Under review as a conference paper at ICLR 2025

TEACHING TRANSFORMERS CAUSAL REASONING
THROUGH AXIOMATIC TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

For text-based Al systems to interact in the real world, causal reasoning is an
essential skill. Since active interventions are costly to execute, we study to what
extent an agent can learn causal reasoning from symbolic demonstrations of causal
axioms. Specifically, we consider an axiomatic training setup where an agent learns
from multiple demonstrations of a causal axiom (or rule), rather than incorporating
the axiom as an inductive bias or inferring it from data values. A key question
is whether the agent would learn to generalize from the axiom demonstrations to
new scenarios. For example, if a transformer model is trained on demonstrations
of the causal transitivity axiom over small graphs, would it generalize to applying
the transitivity axiom over large graphs? Our results, based on a novel axiomatic
training scheme, indicate that such generalization is possible. For the transitivity
axiom, we find that a 67 million parameter transformer model, when trained on
linear causal chains (along with some noisy variations) can generalize well to
new kinds of graphs, including longer causal chains, causal chains with reversed
order, and graphs with branching; even when it is not explicitly trained for such
settings. We extend axiomatic training to a harder task of inferring causation from
correlation statements and find similar generalization. On both tasks, our model
performs at par (or even better) than many larger language models such as GPT-4,
Gemini Pro, and Phi-3. Overall, our axiomatic training framework provides a new
paradigm of learning causal reasoning in language models that can be extended to
arbitrary axioms, as long as sufficient demonstrations can be generated.

1 INTRODUCTION

Causal reasoning can be defined as a set of reasoning procedures consistent with pre-defined axioms
or rules that are specific to causality (Galles & Pearl, 1997). For instance, d-separation and rules of do-
calculus (Pearl, 2009b) can be considered as axioms and specifications of a collider or a backdoor set
can be considered as rules that can be derived from axioms. Typically, causal reasoning is done over
data corresponding to variables in a system. Axioms or rules are incorporated as inductive biases in a
machine learning (ML) model, through regularization, model architecture, or the choice of variables
for a particular analysis. Depending on the kind of available data—observational, interventional,
or counterfactual—Pearl’s ladder of causation (Bareinboim et al., 2022) defines the kinds of causal
reasoning that is possible.

As axioms are the building blocks of causality, we study whether it is possible to directly learn the
axioms using ML models. That is, rather than learning from data that is the result of axioms obeyed
by a data-generating process, what if a model can learn an axiom (and thus causal reasoning) directly
from symbolic demonstrations of the axiom? This question gains relevance as language models make
it possible to learn over symbolic data expressed in natural language. In fact, recent studies have
evaluated whether large language models (LLMs) can do causal reasoning by creating benchmarks
that encode causal reasoning problems in natural language (Kiciman et al., 2023; Jin et al., 2024a;b).
If we can teach causal axioms to a language model, such a model can be used as a verifier to evaluate
output of existing LLMs, or as a reward model to finetune a given LLM for causal reasoning.

Specifically, we propose a new way of learning causal reasoning through axiomatic training. We
posit that causal axioms can be expressed as the following symbolic tuple, (premise, hypothesis,
result) where hypothesis refers to a causal claim and premise refers to any relevant information
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to decide whether the claim is true or not (conclusion). The conclusion could simply be “Yes” or
“No”. For example, consider the task of inferring causal relationships from correlational statements
about a set of variables, which we empirically study in this paper. As in the Corr2Cause dataset
from Jin et al. (2024b), the premise can be statements about statistical (in)dependence: “Suppose
there is a closed system of three variables: A, B and C. B is correlated with C. A is correlated
with C. However, A is independent of B.”; the hypothesis can be a question about cause-and-effect,
“Does A directly cause C'?”; and the conclusion would be “Yes”. This tuple is a demonstration
of the collider property/axiom (Pearl, 2009b), which states that if there exist variables such that
Al B,B A C,A /L C,then there is a unique causal graph connecting them, A — C; B — C.
Based on this template, our key insight is that a large number of synthetic tuples can be generated,
e.g., by changing the variable names, changing the number of variables, changing the order, and so
on. The question is: if a model is trained on such data, would it learn to apply the axiom to new
scenarios?

To answer this question, we first train a transformer model from scratch on symbolic demonstrations
of the causal transitivity axiom (Galles & Pearl, 1997; Sadeghi & Soo, 2024). To evaluate gener-
alizability, we train on simple chains of the causal irrelevance axiom of size 3-6 nodes and test on
multiple different aspects of generalization, including length generalization (chains of size 7-15),
name generalization (longer variable names), order generalization (chains with reversed edges or
shuffled nodes), and structure generalization (graphs with branching). We find that a model trained
on simple chains generalizes to applying the axiom multiple times over larger chains, but it is unable
to generalize to the more complex scenarios like order or structure generalization. However, when we
train a model on a combined dataset of simple chains and chains with some edges randomly reversed,
we find that the model generalizes well across all kinds of evaluation scenarios, including graphs
with branching. Our 67 million parameter model outperforms billion-scale models like Gemini Pro,
Phi-3, and in some cases GPT-4, for both zero-shot and multi-shot settings. Extending the findings
on length generalization for NLP tasks (Kazemnejad et al., 2023; Bhattamishra et al., 2020; Haviv
et al., 2022; Furrer et al., 2021), we find a critical role of positional embedding in ensuring causal
generalization across length and other aspects. Our best model has no positional encoding, although
we find that sinusoidal encoding also works well for some scenarions.

Baed on these results, we apply the axiomatic training approach to the problem of inferring causality
from correlational statements under the Corr2Cause setting (Jin et al., 2024b), as described above.
Using the same method to generate synthetic training data and train the model, we find that a
transformer trained on task demonstrations over 3-4 variables learns to solve this task for graphs with
5 variables. On this task too, our model’s accuracy is higher than larger LLMs such as GPT-4 and
Gemini Pro, even when multi-shot examples are provided to the LLMs.

Our work provides a new paradigm of teaching models causal reasoning through symbolic demon-
strations of axioms, which we call axiomatic training. Such symbolic data can be cheaply generated
for multiple axioms and added to the pretraining or finetuning data for language models, as done by
Papadimitriou & Jurafsky (2023) for language structure constraints. The data generation and training
procedure is general and can be applied to learn any new axiom (e.g., logical axioms), as long as it
can be expressed in the symbolic tuple format. More generally, our results contribute to the literature
on causal learning from passive data (Lampinen et al., 2023), showing a general way to learn any
causal axiom through passive demonstrations.

2 RELATED WORK

LLMs for Knowledge-Driven Causal Reasoning: Recent developments in Large Language Models
(LLMs) have highlighted their potential for knowledge-driven causal discovery. Unlike traditional
methods which focus on statistical patterns or correlations, LLMs utilize knowledge acquired through
their pretraining to reason about and identify causal structures based on metadata of variables (Kici-
man et al., 2023; Ban et al., 2023; Long et al., 2023; Willig et al., 2022; Vashishtha et al., 2023).
However, possibility of memorization of existing benchmarks in the pretraining of these LLMs has
been a major criticism. As a result, recent work (Zecevic et al., 2023) argues that LLMs are not
actually performing causal reasoning, but simply learning correlations about causal facts. In addition,
there are critical failure modes of using LLMs for causal discovery due to hallucinations or not
obeying the acyclic constraint when generating graph edges (Vashishtha et al., 2023). To evaluate
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causal reasoning capabilities of LLMs, (Jin et al., 2024b) and (Jin et al., 2024a) propose formal causal
inference evaluation benchmarks to infer direct and indirect causal relationships, and highlight the
failure of LLMs in performing accurate causal reasoning.

Impact of Positional Encoding on Generalization: Length generalization capabilities of trans-
formers has been studied in the past to better understand their different failure modes across various
settings (Hupkes et al., 2020; Zhang et al., 2023; Furrer et al., 2021). Previous work (Kazemnejad
et al., 2023; Bhattamishra et al., 2020; Haviv et al., 2022; Shen et al., 2023) emphasizes the impact of
positional encoding in length generalization capability of transformers. To understand how transform-
ers can be optimized for learning through axiomatic training and generalizing to unseen larger causal
structures, we also examine different types of positional encoding such as no positional encoding
(PE), Learnable PEs (Radford et al., 2018) and Sinusoidal PEs (Vaswani et al., 2023).

Synthetic data generation for teaching transformers reasoning: Synthetic data generation has
been explored for optimising model training for reasoning. For example, (Li et al., 2023; Gunasekar
et al., 2023) use LLM-generated synthetic text for training Phi-1 and Phi-1.5 models and show
impressive performance for reasoning-based tasks. (Trinh et al., 2024) introduce a novel neuro-
symbolic framework to pre-train a transformer model for Olympiad-level math problems. Building
on this stream of work, we apply synthetic data generation for teaching causal reasoning.

3 LEARNING CAUSAL AXIOMS USING TRANSFORMERS

Instead of performing causal reasoning using observational or interventional data, we study whether
it is possible to learn general rules of causality directly from symbolic axioms. We begin by asking
the question “are there any minimal sufficient characterization of causal principles?”. There has
been fundamental work from Galles & Pearl (1997) where they axiomatize causal relevance (or
equivalently irrelevance). They show that for a given stable probabilistic causal model (defined
below), there exists a finite set of axioms that are completely characterized by axioms of path
interception in corresponding directed graphs. We study how such causal relevance statements can be
incorporated into transformer models. Throughout this work, we assume no unobserved confounders.

Notation. We denote a random variable with the upper case letter letters (e.g. X, Y, Z and use lower
case letters (e.g. x,y, z) to denote the value taken by the corresponding random variable denoted
as X = x,Y =y, Z = z. We represent the probability of a random variable using X; by P(X;).
Let G(X, E) be a directed acyclic graph (DAG) consisting of a set of variables X = { X, ..., X,;}
and a set of directed edges E among variables in X. Let pa(X;) = {X;| X, — X;}, de(X;) =
{Xi| Xk < -+ Xi}, ch(X;) = {Xk|Xi — Xk} denote the set of parents, descendants and
children of X; respectively. Next, we define some special notations in the context of three variables.
Given two nodes X;, X; we call a third node X, to be a collider if both X; and X are parents of
X}. Xy, is called a mediator if one of the nodes, say, X; is parent and the other node X is child of
X}, Lastly, the X}, is called a common cause of both X; and X; are children of Xj,.

Definition 3.1 (Causal Irrelevance, adapted from Defn. 7 in (Galles & Pearl, 1997)). X is prob-
abilistically causally irrelevant to Y given Z, written (X —» Y|Z) iff: P(y|z,do(X) = z) =
P(y|z,do(X) = ') ,Va, 2, y, 2 i.e., once we hold Z fixed at z, intervening on X will not change the
probability of Y.

Next, we restate the stability assumption for a causal model from Galles & Pearl (1997) that gives a
richer set of finite axiomatization for probabilistic causal irrelevance.

Assumption 3.1 (Stability, Definition 9 in Galles & Pearl (1997)). Let M be a causal model. Then
an irrelevance (X - Y |Z) in M is stable if it is shared by all possible probability distribution over
M. The causal model M is stable if all of the irrelevances in M are stable.

Under the stability assumption (see Assumption 3.1), Galles & Pearl (1997) states six axioms that
completely characterize causal irrelevance (Definition 3.1) via axioms of path interception in the
directed graphs. An axiom of causal irrelevance is of the form (given in conjunctive normal form):

AV - X x) = A\VEX" - XX

s t I n
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where A is “logical and", V is “logical or" and for a given (s, t) or (I, n) pair, X;, X, X}, are disjoint
subsets of observed variables X. In the above causal irrelevance statement, if the antecedent is true,
the consequent is also true.

Transitivity Axiom. We illustrate our axiomatic training procedure through the transitivity axiom.
Following the stability assumption above, we consider the class of interventional distributions in
which the transitivity causal irrelevance axiom holds (Sadeghi & Soo, 2024). Formally, for a stable
probabilistic causal model (§3), given variables X, Y, Z in the system, the transitivity axiom is:

(X»Y|Z2)=(A»Y|Z) V(X » A|Z)VA¢ X UZUY 1)
which can be simplified using the contrapositive.
JA¢ X UYUZ st. (X 2 AIZ)N(A—=>Y]Z2) = (X —=>Y|2)

P:premise H:hypothesis

We call the LHS as Premise and the RHS as Hypothesis. Our key idea is that we can use such an
axiom to generate thousands of synthetic symbolic expressions that can be used to teach a transformer
the specific axiom. The trained model is then evaluated on whether it can apply these axioms to new
causal structures that were not available in the training set. In all our experiments, we consider an
empty conditioning set Z for simplicity.

3.1 AXIOMATIC TRAINING: DATASET, LOSS FUNCTION, AND POSITIONAL ENCODING

Training data. Based on a specific axiom, we can map a hypothesis given the premise to its correct
label (‘Yes® or ‘No’). To create a training dataset, we enumerate all possible tuples of {(P, H, L)}
where P is the premise, [ is the hypothesis and L is the label (Yes/No) for a particular setting of
the variables X,Y, Z, A. Given a premise P based on a given causal graph, if the hypothesis can be
derived by applying the specified axiom (once or multiple times), then label L is Yes; otherwise, No.
For example, for the transitivity axiom, suppose the underlying true causal graph of a system is a chain,
Xy = X9 = X3 — --- = X,,. Then, a possible premise could be X; — X2 A X5 — X3, and
the corresponding hypothesis X; — X3 will have label Yes whereas another hypothesis X3 — X3
will have label No. The above axiom could be inductively applied multiple times to generate more
complex training tuples.

Loss function. Given a dataset, the loss function is defined based on the ground truth label for each

tuple, represented as o %E p log(P(L|P,H)). A preliminary analysis indicated promising

results with this loss formulation compared to next token prediction loss.

Positional Encoding. In addition to the training data and loss function, recent work (Kazemnejad
et al., 2023) has shown that the choice of positional encoding is important for generalizing a
transformer to longer or complex inputs. Therefore, we experiment with different positional encoding
to understand their impact on generalization in causal tasks: learnable position encoding (LPE),
sinusoidal positional encoding (SPE), no positional encoding (NoPE). See Appendix D for details.

3.2 DATA PERTURBATION: THE KEY TO MODEL GENERALIZATION

To test generalization, we train the model on simple causal structures like sequential chains and
evaluate its performance on more complex structures. To enhance generalization, we introduce
structured perturbations in the training data across three dimensions: variable names, causal structure
types, and the number of variables.

1. Node names: Each node in the graph is represented by an alphanumeric name comprising 1-3
characters. The length of a name and the specific characters are randomly selected during data
generation.

2. Causal Graph Topology: For the transitivity axiom, we consider two main types of causal graphs
in the training set.

(a) Sequential: All causal edges are directed forward, thus forming a typical transitivity chain,
eg. X—=Y—=Z

(b) Random Flipping: Given a chain of sequential nodes, we randomly reverse some edges
creating complexity by disrupting direct paths between subsequent nodes (eg. X — Y «+ Z).
This can be expressed simply through natural language like: “X causes Y. Z causes Y."
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Figure 1: Evaluating structural generalization of transformers through axiomatic training. We train a
transformer on two simple causal structures: chains and chains with random flipping of some edges. All training
instances consist of 3-6 nodes. The trained model is evaluated on significantly more complex structures: bigger
causal chains with >6 nodes, general branched networks with higher average in-degree and out-degree, complete
reversals, longer sequences, shuffled natural language statements of sequences and longer node names.

3. Length level: To facilitate transformers understanding of the axiom, we incorporate chains of
varying lengths, ranging from 3 to 6 nodes in our training set.

Random flipping introduces forks and colliders, which form the building blocks of any causal DAG.
This helps add complexity in model training, thus aiding generalization across multiple structures.

3.3 EVALUATION SETUP: ASSESSING AXIOMATIC LEARNING IN TRANSFORMERS

To evaluate if a trained model has learnt the correct understanding of an axiom instead of shortcuts or
correlation-based features, designing an out-of-distribution (OOD) evaluation set is important. We
evaluate our model on multiple types of complex structures that are unseen during training.

1. Length: Evaluating whether our model accurately infers causal relationships for sequences or
chains (both sequential and ones with random flipping) longer than those in the training set.

2. Node Name Shift: Testing the model’s performance on longer node names, from 1-3 characters
used in the training set to 8-10 characters. This is motivated by Jin et al. (2024b) who show how
change in node names results in generalization failure on causal tasks for language models.

3. Order of Chains: a) Completely reversed chains: This evaluation is inspired by the reversal
curse (Berglund et al., 2024) that revealed generalization failure of LLMs in answering questions
in reversed sequences despite knowing the answers in the original order. We evaluate our model
on completely reversed chains, a structure that was not in the training data. A completely reversed
chain will be of the form X <— Y < Z, written in natural language as: “Y causes X. Z causes Y.",
where X, Y, Z are replaced by random alphanumeric names. b) Shuffling of Sequences: Causal
sequences with random edge flips, as defined in 3.2 represented by natural language statements
sequentially (A causes B. B causes C ...), are shuffled to add complexity and break sequential
order. This tests model’s ability to infer accurate relationships regardless of sequence order.

4. Branching: We also evaluate on complex graphs beyond chains, measured using the branching
factor: Number of edges/Number of nodes. While the training set comprises simplistic sequences,
this evaluation setup involves multiple branches, colliders, forks, and chains in one network, thus
having significantly high complexity.

4 APPLICATION 1: AXIOMATIC TRAINING FOR TRANSITIVITY AXIOM
4.1 TRAINING AND EVALUATION DATASETS
For learning the transitivity axiom, a synthetic dataset D is constructed with N axiomatic instances

generated using the transitivity axiom. Each instance in D is structured in the form of a premise
P, which is the natural language expression of a causal structure (e.g., “X causes Y. Y causes
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Z”), followed by the hypothesis in the form of a question H,, (e.g., “Does X cause Y ?”), which
is then followed by the final label L (e.g., “Yes” or “No”). Formally, each premise X; takes the
form: X; = [e;x | j > 0,k > 0]. Here e, represents an edge between node j and k in the ith
causal sequence (can also be represented as X; ;, X; 1) such that each e, translates to "X ; causes
X x." in natural language.) For each premise, all possible hypotheses consisting of two variables are
generated (i.e., “Does A cause B” and “Does B cause A” for each pair). The training data consists of
graphs of lengths from [3,6], with branching factor [0.6, 0.8], and length of nodes [1,3]. In addition to
sequential chains, random flipping of edges is done with 0.5 probability. See Appendix E for details
on these hyperparameters.

Our training data consists of 175k axiom demonstrations. We use three versions of training data to
evaluate the impact of different data perturbations, each with equal number of *Yes’ and *No’ labels.

* Training Setup 1 (TS1): This setup comprises of 73k chains with random flipping and 101k
sequential linear chains. Since flipping is done randomly across all consecutive pairs of nodes in the
given chain, some complete reversals are also formed. In this training set around 12k completely
reversed chains are present. However, only when evaluating for reversal chain test setup, we remove
all the reversed chains from this training set and re-train the model from scratch with the remaining
sequential and randomly flipped chain sequences.

* Training Setup 2 (TS2): This setup comprises of more simple sequential chains (132k), while we
decrease chains with random flipping (42k), to keep the overall size around 175k.

* Only Causal Chains (OCC): This set comprises of sequential transitivity chains without any edge
being randomly flipped, to help understand whether adding perturbations helps for generalization.

Evaluation Datasets. We use the following evaluation datasets to assess model generalization.

* Length Generalization EvalSet: Testing on causal sequences with length >6 upto 15, longer than
any sequence encountered by the model in training set. Length generalization is evaluated for both
sequential chains and chains with randomly flipped edges.

* Node Name EvalSet: Assessed model’s generalization capabilities to sequences with longer node
names, increasing from 1-3 characters used in training set to 8-10 characters. To add onto the
complexity, we also include sequences longer than any sequence in the train set (>>6) upto 9 length.

» Reversal EvalSet: Evaluated performance of our transformer model, with no completely reversed
sequence in its training, on reversed causal sequences. Sequences upto 6 length were evaluated.

* MultiEvalgyr (Shuffling + Random Flipping + Length Sequence): This setup involves
evaluation on 3 levels of complexities together: shuffling of sentence for representing the sequences,
each sequence having random flipping, and some sequences having longer length than sequences
in training set (upto 9).

* Branching EvalSet: One of the most complex evaluation setups, with dense networks containing
multiple branches, colliders and forks. While each sequence in the training set had values of 1-2 for
both in-degree and out-degree across all nodes, in this setting a node can have maximum value of
n — 1 for both, and minimum of 0 creating more complicated structures than the ones transformer
had encountered during its training. To add onto the complexity we evaluate on structures with
more nodes (8,10,12), than any unique causal sequence in the training set besides 5 node networks.
We evaluate multiple densely branched networks constructed using the Erdos-Rényi model, where
we provide number of edges and nodes in accordance to the values of branching factor (1.4 and 2)
we use for evaluation. We implement this using igraph package in python Csardi & Nepusz (2006)
to get different unique graphs with required branching factors for evaluation.

4.2 IMPLEMENTATION DETAILS: ARCHITECTURE, TOKENIZER AND TRAINING PROCEDURE

We train a decoder-based 67 million parameter model based on GPT-2’s architecture. The model has
12 attention layers, 8 attention heads and 512 embedding dimensions. The model is trained from
scratch on each of our training datasets. To understand the effect of Positional Encodings (PE), we
consider Sinusoidal PE (SPE) (Vaswani et al., 2023), Learnable PE (LPE) (Radford et al., 2018) and
having no PEs (NoPE) (Kazemnejad et al., 2023; Haviv et al., 2022). All models are trained for 100
epochs using the AdamW optimizer with 1e-4 learning rate.

Since the training dataset follows a specific structure, we develop a custom tokenizer. Alphanumeric
node names are tokenized at a character level, while special terms such as ‘causes’, ‘Does’, ‘cause’,
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Figure 2: Evaluating generalization on causal se-
quences (without random flipping) with longer
node names (than the ones used in sequences in
train set). TS-2 training set with no positional en-
coding leads to the best performance. Refer table
A4 for complete results.

Figure 3: Generalizing to longer unseen causal se-
quences (>6 nodes) with random flipping on TS2
and OCC (with NoPE) train sets. OCC-trained
models struggle due to limited edge-level variabil-
ity, while TS2 NoPE consistently performs well.
Refer table A3 for complete results

‘Yes’, and ‘No’ are tokenized at the word level. Such an approach avoids out of vocabulary (OOV)
tokens at test time since the alphanumeric node names in the test set can be different than those in the
training set. Following this approach, the vocabulary size of our transformer model is 69.

4.3 BASELINES USING EXISTING LLMS

Given recent work on how LLMs can be leveraged for causal reasoning (Kiciman et al., 2023;
Vashishtha et al., 2023; Ban et al., 2023), we include language models such as GPT-4 (gpt-4-32k)
ope (2024), Gemini (gemini-pro) gem (2024) and Phi-3 (Phi-3-mini-128k-instruct) abd (2024) as
baselines. Note that each of these models is significantly larger than our model and known to perform
well on reasoning tasks, with the smallest baseline model Phi-3 having 3.8 billion parameters.

Zero Shot Setting To evaluate the baseline models, we follow a simple zero-shot prompting strategy.
For each tuple, we provide the natural language expression of the causal graph (Premise) followed by
the question (Hypothesis) and prompt the LM to answer it in either “Yes’ or ‘No’ (Label). Here is an
example prompt: “EX causes T. T causes 9. 9 causes W. W causes 7. 7 causes M. M causes a. Does
EX cause T? Answer in ‘Yes’ or ‘No’ only.” Table A1l contains some examples of all types of prompts
and instances used for querying as well as training for different structural types.

Multi Shot Setting We present few-shot instances from our training data that include sequential
causal chains, along with a few examples with random flipping of edges. All multi-shot instances
were sourced exclusively from the training set. Each example in the prompt follows the same Premise-
Hypothesis-Label structure as explained above. A.l contains the multishot prompt created from train
set and used for querying baseline LLMs.

4.4 RESULTS: GENERALIZATION TO COMPLEX CAUSAL SCENARIOS

We present results on how well an axiomatically trained transformer can generalize to larger and
more complex causal graphs, and how it compares to pre-trained LLMs.

Length Generalization: Table A3 shows accuracy of different models when evaluated on larger
causal chains that were not seen during training. Among the baseline pre-trained LMs, GPT-4 obtains
the highest accuracy on both standard and randomly flipped chains for the multi-shot setting. It is
remarkable that our TS2 (NoPE) model obtains competitive performance to the trillion-scale GPT-4
model, even though it had never seen larger sequences (length 6) during training. In particular,
for chains of size 7-12, TS2 (NoPE) obtains higher or comparable accuracy than GPT-4 across the
standard and randomly flipped chains. Similar trends are observed for chains of size 7-13 when
compared to GPT-4 in the zero-shot setting. Our model’s accuracy decreases for chains of length
14-15 (0.85 for standard chains and 0.78 for randomly flipped chains) but is still significantly higher
than that of LMs like Gemini-Pro and Phi-3. Although in-context examples improve the performance
of baseline LLMs, TS2 (NoPE) still easily outperforms both Gemini Pro and Phi-3 in the multi-shot
setting. Note that a random prediction would yield a 50% accuracy, indicating that the axiomatically-
trained TS2 (NoPE) model can generalize its reasoning to causal chains much longer than 6 even
though it was trained only on chains upto length 6.
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Node Name Shift: For models trained on TS2 dataset, we also evaluate generalization to changes
in variable names (Figure 2). We find that TS2 (NoPE) is robust to node name changes and retains
its high accuracy as new, longer names are introduced. It also retains its generalizability to longer
sequences with new node names, performing similarly to GPT-4.

Order of Causal Sequences: We now consider how variations in the causal structure impact
generalization of axiomatically-trained models. In Table 1b, we consider the complex evaluation
setup MultiEvalgy,r that includes shuffled order of causal sequences with random flipping for
increasing length (even beyond the ones in train set). While GPT-4 performs best, models trained with
LPE and NoPE still achieve strong results, surpassing Gemini Pro and Phi-3 in both zero-shot and
multi-shot settings. On this task, TS2 (NoPE) achieves higher accuracy than Gemini Pro and Phi-3
on chains up to length 8. At length 9, TS2 (NoPE) reaches 0.73 accuracy, comparable to Gemini
Pro (0.74) and much better than random. A similar trend is seen for completely reversed sequences
(Table 1a). This task presents extreme out-of-distribution data, as the training data contains left-to-
right edges, while the test data has only right-to-left edges. Our axiomatically trained model TS2
(NoPE) outperforms GPT-4 (zero-shot) on chains of length 3-6. Even though baseline LLMs improve
in multi-shot settings, TS2 (NoPE) consistently outperforms Gemini-Pro and Phi-3, and remains
competitive with GPT-4. In particular, its accuracy (0.94 for chains of length 6) is substantially higher
than Gemini Pro and Phi-3 (0.62 and 0.69 respectively).

Branching: Finally, we consider the structurally hardest evaluation task involving non-linear chains
where we introduce general Erdos-Renyi graphs as the causal sequences while the training data
contains only linear chains A2. Here the size of network corresponds to the number of nodes and
branching factor defined in 4.1 in the graph and we study the performance differences as the branching
factor is varied. While GPT-4 achieves the highest accuracy as graph sizes increase, our TS2 (NoPE)
model outperforms Gemini Pro (branching factor 1.4) in all but one graph size under zero-shot settings.
On graphs with 12 nodes and a 1.4 branching factor, TS2 (NoPE) achieves 70% accuracy, far better
than random (50%), despite training only on graphs with branching factors 1. Although LLMs excel
in multi-shot settings, our model’s performance shows how simple structural perturbations during
training can enhance out-of-distribution generalization and reasoning capabilities.

Summary: Across all evaluation setups, our axiomatically trained model TS2 (NoPE) performs
significantly better than random baselines even as chain lengths are increased beyond its training
data. In particular, even though our model was not trained on fully reversed chains, it performs at
par with the significantly larger GPT-4 model (Fig. A2), while easily outperforming other billion
scale models even under multi-shot settings. For other tasks, it often outperforms or matches the
accuracy of billion-scale models like Gemini Pro and Phi-3. These results indicate that a model
trained axiomatically can learn to reason about more complex causal structures from demonstrations
of simple causal sequences.

4.5 ADDITIONAL RESULTS: ROLE OF DATA DIVERSITY AND POSITIONAL ENCODING

Importance of Data Perturbations. We find that diversity of the sequences in train data plays
an important role. Model trained on only causal chains (OCC) generalize to longer chains (Table
A3) but not to other DAG structures (see Figure 3 for edge flip, Figure A2 for reversal, Table A2
for branching). Models trained on TS1 or TS2 generalize across all scenarios, including random
flip, order permutations, and branching; thus highlighting the impact of incorporating variability
at the edge level through random flipping. However, across tasks, we find that TS2 yields higher
accuracy than TS1, even as TS1 has more variations due to random flipping. This suggests that
while perturbations aid structural generalization, excessive perturbations can hinder it (in particular,
random flipping may decrease the length of available causal paths during training).

Role of Positional Encodings. When comparing models based on positional encoding, we find
that models without positional encoding generalize well to both longer chains (up to length 15)
and unseen complex graph structures, despite being trained only on linear chains with 3-6 nodes.
Models with SPE and LPE perform well on longer chains but struggle with longer node names,
even in smaller graphs (Figure 2), highlighting their sensitivity to minor perturbations. SPE also
underperforms in branching and order-based settings like shuffling and reversal. Learnable PE works
up to 9-length chains but drops afterward. Overall, our results extend earlier work on the utility of
NoPE (Kazemnejad et al., 2023; Haviv et al., 2022) to the task of understanding causal sequences and
generalizing to both longer length and complex structure at test time. Interestingly, all PEs perform
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Table 1: Reversal and Shuffling

Model 3 4 5 6  Model Config 3 4 5 6 7 8 9

Baselines Baselines

Zero Shot Zero Shot

GPT-4 097 099 098 092 GPT-4 099 097 08 08 095 090 090

Gemini Pro 0.61 059 066 0.62 GeminiPro 075 073 072 076 071 068 0.74

Phi-3 080 0.69 073 0.69 Phi-3 08 08 08 079 076 073 0.79

Multi Shot Multi Shot

GPT-4 1.00 1.00 1.00 0.99 GPT-4 1.00 099 097 095 094 090 092

Gemini Pro 095 0.87 077 0.71 Gemini Pro 095 08 08 079 079 073 075

Phi-3 093 0.89 075 0.75 Phi-3 088 083 08 080 083 076 0.78

Axiomatic Training Axiomatic Training

TS1 w NoPE 098 099 092 091 TSINoPE 1.00 094 087 084 080 0.76 0.73

TS1 w SPE 1.00 099 099 0.97 TSILPE 1.00 095 087 083 078 0.78 0.71

TS2 w NoPE 099 099 095 094 TS1SPE 1.00 094 086 083 076 073  0.68

TS2 w SPE 098 097 093 094

TS2 w LPE 099 098 095 097 TS2NoPE 1.00 095 087 084 079 076 0.73
— —— TS2wLPE 1.00 094 087 084 080 076 0.73

OCC w NoPE 033 0.18 0.10 0.09 TS2w SPE 099 094 08 084 075 074 049

(a) Following (Berglund et al., 2024), OCC w NoPE 069 062 057 054 057 053 052

we evaluate models on inferring cause- (1) Eyaluated on MultiEvalsrr setup defined in 4.1. Models
and-effect from fully reversed se-  ined on TS1 and TS2 with NoPE and LPE perform well across all
quences absent in training data. Models sequence lengths (even those which were not in the train set) while
t.ralnf:d on OCC perform worse, high- 1,5 je|s trained with SPE or on OCC face generalization failures.
lighting the importance of edge-level  Accyracy metric is reported wherein random baselines would yield

perturbations for generalization. Accu- () 5 Begt performance is bolded, while second best is underlined.
racy metric is reported, with random

baseline = 0.5. Best performance is
bolded, while second best is underlined.

well in randomly flipped sequences, likely due to the short effective path lengths caused by the 0.5
probability of forward-directed edges.

5 APPLICATION 2: INFER CAUSATION FROM CORRELATION STATEMENTS

While the above study evaluated transformers’ capability to generalise the transitivity axiom from
small causal chains to large graphs, we now study whether this capability transfers to a more general
causal task. To this end, we apply axiomatic training to a task on inferring causation from statements
about correlation in observational data (Jin et al., 2024b). Each data instance in the benchmark
includes correlational relationships described in natural language for graphs with 3 to 6 nodes; the
goal is to infer the truth value of a hypothesis (of six types: Parent, Ancestor, Child, Descendant,
Collider, Confounder) among a set of variables. This task is significantly harder than applying the
transitivity axiom. First, there are multiple hypothesis types to evaluate: direct effect, indirect effect,
children, ancestors, colliders and confounders. Second, solving the task requires an understanding of
d-separation (refer d-separation in section C) and the Markov property (refer C.1). Specifically, it
involves mapping correlational statements to multiple possible causal graphs and determining if the
query is satisfied across all graphs in the Markov Equivalence Class (refer C.1).

Task example: To infer causal relationships from correlational statements, we use d-separation to
determine conditional independence, which helps infer the causal graph’s skeleton. For example,
given A — B — C, we infer that A is independent of B given C. With this, a model can evaluate
hypotheses, like "Is B a collider?", and conclude that it’s false, as the structure is either a chain or a
fork. The task follows a Premise-Hypothesis-Label structure, where the premise are the correlational
statements, the hypothesis asks relationships between nodes, and the label provides final answer.

Model Training: We use the same model architecture as in Section 4.2 and train our model from
scratch for 100 epochs using NoPE, since it performed consistently well across diverse OOD settings
in our transitivity based experiments. For creating a train set, we consider the subset of the original
dataset with correlational statements for graph consisting of 3 and 4 nodes. As the test set, we evaluate
the model’s performance directly on 5 node correlational statements.
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TO.ald generahzaﬂoq, .W.e take nsp1- Model Precision  Recall F1 Score  Accuracy
ration from our transitivity-based ex-

! . ) Ours 0.72 0.50 0.59 0.64
periments and create different combi-

. Zero-Shot
nations of randomly created alphanu- -

e nod We then deri Phi-3 0.52 0.60 0.56 0.52
METIC Node Names. We then derive a Geminipro 052 059 055 0.52
training set from the original dataset GPT-4 0.59 0.50 0.54 0.58
by instantiating the correlational state- Multi-Shot
ments with different combinations of Phi-3 0.57 0.67 0.61 0.58

Ioh . d We bal Gemini pro 0.51 0.74 0.60 0.52
alphanumeric node names. We bal- GPTA 0.66 0.56 0.61 0.64

ance the dataset by sampling equally
from both classes to avoid bias in our  Table 2: Correlation to Causation Experiments adapted from
transformer model to get a train set (Jin et al., 2024b). Axiomatic training setup aids general-
with 113k instances. Then, we create  ization even for complex causal tasks, while bigger LLMs
a test set with 1000 randomly sampled  struggle on the same in zero-shot setting. Refer section 5 for
instances of correlational statements  details regarding experimental setup and result trends.

for 5-node graph networks. Since the

correlational statements are not sim-

plistic unlike the premise from our transitivity experiments, we tokenize at the character level for
nodes. For a straightforward evaluation, we tokenize all input text at the token level and use the same
node names for evaluation as in the training set to avoid potential out-of-vocabulary issues.

Comparison with Baselines: As reported in (Jin et al., 2024b), pre-trained LMs perform similarly
to random guessing. Phi-3 and Gemini Pro have a similar perfrormance (52% accuracy) in zero-shot
settings (see Figure A1 and Table 2). GPT-4 performs slightly better (58%) but shows a significant
improvement in multi-shot. Remarkably, our small transformer outperforms all zero-shot baselines
with 64% accuracy, 6% higher than GPT-4 in zero shot. Even in multi-shot settings, our model
matches GPT-4, suggesting that axiomatically-trained transformers could be further optimized for
causal reasoning tasks.

6 DISCUSSION AND CONCLUSION

In this work, we provide a method to create training data containing diverse demonstrations of an
axiom and explore modelling choices to learn the axiom. A transformer model trained from scratch
on a large axiomatic dataset can learn to apply axioms effectively. On causal tasks like graph traversal
via transitivity and inferring causal relationships from correlation, small 67M transformers generalize
well to unseen complex graphs, often outperforming models like GPT-4, Phi-3, and Gemini Pro.
Extending to more complex tasks of (Jin et al., 2024b), our robust training enables the small model to
match or exceed the performance of larger models.

Applicability to Causal Tasks. While our current work focuses on the transitivity axiom for causal
relevance, extending the work to other causal axioms from (Galles & Pearl, 1997) is an interesting
research direction. In addition, we may consider other axioms that are relevant for downstream tasks.
For example, if a transformer model can be trained to validate the d-separation rule—given two
variables X and Y, are they independent given a variable set Z?, then repeated applications of the rule
can be used to derive a valid backdoor set.

Generalization to Logical Reasoning. While our axiomatic training approach focuses on causal
reasoning, it can be applied to any formal system such as deductive logical reasoning. Recent
work (Saparov et al., 2023) highlights LLMs’ deterioration in performance as reasoning depth
increases. It would be interesting to explore if axiomatic training can improve deductive reasoning in
LMs, given the similarity between our setup and such tasks.

Implications for Training Language Models. GPT-4 demonstrates impressive generalization on
the causal tasks we evaluated. We hypothesize that axiomatic training may explain GPT-4’s ability
to reason over causal graphs, as (noisy) demonstrations of the underlying axioms could be present
in its web-scale training data. Meanwhile, models like Gemini Pro and Phi-3 struggle with zero-
shot reasoning for causal tasks, such as handling completely reversed chains, suggesting room for
improvement. Incorporating causal axiom demonstrations as a part of language models’ pretraining
(or finetuning data) could help improve the reasoning of these models, so that small language models
like Phi-3 can achieve GPT4-like accuracy on causal tasks. Incorporating axiomatic inductive biases
could aid language models reasoning abilities for the desired task. For instance, (Papadimitriou &
Jurafsky, 2023) propose pretraining language models on synthetic formal languages to incorporate
inductive biases, to improve performance on learning grammatically diverse languages.

10



Under review as a conference paper at ICLR 2025

ETHICAL IMPACT AND REPRODUCIBILITY

Ethical Statement. All datasets used in our work will be made publicly available for evaluation of
future iterations of models. We made best efforts to compare against contemporary models in a
fair manner. There may be no direct harmful impact, especially considering our work focuses on a
synthetic symbolic setting. However, since LLMs may be used in our approach, suitable prudence
may be necessary to avoid ill-effects in applications.

Reproducibility. Our methods are fairly straightforward. Most implementation details are already
included in our paper. We will release our code publicly on acceptance.
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APPENDIX
Query Data Instance Example Structure Type Network Size
Type ( -Hypothesis-Label) (number of
(Train/ nodes)
Eval)
Train Does G cause  Short Linear 3-6
iqB?: No Sequence
Train Does N5w cause  Short Sequence  3-6
s?: Yes with Random
Flipping
Eval Branching 5,8,10,12
Does tQC cause ROv?: No
Eval Shuffled 3-9
Does KWO cause LO?:  Sequences
No
Eval Sequences with  3-9
Longer Node
Names
Does FDAH26mV7 cause
TtzalHjlY?: Yes
Eval Long Linear 7-15
Sequences
Does r cause 1Z?:
Yes
Eval Long 7-15
Sequences with
Random
Flipping
Does rU6 cause
eF?: Yes

Table Al: Table with examples of data instances of different causal structural networks used for
training and evaluating models. Each instance is broken down into premise, hyopthesis, and label.
During evaluation, only the premise followed by the corresponding hypothesis is provided, whereas
during training of transformer, the model is trained on the loss of prediction of the label token.

A  MULTI-SHOT PROMPT

Al

CAUSE-EFFECT INFERENCE TASK

Chain lengths of the in context examples ranged from 3 to 6 to maintains consistency with the training

and testing paradigm used for our 67-million-parameter model.
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The following multi-shot prompt was used to evaluate the baselines and models across different test
sets, assessing their generalization based on length, order, and branching.

Following the given examples answer the question regarding causal relationship between two vari-
ables: ‘5e0 causes vAf. vAf causes VO. Does vAf cause VO?: Yes’

‘5e0 causes vAf. vAf causes VO. Does vAf cause 5e0?: No’

‘eOF causes Z. Z causes OU. OU causes mR. mR causes 1L. Does mR cause 1L?: Yes’

‘eOF causes Z. Z causes QU. OU causes mR. mR causes 1L. Does Z cause eOF?: No’

‘b causes K. K causes qPv. 5 causes qPv. Does b cause qgPv?: Yes’

‘b causes K. K causes qgPv. 5 causes gPv. Does b cause 5?: No’

‘Mhb causes tOa. 6Eh causes Mhb. NS causes 6Eh. n causes NS. n causes xu. Does xu cause 6Eh?:
No’

‘Mhb causes t0a. 6Eh causes Mhb. NS causes 6Eh. n causes NS. n causes xu. Does n cause NS?: Yes’

A.2 CORR2CAUSE

Below is the MultiShot Prompt for the Corr2Cause Experiment:
ISYSTEMI You are a helpful assistant on causal reasoning. Your goal is to answer factually and
concisely questions about cause and effect.

[USERI| Premise: Suppose there is a closed system of 4 variables, R, sG, vE and Y. All the statistical
relations among these 4 variables are as follows: R correlates with vE. R correlates with Y. sG
correlates with VE. sG correlates with Y. VE correlates with Y. However, R is independent of sG.
Hypothesis: There exists at least one confounder (i.e., common cause) of VE and Y.

IMODELI Yes

[USERI Premise: Suppose there is a closed system of 4 variables, uV, S, v, and pPf. All the statistical
relations among these 4 variables are as follows: uV correlates with v. uV correlates with pPf. S
correlates with v. S correlates with pPf. v correlates with pPf. However, uV is independent of S.
Hypothesis: There exists at least one confounder (i.e., common cause) of uV and v.

IMODELI No

[USERI Premise: Suppose there is a closed system of 3 variables, 39, 52, and fM. All the statistical
relations among these 3 variables are as follows: 39 correlates with C. 52 correlates with fM. However,
39 is independent of 52. Hypothesis: There exists at least one collider (i.e., common effect) of 39 and
52.

IMODELI Yes

[USERI Premise: Suppose there is a closed system of 3 variables, mFv, Ith, and HVD. All the
statistical relations among these 3 variables are as follows: mFv correlates with HVD. lth correlates
with HVD. However, mFv is independent of Ith. Hypothesis: There exists at least one collider (i.e.,
common effect) of Ith and HVD.

IMODELI No

[USERI Premise: Suppose there is a closed system of 4 variables, glL, wlA, 0O, and D. All the
statistical relations among these 4 variables are as follows: glL correlates with 00. glL correlates
with Z9. wlA correlates with 00. wlA correlates with Z9. 0O correlates with Z9. However, glL is
independent of wlA. wlA and Z9 are independent given g1L and 0O. Hypothesis: wlA is a cause for
79, but not a direct one.

IMODELI Yes

[USERI Premise: Suppose there is a closed system of 4 variables, 6na, IWS, rw, and IG. All the
statistical relations among these 4 variables are as follows: 6na correlates with rw. 6na correlates
with IG. IWS correlates with rw. IWS correlates with IG. rw correlates with IG. However, 6na is
independent of IWS. 6na and IG are independent given IWS and rw. 6na and IG are independent
given rw. IWS and IG are independent given 6na and rw. IWS and IG are independent given rw.
Hypothesis: rw is a cause for IWS, but not a direct one.

IMODELI No
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[USERI Premise: Suppose there is a closed system of 3 variables, VR4, zf, and D. All the statistical
relations among these 3 variables are as follows: VR4 correlates with D. zf correlates with D.
However, VR4 is independent of zf. Hypothesis: zf directly causes D.

IMODELI Yes

I[USERI Premise: Suppose there is a closed system of 3 variables, uj, x, and rW. All the statistical
relations among these 3 variables are as follows: uj correlates with rW. x correlates with rW. However,
uj is independent of x. Hypothesis: uj directly causes x.

IMODELI No

B RESULTS AND ANALYSIS

Model 5 8 10 12

BF=2 BF=14 BF=2 BF=14 BF=2 BF=14 BF=2 BF=14
Baselines
Zero shot
GPT-4 0.98 0.95 0.91 0.90 0.84 0.88 0.82 0.86
Gemini Pro 0.77 0.74 0.72 0.76 0.71 0.73 0.73 0.71
Phi-3 0.87 0.83 0.82 0.79 0.77 0.77 0.75 0.80
Multi shot
GPT-4 0.99 0.97 0.94 0.93 0.90 0.94 0.89 0.93
Gemini Pro 0.81 0.76 0.77 0.79 0.75 0.77 0.78 0.79
Phi-3 0.77 0.78 0.79 0.82 0.78 0.794 0.80 0.79

Axiomatic Training

OCC w NoPE 0.52 0.51 0.53 0.52 0.52 0.55 0.49 0.47
TS1 wLPE 0.79 0.84 0.71 0.76 0.68 0.69 0.65 0.65
TS1 w SPE 0.72 0.79 0.63 0.64 0.56 0.61 0.52 0.59
TS1 w NoPE 0.77 0.84 0.73 0.76 0.68 0.70 0.62 0.66
TS2 w LPE 0.72 0.80 0.61 0.71 0.62 0.63 0.56 0.63
TS2 w SPE 0.52 0.70 0.49 0.49 0.49 0.49 0.51 0.52
TS2 w NoPE 0.83 0.86 0.74 0.77 0.69 0.74 0.64 0.70

Table A2: Evaluated on branched graphs created using Erdos Renyl, with varying branching factors (calculated
by number of edges/number of nodes). TS1 and TS2 denote Pretraining data setup 1 and 2 from Section 3. OCC
setup denotes Only sequential Causal Chains with no random flipping. SPE: Sinusoidal PE, LPE: Learnable PE,
w/o PE: No PE. Decoder model remains the same across all setups (67 Million parameter), Accuracy metric is
used. Even though the transformer was trained on linear causal chains, it still shows impressive generalization
capabilities to high brnahcing factors, highlighting how data perturbations and different positional encodings aid
structural generalization capabilities. Refer 4.4 for detailed result analysis.

Performance on Correlation to Causation Task

GPT-4 Zero Shot
Gemini-Pro Zero Shot
Phi-3 Zero Shot

Ours Zero Shot
GPT-4 Multi Shot
Gemini-Pro Multi Shot
Phi-3 Multi Shot

o
o

Accuracy
=4 o o o o =4
o kB N W & O

GPT-4 Gemini-Pro Phi-3 Ours
Models

Figure Al: Correlation to Causation Experiments adapted from (Jin et al., 2024b)
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7 8 9 10 11 12 13 14 15

Model

FS RF FS RF FS RF FS RF FS RF FS RF FS RF FS RF FS RF
Baselines
Single Shot
GPT-4 0.95 0.98 0.97 0.93 0.87 0.94 0.91 0.87 0.90 0.95 0.92 0.92 0.85 0.93 0.93 0.93 0.89 0.86
Gem-Pro 0.63 0.73 0.69 0.74 0.64 0.75 0.65 0.81 0.72 0.78 0.60 0.80 0.59 0.68 0.67 0.64 0.61 0.66
Phi-3 0.81 0.85 0.96 0.85 0.85 0.85 0.87 0.89 0.90 0.86 0.84 0.85 0.91 0.84 0.90 0.80 0.78 0.85
Multi Shot
GPT-4 0.97 0.99 093 0.99 092 0.96 0.88 0.94 0.89 0.97 0.89 0.93 0.88 0.95 0.93 0.94 0.86 0.94
Gem-Pro 0.80 0.82 0.81 0.79 0.78 0.81 0.67 0.79 0.73 0.82 0.74 0.83 0.67 0.78 0.72 0.78 0.68 0.78
Phi-3 0.83 0.92 0.89 0.88 0.75 0.86 0.66 0.87 0.80 0.90 0.80 0.85 0.79 0.82 0.71 0.81 0.72 0.82

Axiomatic Training

TS1 w NoPE 1.00 0.99 0.95 0.96 0.88 0.89 0.76 0.88 0.73 0.90 0.77 0.92 0.61 0.82 0.67 0.78 0.68 0.81
TS1 w LPE 098 0.96 0.92 0.97 0.77 0.90 0.59 0.87 0.57 0.86 0.57 0.84 0.55 0.73 0.51 0.76 0.50 0.68
TS1 w SPE 0.99 0.95 0.95 094 0.86 0.76 0.80 0.75 0.76 0.79 0.84 0.68 0.79 0.63 0.85 0.65 0.77 0.69
TS2 w NoPE 1.00 0.98 0.99 0.97 0.92 091 0.88 0.90 0.86 0.92 0.95 0.90 0.96 0.83 0.81 0.84 0.85 0.78
TS2 w LPE 1.00 0.98 0.88 0.97 0.80 0.88 0.62 0.92 0.66 091 0.64 0.81 0.65 0.75 0.62 0.75 0.62 0.77
TS2 w SPE 0.95 093 0.81 0.84 0.56 0.34 0.50 0.38 0.50 0.44 0.51 0.57 0.46 0.74 0.52 0.75 0.50 0.77
OCC w NoPE 0.98 0.58 0.79 0.49 0.86 0.51 0.92 0.49 0.72 0.57 0.90 0.50 0.81 0.52 0.84 0.52 0.83 0.46

Table A3: Results on longer chains of linear sequential chains with all edges in forward direction (Only causal
chains or forward sequence denoted using FS) and sequences with randomly flipped edges (Random flipping so
denoted with RF). TS1 and TS2 denote Pretraining data setup 1 and 2 from Section 4. SPE: Sinusoidal PE, LPE:
Learnable PE, w/o PE: No PE. Model remains the same across all setups (67 Million parameter based). For
longer chains, NoPE performs best on sequential linear setup. Accuracy metric is used

Model 3 4 5 6 7 8 9
Baselines

Single Shot

GPT-4 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Gemini Pro 0.96 094 0.86 0.81 0.76 0.73 0.71
Phi-3 0.99 0.98 0.95 0.94 0.96 0.95 0.93
Multi Shot

GPT-4 1.00 1.00 0.98 0.98 0.98 0.98 0.97
Gemini Pro 1.00 1.00 091 0.90 0.86 0.88 0.84
Phi-3 0.93 0.89 0.89 0.84 0.82 0.77 0.79

Axiomatic Training

TS1 w NoPE 1.00 1.00 1.00 0.99 0.99 0.92 091
TS1 w LPE 1.00 093 075 058 052 051 047
TS1 w SPE 0.90 0.79 0.76 0.70 0.66 0.73 0.68
TS2 w NoPE 1.00 1.00 1.00 0.99 0.97 095 0.95
TS2 w LPE 1.00 0.99 075 0.70 0.56 0.55 0.55
TS2 w SPE 0.65 0.50 0.52 0.50 0.54 0.48 0.50
OCC w NoPE 1.00 0.97 096 093 092 0.84 0.87

Table A4: Results on node name length generalization. TS1 and TS2 denote Training Data setup 1 and 2 from
Section 4 ??. OCC is the third data setup comprising of sequential causal chains. SPE: Sinusoidal PE, LPE:
Learnable PE, w/o PE: No PE. Model remains the same across all setups (67 Million parameter based). For
longer node names, NoPE performs best on sequential linear setup. Accuracy metric is used.
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Generalization Performances on Completely Reversed Chains
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Figure A2: Performance comparison of our best performing transformer model trained on TS2 with
NoPE (trained without any completely reversed chains), against larger models like GPT-4, Gemini
Pro, and Phi-3.

C PRELIMINARIES AND NOTATIONS

Causal Models Let M = (X ,U, F) be a causal model defined over a set of endogenous variables
X, exogenous variables U and the causal relationship between then defined by set of structural
equations F (Galles & Pearl, 1997). Let G be the causal graph associated with the causal model
M where the nodes V' in G correspond to the variables in M and an edge V; — V; between any
two nodes V;, V; denote the causal relationship between them. The causal relationship of node X; is
characterized by the functional relationship f; € F s.t., z; = f;(pa;, u;). Here pa; are the parent
of the node X is the corresponding causal graph G and u; C U are set of exogenous variables
influencing the exogenous variable X;. In our work, we assume that there are no hidden confounders
so we have one exogenous variable corresponding to every endogenous variable i.e. u; = u;. Each
exogenous variable has an associated probability distribution which quantifies the uncertainty in the
system i.e. u; ~ P(u;). Thus the joint distribution of the exogenous variable is given by P(U). Since
any endogenous variable is a deterministic function of other endogenous and exogenous variables
the probability distribution corresponding to the endogenous variable is the push-forward of the
exogenous variable i.e P(X) £ P#(U).

d-separation The causal graph G encodes the conditional independence in the corresponding
probability distribution using path separations statements called d-separation. Two sets of random
variable X; and X; are conditionally independent of each other conditioned on X if all the
undirected path between X; and X; in G are blocked by X .. A path between X; and X; is blocked
if there exists anode A € X, s.t. it satisfies one of the following conditions: 1. A is a common cause
in the path (i.e. - + A — ), 2. A is a mediator in the path (i.e. - — A — -), or 3. A is not a collider
(i.e. - — A < -) or descendent of any collider in the path (see Pearl (2009a) for details.)

C.1 DEFINITIONS

Following the formal definitions provided by (Jin et al., 2024b), we explain the following terminolo-
gies:

Markov Property In a directed acyclic graph (DAG) G, the Markov property asserts that each
node X; is conditionally independent of its non-descendants given its parents. This can be written
as X; 1l NonDe(X;)|Pa(X;), where NonDe(X;) represents the set of non-descendants of X,
excluding the node itself, and Pa(X;) denotes its parents. Leveraging the Markov property, the joint
distribution over all the nodes can be factorized as:

N
P(Xy,...,Xn) = [[ P(Xi|Pa(X;)).

i=1

Markov Equivalence Class Two directed acyclic graphs (DAGs) are considered Markov equivalent
if they induce the same joint distribution P(X). The collection of DAGs that are Markov equivalent
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is referred to as a Markov equivalence class (MEC). Causal graphs within the same MEC can be
easily recognized as they share the same skeleton (i.e., undirected edges) and V-structures (i.e.,
configurations of the form A — B < C, where A and C are not directly connected).

D POSITIONAL ENCODINGS AND THEIR ROLE IN GENERALIZATION

Positional Encoding (PE) play a crucial role of providing information about the absolute and relative
position of tokens in a sequence (Vaswani et al., 2023). (Vaswani et al., 2023) propose an absolute
positional encoding strategy using periodic functions (e.g., sinusoidal or cosine) to initialize these
encodings. Absolute positional encoding provides definite values for all positions across any sequence
length. However, studies (Ontafién et al., 2022; Csordas et al., 2021) show absolute positional
encoding fails in length generalization tasks for transformers. In the learnable APE variant (Radford
et al., 2018), each positional embedding is randomly initialized and trained with the model. This
approach falters with sequences longer than those seen in training, as the new positional embeddings
remain untrained and randomized. Interestingly, recent findings (Kazemnejad et al., 2023; Haviv
et al., 2022) indicate that removal of PEs in auto-regressive models can improve model’s length
generalization capabilities, wherein the attention mechanism during auto-regressive decoding is
sufficient to encode positional information.

E FORMALISING TRAINING AND EVALUATION SETUP

Let f4;m represent the maximum value for a given perturbation dimension dim, along which we
construct train and evaluation sets for our axiomatic framework. For each dimension, we choose
a threshold 7y;,,, € L, such that fg;,,, < Tgim forms our training set and fg;,, > 7yiy forms the

evaluation set. SO, fdim € {flena fbra'rwha f'rwdelena f're’ufacto’rv fshuffle} where:

* fien = maxy;(len(V;)), gives the maximum number of nodes across all causal sequences. 7., for
length is set at 6, with fi.,, € [3,6].

* foranch = maxy; (| X;|/|V;|) gives the maximum branching factor in a dataset, with 7pqpnen = 0.8
(for 6 node linear sequences). For sequences in the train set, the branching factor ranges from 0.6
to 0.8 for 3 to 6 length sequences.

* Let[; ; be the length of the name of the node X; j, then l; ; = (len(X, ;)).Therefore, the maximum
length of node names across all nodes in all causal sequences can be represented as: fyodenamelen =
MaX1<;<n, 1<j<m li,j- We Set Tpodelen fOr train set as 3, with fy,ogeren € [1, 3]

* Given any causal sequence X; and a function IV, where N (X; j, X; j+1) returns natural language
representation of a directed edge between j and j + 1 node in the causal chain X;. fopuffie =
Nyi,jPerm(N (X; j, X; j+1)), where N (X ;, X; ;1) represents deviation from original sequential
order of natural language sentences to represent X;.

* Given a causal sequence X; and let R(X;, frev f(wtmn) be an operation on the causal chain that
flips the direction of every edge in the sequence with probability freyfactor- In the training set,
there is a directed edge between every sequential pair of nodes X ;, X; j 11 With fre factor = 0
(for linear sequence, X; ; — X; j11) or 0.5 (for sequence with random flipping, X; ; — X; ;11
or X; j < X; j+1) In the evaluation set fy.cy factor = 1 1i.€., all sequences for reversal evaluation
setup are completely reversed unlike in train set where no sequence is present where all edges are
completely reversed.
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