
Learning to Reason via
Program Generation, Emulation, and Search

Nathaniel Weir∗†
Johns Hopkins University

nweir@jhu.edu

Muhammad Khalifa∗†
University of Michigan
khalifam@umich.edu

Linlu Qiu∗

MIT
linluqiu@mit.edu

Orion Weller∗
Johns Hopkins University
oweller@cs.jhu.edu

Peter Clark
Allen Institute for AI
peterc@allenai.org

Abstract

Program synthesis with language models (LMs) has unlocked a large set of reason-
ing abilities; code-tuned LMs have proven adept at generating programs that solve
a wide variety of algorithmic symbolic manipulation tasks (e.g. word concatena-
tion). However, not all reasoning tasks are easily expressible as code, e.g. tasks
involving commonsense reasoning, moral decision-making, and sarcasm under-
standing. Our goal is to extend an LM’s program synthesis skills to such tasks and
evaluate the results via pseudo-programs, namely Python programs where some
leaf function calls are left undefined. To that end, we propose, Code Generation
and Emulated EXecution (COGEX). COGEX works by (1) training LMs to gen-
erate pseudo-programs, (2) teaching them to emulate their generated program’s
execution, including those leaf functions, allowing the LM’s knowledge to fill in
the execution gaps; and (3) using them to search over many programs to find an
optimal one. To adapt the COGEX model to a new task, we introduce a method
for performing program search to find a single program whose pseudo-execution
yields optimal performance when applied to all the instances of a given dataset. We
show that our approach yields large improvements compared to standard in-context
learning approaches on a battery of tasks, both algorithmic and soft reasoning. This
result thus demonstrates that code synthesis can be applied to a much broader class
of problems than previously considered.1

1 Introduction

Recently there have been rapid advances in training language models (LMs) to generate code rather
than natural language (NL), following the intuition that code may be more effective than NL for certain
tasks, such as those requiring complex calculations, iteration, or data structure manipulation(Chen
et al., 2022; Gao et al., 2023). Although successful, these works have mostly studied tasks conducive
to a programmatic paradigm, such as symbolic manipulation or algorithmic reasoning, i.e., tasks for
which a clear compilable program can be devised. However, it is unclear how to apply this approach
to “softer” reasoning tasks such as commonsense and social reasoning, where algorithmic solutions
are less obvious (Zhang et al., 2023a).

∗Work done in part during internships at Allen Institute for AI.
1Our released dataset, fine-tuned models, and implementation can be found at https://github.com/

nweir127/CoGEX.
†Co-first authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/nweir127/CoGEX
https://github.com/nweir127/CoGEX

Alpaca Instance
Instruction: Pluralize the given word
Input: Corpus
Output: Corpora

CoGEX Instance
Instruction
Pluralize the given word
Input
Corpus
Code
def pluralize_word(word):
 # 1. Identify the suffix of the word
 ending = identify_ending(word)

 # 2. Identify the pluralization rule for the word
 pluralization_rule = find_pluralization_rule(word, ending)

 # 3. Apply the pluralization rule to the word
 plural_form = apply_pluralization_rule(word, ending)

 return {
 'original_word': word,
 'ending': ending,
 'rule': pluralization_rule,
 'answer': plural_form
 }

>>> pluralize_word('Corpus')

Output
{
 'original_word': 'Corpus',
 'ending': 'us',
 'rule': {'root': 'Latin', 'class': '2nd declension neuter'}
 'answer': 'Corpora'
}

2. Plan Generation

3. Code Instantiation

1. Output Reformatting

Instruction from Alpaca

Function Call

Output Dictionary
with Answer

Figure 1: Example from the COGEX dataset automatically converted from an Alpaca (Taori et al.,
2023) instance via LLM prompting. We train the model to receive the instruction and input and
generate the Python program and function call (as an intermediate), before outputting the final
dictionary that contains the answer and any intermediate reasoning steps.

Our goal is to expand an LM’s program synthesis skills to such softer reasoning tasks. Our approach
builds on the insight that, beyond generating code, LMs can also emulate the execution of code. This
includes handling function calls that are defined only by name and documentation, even if they lack a
full implementation. We refer to these types of programs—where only the function skeletons are
provided without actual code implementations—as pseudo-programs. Such pseudo-programs can
encompass both well-defined reasoning steps, such as mathematical or algorithmic operations, as
well as function calls representing less precise reasoning, such as commonsense logic. This work
investigates whether generating and pseudo-executing such programs can effectively address soft
reasoning tasks in addition to traditional algorithmic problems.

To achieve this, we propose a novel approach: training models to follow NL instructions by generating
a program and then emulating that program’s code execution. Our paradigm, called COGEX, changes
the inference process to (1) generate a Python function given an arbitrary instruction and optional
input, (2) generate a call to that function, and (3) produce the result of simulating its execution.
Unlike other work (Zhang et al., 2023b; Li et al., 2023), we do not use a Python interpreter to
execute any code; rather, the model is trained to emulate execution. This allows the generated code
to deliberately include calls to underspecified functions (i.e., where only the function name and
documentation are included), by allowing the LM emulator to fill in the functions implementations
using its latent knowledge. We train the model to not only output the result of pseudo-executing the
code but also the results of intermediate function calls in the code. COGEX thus suggests a way to
leverage the flexible ad-hoc reasoning abilities of LMs while encouraging programmatic reasoning
via the program structure. We train COGEX models by adapting the recent Alpaca instruction tuning
dataset (Taori et al., 2023) into a set of analogous Pythonic examples by prompting GPT-4 to perform
the conversion, and then use the resulting COGEX dataset to fine-tune smaller (7B and 13B) LMs to
answer instructions via code.

The COGEX paradigm allows us to explore a new way to learn new tasks: identifying a general
program that applies across a task, such that new task instances can be solved by emulating calls to
that one program. Inspired by work on hard prompt tuning (Wen et al., 2024) and example selection
for in-context learning (Gupta et al., 2023a), we introduce a search procedure that uses the frozen
COGEX model to try out many programs on a set of training examples and identify which single
program is optimal for the dataset. The procedure, termed COTACS: COGEX Task Adaptation via
Code Search, performs no parameter updates and requires saving nothing more than a program string.

We evaluate over a diverse suite of reasoning tasks, including commonsense QA, text classification,
and math datasets. These datasets cover symbolic tasks that could conceptually benefit from program-
matic operations and standard natural language tasks whose solutions might not be easily described
in code. We find that applying COTACS leads the COGEX models to substantially outperform the
comparable NL-based LM using the same original checkpoint and the same set of training examples

2

available for in-context learning, even in the few-shot regime. COTACS thus gives us one way to fit
a model to a new dataset without having to perform any gradient descent or parameter updates, both
for algorithmic and softer reasoning datasets. Our contributions are thus:

1. A novel reasoning paradigm, COGEX, that trains language models to generate and emulate
the execution of pseudo-programs. COGEX is a general paradigm that allows LMs to
leverage code for different types of reasoning.

2. A program search method, COTACS, enabling a task-general program suitable for a dataset
(rather than a single instance) to be found using a COGEX model.

3. A dataset, derived from the Alpaca instruction tuning dataset, for training COGEX models.

Overall, this work provides a significant step in showing how code generation can be applied to a
much broader class of problems than previously considered.

2 Approach

In this section, we start by formalizing our approach and describing our data construction process
(§2.1). We then describe our program search approach to tune a COGEX model on a given task
through program search (§2.2).

2.1 Method: COGEX

Formulation. Our goal is for the model to execute a given task by simulating code execution.
That means our model will take as input the task description, generate a Python program, and
simulate the expected output of executing that program. Formally, given a natural language (NL) task
description I , optional input argument A, Python function F , function call C, and output dictionary
O designating the output from the program pseudo-execution, the LM will take ⟨I, A⟩ as input and
generates ⟨F,C,O⟩ as output. Since the process is sequential, COGEX models can work as either
a reasoner freasoner(I, A) → (P,C) → O or as a call-instantiating and execution-emulating model
femulator(I, A, P) → C → O that takes a pre-specified program P and applies it to the variable
arguments A. This latter formulation enables searching over the space of task-specific programs:
searching for one Ptask to solve a class of problem (e.g., emotion classification) and then applying
femulator(I, Ai, Ptask) to emulate its execution on each instance Ai of that problem. We expand on
program search in §2.2.

Training Data Construction. As we want a general-purpose dataset that spans tasks with
diverse reasoning requirements, we choose the Alpaca instruction tuning dataset (Taori et al., 2023).
Following Peng et al. (2023), we rely on GPT-42 to convert the Alpaca dataset into their COGEX
versions. Specifically, every NL instance in the Alpaca dataset is mapped into a corresponding
COGEX version. We split the conversion process into three steps, each of which involves prompting
GPT-4 with the output from the previous. This stepwise approach proved more effective than directly
prompting GPT to convert each instance to code in one shot.

As depicted in Figure 1, the three steps are: (1) converting the outputs and (optional) inputs into
Pythonic data structures like strings, lists, and integers whenever relevant as determined by GPT-4;
(2) generating an instruction-specific plan, or a series of NL steps that should perform the task for
any potential input; (3) instantiating the plan as a Python program whose inline comments are the
plan steps and whose output is a dictionary containing all intermediate and final outputs that the LM
believes would result from executing each step. Prompts for all steps can be found in Appendix A.

Importantly, we allow for GPT to include undefined functions, e.g., identify_ending() and
find_pluralization_rule() in Figure 1. The goal is to leverage the LM knowledge to fill
in the semantics of these undefined functions when emulating the execution of a given program.
In addition, we include the program’s intermediate results in the output dictionary before the fi-
nal answer to encourage the model to stick to the NL reasoning plan delineated in the program
comments. After defining the program, we cue GPT-4 to call the function on an argument, e.g.
pluralize_word(‘corpus’) which can reflect the optional Alpaca example input, or can reflect
specific details from the instruction itself. Our prompts encourage GPT-4 to write a program that

2The dataset was constructed between August 7th–26th, 2023 using the gpt-4 model in the OpenAI API.

3

is as general purpose as possible and not tied to a specific input: e.g. pluralize_word(word) is
preferable to pluralize_corpus().

Fine-tuning any LM on the resulting COGEX dataset creates our desired model, which accepts any
task description/input combination and responds by dynamically generating a Python program and
then emulating its execution.

2.2 Program Search: COTACS

A COGEX model can generate a new program for any new task instruction and instance; however,
some programs might be more or less effective at performing the task. How can we find the optimal
program for a specific task, especially when some training data is available? As COGEX relies on
argument-accepting pseudo-programs, it naturally enables program optimization. Given multiple
examples of a new task, we can search for one program that performs well, and then apply the same
program to new test examples by invoking the program with different input arguments.

Our search process, COTACS: COGEX Task Adaptation via Code Search, finds a single program
that optimizes a COGEX model for a particular task dataset, enabling adapting a COGEX model
to a given task without learning any weight parameters. We learn a new dataset simply by using a
finetuned COGEX model to generate and then evaluate many program candidates to find the one that
best fits the given dataset. As described in algorithm 1, we split a dataset D of argument and output
pairs (ai, oi) into a small training set (n = 300 in experiments) and a larger development set; we
then generate a separate code candidate for every training item and retain the programs with decent
performance on the training set.3 We then rank these programs according by their performance on
the development set. For certain tasks, we find it beneficial to find multiple programs for a task and
then at test time take a majority vote across the COGEX model’s responses using each code. To
accomplish this, we retain some top-k performing codes over the development set.

Algorithm 1: COTACS search that identifies a set of k programs PD that best adapts a COGEX
model to new dataset D
Input: COGEX model f , Dataset D = {(a1, o1), (a2, o2), . . .}, Instruction I , number of code candidates

n, minimum training performance α, task metric δ
Result: Optimal programs PD that maximize model performance on D

1 Programs← ∅;
2 TrainSet← RandomSample(D, n); // Sample from D
3 DevSet← D \ TrainSet ; // Remaining |D| − n examples serve as dev set

4 for (ai, oi) in TrainSet do
5 pi ← f(I, ai); // Sample a program for the instance
6 TrainPerf← Evaluate(pi,TrainSet);
7 while TrainPerf < α do
8 pi ← f(I, ai) ; // Resample code if low performance
9 TrainPerf← Evaluate(pi,TrainSet);

10 end
11 Add pi to Programs;
12 end

13 PD ← argmaxP={p1,...pk}⊆Programs

∑k
i=1 Evaluate(pi,DevSet);

14 return PD;

15 Function Evaluate(p, D):
16 for (ai, oi) in D do
17 (ci, ôi)← f(I, ai, p); // Run the model with program p
18 end
19 return 1

|D|
∑|D|

i=1 δ(ôi, oi); // Average task metric (e.g., exact match)

3To ensure quality of the retained programs, a user-defined threshold α is used to keep only the programs
whose training performance is at least α. If no program achieves α after a fixed number of trials, we use the best
performing sampled so far.

4

Table 1: Benchmark results by COGEX models optimized for each dataset using the COTACS
method, compared to the corresponding off-the-shelf Llama-2 checkpoint performing 2-shot reasoning
using a BM25 retrieval index of 1000 exemplars. Results are also compared to a zero-shot Alpaca
model fine-tuned from the same checkpoint. The top score per size is bolded. Colored cells indicate
changes (gains , losses , or the same) relative to the best-performing non-COGEX baseline
(Alpaca or 2-shot). Results show that COGEX with COTACS outperforms the baselines on nearly
every task and often does so even with only 10 examples.

Classification Symbolic Math Commonsense

Ntrain CoLA Emotn SST Coin WSort Sum SVAMP CSQA SIQA Avg

Alpaca 7B 0-shot 0 70.6 53.4 87.3 49.5 40.0 21.6 25.7 46.8 54.1 49.9
Llama-2 7B 2-S BM25 1000 57.5 55.2 82.1 32.4 45.5 35.2 34.7 45.7 46.0 48.3

COGEX
Llama-2 7B

COTACS k = 1 10 75.0 52.2 86.9 50.8 40.6 61.3 33.3 42.3 50.1 56.7
COTACS k = 1 1000 78.5 56.2 91.2 60.0 39.5 62.8 41.3 52.7 57.7 60.0
COTACS k = 3 1000 79.2 56.0 90.9 61.9 40.8 63.6 42.7 52.4 59.3 60.8

Alpaca 13B 0-shot 0 74.6 53.0 86.0 63.8 50.3 44.5 37.3 62.2 63.4 59.5
Llama-2 13B 2-S BM25 1000 78.9 54.0 92.4 48.6 50.0 38.7 46.0 63.4 62.8 59.4

COGEX
Llama-2 13B

COTACS k = 1 10 80.9 55.1 88.9 58.0 51.3 61.3 42.8 59.2 57.6 61.7
COTACS k = 1 1000 81.0 56.4 92.1 65.7 50.8 64.0 48.3 63.4 64.6 65.1
COTACS k = 3 1000 81.0 56.6 92.1 69.5 51.6 63.9 50.3 64.0 65.5 66.1

3 Experiments and Results

Below we describe the training and evaluation of COGEX models. We first show overall performance
across a wide array of tasks compared to off-the-shelf baselines (§3.2) then ask a series of follow-up
research questions investigating ablated scenarios (§3.3).

3.1 Experimental Setup

Model Training. We fine-tune the 7B and 13B variants of Llama-2 (Touvron et al., 2023). We use
parameter-efficient training via Low-rank adaptation (LoRA) (Hu et al., 2021) with a rank of r = 16,
dropout rate of 0.05, and LoRA weights added to the query, key, value, and output matrices in all
layers. We train all models for five epochs using a batch size of 32 and a learning rate of 0.0003. As
a validation set, we randomly sample 2K examples from the training set and keep the checkpoint
with the lowest perplexity on the validation set for testing. Model training was done on a server with
128GB of RAM and 2 Nvidia A6000 48GB GPUs. On our dataset, training a single 7B model and
13B models took around 12 and 20 hours, respectively. To ensure a fair comparison, all the baselines
are trained with the exact same hyperparameters.

Datasets. We measure COGEX model performance on a variety of benchmarks ranging from sym-
bolic manipulation to commonsense and social reasoning. We choose these datasets as representatives
of tasks that involve complex reasoning and tasks whose solutions cannot be easily described in code.
As for symbolic and math reasoning, we use the Word Sorting task from BIG-bench hard (Srivastava
et al., 2022; Suzgun et al., 2022), the math word problem dataset SVAMP (Patel et al., 2021), the
coin flip tracking dataset from Wei et al. (2022), and the large number arithmetic task (referred to as
Sum) from Zelikman et al. (2022). For the last, we use the 5-digit examples for training and 6-digit
for testing. We measure string-normalized exact match accuracy for all tasks. Following Zhang
et al. (2023b), we evaluate on a series of Text Classification datasets: CoLA (2 labels) (Warstadt
et al., 2019), Emotion (6 labels) (Saravia et al., 2018), and SST2 (2 labels) (Socher et al., 2013). We
also evaluate on the Commonsense Reasoning datasets CommonsenseQA (Talmor et al., 2019) and
Social IQa (Sap et al., 2019), which are 4- and 5-way multiple-choice datasets. We hand-write the
instruction Itask for these datasets as they do not provide any.

Code Search. For all datasets, we use a maximum of 1000 training examples. We use n = 300
training items to generate candidate codes and evaluate them on the remaining 700 items to identify
the most generalizable ones. We experiment with retaining the top-k ∈ {1, 3} performing programs
for use at test time. For k = 3, we take a majority vote of answers, breaking ties randomly. We use

5

Table 2: Difference in performance by COTACS k = 3 comparing Llama-2 vs Code Llama COGEX
models (‘+’ implies Llama-2 better). We see that Code Llama is more effective for some tasks but
worse on others, while the 13B version performs worse than the 13B Llama-2 on all but 2 tasks.

Model Size CoLA Emotn SST Coin WSort Sum SVAMP CSQA SIQA

7B +1.3 -0.8 +1.2 -10.5 -4.5 +6.2 +2.7 -3.6 +4.2
13B +0.5 +0.2 +0.9 -12.4 +2.4 -9.3 +3.0 +6.8 +4.7

sampling temperature t = 0.7 when generating candidate codes and t = 0.05 to generate answers
given a program and argument. We report results on the released dev sets of all considered tasks.

Baselines. We consider two baselines that represent standard practices for adapting an LM to a
new task: (1) few-shot prompting using the off-the-shelf Llama-2 and CodeLlama models and (2)
zero-shot prompting using the Llama-2 models instruction-tuned from the original Alpaca dataset.4
For the in-context learning baseline for (1) we use the same 1000 training data-points as COTACS and
optimize the examples by retrieving the most similar few-shot examples using BM25. For zero-shot
alpaca models, we use the standard Alpaca-7B and -13B models. As COTACS might not require
many training examples to achieve strong performance, we compare the 1000-example COTACS run
with one that only uses 10 total examples to generate and evaluate candidates.

3.2 Results

Our main results depicting the difference in performance between COGEX models tuned via CO-
TACS versus off-the-shelf few-shot baselines and Alpaca models are shown in Table 1. The COTACS
method with 1000 training examples outperforms the baselines for a large majority of tasks and
models (8/9 tasks for both Llama-2 7B and 13B). COGEX shows particularly strong gains over
the baselines in the Sum and coin flip tracking tasks (+10-20%) as expected due to its code-related
nature. We observe that the COTACS method with Ntrain = 1000 training examples performs best on
average across the 9 tasks, and still performs better than the baselines with only Ntrain = 10 examples.
Retaining the top k = 3 programs instead of 1 improves performance in most cases (+1% average).

Instruction Following. As our models are trained on instruction following in code, can they still
perform instruction-related tasks as well as models trained on text-only Alpaca? We verify this
by using alpaca-eval to compare Alpaca-7B against our COGEX-7B model trained from the
same base Llama model. We find a similar win rate (50% within the 2 SD range) indicating similar
instruction following ability. Thus we can see that training on code-based instructions does not hurt
standard instruction-following abilities, while opening up many possibilities for program search.

Effect of Code Pre-training. As we are fine-tuning LMs on code data and then evaluating them on
tasks that are more or less code-related, a natural question to ask is whether LMs pre-trained on code
datasets yield stronger COGEX models. We investigate this by fine-tuning Code Llama (Roziere et al.,
2023) on the COGEX dataset instead of Llama. Table 2 shows the resulting change in performance
using COTACS (k=3) program search. The Llama-2 models show improved performance on Social
IQa (+4%) but much worse on coin flip tracking (-10-12%). These results do not provide conclusive
evidence that Llama-2 models are better or worse than Code Llama on particular task categories.

3.3 Ablation Studies

Here we present a series of ablation studies to ask the following questions:

How many training examples are needed for search? In the above experiments, we chose 1000
training examples and 300 program candidates for the COTACS algorithm. This raises the question:
how many examples are required to yield the strong performance provided by the search? We
investigate this by simulating the algorithm and sampling 1000 trials with varying numbers of training
examples and program candidates. Results are shown in Figure 2. In nearly all cases, performance
with 50 or 200 training examples is within a couple of points of the full performance with the
300/1000 configuration. The performance when sampling 10 code candidates (green) lands within 2
points of sampling 300 candidates on 5 of the 7 datasets. Benefits do not appear on Word Sorting, as

4We also experimented with few-shot prompting the Alpaca models, but found them to perform significantly
worse than zero-shot, which is likely a side effect of instruction tuning.

6

3 5 10 20 50 100 200 500 1000

0.88

0.90

0.92 Strongest Baseline

SST2

3 5 10 20 50 100 200 500 1000
0.48

0.50

0.52

Word Sorting

3 5 10 20 50 100 200 500 1000
0.375

0.400

0.425

0.450

0.475

SVAMP

3 5 10 20 50 100 200 500 1000

0.550

0.575

0.600

0.625

0.650
Social IQa

3 5 10 20 50 100 200 500 1000
Number of Training Items

0.550

0.575

0.600

0.625

0.650

CoinFlip

3 5 10 20 50 100 200 500 1000
Number of Training Items

0.60

0.62

0.64

Strongest Baseline: 44.5%

Number Summing

3 5 10 20 50 100 200 500 1000
Number of Training Items

0.58

0.60

0.62

0.64
Commonsense QA # Code Candidates

3
5
10
20
50
100
300

Figure 2: Change in COTACS performance using Llama-2 13B as we increase the number of training
items from 5 to 1000 and program candidates from 3 to 300. Results are averaged across 1000 trials.

performance lands between 0.51 and 0.515 regardless of configuration. This suggests that the range
of quality in generated programs for the Word Sorting dataset is much smaller than the others, so
picking between just a few candidates is sufficient. Overall, we see that we can significantly reduce
the search space and still see large gains on most tasks.

Is it better to execute an NL plan instead of Python code? We have proposed a mechanism to
generate Python programs whose steps are meant to reflect the reasoning process, stated in NL, that
answers a given instruction. Is the code necessary, or can a model be trained to generate only the
plan and achieve the same performance? We fine-tune a Llama model on a version of the COGEX
52k-item training set where each Python program has been replaced with just the NL steps (removing
step 3 of Figure 1). This NL Plan model still returns the same output dictionary with intermediate
results. To fit the plan-only model to a dataset, we run the COTACS algorithm but sample and retain
the NL plans instead of programs. We see in Figure 4 (orange vs gold) that NL Plan COTACS can
match the performance of regular program COTACS on some tasks (CoLA, SST, Word Sorting,
Emotion), but performs much worse on others, particularly Coin Flip, SVAMP, and Sum. This follows
the intuition that these tasks benefit from a programmatic reasoning paradigm.

Is it better to find one program or generate a new one for each instance? COTACS finds one or
multiple programs that can be reapplied to all task instances in a dataset to achieve high performance.
Is this better than letting the COGEX model generate a separate program for every instance? It
might be the case that the latter allows for catering the program to the specifics of a particular task
instance– e.g. in Figure 3, where the left (red) COGEX-generated program has steps specifically
crafted to identify actions to be taken by a particular person. Finding a single program disallows
this flexibility. We investigate this question by running the model end-to-end on each instance. The
COTACS model performs the mapping f(Itask, Ai, PCOTACS) → Ci → Oi for each task instance Ai,
while the end-to-end model performs f(Itask, Ai) → (Pi, Ci) → Oi. We sample from the latter using
temperature t = 0.05.5 Results are shown in Figure 4 (maroon vs gold); end-to-end performance is
comparable to COTACS only on Word Sorting and Sum. In all other cases, it is substantially worse.

5Increasing t and/or using self-consistency (Wang et al., 2023) did not meaningfully affect performance.

7

Item-Specific Program:
Step 1: Identify the key elements in the question.
key_elements = identify_key_elements(question)

Step 2: Analyze the context of the question to
understand what action Sasha needs to take.
action = analyze_context(question, key_elements)

Step 3: Return the letter of the correct option.
answer = select_option(options, action)

return {'key_elements': key_elements, 'action':
action, 'answer': answer}

General Program:
Step 1: Identify the key elements in the problem.
key_elements = identify_key_elements(question)

Step 2: Analyze the context to understand the relationship
between the key elements.
context = analyze_context(question, key_elements)

Step 3: Based on the context, determine the likely answer.
answer = determine_likely_answer(context, key_elements, options)

return {'key_elements': key_elements, 'context': context,
'answer': answer}

def answer_question(question, options):
 """
 Answer a Social Interaction QA question.
 Args:
 question (str): the Social Interaction QA question.
 options (list): a list of potential answers.
 Returns:
 A `dict` containing the field 'answer', whose value is of type `str` and contains
 the letter of the correct answer, plus fields for intermediate steps of the reasoning process.
 """

>>> answer_question("Casey gave some money to Jesse so she could go to the movie. How would you describe Casey?",
 ["(A) thankful", "(B) greedy", "(C) giving"])

Figure 3: Example COGEX model-generated programs for Social IQa (Sap et al., 2019) questions.
The left item fits well to a specific SocialIQa question pertaining to question-specific entities but does
not generalize well to the dataset, while the right item applies more generally to cases such as the
instance shown at the bottom, which does not pertain to character actions. Applying COTACS to
identify a single program such as the right one shows to improve overall task accuracy.

Llama-2 7B Llama-2 13B
0

20

40

60

80

Q
A

CoLA

Llama-2 7B Llama-2 13B
0

20

40

60

80

SST2

Llama-2 7B Llama-2 13B
0

10

20

30

40

50

Word Sorting

Llama-2 7B Llama-2 13B
0

10

20

30

40

50
SVAMP

Llama-2 7B Llama-2 13B
0

20

40

60

Social IQa

Llama-2 7B Llama-2 13B
0

20

40

60

Q
A

Emotion

Llama-2 7B Llama-2 13B
0

20

40

60

CoinFlip

Llama-2 7B Llama-2 13B
0

20

40

60

Number Summing

Llama-2 7B Llama-2 13B
0

20

40

60

Commonsense QA
Ablation

COGEX End-to-End
Alpaca Chain-of-Thought
NL Plan COTACS
COTACS

Figure 4: Performance comparison between COTACS (k=1) and various ablations: (1) COGEX
End-to-End that generates separate programs for each instance, (2) chain-of-thought prompting, and
(3) searching for an optimal NL plan instead of code program. COTACS consistently equals or
outperforms all ablations on all tasks, while each ablation drops in performance on at least 2-3 tasks.

Is COTACS better than chain-of-thought? A common practice to elicit systematic reasoning from
LMs is to prompt it for the reasoning via some version of “explain your answer step-by-step” (Kojima
et al., 2022). How does this compare to COGEX models on a given dataset? We compare COGEX
to zero-shot CoT by prompting our Alpaca models with a task-specific instruction, while additionally
appending the instruction to “think step-by-step” before producing the answer. Figure 4 (blue vs
gold) shows that CoT prompting performs similarly to the NL plan search method; it can approach
COTACS performance on some NLP classification tasks but performs worse over SVAMP, Number
Summing, and CoinFlip.

When is COTACS better than fine-tuning? Fine-tuning is a standard practice to adapt an LM
to a new task. However, fine-tuning often requires a large amount of training data and storing a
new model for each task. Here, we study the impacts of the number of examples on fine-tuning
and COTACS. We find that when there are many examples available, fine-tuning achieves stronger
performance. However, COTACS is generally better until there are a large number of examples
available: it outperforms fine-tuning on 4/9 tasks with 500 examples. This suggests that COTACS
can be a lightweight alternative in the low-to-medium shot setup.

8

100 500 1000
0.65

0.70

0.75

0.80

co
rr

ec
t

CoLA

100 500 1000

0.7

0.8

0.9

SST2

100 500 1000

0.50

0.55

0.60

Word Sorting

100 500 1000

0.2

0.4

SVAMP

100 500 1000

0.5

0.6

0.7
Social IQa

100 500 1000

0.6

0.8

co
rr

ec
t

Emotion

100 245

0.60

0.65

CoinFlip

100 500 1000

0.4

0.6

Number Summing

100 500 1000

0.5

0.6

0.7

Commonsense QA
Method

COTACS
Fine-tuning

Figure 5: Performance tradeoff between COTACS, which requires saving just a program string,
and fine-tuning, which requires saving an entire checkpoint, as we increase the number of training
examples. Although fine-tuning typically performs better with more data, COTACS provides an
alternative that is lighter-weight and stronger at low-to-medium numbers of instances.

def track_coin_flip(text, num_flip):
"""
Track the current state of a coin after a certain number of flips.
Args:

text (str): a string containing information about the state of a coin at different stages.
num_flip (int): the number of flips to consider.

Returns:
A dictionary containing (at least) the field ’answer’, whose value is of type ‘str‘ and contains

the state of the coin after the specified number of flips.
The dictionary also contains the result of the intermediate steps of the reasoning process.

"""
Step 1: Identify and extract all mentions of flipping a coin from the input text.
coin_flip_mentions = extract_coin_flip_mentions(text)

Step 2: For each identified instance of flipping, determine whether it is a heads or tails outcome.
flip_outcomes = {mention: determine_flip_outcome(mention) for mention in coin_flip_mentions}

Step 3: Track and record the state of the coin after each flip.
coin_state = track_coin_state(flip_outcomes, num_flip)

return {‘coin_flip_mentions’: coin_flip_mentions, ‘flip_outcomes’: flip_outcomes, ‘answer’: coin_state}

Example Input: ‘A coin is heads up. Gee does not flip the coin. Joseluis flips the coin. Cory does not
flip the coin. Stefanie flips the coin. Is the coin still heads up?’

Example Output: {
‘coin_flip_mentions’: [‘A coin is heads up’, ‘Joseluis flips the coin’, ‘Stefanie flips the coin’],
‘flip_outcomes’: {

‘A coin is heads up’: ‘heads’,
‘Joseluis flips the coin’: ‘heads’,
‘Stefanie flips the coin’: ‘heads’

},
‘answer’: ‘heads’

}

Figure 6: Qualitative examples of LLama-2 13B the coin flip tracking task where the model fails to
correctly simulate the program and is correct for the wrong reasons.

3.4 Qualitative Analysis

Since we rely on the LM as a code emulator, there is no guarantee of correct execution. The generated
intermediate outputs allow us to examine if the model can faithfully emulate the program. We observe
failure cases where the LM incorrectly simulates the program execution even if the generated program
is correct as shown in Figure 6. We also include positive qualitative examples in Appendix B.

4 Related Work
Reasoning via Code. Using code for reasoning is a burgeoning area that has shown improved
results on many algorithmic tasks (Chen et al., 2022; Gao et al., 2023). Many approaches ask LLMs
to express their reasoning as code and leverage code interpreters to execute them. Recently, and
concurrent with our work, some studies investigate training LLMs as code compilers, where the LM
is prompted to emulate code execution (Li et al., 2023; Chae et al., 2024; Mishra et al., 2023). These

9

LM-as-compiler approaches fall into a broader category of work that invokes LLMs as subroutines
in programs (Kalyanpur et al., 2022; Weir et al., 2024). Different from ours, these works mainly
rely on manually prompting very large models, while we focus on training open-source LMs to both
generate and emulate programs. In addition, we aim to achieve task generalization by searching for
an optimal program for a given task—different from Chae et al. (2024) who rely on prompting LMs
with specific code instructions. Ours is the first work on code-based reasoning that employs search
over the program space with the goal of generalizing an optimal program to a task.

Prompt Optimization. Our search procedure, COTACS, has a similar spirit to in-context learning
optimization approaches where the goal is to find an optimal set of exemplars (an optimal pseudo-
program, in our case) for a given task. Existing studies (Zhang et al., 2022; Rubin et al., 2022; Ye
et al., 2023a; Gupta et al., 2023b; Khalifa et al., 2023a) explored various methods to select optimal
in-context examples, leveraging similarity- or diversity-based heuristics—to name a few. Searching
for useful task instructions has also been explored (Honovich et al., 2022; Khalifa et al., 2023b; Chen
et al., 2023).

Another related area of research is automated prompt engineering (Shin et al., 2020; Deng et al.,
2022; Prasad et al., 2023) that bootstraps an effective prompt using some reward function. While
LMs have been shown to be effective at producing their own prompts (Zhou et al., 2022; Yang et al.,
2024; Pryzant et al., 2023; Ye et al., 2023b), our work shows that LMs can also reason by generating
and executing their own generated programs. Our method differs from these studies as it uses the
same input instruction and optimizes the intermediate representation, rather than modifying it via
prompt optimization. Finding a single program string to solve a class of problems is also related to
finding a high-level NL description of a task using one or multiple demonstrations (Weir et al., 2023).

5 Conclusion

We present COGEX, a methodology that trains language models to generate and execute their own
Pythonic reasoning programs in response to task instructions. We convert the Alpaca instruction
tuning data into COGEX instances that can be used to COGEX-tune any models. We design an
optimization algorithm, COTACS, that applies COGEX models to a new dataset by generating and
searching through possible programs that can be reapplied to new task items. Applying the COTACS
search algorithm yields task performance that exceeds that of few-shot in-context-learning and typical
NL instruction following. Our work demonstrates a way to apply LM-based programmatic reasoning
to NLP benchmarks that require softer reasoning skills not easily stated in code syntax.

6 Limitations

While our work represents a step towards utilizing code language models for non-algorithmic
reasoning tasks, COGEX still suffers from the following limitations:

• COGEX is suitable for soft reasoning tasks for which step-by-step programs are difficult to
describe. However, when solving algorithmic tasks where a precise step-by-step program is
possible, passing the generated code directly to an interpreter may be preferable to emulating
code execution via the LM.

• We have found that the LM can occasionally produce a result that is inconsistent with the code
emulated, as noted in subsection 3.4. In which case, the code does not faithfully reflect the
reasoning process followed by the model.

• There is an extra computational overhead when emulating code execution via an LM compared
to using an interpreter as the LM needs to generate intermediate variables along with the final
answer.

7 Acknowledgements

We thank Li Zhang, Valentina Pyatkin, and Khyathi Chandu for feedback on ideas and earlier drafts.
We also thank the organizers of the AI2 Summer 2023 Hackathon during which this project was
initially conceived.

10

References
Hyungjoo Chae, Yeonghyeon Kim, Seungone Kim, Kai Tzu-iunn Ong, Beong-woo Kwak, Moohyeon

Kim, Seonghwan Kim, Taeyoon Kwon, Jiwan Chung, Youngjae Yu, et al. Language models as
compilers: Simulating pseudocode execution improves algorithmic reasoning in language models.
arXiv preprint arXiv:2404.02575, 2024.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. Instructzero: Efficient
instruction optimization for black-box large language models. arXiv preprint arXiv:2306.03082,
2023.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 3369–3391, 2022.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: program-aided language models. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Shivanshu Gupta, Matt Gardner, and Sameer Singh. Coverage-based example selection for in-context
learning. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association
for Computational Linguistics: EMNLP 2023, pp. 13924–13950, Singapore, December 2023a.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.930. URL
https://aclanthology.org/2023.findings-emnlp.930.

Shivanshu Gupta, Matt Gardner, and Sameer Singh. Coverage-based example selection for in-
context learning. In Findings of the Association for Computational Linguistics: EMNLP 2023, pp.
13924–13950, 2023b.

Or Honovich, Uri Shaham, Samuel R Bowman, and Omer Levy. Instruction induction: From few
examples to natural language task descriptions. arXiv preprint arXiv:2205.10782, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Aditya Kalyanpur, Tom Breloff, and David A Ferrucci. Braid: Weaving symbolic and neural
knowledge into coherent logical explanations. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pp. 10867–10874, 2022.

Muhammad Khalifa, Lajanugen Logeswaran, Moontae Lee, Honglak Lee, and Lu Wang. Exploring
demonstration ensembling for in-context learning. arXiv preprint arXiv:2308.08780, 2023a.

Muhammad Khalifa, Lajanugen Logeswaran, Moontae Lee, Honglak Lee, and Lu Wang. Few-shot
reranking for multi-hop QA via language model prompting. In Anna Rogers, Jordan L. Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023, pp. 15882–15897. Association for Computational Linguistics, 2023b. doi: 10.18653/V1/
2023.ACL-LONG.885. URL https://doi.org/10.18653/v1/2023.acl-long.885.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey Levine,
Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-augmented
code emulator. arXiv preprint arXiv:2312.04474, 2023.

11

https://aclanthology.org/2023.findings-emnlp.930
https://doi.org/10.18653/v1/2023.acl-long.885

Mayank Mishra, Prince Kumar, Riyaz Ahmad Bhat, Rudra Murthy, Danish Contractor, and Srikanth G
Tamilselvam. Prompting with pseudo-code instructions. In The 2023 Conference on Empirical
Methods in Natural Language Processing, 2023.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve sim-
ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
(eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2080–2094, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL
https://aclanthology.org/2021.naacl-main.168.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free, edit-based
instruction search for prompting large language models. In Proceedings of the 17th Conference of
the European Chapter of the Association for Computational Linguistics, pp. 3845–3864, 2023.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with" gradient descent" and beam search. In The 2023 Conference on Empirical
Methods in Natural Language Processing, 2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2655–2671, 2022.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Common-
sense reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan
(eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pp. 4463–4473, Hong Kong, China, November 2019. Association for Computational Linguistics.
doi: 10.18653/v1/D19-1454. URL https://aclanthology.org/D19-1454.

Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, and Yi-Shin Chen. CARER:
Contextualized affect representations for emotion recognition. In Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 3687–3697, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1404. URL https:
//aclanthology.org/D18-1404.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. arXiv preprint
arXiv:2010.15980, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven Bethard (eds.),
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp.
1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.
URL https://aclanthology.org/D13-1170.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

12

https://aclanthology.org/2021.naacl-main.168
https://aclanthology.org/D19-1454
https://aclanthology.org/D18-1404
https://aclanthology.org/D18-1404
https://aclanthology.org/D13-1170

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging
big-bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-following model.
Stanford Center for Research on Foundation Models. https://crfm. stanford. edu/2023/03/13/alpaca.
html, 3(6):7, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019. doi: 10.1162/
tacl_a_00290. URL https://aclanthology.org/Q19-1040.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Nathaniel Weir, Xingdi Yuan, Marc-Alexandre Côté, Matthew Hausknecht, Romain Laroche, Ida
Momennejad, Harm Van Seijen, and Benjamin Van Durme. One-shot learning from a demonstra-
tion with hierarchical latent language. In Proceedings of the 2023 International Conference on
Autonomous Agents and Multiagent Systems, pp. 2388–2390, 2023.

Nathaniel Weir, Peter Clark, and Benjamin Van Durme. NELLIE: A neuro-symbolic inference engine
for grounded, compositional, and explainable reasoning. IJCAI, 2024.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery.
Advances in Neural Information Processing Systems, 36, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Compositional exemplars for
in-context learning. In International Conference on Machine Learning, pp. 39818–39833. PMLR,
2023a.

Qinyuan Ye, Maxamed Axmed, Reid Pryzant, and Fereshte Khani. Prompt engineering a prompt
engineer. arXiv preprint arXiv:2311.05661, 2023b.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Li Zhang, Liam Dugan, Hainiu Xu, and Chris Callison-burch. Exploring the curious case of code
prompts. In Proceedings of the 1st Workshop on Natural Language Reasoning and Structured
Explanations (NLRSE), 2023a.

13

https://aclanthology.org/N19-1421
https://openreview.net/forum?id=1PL1NIMMrw
https://aclanthology.org/Q19-1040
https://openreview.net/forum?id=Bb4VGOWELI

Tianhua Zhang, Jiaxin Ge, Hongyin Luo, Yung-Sung Chuang, Mingye Gao, Yuan Gong, Xixin
Wu, Yoon Kim, Helen Meng, and James Glass. Natural language embedded programs for hybrid
language symbolic reasoning. arXiv preprint arXiv:2309.10814, 2023b.

Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
9134–9148, 2022.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910, 2022.

14

Clean up the following json items. Map the input and output fields in each item to a proper pythonic item
(e.g. list, dictionary, or clean string). It shouldn’t have newlines if it’s a string. DO NOT INCLUDE
"..." in your outputs.

INPUT 1:
{‘instruction’: ‘Classify the following objects by color.’, ‘input’: ‘Ribbon, Tie, Pen’, ‘output’: ‘-Red:

Ribbon\n-Blue: Tie\n-Black: Pen’}

OUTPUT 1:
{‘instruction’: ‘Classify the following objects by color.’, ‘input’: [‘Ribbon’, ‘Tie’, ‘Pen’], ‘output’: {‘

Ribbon’: ‘Red’, ‘Tie’: ‘Blue’, ‘Pen’: ‘Black’}

INPUT 2:
{‘instruction’: ‘Convert the following text into a list.’, ‘input’: ‘The four elements of design are line,

color, shape, and texture.’, ‘output’: ‘- Line \n- Color \n- Shape\n- Texture’}

OUTPUT 2:
{‘instruction’: ‘Convert the following text into a list.’, ‘input’: ‘The four elements of design are line,

color, shape, and texture.’, ‘output’: [‘line’, ‘color’, ‘shape’, ‘texture’]}

INPUT 3:
{‘instruction’: ‘Generate a list of five items a person might need for a camping trip’, ‘input’: ‘’, ‘

output’: ‘1. Tent\n2. Sleeping bags\n3. Flashlight\n4. Matches/lighter\n5. Insect repellent}

OUTPUT 3:
{‘instruction’: ‘Generate a list of five items a person might need for a camping trip’, ‘input’: ‘’, ‘

output’: [‘tent’, ‘sleeping bags’, ‘flashlight’, ‘matches/lighter’, ‘insect repellent’]}

INPUT 4:
{input}

OUTPUT 4:

Figure 7: Prompt used for converting inputs and outputs of Alpaca items into Pythonic data types.

Generate a high-level plan with at most 3 steps that a problem-solving artificial agent could use to
complete the following problem. If the problem takes in inputs, your plan should be a high-level
abstraction that is generally applicable to new inputs, not just the one shown here.

Instruction: {instruction}
Input: {possible_inputs}

Your output format should be a series of serialized jsons, 1 per line, for each step of the plan.
They should have the format {"number": <step number>", "description": <step description>}

Figure 8: Prompt used for generating stepwise NL plans for Alpaca items.

A Prompts for Converting Alpaca to COGEX

Figure 7, Figure 8, and Figure 9 display the prompts used to GPT-4 in sequence to convert Alpaca
into the COGEX dataset. The prompts (1) convert all inputs and outputs into Pythonic types like
strings, lists and dicts, (2) generate plans to answer a given instruction, and (3) instantiate each plan
as a Python program with underspecified function calls.

B Further Qualitative Analysis

Figure 10 and Figure 11 show good qualitative examples generated by COTACS, along with outputs
from the 2-shot prompting baseline for the text classification and math reasoning tasks, respectively.
We find that COTACS encourages general-purpose code that is generalizable across multiple examples
within the same task. It also enables better interpretability by generating outputs of the intermediate
reasoning steps.

15

For the following questions with example inputs and outputs, generate a function that performs the
provided high-level steps. The function should return a dictionary with the field "answer": <answer>
as well as the values for intermediate decisions. Don’t hard code input-specific items whenever possible.
You can make external calls to undefined functions as long as the function name describes its purpose.

Instruction: Generate three antonyms for the word "wonderful".
Input:
Answer: [‘horrible’, ‘abysmal’, ‘appalling’]
Steps:
1. Search for synonyms of the target word using a thesaurus.
2. Identify antonyms of the synonyms found in step 3.
3. Package the antonyms as the output in the required format.
Code:
def generate_antonyms(num_words, word):

"""
Generate antonyms for a given word.

Args:
num_words (int): the number of antonyms to generate for the word
word (str): a string representing the word for which we need to find the antonyms.

Returns:
A dictionary containing the antonyms of the given word, plus the result of the intermediate steps

of the reasoning process
"""

Step 1: Search for synonyms of the target word using a thesaurus.
synonyms = thesaurus_lookup(word)

Step 2: Identify antonyms of the synonyms found in step 1.
antonyms_of_synonyms = [lookup_antonyms(synonym) for synonym in synonyms]

Step 3: Package the antonyms as the output in the required format.
all_antonyms = []
for antonym_list in antonyms_of_synonyms:

all_antonyms.extend(antonym_list)

n_antonyms = all_antonyms[:num_words]

return {
‘synonyms’: synonyms,
‘antonyms_of_synonyms’: antonyms_of_synonyms,
‘all_antonyms’: all_antonyms,
‘answer’: n_antonyms

}

>>> generate_antonyms(3, ‘wonderful’)

Example Output:
output = {

‘synonyms’: [‘amazing’, ‘fantastic’, ‘terrific’],
‘antonyms_of_synonyms’: [

[‘horrible’, ‘abysmal’, ‘appalling’],
[‘dull’, ‘disappointing’, ‘unexceptional’],
[‘awful’, ‘terrible’, ‘dreadful’]

],
‘all_antonyms’: [

‘horrible’, ‘abysmal’, ‘appalling’, ‘dull’, ‘disappointing’,
‘unexceptional’, ‘awful’, ‘terrible’, ‘dreadful’

],
‘answer’: [‘horrible’, ‘abysmal’, ‘appalling’]

}

###

Instruction: Generate ideas for a travel blog for young tourists visiting India

<...>

###

Instruction: {instruction}
Input: {input}
Answer: {output}
Steps:
{steps}
Code:

Figure 9: Prompt used for instantiating Python programs from NL plans. See repository for full-length
prompt.

16

def determine_emotion(sentence):
"""
Determine the emotion expressed in a given sentence.
Args:

sentence (str): the sentence for which the emotion is to be determined.
Returns:

A dictionary containing (at least) the field ‘answer’, whose value is of type ‘str’ and contains
the emotion expressed in the sentence. The dictionary also contains the result of the
intermediate steps of the reasoning process.

"""
Step 1: Extract all the words from the input sentence and analyze them to understand their context

and meaning.
words = extract_words(sentence)
word_context = analyze_words_context(words)

Step 2: Identify the emotion-related words or phrases in the sentence.
emotion_related_words = identify_emotion_related_words(words)

Step 3: Return the emotion that best fits the context and the emotion-related words identified in the
sentence.

emotion = determine_best_fit_emotion(word_context, emotion_related_words)

return {‘sentence’: sentence, ‘words’: words, ‘word_context’: word_context,
‘emotion_related_words’: emotion_related_words, ‘answer’: emotion}

Example Input: i was feeling festive yesterday

Example Output: {
‘sentence’: ‘i was feeling festive yesterday’,
‘words’: [‘i’, ‘was’, ‘feeling’, ‘festive’, ‘yesterday’],
‘word_context’: {

‘i’: ‘first person singular’, ‘was’: ‘past tense’, ‘feeling’: ‘verb’, ‘festive’: ‘adjective’
},
‘emotion_related_words’: [‘festive’],
‘answer’: ‘joy’

}

2-shot Baseline Output: joy

Figure 10: Qualitative example of a LLama-2 13B COGEX-generated program for the text classifica-
tion task on the Emotion benchmark.

17

def solve_math_word_problem(word_problem):
"""
Solve a math word problem.

Args:
word_problem (str): a string representing the math word problem.

Returns:
A dictionary containing (at least) the field ‘answer‘, whose value is of type ‘int‘ and contains

the solution to the math word problem.
The dictionary also contains the result of the intermediate steps of the reasoning process.

"""

Step 1: Identify the key numbers and variables from the problem statement.
key_numbers = identify_key_numbers(word_problem)

Step 2: Understand the problem context.
problem_context = understand_problem_context(word_problem)

Step 3: Perform the appropriate mathematical operations to solve the problem.
solution = perform_math_operations(key_numbers, problem_context)

return {
‘key_numbers’: key_numbers,
‘problem_context’: problem_context,
‘answer’: solution

}

Example Input: Paco had 36 cookies. He gave 14 cookies to his friend and ate 10 cookies. How many cookies
did Paco have left?

Example Output: {
‘key_numbers’: {‘initial_quantity’: 36, ‘quantity_given_away’: 14, ‘quantity_eaten’: 10},
‘problem_context’: ‘Paco had 36 cookies. He gave 14 cookies to his friend and ate 10 cookies.’,
‘answer’: 12}

}

2-shot Baseline Output: 20

Figure 11: Qualitative example of a LLama-2 13B COGEX-generated program for the math reasoning
task on the SVAMP benchmark.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claim of the paper is a novel reasoning paradigm, dataset for finetuning
models on the paradigm, and a task-specific optimization algorithm. We show the empirical
benefits of the paradigm and algorithm through our experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

19

Answer: [NA]

Justification: No theoretical proofs are given.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Hyperparameters and other details are included in section 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

20

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Public access to these will be released when not anonymized.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In section 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We only report single runs, following previous work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In subsection 3.1

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: It follows the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not provide any new risks and discusss risks in section 6.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: They are properly credited via citation and licenses are in their respective
Github pages. As they are open-source we do not explicitly discuss the license here and
point interested readers to the original authors license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

23

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, described in Section 2.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing was done.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing was done.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

	Introduction
	Approach
	Method: CoGEX
	Program Search: CoTACS

	Experiments and Results
	Experimental Setup
	Results
	Ablation Studies
	Qualitative Analysis

	Related Work
	Conclusion
	Limitations
	Acknowledgements
	Prompts for Converting Alpaca to CoGEX
	Further Qualitative Analysis

