+ 1

)(
t+

1

λ
e−λt − 1

λ

)
.

When λ ≥ λ◦, ∆(t) grows roughly linearly, with coefficient given by:

∆(t) ≤ 2Lip(f)∥y(0)− y∗∥ (2rLip(∇f) + Lip(f)) t.
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F Proof of Theorem 5

Let UΣU⊤ denote the eigenvalue decomposition of K (x∗,x∗), where Σ =
Diag (λmin(K), . . . , λmax(K)) and U⊤U = I. Due to the proximity of the regularized fine-
tuned model to the pretrained model, which promotes linearity, we have

R(θ) = 1

n

n∑
i=1

L(fθ(xi),yi) ≈
1

n

n∑
i=1

L(f̄θ̄(xi),yi)

=
1

n

n∑
i=1

∥∥∥yi −K (xi,x
∗) [K (x∗,x∗) + σI]

−1
y∗
∥∥∥2
2

=
1

n

∥∥∥y∗ −K (x∗,x∗) (K (x∗,x∗) + σI)
−1

y∗
∥∥∥2
2

=
1

n

∥∥∥(I−K (x∗,x∗) (K (x∗,x∗) + σI)
−1
)
y∗
∥∥∥2
2

=
1

n

∥∥(I−UΣU⊤(UΣU⊤ + σI)−1
)
y∗∥∥2

2

=
1

n

∥∥(I−UΣ(Σ+ σI)−1U⊤)y∗∥∥2
2

=
1

n

∥∥U (I−Σ(Σ+ σI)−1
)
U⊤y∗∥∥2

2

=
1

n

∥∥(I−Σ(Σ+ σI)−1
)
U⊤y∗∥∥2

2
. (83)

Since I−Σ(Σ+ σI)−1 is a diagonal matrix, we have

λmin
(
I−Σ(Σ+ σI)−1

)2 ∥U⊤y∗∥22 < R(θ) < λmax(I−Σ(Σ+ σI)−1)2∥U⊤y∗∥22. (84)

Noting that

λmin
(
I−Σ(Σ+ σI)−1

)
=

σ

σ + λmax (K)
, (85)

λmax
(
I−Σ(Σ+ σI)−1

)
=

σ

σ + λmin (K)
, (86)

we have
σ2 ∥y∗∥22

(σ + λmax(K))2
≤ R(θ) ≤

σ2 ∥y∗∥22
(σ + λmin(K))

2 (87)

which is also shown in [28].

G Proof of Theorem 6

Since K is positive semidefinite (see Lemma 2), we have

K+ S = K1/2
(
I+K−1/2S K−1/2

)
K1/2. (88)

Considering η = ∥K−1/2S K−1/2∥, we have

−ηI ≤ K−1/2S K−1/2 ≤ ηI. (89)

Consequently,
(1− η)I ≤ I+K−1/2S K−1/2 ≤ (1 + η)I, (90)

and, from (88) and (90), we obtain

(1− η)K ≤ K+ S ≤ (1 + η)K. (91)

Note that for any two positive semidefinite matrices A and B, if A ≤ B, then λi(A) ≤ λi(B).
Therefore, (91) is equivalent to (20) [29].
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H Proof of Theorem 7

From Theorem 5, we already know

(λmin(K) + σ)
2

σ2∥y∗∥2
≤ 1

R(θ)
≤ (λmax(K) + σ)

2

σ2∥y∗∥2
. (92)

Theorem 6, states that

λmax(K) + σ = λmax(K+ σI) ≤ λmax(K+ S+ σI)

1− η
(93)

and

λmin(K) + σ =
λmax(K+ σI)

κ(K+ σI)
≥ λmax(K+ S+ σI)

κ(K+ σI)(1 + η)
. (94)

Therefore, we have

λmax(K+ S+ σI)

σ∥y∗∥κ(K+ σI)(1 + η)
≤ 1

R(θ) 1
2

≤ λmax(K+ S+ σI)

σ∥y∗∥(1− η)
. (95)

On the other hand, it follows from Theorem 5 that

σ∥y∗∥
λmax(K+ S) + σ

≤ R(θ ∪ θ̂)
1
2 ≤ σ∥y∗∥

λmin(K+ S) + σ
, (96)

and, from Theorem 6 that

λmin(K+ S) + σ ≥ (1− η)λmin(K+ σI)

=
(1− η)λmax(K+ σI)

κ(K+ σI)
,

λmax(K+ S) + σ ≤ (1 + η)λmax(K+ σI). (97)

From (96) and (97), we conclude

σ∥y∗∥
(1 + η)λmax(K+ σI)

≤ R(θ ∪ θ̂)
1
2 ≤ σ∥y∗∥κ(K+ σI)

(1− η)λmax(K+ σI)
. (98)

Considering that κ(K+ σI) ≤ c, the inequalities (98) and (95) imply

λmax(K+ S+ σI)

c(1 + η)2λmax(K+ σI)
≤

(
R(θ ∪ θ̂)

R(θ)

) 1
2

≤ cλmax(K+ S+ σI)

(1− η)2λmax(K+ σI)
. (99)

Note that (1− η)2 ≤ (1 + η)−2. By defining a = c
(1−η)2 , we can rewrite (99) in the desired form:

λmax(K+ S+ σI)

aλmax(K+ σI)
≤

(
R(θ ∪ θ̂)

R(θ)

) 1
2

≤ aλmax(K+ S+ σI)

λmax(K+ σI)
. (100)
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I Robustness to Sampling for Estimating the NTK

We empirically illustrate that the eigenvalues of the NTK are robust to the choice of NTK samples.
Sketching of the kernel matrices is studied in the literature, for instance, in [30]. In [17], which also
modeled fine-tuning as an NTK regression problem, the number of NTK samples is fixed to 16 and
64 (see Table 2 of [17]).

Random Seed λmin λmax Condition Number

42 2.04× 10−6 0.0030 32.43
123 6.45× 10−7 0.0035 36.85

7 7.37× 10−8 0.0025 26.22
99 3.19× 10−9 0.0024 25.82

2024 6.78× 10−8 0.0025 26.86

Table 4: Condition numbers and eigenvalues for different random seeds. Wk of layer 11 is fine-tuned.

J Additional Experiments

We fine-tuned decoder-only models GPT-2 and OPT-125M for 10 epochs using the Adam optimizer.
LoRA with r = 8 is used to fine-tune Wk of the layers {0, 5, 11}. The negative correlation between
evaluation accuracy after 10 epochs of training and the condition number of the NTK is illustrated
below. In GPT-2, Yelp with the lowest condition number, possesses the highest accuracy, and in
OPT-125M, IMDb and Yelp, with higher accuracies, have lower condition numbers than the other
tasks.

Model Dataset Eval Accuracy (%) Condition Number

GPT-2
CoLA 71.0 83
IMDb 87.4 36
Yelp 87.6 35

OPT-125m

SST-2 64.8 910
CoLA 69.1 720
IMDb 70.0 210
Yelp 82.1 310

Table 5: Evaluation results for GPT-2 and OPT-125M across different datasets.

K Lipschitzness

To empirically estimate Lipschitzness for all models in balls around the initial model θ0, we need
to choose models θ in this ball and calculate the Lipschitz constants for each using pairs of feature
points (x,x′). Since it’s not feasible to choose all models and all pairs, we have to sample them
reasonably. In the table below, we report on θ sampled uniformly on consecutive spherical shells with
increasing radius and (x,x′) samples from pairs of training data points. We calculate the estimated
Lipschitz constant for each θ and report both the average and maximum estimates, for each radius.
The accurate Lipschitz constant Lip(f), technically, is the maximum. However, the average is also
meaningful in that it represents more typical practical behavior.

We conducted the following procedure. We first capture the maximum fluctuation, Rmax, in parameters
θ as in Table 6 .

Dataset Layer Rmax

CoLA Wk ∈ {0, 5, 11} 0.174
CoLA Wk ∈ {0, 11} 0.189

Table 6: Rmax = Max|θ − θ0| during 10 epochs of fine-tuning.
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Algorithm 1 Computation of Lavg and Lupper vs. r

Input: Set S of data samples (x,x′)
1: Initialize list Lmax (indexed by θ)
2: Initialize lists Lavg, Lupper (indexed by r)
3: for r = 0 to Rmax do
4: Generate a new set T (r) of nT models using

θ = θ0 + distortion(r), where distortion(r) =
rv

∥v∥
, v ∼ N (0, 1)

5: for all θ ∈ T (r) do
6: Initialize empty list Llist
7: Set model params to θ
8: for all (x,x′) ∈ S do

9: Compute
∥fθ(x′)− fθ(x)∥
∥x′ − x∥

and append to Llist

10: end for
11: Append max(Llist) to Lmax
12: end for
13: Append mean(Lmax) to Lavg
14: Append max(Lmax) to Lupper
15: end for

Output: Lavg and Lupper vs. r

Then we used Rmax to calculate the Lipschitz continuity as in Algorithm 1. We used |S| = 1000 pairs
of data points, nT = 100 models, i.e., 100 different θs, with Rmax = 0.174 according to Table 6,
10 steps to vary distortion r in step 3 of the algorithm, and regularization value λ = 5. Both the
average, Lavg, and upper bound, Lupper, Lipschitz constants show a gradual and consistent increase as
r grows, indicating that the model’s sensitivity to perturbations increases mildly with distance from
the original parameters θ0. On average, the model remains stable under small to moderate distortions.

r Lavg Lupper

0.000000 0.020724 0.020724
0.019333 0.020725 0.020764
0.038667 0.020726 0.020803
0.058000 0.020727 0.020843
0.077333 0.020727 0.020883
0.096667 0.020728 0.020923
0.116000 0.020729 0.020962
0.135333 0.020730 0.021002
0.154667 0.020731 0.021042
0.174000 0.020732 0.021081

Table 7: Lipschitz ratio of the model with selected layers {0, 5, 11} and parameter type key (Wk) for
1000 pairs of data samples (x,x′) with Rmax = 0.174.

r Lavg Lupper

0.000000 0.014479 0.014479
0.021000 0.014480 0.014505
0.042000 0.014482 0.014530
0.063000 0.014483 0.014556
0.084000 0.014484 0.014582
0.105000 0.014486 0.014608
0.126000 0.014487 0.014634
0.147000 0.014488 0.014660
0.168000 0.014490 0.014686
0.189000 0.014491 0.014712

Table 8: Lipschitz ratio of the model with selected layers {0, 11} and parameter type key (Wk) for
100 pairs of data samples (x,x′) with Rmax = 0.189.
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L Layer Selection Algorithm

Building upon the foundation established by Theorem 7, Corollary 1, and Figure 3, we distill our
proposed methodologies into the following PEFT layer selection strategy informed by our spectral
perturbation bounds.

Algorithm 2 Trainable Parameter Selection via Spectral Perturbation

Input: Pretrained parameters θ; scalar σ > 0; training samples x∗ = [x1, . . . ,xn]
⊤; candidates

parameter subsets {θ̂(1), . . . , θ̂(L)}; C = {1, . . . , L}
1: Compute base NTK matrix K ∈ Rn×n.
2: for l = 1, . . . , L do
3: Compute kernel contribution Sl for candidate θ̂(l).
4: end for
5: for each subset C ∈ C do
6: Compute combined kernel SC ←

∑
l∈C Sl.

7: Compute spectral ratio

rc ←
λmax

(
K+ SC + σI

)
λmax(K+ σI)

.

8: end for
9: Select C∗ ← argmin

C
rc.

Output: Selected parameters {θ̂(l) : l ∈ C∗}.
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Figure 3: Empirical risk ratio log
(

R(θ∪θ̂)
R(θ)

)
and maximum eigenvalue ratio log

(
λmax(K+S+σI)
λmax(K+σI)

)
are used to

evaluate the impact of candidate layers. Here, θ is fixed as the weights {Wk} of layer {0}, while θ̂ represents
the candidate layers. The horizontal axis represents the combination of layer {0} and different candidate layers.
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M Discussion and Implication of Assumptions

• Stochastic vs. deterministic gradient descent: Our theoretical derivations are based on
deterministic gradient descent, while the AdamW optimizer, which is stochastic, is used in
our experiments. Our theory is designed to make a few key aspects precise: (1) that it is
possible to directly elicit NTK regime behavior through regularization and (2) that, once
we operate in the NTK regime, the spectrum of the kernel determines training performance.
Note that (2) does not rely on any particular optimization scheme. As for (1), while it is true
that the noisy gradient aspect of stochastic approaches is not part of the theory, gradient
descent/flow captures the local-search approach of gradient-based methods, including SGD
and its variants. Applying selective regularization (Eq. (8)) is as straightforward as applying
gradient clipping with SGD and Adam. The bounds of Theorems 3 and 4 transfer to
stochastic variants through standard bounds that link their respective trajectories. (These
typically need strong convexity assumptions on the loss functions and bounds on the variance
of the stochastic gradient [31].

• Regularized vs. non-regularized fine-tuning It is crucial to emphasize that our linearity
analysis only applies to the explicitly regularized variant of fine-tuning that we present. Even
though we believe that this regularization may sometimes exist implicitly during fine-tuning,
establishing bounds between non-regularized fine-tuning and linearized fine-tuning remains
outside the scope of this paper and is an interesting avenue for future investigation.

• Cross-entropy vs. mean squared loss: Our theoretical results are derived for the squared
loss, while our experiments succeed with cross-entropy. According to [31], we provide
intuitions on why our theoretical insights generalize well to different loss functions. Note
that optimizing cross-entropy is equivalent to optimizing KL-divergence, and KL-divergence
and squared loss are intimately related, given that they’re both Bregman divergences. For
two outputs that are close to each other, i.e., in the high-accuracy regime, the KL-divergence
behaves very similarly to the squared loss [32]. As such, while the theory doesn’t apply
directly to cross-entropy, the behavior that we demonstrate qualitatively supports the behavior
that we experimentally observe with cross-entropy.

• Lipschitzness The Lipschitz continuity assumption in Theorems 2- 4 is not limiting. Almost
every architecture and training methodology used in practice limits the complexity of the
networks. Of particular relevance to our paper are the robust variants of low-rank adaptation,
which explicitly enforce this kind of Lipschitz condition [33]. In Appendix K, we empirically
estimate the Lipschitz constant for models in balls around the initial model.

N Hyperparameters

Dataset CoLA SST-2 Yelp IMDb

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear
Max Sequence Length 512
LoRA Rank r 8
LoRA α 8
Number of Epochs 10

Batch Size 32 16 32 16
Learning Rate 4e-4 5e-4 4e-4 4e-4

Table 9: Hyperparameters used for the RoBERTa-base model on various benchmarks, including
GLUE (CoLA, SST-2), Yelp, and IMDb.
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