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Abstract001

Multi-agent systems have emerged as a promis-002
ing approach for enhancing the reasoning ca-003
pabilities of large language models in com-004
plex problem-solving. However, current MAS005
frameworks are limited by poor flexibility and006
scalability, with underdeveloped optimization007
strategies. To address these challenges, we pro-008
pose ReSo, which integrates task graph genera-009
tion with a reward-driven two-stage agent selec-010
tion process. The core of ReSo is the proposed011
Collaborative Reward Model, which can pro-012
vide fine-grained reward signals for MAS coop-013
eration for optimization. We also introduce an014
automated data synthesis framework for gen-015
erating MAS benchmarks, without human an-016
notations. Experimentally, ReSo matches or017
outperforms existing methods. ReSo achieves018
33.7% and 32.3% accuracy on Math-MAS and019
SciBench-MAS SciBench, while other meth-020
ods completely fail.021

1 Introduction022

Increasing inference time has emerged as a critical023

method to enhance the reasoning capabilities of024

large language models (LLMs)(Snell et al., 2024).025

Two primary approaches have been explored: (1)026

optimizing a large reasoning model (Xu et al.,027

2025) by reinforcement learning and reward mod-028

els during post-training, which could generate inter-029

mediate reasoning steps before answering (OpenAI030

et al., 2024b; DeepSeek-AI et al., 2025) and (2)031

leveraging multi-agent system (MAS) collabora-032

tion to complete complex tasks that are difficult to033

solve by single inference (Han et al., 2024; Guo034

et al., 2024; Wang et al., 2024b; Tran et al., 2025).035

Compared to the success of inference time scaling036

on the single LLM, MAS faces multiple challenges.037

(1) Most are handcrafted, with limited scalability038

and adaptability. The lack of an effective agent039

self-organization mechanism hinders large-scale040

cooperation. (2) Most assume all agent abilities are041
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Figure 1: Overview of ReSo pipeline. ReSo first de-
composes the task into a DAG; and then constructs an
agent graph by topological sorting. First, it searches
for agent candidates for each subtask node from the
dynamic agent database (DADB). Then it leverages the
Collaborative Reward Model (CRM) to choose the best
agent and update the agent estimation in DADB.

fully known while assigning tasks, which is unreal- 042

istic for LLM-based agents. (3) Reward signals are 043

restricted to missing, self-evaluation or outcome 044

only, resulting in poorly defined optimization ob- 045

jectives. (4) Existing MASs lack mechanisms for 046

dynamically optimizing agent networks, making it 047

difficult to achieve data-driven improvements. To 048

address these limitations, we ask: Can we design 049

a self-organizing MAS to learn directly from data 050

via reward signals without handcrafting? 051

To realize this potential, we propose ReSo, a 052

reward-driven self-organizing MAS that integrates 053

task graph generation and agent graph construction. 054

The key innovation of our approach is the incor- 055

poration of fine-grained reward signals by the Col- 056

laborative Reward Model (CRM), which leads to 057

dynamic optimization of agent collaboration. Dif- 058

ferent from existing MASs, our approach is both 059

scalable and optimizable, achieving state-of-the-art 060

performance on complex reasoning tasks. 061

While ReSo builds on prior work in agent selec- 062

tion and task decomposition, its principal contribu- 063

tion is the integrated formulation of these mecha- 064

nisms within a self-organizing multi-agent reason- 065

ing framework. Our core insight is that individ- 066
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ual agents exhibit heterogeneous expertise across067

different tasks and domains. During training, the068

CRM module evaluates each agent’s performance069

and records these scores in the DADB in 3.3.1.070

At inference time, ReSo decomposes a complex071

problem into subtasks and consults the DADB to072

dynamically assign each subtask to the agent best073

suited for it. This emergent, self-organizing process074

sets ReSo apart from traditional, linear pipeline ar-075

chitectures. While extensive datasets exist for eval-076

uating the reasoning capabilities of LLMs (Chang077

et al., 2023; Guo et al., 2023), high-quality MAS078

evaluation benchmarks are scarce. Therefore, we079

propose an automatic data synthesis method to gen-080

erate various MAS tasks by converting existing081

LLM benchmarks into complex collaboration prob-082

lems. This method provides step-by-step reward083

signals without additional human annotations, en-084

abling efficient and scalable MAS evaluation. Our085

contributions can be summarized as:086

• We first propose a Collaborative Reward087

Model, which can provide fine-grained reward088

signals for multi-agent collaboration.089

• We present an automatic data synthesis090

method to generate arbitrarily complex MAS091

tasks from existing LLM benchmarks.092

• We propose ReSo, the first scalable and opti-093

mizable self-organizing MAS framework. Ex-094

perimental results demonstrate the superior095

performance of ReSo on challenging tasks.096

2 Related Work097

2.1 Reward Guidance098

The reward model has become a critical compo-099

nent in enhancing the capabilities of LLMs through100

post-training (Wang et al., 2024d). By providing101

feedback on the quality of LLM outputs, RMs facil-102

itate performance improvement, enabling models103

to generate more accurate and detailed responses.104

The concept of reward-guided learning was first105

introduced in InstructGPT (Ouyang et al., 2022),106

which uses human feedback to fine-tune LLMs,107

aligning their behavior with user intent. In addition108

to outcome-based supervision, process-based su-109

pervision has been shown to improve the reasoning110

process itself (Uesato et al., 2022), enhancing not111

just the final answer but also the steps leading to it.112

Building on this, (Lightman et al., 2023) intro-113

duced a process reward model (PRM) fine-tuned114

on PRM800K, which provides fine-grained and115

interpretable rewards for every reasoning step.116

Similarly, (Wang et al., 2024c) developed Math- 117

Shepherd, an approach capable of autonomously 118

generating process supervision data. Despite the ad- 119

vantages of neural-based reward models in terms of 120

generalization, they also suffer from reward hack- 121

ing (Gao et al., 2022; Skalse et al., 2022). To 122

mitigate this, some recent approaches have em- 123

ployed rule-based rewards (DeepSeek-AI et al., 124

2025) or fixed inference budgets (Muennighoff 125

et al., 2025), which have also proven effective. No- 126

tably, DeepSeek-R1 (DeepSeek-AI et al., 2025) 127

incorporates both output accuracy and reasoning 128

format evaluation, achieving the performance on 129

par with OpenAI-O1 (OpenAI et al., 2024b; Qin 130

et al., 2024). DeepSeek-R1 demonstrates that only 131

using large-scale reinforcement learning based on 132

rule-based reward during post-training can stim- 133

ulate LLM’s excellent reasoning ability, without 134

supervised fine-tuning. 135

2.2 Multi-Agent System 136

Recent advances in LLM-based MAS have raised 137

expectations for their ability to tackle increasingly 138

complex reasoning tasks (Han et al., 2024; Guo 139

et al., 2024; Wang et al., 2024b; Tran et al., 2025). 140

Predefined cooperation in MAS relies on struc- 141

tured interactions and role assignments before col- 142

laboration. Early works focus on MAS infrastruc- 143

ture, including Camel, AutoGen, and AgentVerse 144

(Li et al., 2023; Wu et al., 2023; Chen et al., 2023). 145

Some approaches adopt standard operating proce- 146

dures for structured task decomposition, as seen in 147

MetaGPT and ChatDev (Hong et al., 2024; Qian 148

et al., 2024a; Dong et al., 2024). Fixed topologies 149

are most adopted, such as hierarchical structures 150

in MOA (Wang et al., 2024a) and directed acyclic 151

graphs in MacNet and MAGDI (Qian et al., 2024b; 152

Chen et al., 2024c). Predefined role interactions are 153

also widely used such as debate (Du et al., 2023), 154

criticism (Chen et al., 2024b), and certain math rea- 155

soning patterns (Gou et al., 2024; Lei et al., 2024; 156

Xi et al., 2024). Predefined MASs exhibit several 157

limitations including: (1) Scalability and adaptabil- 158

ity being constrained by the imposition of rigid role 159

assignments and fixed topological structures. (2) 160

The unrealistic assumption that the agent’s abilities 161

are fully known when assigning tasks, which is 162

particularly problematic for LLM-based agents. 163

Optimizable cooperation in MAS aims to dynam- 164

ically adapt interaction topology and agent roles. 165

GPTSwarm (Zhuge et al., 2024) formulates MAS 166

as optimizable computational graphs, refining node 167
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prompts and inter-agent connectivity via evolution-168

ary algorithms. DyLAN (Liu et al., 2024b) em-169

ploys a layerwise feedforward agent network and a170

mutual rating mechanism to dynamically optimize171

MAS. G-Designer (Zhang et al., 2025a) utilizes172

variational graph auto-encoders to optimize MAS.173

Current optimizing approaches are highly under-174

explored. They often lack reliable, fine-grained175

reward signals for MAS collaboration, relying in-176

stead on outputs or self-generated reward mecha-177

nisms. Meanwhile, dynamic network optimization178

algorithms for MAS are also lacking.179

3 Methods180

To tackle the existing challenges in MAS research,181

we propose two core innovations: (1) ReSo, a182

reward-driven self-organizing MAS, which is capa-183

ble of autonomously adapting to complex tasks and184

a flexible number of agent candidates, eliminating185

the need for handcrafted solutions. (2) Introduction186

of a Collaborative Reward Model (CRM), specifi-187

cally tailored to optimize MAS performance. CRM188

can deliver fine-grained reward signals on multi-189

agent collaboration, enabling data-driven MAS per-190

formance optimization.191

3.1 Problem Formulation192

We define a MAS algorithm fMAS as a function193

that, given a natural language question Q, generates194

a graph-structured task decomposition, solves each195

subtask, and produces a final answer:196

fMAS(Q)→
(
G = (V,E), AV , AQ

)
(1)197

Here, G = (V,E) represents the task decom-198

position graph, which is structured as a directed199

acyclic graph (DAG). The set of nodes V =200

{v1, v2, . . . , vn} corresponds to the subtasks de-201

rived from Q, while the edges E ⊆ V × V202

define the dependencies between these subtasks.203

The system produces subtask answers AV =204

{av1 , av2 , . . . , avn} and ultimately derives the fi-205

nal answer AQ. To achieve this, we decompose206

fMAS into two sub-algorithms:207

fMAS(Q) = fagent ◦ ftask(Q) (2)208

ftask is responsible for constructing the task de-209

composition graph from the input question, ensur-210

ing a structured breakdown of the problem into211

subtasks and dependencies. fagent dynamically se-212

lects and assigns appropriate agents to solve the213

identified subtasks. This modular design enables214

independent optimization of each component, al- 215

lowing for greater flexibility and scalability. 216

For the MAS-generated answer AQ to be con- 217

sidered correct, the following conditions must be 218

satisfied: (1) All subtask answers must be correct. 219

(2) All directed edges must correctly enforce the 220

dependency relationships among subtasks. (3) The 221

final output AQ must be correct. 222

3.2 Task Graph Construction 223

In the proposed method, ftask first transforms the 224

question Q into a directed acyclic task graph G: 225

ftask : Q → G = (V,E) (3) 226

where G represents the decomposition of the origi- 227

nal task Q. Each node vi ∈ V is a natural language 228

subtask, and each directed edge (vi → vj) ∈ E 229

indicates that the subtask vj depends on the suc- 230

cessful completion of vi. 231

In practice, we perform supervised fine-tuning 232

(SFT) on an LLM to perform this step of task de- 233

composition. Using our synthetic data, we explic- 234

itly require the LLM to decompose Q into logical 235

sub-problems, specify their execution order and 236

dependencies, and output in a format of DAG. 237

3.3 Two-Stage Agent Search 238

Once the task graph is obtained, we need to assign 239

each subtask to the most appropriate agent. We 240

denote this agent assignment procedure as fagent. 241

Conceptually, fagent classifies each node in the task 242

graph according to the most suitable agent from a 243

large agent pool A, constructing an agent graph 244

that maps each node to one or more selected agents. 245

fagent : vi ∈ V → ai ∈ A (4) 246

Since A can contain a large number of agents, 247

we first introduce the concept of Dynamic Agent 248

Database. Then we decompose the agent graph 249

construction on every subtask into two search al- 250

gorithms from coarse to fine-grained: first, select a 251

subset of candidates from DADB then utilize the 252

reward model to evaluate and select the best agent. 253

3.3.1 Dynamic Agent Database 254

To increase MAS’s scalability and flexibility, we 255

propose the Dynamic Agent Database (DADB), 256

denoted as A, which enables adaptive agent selec- 257

tion by maintaining both static and dynamic agent 258

profiles. For each agent ai ∈ A, its static profile in- 259

cludes the base model, role settings, initial prompt, 260

3



(a) Task Graph Construction

Question

Subtask 3

Subtask 1

Subtask 2

Decompose 

Subtask 4

Answer

DAG

(b) Training Stage of ReSo

Question

Plan  Generator
Dynamic Agent Database

Subtask1

Dynamic Agent 
Database

Collaborative
 Reward Model 

Subtask 1

Update

Select

Dynamic Agent 
Database Collaborative

 Reward Model 

Subtask2

Update

Select

Collaborative
 Reward Model 

TopK UCB Agent Agent Output

EvaluateUpdate

Dynamic Agent 
Database

Collaborative
 Reward Model 

Subtask 2

Select EvaluateUpdate

Best Answer

......

Answer
(c) Testing Stage of ReSo

Question

Dynamic Agent 
Database

Subtask 1

Select

Select

Agent Output

EvaluateUpdate

Collaborative
 Reward Model Select

EvaluateUpdate

Best Answer

......

Output

Evaluate

0.43 0.28 0.86 0.57

Subtask 2

......

Answer

Figure 2: Illustration of our proposed ReSo. (a) We decompose the question into a subtask DAG. (b) The training
of ReSo: we first use the UCB score to perform a coarse search in DADB and select top-k agents, then score the
inference results using CRM, and update DADB by rewards. Repeat the above process for each node in DAG by
topological order. (c) The testing of ReSo: we select the best agent from DADB.

long-term memory, and tools. The dynamic pro-261

file, continuously updated via the reward model,262

tracks the agent’s average reward R(ai), computa-263

tional cost C(ai), and task count n(ai). Initially,264

agents have only static attributes, while training265

iteratively refines their evaluations by the process266

reward model, optimizing future selection.267

Given an input task vj , the DADB assigns a pre-268

liminary quality score Q(ai, vj) to each agent ai,269

balancing task-agent similarity, historical perfor-270

mance, and computational costs:271

Q(ai, vj) = sim(ai, vj) · perform(ai) (5)272

where sim(ai, vj) represents the similarity between273

the subtask’s target profile and the agent’s static274

profile. In practice, we employ a Heaviside func-275

tion which ensures that only agents exceeding a276

predefined similarity threshold Vth are considered:277

sim(ai, vj) = H[⟨qi,ai⟩ − Vth] where qi,ai278

are text embedding of subquestion and the agent279

static profile. The perform(ai) term is given by280

perform(ai) = R(ai) − βC(ai), where β con-281

trols the trade-off between the agent’s historical282

performance and cost.283

3.3.2 Coarse Agent Search by UCB 284

Given a DADB A and a subtask vj , our first objec- 285

tive is to retrieve a promising subset of k candidate 286

agents. To take advantage of the known informa- 287

tion in DADB, also to explore unused agents, we 288

adopt an Upper Confidence Bound value: 289

UCB(ai, qj) = Q(ai, qj) + c

√
N

n(ai) + ε
(6) 290

where N is the total number of agent selections 291

and n(ai) the number of times agent i is se- 292

lected, ε ≪ 1. c is a constant controlling the 293

exploration-exploitation trade-off. Agents with 294

higher UCB scores are more likely to be selected, 295

helping the MAS to explore potentially under- 296

utilized agents. For each subtask qi, we sort agents 297

by their UCB(ai, qj) and choose the top k agents 298

as the candidate set Acand = { a1, a2, . . . , ak}. 299

3.3.3 Fine-grained Agent Evaluation by CRM 300

Once the candidate agents Acand are selected, we 301

evaluate their performance on the current subtask 302

vj using a Collaborative Reward Model (CRM). 303

This evaluation process is straightforward: each 304
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candidate agent ai generates an answer to the sub-305

task vj : ai(vj), and then we assess the quality of306

that answer based on a reward signal:307

r(ai, vj) = RewardModel
(
ai, vj , ai(vj)

)
(7)308

where RewardModel evaluates the quality of the309

solution based on the given agent’s profile, subtask,310

and previous reasoning process. After evaluating311

the agents, we assign the agent with the highest312

reward, a∗j , to the subtask node vj , which means313

a∗j ’s solution is used as vj’s answer. This process314

is repeated for each subtask on the graph.315

The reward r(ai, vj) is computed using the316

CRM, which can be either rule-based (e.g., binary317

correctness: 0 for incorrect, 1 for correct) or neural-318

based (providing a score between 0 and 1 for qual-319

ity). The reward model evaluates how well the320

agent’s response aligns with the expected outcome,321

factoring in both the solution’s correctness and its322

collaboration within the MAS.323

3.4 Training and Inference Stage324

Our multi-agent system can operate in two modes:325

training and testing. During training, we leverage326

a high-quality reward r(ai, vj) available for evalu-327

ating the correctness of every step of MAS. Upon328

receiving r(ai, vj) for each candidate agent, we329

update that agent’s dynamic profile in DADB. For330

instance, we may maintain a running average of331

rewards:332

R(ai) ←
n(ai) ·R(ai) + r(ai, vj)

n(ai) + 1
(8)333

similar for updating costc(ai, vj). By iteratively334

learning from data, the DADB can dynamically335

update agent evaluations based on historical reward,336

facilitating adaptive agent selection and improving337

both efficiency and performance. During testing,338

the reward model is no longer required. Instead, we339

leverage the learned DADB to select the best agent340

candidates and the best answer to each subtask.341

3.5 The Perspective of MCTS342

The task graph, after topological sorting, forms a343

decision tree where each node represents a subtask344

and the edges denote dependencies. At each level,345

we use UCB to prune the tree and select a subset346

of promising agents, then simulate each agent and347

evaluate their performance using the CRM. The re-348

sulting reward updates the agent’s dynamic profile,349

refining the selection strategy. The MAS construc- 350

tion is essentially finding the optimal path from the 351

root to the leaves, maximizing the UCB reward for 352

the best performance. 353

Consider there are N agents and a task requiring 354

D agents to collaborate. Assume that the average 355

inference cost is c and the matching cost in DADB 356

is s ≪ c per agent. A brute-force search has a 357

complexity of O(c·ND), which becomes infeasible 358

as D and D grow. In contrast, our self-organizing 359

strategy, selecting topk per step, reduces the cost to 360

O((s ·N +N logN + k · c) ·D), offering a near- 361

linear scaling with N and D, making the approach 362

highly scalable for large N and D. 363

4 Data Synthesis 364

A key challenge in MAS is the lack of structured 365

datasets for evaluating and training agent collabo- 366

ration. To address this, we propose an automated 367

framework that converts existing LLM datasets into 368

structured, multi-step MAS tasks, enabling fine- 369

grained evaluation without human annotations. 370

Random DAG Generation We begin by gener- 371

ating a DAG, G = (V,E). Each node vi ∈ V 372

will be filled with a subtask (qi, ai), where qi is 373

the textual description of the task, and ai is its nu- 374

merical answer. The subtasks are sampled from 375

the existing LLM benchmarks. The edges E will 376

encode dependency constraints between subtasks, 377

ensuring that the solution to one subtask is required 378

as an input for another, modeling the sequential 379

reasoning process of multi-agent collaboration. 380

Subtask Selection and Filling To populate the 381

nodes of G, we construct a master pool of candidate 382

subtasks, denoted as P . Each candidate subtask 383

pi ∈ P consists of a textual problem description 384

si, and a numerical answer ai. After obtaining 385

P , we randomly sample from it and fill one ques- 386

tion per node into the generated DAG. Candidate 387

subtasks should have clear numerical or option an- 388

swers, such as SciBench (Wang et al., 2024f), Math 389

(Hendrycks et al., 2021), GPQA (Rein et al., 2023), 390

etc. To ensure that the problem is computationally 391

feasible for later dependency construction, we ex- 392

tract a numerical constant ci ∈ R from the problem 393

text. If the extracted constant is valid, the subtask 394

is retained in P; otherwise, it is discarded. This 395

ensures that only problems with well-defined nu- 396

merical attributes are incorporated. 397
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Dependency Edge Construction After all nodes398

are populated, we generate natural language depen-399

dency descriptions for edges. Each edge (vj → vk)400

should represent a relationship which connects pre-401

vious subtask vj’s answer aj , with subsequent sub-402

task vk’s question parameter ck. For each edge, we403

generate a textual description ejk, such as “in this404

question, ck = previous answer + 3.” Formally, it is405

an algorithm that constructs a string from two num-406

bers: eij = f(aj , ck). f can be implemented using407

elementary arithmetic and text templates, ensuring408

that no answers or parameters in the original sub-409

task need to be manually modified. Once the DAG410

is fully constructed, we refine node descriptions by411

removing any explicitly given numerical constants412

{ci} that are now dependent on the results of prior413

nodes. Finally, an entire graph described in natural414

language is a piece of synthetic data.415

The proposed data synthesis framework gener-416

ates structured, multi-step reasoning tasks with ad-417

justable sizes, ensuring diverse and scalable prob-418

lem structures. The synthesized dataset supports419

both training and testing, enabling fine-grained420

evaluation without human annotations.421

5 Experiments422

In 5.1, we first use public datasets to create com-423

plex MAS benchmarks and fine-tune ReSo’s task424

decomposition and collaborative reward models.425

All code, datasets, and models are publicly avail-426

able. In 5.2, we train and evaluate ReSo on both427

public and synthetic datasets. 5.3 presents ablation428

studies on task decomposition, agent selection, and429

reward guidance mechanisms.430

5.1 Data Synthesis and Model Fine-tuning431

5.1.1 Data Synthesis432

MATH (Hendrycks et al., 2021) consists of prob-433

lems from diverse mathematical domains, while434

SciBench (Wang et al., 2024f) includes scientific435

reasoning tasks spanning physics, chemistry, and436

mathematics. Using these datasets, we apply the437

synthetic data generation method outlined in 4 to438

create two datasets: one for single LLM fine-tuning439

and another for benchmarking. Difficulty is cat-440

egorized by the number of subtasks—Easy (3),441

Medium (5), and Hard (7).442

Fine-tuning data For fine-tuning task decom-443

position LLM, we generate 14,500 questions and444

answers from the MATH training set, with numbers445

of subtasks ranging from 2 to 6. For fine-tuning the446

neural-based CRM, we generate 5,000 questions 447

from the same set, with 5 subtasks per question. 448

5.1.2 Model Fine-tuning 449

Task Decomposition Model Training To ensure 450

high-quality task composition, we fine-tune a spe- 451

cialized model for task decomposition based on 452

Qwen2.5-7B-Instruct. We use 14500 dialogues on 453

task decomposition as described in 5.1.1, and fine- 454

tune the model under a batch size of 128 and a 455

learning rate of 1e-4 for 3 epochs. The fine-tuned 456

model can reliably produce task decomposition in 457

a structured format. 458

CRM Training The proposed CRM is fine-tuned 459

based on Qwen2.5-Math-PRM-7B (Zhang et al., 460

2025b), which can provide effective process reward 461

signals on MAS collaborative reasoning tasks. We 462

use 5000 samples of sub-tasks with their answers as 463

described in 5.1.1. We follow a simplified training 464

scheme of PRMs, where the model should only 465

perform binary classification on the special token 466

at the end of the answer. The model is trained with 467

a batch size of 128 and a learning rate of 1e-4 for 468

5 epochs. The fine-tuned model can output the 469

probability of the answer being correct, which is 470

then taken as the collaborative reward signal. 471

MAS Benchmarks We select 201 questions from 472

SciBench as the sub-question data pool and syn- 473

thesized complex data using the method in 4. 474

This forms the SciBench-MAS dataset, comprising 475

200 easy-level training questions and 247 testing 476

questions (107 easy, 80 medium, 62 hard). For 477

MATH (Hendrycks et al., 2021), 348 level-5 ques- 478

tions are selected, from which we generate the 479

Math-MAS dataset, consisting of 269 test ques- 480

tions for ReSo (91 easy, 89 medium, 89 hard). 481

5.2 Main Results of ReSo 482

Models and MASs We compare ReSo with state- 483

of-the-art LLM and MAS methods. Our single- 484

LLM baselines include GPT-4o (OpenAI et al., 485

2024a), Gemini-2.0-Flash (Team et al., 2024), 486

Claude-3.5-Sonnet (Anthropic, 2024), Qwen2.5- 487

Max (Yang et al., 2024), DeepSeek-V3 (Liu et al., 488

2024a). For ReSo, we build an agent database that 489

includes these base models, extended to 63 agents 490

with different prompts. For MAS, we evaluate 491

MetaGPT (Hong et al., 2024), DyLAN (Liu et al., 492

2024b), GPTSwarm (Zhuge et al., 2024), GDe- 493

signer (Zhang et al., 2025a). All MAS baselines 494

use GPT-4o as the backbone. 495
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Method Math-MAS SciBench-MAS
Easy Medium Hard Tokens Easy Medium Hard Tokens

GPT-4o 27.5 9.0 0.0 2.2k 39.3 12.5 1.6 2.1k
Gemini-2.0-Flash 69.2 24.7 9.0 3.0k 64.5 33.8 9.7 2.5k
Claude-3.5-Sonnet 12.1 0.0 0.0 1.0k 22.4 6.2 3.2 1.4k
Qwen2.5-Max 44.0 13.5 4.5 2.9k 55.1 30.0 4.8 2.8k
DeepSeek-V3 52.7 24.7 12.4 2.2k 52.3 31.3 12.9 2.3k

MetaGPT 30.8 12.4 2.2 16.1k 48.6 2.5 0.0 14.6k
DyLAN 40.7 9.0 0.0 64.1k 48.6 2.5 0.0 77.8k
GPTSwarm 35.2 5.6 4.5 14.9k 31.8 6.3 1.6 18.2k
GDesigner 14.2 5.6 0.0 16.9k 24.3 12.5 0.0 19.0k
ReSo (ours) 79.1 56.2 33.7 14.6k 67.3 51.3 32.3 20.7k

Table 1: Accuracy and average token usage on Math-MAS and SciBench-MAS. Bold and underlined represent
optimal and suboptimal results, respectively. Tokens denotes the average number of tokens consumed per task.

Comparisons with LLMs As shown in Table 1,496

most single-model agents exhibit a sharp decrease497

in accuracy as the difficulty increases. At the hard498

difficulty level, their accuracy approaches zero, sug-499

gesting that single LLMs struggle with composi-500

tional reasoning. In particular, we show the results501

of these single LLMs on single Math and Scibench502

datasets in Appendix B , with accuracy rates of503

80%-90%. This means that a single LLM can suc-504

cessfully solve a single sub-problem in the dataset,505

but its generalization ability for combined complex506

problems is very limited.507

Comparisons with MASs Notably, ReSo out-508

performs other approaches in both the Math-MAS509

and SciBench-MAS datasets. At the hard difficulty510

level, ReSo reaches an accuracy of 33.7% on Math-511

MAS and 32.3% on SciBench-MAS, while other512

MAS methods almost completely fail.513

Results on Standard Benchmarks Our ap-514

proach demonstrates robust performance not only515

on complex task datasets but also on widely516

adopted benchmarks. Table 2 summarizes the517

comparative accuracy, where ReSo consistently518

achieves the highest scores across all tasks. These519

results attest to ReSo’s strong generalization capa-520

bilities and its effectiveness in mathematical and521

scientific reasoning, as well as related domains.522

5.3 Ablation Studies523

We conduct ablation studies on our proposed multi-524

agent system, examining three core designs: task525

decomposition, agent selection, and reward signal.526

Task Decomposition We compare three differ-527

ent approaches to task decomposition: (1) Ground528

Table 2: Comparison of accuracy (%) on standard bench-
marks.

Method GSM8K GPQA HumanEval MMLU

DyLAN 88.16 49.55 89.70 80.16
GDesigner 95.07 53.57 89.90 84.50
GPTSwarm 89.74 52.23 88.49 83.98
ReSo (ours) 95.70 55.80 92.00 88.70

Truth, representing an upper bound with human- 529

crafted, meticulously designed task breakdowns; 530

(2) GPT-4o, which autonomously decomposes 531

complex tasks into sub-tasks without targeted fine- 532

tuning; and (3) Qwen2.5-7B-SFT, a model fine- 533

tuned on our dataset based on Qwen2.5-7B, specif- 534

ically adapted to generate more effective decompo- 535

sitions for complex questions. Figure 3(a) presents 536

the reasoning accuracy under different decompo- 537

sition strategies. The ground-truth decomposition 538

consistently yields the highest accuracy, underscor- 539

ing the critical role of precise subproblem segmen- 540

tation. Meanwhile, the fine-tuned task generator 541

surpasses the naive GPT-4o approach, demonstrat- 542

ing that even a small amount of domain-specific 543

training data can significantly improve decompo- 544

sition quality and enhance overall system perfor- 545

mance. 546

Agent Selection We compare three strategies for 547

agent selection: a random strategy, a greedy strat- 548

egy that always selects the most matching profile, 549

and our proposed ReSo approach. As shown in 550

Figure 3(b), ReSo significantly outperforms other 551

strategies across all the datasets, which emphasizes 552

the importance of a robust agent selection strategy 553

within the multi-agent framework. By strategically 554
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(a) Task Decomposition
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(b) Agent Selection
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Figure 3: Results of ablation studies. (a) Fine-tuning on domain-specific training data can significantly improve the
decomposition quality, thus enhancing overall system performance. (b) Our robust agent selection strategy within
the MAS is significant to the performance. (c) Compared to general reward models, our fine-tuned reward model is
more task-specific and brings more precise reward signals, thus improving the system performance.

assigning each sub-task to the most suitable agent,555

the system can handle increasingly complex tasks556

with markedly better accuracy.557

Reward Signal Ablation We investigate the im-558

pact of different reward signals on system op-559

timization, considering three approaches. Fig-560

ure 3(c) presents the results of training our MAS561

under these reward schemes on the SciBench-MAS562

dataset. Detailed in Appendix G563

5.4 Scalability Analysis564

Agent Scalability ReSo’s modular design allows565

the dynamic addition of new agents without retrain-566

ing the entire system. Each agent registers its static567

profile in the Dynamic Agent Database (DADB)568

and begins contributing immediately. For example,569

during our HumanEval experiments, we simply570

added some code-specialist agents on top of the571

existing 63 agents. ReSo seamlessly leveraged its572

capabilities to improve overall performance.573

Task and Domain Generality ReSo is task-574

agnostic and domain-agnostic: as long as domain-575

specific data is available, it can generate a task576

DAG, select appropriate agents, and optimize577

their collaboration. Our automated data synthesis578

pipeline converts LLM benchmark into a multi-step579

MAS task without human annotations, enabling580

straightforward migration from mathematics and581

scientific reasoning to other fields.582

Training Data Scalability The effectiveness of583

agent selection in ReSo grows with more train-584

ing data. During training, DADB maintains and585

updates each agent’s reward statistics and cost es-586

timates. As the number of training samples in-587

creases, ReSo builds a more accurate model of 588

each agent’s strengths and weaknesses, resulting in 589

progressively better agent assignments and higher 590

overall accuracy. Figure 4 shows that ReSo’s accu- 591

racy increases with the training process 592

0 20 40 60 80
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40

50
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Figure 4: Training Curve of ReSo.

6 Conclusion 593

In this work, we introduce ReSo, a reward-driven 594

self-organizing MAS for complex reasoning. By 595

integrating a collaborative reward model, ReSo au- 596

tomates agent selection and collaboration, improv- 597

ing scalability and adaptability. The automated 598

data synthesis framework eliminates manual anno- 599

tations. Experiments show that ReSo outperforms 600

existing MAS and single LLM baselines. All codes, 601

models, and data have been open-sourced. We ex- 602

pect ReSo to enable co-optimization of MAS and 603

LLM to further enhance reasoning capabilities. 604
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7 Limitations605

Although the base model for the agents is a fixed606

model, ReSo has demonstrated strong optimizabil-607

ity and scalability as well as good performance. A608

further interesting research question is: Can the609

optimization of MAS be performed together with610

the optimization of a single LLM agent? Specifi-611

cally, can the reward signal given to the model by612

our CRM in each step of cooperation be combined613

with the reinforcement learning-based post-training614

of a single model to further optimize MAS at both615

the macro and micro levels? This means a dynamic616

agent cooperation network, where agents can not617

only learn how to interact with each other but also618

fine-tune their weights through feedback from co-619

operation. We look forward to follow-up research.620

8 Ethical Considerations621

While our proposed ReSo framework focuses on622

reasoning tasks in the domains of mathematics623

and science, it has the potential to be applied in624

other, possibly unethical, contexts. Such misuse625

could pose significant threats to human society. We626

strongly urge readers to carefully consider these627

ethical implications and to adopt a conscientious628

approach in the development and application of629

these methods.630
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A Related work on LLM Reasoning Policy1150

Reward model is usually combined with different reasoning policies to enhance its effect such as majority1151

voting (Wang et al., 2023), Chain of Thought (COT) (Wei et al., 2023) and Monte Carlo Tree Search1152

(MCTS) (Browne et al., 2012). OmegaPRM (Luo et al., 2024) enhances reasoning with a divide-and-1153

conquer MCTS strategy. ReST-MCTS (Zhang et al., 2024) refines reasoning traces using inferred stepwise1154

rewards. RethinkMCTS (Li et al., 2024) improves code generation by leveraging execution feedback. In1155

contrast, Critical Plan Step Learning (Wang et al., 2024e) employs hierarchical MCTS to generalize across1156

reasoning tasks. Additionally, AlphaMath (Chen et al., 2024a) and TS-LLM (Feng et al., 2024) enhance1157

reasoning by incorporating a value model and iterative tree search, with TS-LLM further leveraging an1158

AlphaZero-like framework and policy distillation.1159

B Model Performance1160
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Figure 5: Performance of different models on our selected Math and SciBench dataset subproblems.

C Case Study1161

Complex Task Synthesis Case Study

Original Question:
A model for the surface area of a human body is given by

S = 0.1091w0.425 h0.725.

When ultraviolet radiation of wavelength UNK_0 (where UNK_0 = Answer[2] + 56.10 nm) strikes
the skin, . . . ; a muscle fiber contracts by 3.5 cm and lifts a weight, assuming Hooke’s law F = −kx
with k = UNK_1 = Answer[0] + 736.00; finally, please calculate

Answer[0]× Answer[1]× Answer[2]

and conclude: “The answer is therefore [ANSWER] .”

Decomposed Task Graph:

• Task 1 (no deps): Compute S, record as Answer[2].

• Task 2 (dep: 1): Set UNK_0 = Answer[2]+56.10, compute UV result, record as Answer[0].
1162
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• Task 3 (dep: 2): Set UNK_1 = Answer[0] + 736.00, compute work via Hooke’s law, record
as Answer[1].

• Task 4 (deps: 1,2,3): Compute the product Answer[0]·Answer[1]·Answer[2] and box the
result.

Agent Routing:

• Task 1 (Calculus)→ gemini-2.0-flash-exp_GeometryExpert

• Task 2 (Matter)→ gpt-4o_ElectromagnetismExpert

• Task 3 (Thermodynamics)→ qwen2.5-max_Thermodynamics&OpticsExpert

• Task 4 (Aggregation)→ gemini-2.0-flash-exp_AlgebraExpert
1163

D Prompt 1164

Prompt of Agents in the Pool

[gpt-4o_1]
model = gpt-4o
role = MechanicsExpert
prompt = You are a highly knowledgeable mechanics expert in a multi-agent system. You are given

a sub-task related to classical mechanics, statics, dynamics, kinematics, or fluid
mechanics. First, read and understand the previous questions and answers from other agents.
Identify the variables that have already been solved and ensure consistency with their
results. Then, systematically break down your sub-task, applying relevant physical laws
such as Newton’s laws, conservation principles, or motion equations. Justify your
reasoning, verify unit consistency, and cross-check with previous agent outputs before
providing a well-explained solution.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

[gpt-4o_2]
model = gpt-4o
role = ElectromagnetismExpert
prompt = You are an expert in electromagnetism within a multi-agent system. You are assigned a

sub-task related to electric fields, magnetic fields, circuit analysis, or electromagnetic
waves. First, read and understand the previous questions and answers from other agents,
extract solved variables, and ensure logical consistency. Apply fundamental principles such
as Maxwell’s equations, Gauss’s law, or Faraday’s law to solve your sub-task systematically.
Clearly outline your steps, justify the assumptions, and verify that your solution aligns
with previous agents' work. If discrepancies arise, propose possible resolutions.

↪→
↪→
↪→
↪→
↪→
↪→

[gpt-4o_3]
model = gpt-4o
role = Thermodynamics&OpticsExpert
prompt = You are an expert in thermodynamics and optics in a multi-agent system. Your role is

to solve a specific sub-task while ensuring coherence with previous agents' results. First,
read and understand the previous discussions, extract solved variables, and align your
approach with existing solutions. Apply principles such as the first and second laws of
thermodynamics, heat transfer models, or optical laws (e.g., Snell’s law, diffraction, and
wave optics). Provide a detailed step-by-step solution, justify calculations, and validate
numerical consistency with prior agent outputs. If uncertainties arise, suggest possible
clarifications.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

[gpt-4o_4]
model = gpt-4o
role = InorganicChemistryExpert
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prompt = You are an inorganic chemistry expert operating in a multi-agent system. Your sub-task
may involve chemical bonding, periodic trends, reaction mechanisms, or coordination
chemistry. Carefully review the previous questions and answers, identify already
determined variables, and ensure consistency with past calculations. Apply relevant
chemical principles to analyze and solve your assigned problem step by step. Provide
balanced chemical equations, validate reaction feasibility, and explain your reasoning
clearly. If your results depend on prior agents’ outputs, verify their correctness and
suggest refinements if necessary.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

[gpt-4o_5]
model = gpt-4o
role = OrganicChemistryExpert
prompt = You are an organic chemistry expert in a multi-agent system, responsible for solving a

sub-task related to molecular structures, reaction mechanisms, or synthetic pathways.
First, review previous discussions, extract key solved variables, and ensure consistency
with prior agent responses. Then, apply organic chemistry principles such as resonance
effects, nucleophilic-electrophilic interactions, and reaction kinetics to derive a
precise solution. Provide clear mechanistic explanations, reaction diagrams if necessary,
and cross-check results to maintain logical coherence within the system.

↪→
↪→
↪→
↪→
↪→
↪→

Figure 6: The prompt of agents in the pool.
1166

Prompt of the Task Plan Generator

"""
You are an AI assistant specialized in generating structured prompts for domain-specific

experts in a multi-agent system.↪→

**Task:**
Given a subquestion, analyze its domain, required expertise, and problem complexity. Then,

generate a structured prompt that precisely describes the expert’s role in solving the
problem. The generated prompt will be used for vector-based similarity matching to select
the most appropriate agent from an agent pool.

↪→
↪→
↪→

**Prompt Format:**
"You are a [Expert Type], highly skilled in [Specific Knowledge Areas]. Your task is to analyze

the problem by first reviewing previously solved variables and solutions from other agents
in the multi-agent system. Apply domain-specific knowledge to reason rigorously and
provide a well-structured, logically sound answer. If calculations are required, show all
steps. If problem decomposition is needed, outline a systematic approach. Ensure
consistency with previous solutions in the multi-agent system and resolve any
discrepancies when necessary. Your role is to assist in solving complex reasoning problems
with precision and alignment with the broader system."

↪→
↪→
↪→
↪→
↪→
↪→
↪→

**Instructions for Prompt Generation:**
1. **Expert Type Selection**: Identify the most relevant expert type (e.g., MechanicsExpert,

AlgebraExpert, ThermodynamicsExpert).↪→
2. **Specific Knowledge Areas**: Define the precise knowledge fields required to solve the

problem.↪→
3. **Problem Scope & Complexity**: Determine whether the problem requires deep theoretical

knowledge, numerical computation, or practical modeling.↪→

**Output:**
Provide only the generated prompt without additional explanations."""

Figure 7: The prompt of the task plan generator.
1167

E Agent Selection Visualization1168

The agent selection distribution during the testing phase of Scibench-MAS-Easy reveals that Gemini-2.0-1169

Flash-Exp and Qwen2.5-Max were the most frequently selected models after training.1170
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Figure 8: Testing stage on the easy-level tasks in Scibench-MAS.
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Figure 9: Testing stage on the hard-level tasks in Scibench-MAS.

F Hyperparameters 1171

During both training and testing, a set of weighted factors and constraints guide agent selection, al- 1172

lowing for dynamic adjustments. Specifically, similarity_weight = 0.6 regulates the influence of 1173

subproblem-agent similarity, reputation_weight = 1.0 balances agent selection based on past perfor- 1174

mance, and cost_weight = 1.0 accounts for computational overhead. A THRESHOLD = 0.6 establishes 1175
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the similarity cutoff for specialized handling of certain subproblems, while EXPLORATION_CONST = 0.31176

encourages periodic assignments to underutilized agents. During testing, hyperparameters can be adjusted1177

to fine-tune the selection process—modifying similarity_weight and THRESHOLD controls the search1178

scope, adjusting reputation_weight increases the weight of agent reputation in scoring, and tweaking1179

cost_weight alters the impact of computational overhead, enabling a flexible trade-off between efficiency1180

and performance. Finally, TOP_K = 3 restricts the number of candidate agents per subproblem, balancing1181

exploration and efficiency in the selection process.1182
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Figure 10: Testing stage on the medium-level tasks in Scibench-MAS using reputation_weight 1.
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Figure 11: Testing stage on the medium-level tasks in Scibench-MAS using reputation_weight 2.
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Figure 12: Testing stage on the medium-level tasks in Scibench-MAS without training.

Token Efficiency Table 1 also compares the average number of tokens consumed per task. ReSo 1183

maintains a relatively moderate token usage, which is significantly lower than certain baselines like 1184

DyLAN (14.6k vs 64.1k, 20.7k vs 77.8k). This balance between performance and computational cost 1185

underlines ReSo’s practical efficiency in real-world, large-scale scenarios. 1186

G Reward Signal 1187

We investigate the impact of different reward signals on system optimization, considering three approaches: 1188

(1) Rule-based, which provides strictly accurate, predefined evaluations for sub-task solutions; (2) 1189

General Reward Model, using Qwen2.5-Math-PRM-7B as a reward function without task-specific 1190

fine-tuning; and (3) Fine-tuned Reward Model, i.e., our CRM proposed in 3.3.3. Figure 3(c) presents 1191

the results of training our MAS under these reward schemes on the SciBench-MAS dataset. The rule-based 1192

reward yields the best results, confirming the importance of precise reward signals. Besides, our CRM 1193

brings a slight improvement compared to the original Qwen2.5-Math-PRM-7B model. We also observe 1194

an instance of reward hacking when using the Qwen reward model: specifically, Qwen2.5-Max tends 1195

to receive inflated scores when acting as the reasoning agent. As a result, during inference, the MAS 1196

disproportionately selects Qwen2.5-Max to handle sub-tasks, even in cases where it does not necessarily 1197

produce the best solutions. 1198

H CRM,ORM,PRM 1199

Our Cooperative Reward Model (CRM) is inspired by OpenAI’s PRM, but it has been extended and 1200

adapted to the multi-agent system (MAS) setting. In our complex tasks, multiple sub-tasks exist, and the 1201

CRM scores each sub-task’s response based on the outputs from prior agents. While conceptually similar 1202

to PRM—where each sub-task can be seen as a step—PRM cannot be directly applied to our MAS setting 1203

due to fundamental structural differences. 1204
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I Comparison with Chain-of-Thought (CoT) Methods1205

We would like to clarify that the prompts used in our single-model evaluation experiments already support1206

step-by-step reasoning, thus reflecting Chain-of-Thought (CoT) style outputs. These models are capable1207

of multi-step reasoning and demonstrate CoT-style thinking when tackling complex problems. However,1208

as demonstrated in our results, these CoT-style single-model approaches perform poorly on tasks with1209

high complexity and combinatorial reasoning. As task difficulty increases, even the strongest single1210

LLMs exhibit a significant drop in accuracy—approaching 0% at the highest difficulty level. This clearly1211

indicates that "step-by-step thinking" alone is insufficient for solving the kinds of deep combinatorial1212

reasoning tasks we designed. Our proposed method, ReSo, substantially outperforms these CoT-style1213

baselines. In addition, ReSo introduces structural and functional advantages over traditional CoT methods.1214

CoT follows a linear reasoning path, whereas ReSo constructs a task graph composed of multiple subtasks,1215

each solvable independently by different expert agents. This allows for horizontal task expansion and1216

fine-grained skill decomposition. A key limitation of CoT is its dependence on a single model’s context1217

length, reasoning capabilities, and domain knowledge. ReSo addresses these limitations by decomposing1218

tasks, dynamically routing them, assigning subtasks to the most appropriate agents, and using reward1219

mechanisms to drive learning.1220

J Qwen Model Dependence1221

We would like to clarify that the performance gains observed in ReSo primarily stem from the task1222

decomposition and multi-agent cooperation architecture, rather than solely from a stronger base model.1223

Our approach consists of two stages. The first stage uses an LLM to decompose the task, and the1224

second stage selects the most suitable agents to handle the subproblems. To further demonstrate the1225

effectiveness of our framework, we conducted a new experiment. Even when Qwen-sfted is used for1226

task decomposition, single-agent approaches still fail. This emphasizes that cooperation among agents1227

is necessary. Additionally, our fine-tuned Qwen-7B model performs comparably to GPT-4o for task1228

decomposition, but it is only when subtasks are assigned to specialized agents that the system achieves1229

significant improvements in performance.

Table 3: Qwen model dependence

model Easy Medium Hard

Qwen-sfted + (no ReSo) single agent 27.5 5.6 4.5
GPT-4o + ReSo 71.4 43.8 34.8
Qwen-sfted + ReSo 79.1 56.2 33.7

1230

K Computational Complexity and Runtime1231

Inference Parallelism. Independent DAG subnodes can be executed in parallel, mitigating runtime1232

overhead. Despite a higher token usage, ReSo achieves greater accuracy gains, justifying the cost:1233

Table 4: Token usage and runtime comparison

Method Tokens Time (h)

MetaGPT 16.1 k 3.2
DyLAN 64.1 k 8.0
GPTSwarm 14.9 k 1.3
GDesigner 16.9 k 4.0
ReSo 25.9 k 4.1 (3 training + 1.1 testing)
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