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ABSTRACT

We present a novel extension of the forward-backward (FB) representation frame-
work that enables zero-shot constrained reinforcement learning (RL) by embedding
both reward and cost functions into a shared latent space. While existing FB
methods excel in generalizing across rewards, they fail to account for constraints,
a critical limitation in real-world applications where agents must satisfy varying
cost budgets or safety requirements. Our approach overcomes this gap through a
latent-space reparameterization grounded in Lagrangian duality, allowing efficient
inference of constraint-aware policies without requiring any retraining at deploy-
ment. By leveraging a latent-space reparameterization grounded in Lagrangian
duality, our method allows for efficient inference of constraint-aware policies.
Extensive experiments on the ExORL benchmark demonstrate that our method
achieves superior task performance while adhering to cost constraints, consistently
outperforming prior FB-based and primal-dual baselines. These results highlight
the effectiveness and practicality of latent-space constrained policy inference for
scalable and safe RL.

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable success in domains such as games, robotics,
and decision-making under uncertainty, but its adaptability to changing task specifications remains
limited. When the reward function is modified, the policy often requires full retraining, even if
the environment transition probabilities remain unchanged, which severely restricts scalability in
dynamic real-world settings. To address this challenge, the paradigm of Zero-Shot RL (Dayan, 1993;
Barreto et al., 2017; 2018) has been developed, aiming to train agents that can immediately adapt to
new tasks defined by unseen reward functions without further environment interaction. A particularly
promising approach is the forward-backward (FB) representation framework (Touati & Ollivier, 2021;
Touati et al., 2023; Pirotta et al., 2023; Jeen et al., 2024), where the agent learns a reward-agnostic
representation of the environment during pretraining and, at test time, computes a latent vector for a
given reward function to directly recover the corresponding optimal policy. This framework enables
efficient and scalable adaptation to unseen tasks.

On the other hand, many real-world RL applications require agents to optimize performance while
satisfying safety, budget, and risk constraints, making constraint handling a critical requirement for
deployment (Altman, 1999; Achiam et al., 2017). Violations can be catastrophic in safety-critical
settings such as robotics or autonomous driving (Brunke et al., 2022; Shi et al., 2023), and in resource-
limited domains exceeding a budget can invalidate a solution regardless of reward (Bhatia et al.,
2019; Wang et al., 2023). In practice, constraints are often formalized as cost functions with certain
budgets, and the objective is to maximize expected reward while keeping the cumulative costs below
the thresholds (Ghosh et al., 2022; 2024).

While FB generalizes well across rewards, enabling Zero-Shot adaptation, extensions to handle
constraints are nontrivial. A seemingly natural FB-based surrogate, proposed by Touati & Ollivier
(2021), subtracts cost embeddings from reward embeddings, thereby treating costs as negative rewards.
However, this provides no guarantee to budget satisfaction since it does not prevent trading rare
but high-cost violations for a higher expected reward. Moreover, a single weighted sum can not
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adapt across tasks with different budgets, where different optimal trade-offs are required. As a result,
it conflates feasibility with preference and fails to deliver the principled guarantees required for
constrained RL.

A second line adopts primal-dual optimization for constrained RL. The idea is to build a Lagrangian
that penalizes constraint violations via a Lagrange multiplier λ. The algorithm then alternates updates
of the primal variable (the policy) and the dual variable λ, maximizing the Lagrangian with respect
to the policy and adjusting λ to balance reward and cost satisfaction (Ding et al., 2021; Paternain
et al., 2022). While a (near-)zero duality gap holds under mild conditions (Paternain et al., 2019), two
practical issues occur: (i) the instability and conservativeness that arise during primal-dual training,
and (ii) the use of discounted values that obscure whether the budgets are truly met in expectation.

In this paper, we argue that neither explicitly retraining an FB model with primal-dual machinery
or folding costs into negative rewards is necessary to enforce budgets. The key insight is that the
FB framework already encodes optimal policies across a broad spectrum of reward functions during
pretraining. Thus, constrained RL can be reframed more simply: rather than learning both the
policy and the multiplier, one only needs to identify the optimal λ that enforces the budget. In
effect, FB reduces the constrained problem to tuning λ while reusing the pretrained policy family,
enabling constraint enforcement that is both more efficient and more stable than standard primal-dual
approaches.

We also highlight a practical challenge: the estimated cost in the model can differ from the actual
cost due to the presence or absence of discount factors and various approximation errors. These
discrepancies can lead to significant performance issues, especially when constraint thresholds are
tight or the model’s latent representations are not highly accurate. To address this, we introduce a
surrogate threshold, an adjusted version of the original cost limit, estimated from online samples,
that is more reliable in the model’s latent space. By jointly tuning this surrogate threshold and the
Lagrange multiplier through a few trial runs in the environment, we can effectively select a policy
that satisfies the actual constraint while maintaining strong performance.

In Section 6, we evaluate our approach using the ExORL benchmark suite (Yarats et al., 2022),
which is built on the DeepMind Control Suite (Tassa et al., 2018) and includes a diverse set of tasks
spanning locomotion and goal-reaching domains. To measure constraint satisfaction, we introduce a
velocity-based safety cost and systematically vary the constraint thresholds across experiments. Our
results demonstrate that the proposed method delivers strong task performance while adhering to the
specified cost budgets. Importantly, these outcomes are achieved using an FB model that was unaware
of costs during pretraining. These findings highlight the effectiveness of our approach as a practical
and scalable solution for constrained policy adaptation, showing that high-quality, constraint-aware
policies can be recovered without the need for retraining.

2 RELATED WORK

2.1 CONSTRAINED REINFORCEMENT LEARNING

Constrained RL aims to train agents that maximize expected return while satisfying constraints on
cumulative cost or risk signals. A classic formulation is the constrained Markov Decision Process
(MDP) (Altman, 1999), which augments the RL objective with constraint functions and associated
cost budgets. Numerous works have proposed approaches based on Lagrangian duality (Achiam
et al., 2017; Tessler et al., 2018; Chow et al., 2019; Yang et al., 2020; Ding et al., 2021; Paternain
et al., 2022), wherein a dual variable (Lagrange multiplier) is updated alongside the policy to enforce
constraints. Lagrangian duality methods are theoretically well-founded: recent results establish that
constrained RL problems exhibit zero duality gap under mild assumptions, ensuring that primal-dual
methods can recover optimal constrained solutions (Paternain et al., 2019). However, despite these
guarantees, such approaches face notable practical limitations.

One major challenge is sample inefficiency. Even recent advances using improved optimization
schemes (Mondal & Aggarwal, 2024; Gu et al., 2024a) show that constrained RL typically requires
7-10 times more samples than unconstrained RL to reach comparable performance. This is partly
due to the difficulty of balancing reward and cost gradients, which may conflict in practice and
hinder stable policy learning (Xu et al., 2021; Gu et al., 2024a). To address this issue, Gu et al.
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(2024a) proposed a dynamic sample manipulation strategy based on reward-cost gradient conflict to
improve efficiency. However, even with adaptive sampling, constrained RL remains substantially
more expensive.

Another critical limitation is the lack of generalization. Most constrained RL algorithms are trained
for a fixed cost function and budget, and cannot generalize across different constraint specifications
without retraining (Stooke et al., 2020; Xu et al., 2022; Brunke et al., 2022; Gu et al., 2024b). This
inflexibility restricts their usability in real-world settings where agents must operate under evolving
or task-dependent safety profiles.

Our work addresses these limitations by introducing a latent-space formulation that enables post-hoc
adaptation to novel cost functions and budget thresholds. Specifically, we build upon the forward-
backward representation framework from the Zero-Shot RL literature (Touati & Ollivier, 2021; Pirotta
et al., 2023; Touati et al., 2023; Jeen et al., 2024), which is designed to generalize across unseen
reward functions without further environment interaction. Leveraging the same reward-agnostic
representations that make Zero-Shot adaptation possible, we extend the framework to incorporate
constraints. This extension preserves the compositional and efficient adaptation properties of FB,
allowing constrained policy optimization to be performed from a single model pretrained without
explicitly considering constraints.

2.2 ZERO-SHOT REINFORCEMENT LEARNING

Zero-Shot RL aims to train agents that can adapt to new tasks without requiring further environment
interaction. Classical approaches in Zero-Shot RL often assume that the reward for each task can be
expressed as a linear combination of predefined feature functions (Barreto et al., 2018; 2017; Dayan,
1993), limiting their applicability to tasks with specific reward representations. These methods
depend heavily on manually specified features, which are infeasible to scale to complex or continuous
task spaces. On the other hand, although goal-conditioned value functions (Schaul et al., 2015;
Andrychowicz et al., 2017) allow greater flexibility, they still require explicit specification of goal
families during training and cannot adapt to novel reward compositions after training is completed.

In contrast, the FB representation (Touati & Ollivier, 2021; Pirotta et al., 2023; Touati et al., 2023;
Jeen et al., 2024) learns a pair of representations of the environment dynamics in a reward-free phase.
These representations, denoted as F andB, summarize the successor dynamics of all possible policies
in latent space. This enables efficient generalization across arbitrary reward functions, including those
defined after training, and supports expressive policy composition beyond goal-conditioned methods.
To address the inherent challenges of reward-free learning, Sun et al. (2025) proposed an exploration
strategy that improves training stability and overall performance. Additionally, Tirinzoni et al. (2025)
incorporated demonstrations to guide training and demonstrated that FB-derived embeddings can
generalize across a wide range of complex physical tasks, achieving Zero-Shot whole-body humanoid
control with a single model.

Despite their success in learning task-generalizable representations, none of these works incorporates
generalization across varying cost budgets into the FB framework. That is, FB-based models support
adaptation to arbitrary reward functions, they overlook the constrained RL setting where policies must
also satisfy diverse budgetary requirements. Our work fills this gap by extending the FB framework
to constrained RL via an efficient latent-space primal-dual formulation.

3 PRELIMINARY

CONSTRAINED REINFORCEMENT LEARNING

Constrained RL seeks to learn policies that not only maximize cumulative reward but also sat-
isfy constraints on expected cumulative cost. Formally, given a constrained MDP defined by
(S,A, P, r, c, γ, ρ0), where r : S × A → R is a reward function and c : S × A → R+ is a
cost function, the Constrained RL objective is (Liu et al., 2021; Malik et al., 2021):

max
π

Es∼ρ0
[V π(s)] , subject to Es∼ρ0

[V π
c (s)] ≤ η, (1)

where V π(s) := Eπ [
∑∞

t=0 γ
tr(st, at) | s0 = s], and V π

c (s) is defined analogously for the cost. The
constraint threshold η ∈ R+ typically encodes safety or resource limits.
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This formulation is commonly addressed via Lagrangian duality, a standard technique in constrained
optimization (Liu et al., 2020; Chow et al., 2018). Introducing a Lagrange multiplier λ ≥ 0, the
associated Lagrangian is given by:

L(π, λ) = Es∼ρ0 [V
π(s)− λ (V π

c (s)− η)] . (2)
The resulting optimization is expressed as the following saddle-point problem:

min
π

max
λ≥0

−L(π, λ). (3)

FORWARD-BACKWARD REPRESENTATIONS AS POLICY ENCODERS

Let M = ⟨S,A, P, γ⟩ denote a reward-free MDP, where S and A are the state and action spaces,
P (ds′ | s, a) defines the transition dynamics, and γ ∈ [0, 1) is the discount factor. Given an initial
state-action pair (s0, a0), the successor measure of a policy π is defined as:

Mπ(s0, a0, X) :=

∞∑
t=0

γt Pr((st, at) ∈ X | s0, a0, π), ∀X ⊆ S ×A. (4)

This quantity describes the discounted visitation frequency over the trajectory induced by π, and
serves as the foundational object approximated in the FB framework. The central insight in the FB
approach is that the optimal Q-function for any reward r : S × A → R can be expressed using a
latent representation. Specifically, the FB representation comprises two learnable functions (Touati &
Ollivier, 2021; Pirotta et al., 2023; Touati et al., 2023; Jeen et al., 2024; Sun et al., 2025; Tirinzoni
et al., 2025):

F : S ×A× Rd → Rd, B : S ×A → Rd,
which approximate the decomposition of the successor measure. In the standard RL setting,
the optimal Q-function can be expressed as Q∗

r = Mr, where M denotes the successor opera-
tor. The FB representation approximates this by factorizing M ≈ FB, such that: Q∗

r(s, a) ≈(
F (s, a, ·)B(·)⊤

)
r. Given this factorization, we define the latent encoding of the reward function r

as zr := E(s,a)∼ρ[r(s, a)B(s, a)], so that the FB model yields the following approximation:

Q∗
r(s, a) ≈ F (s, a, zr)⊤zr, πzr (s) = argmax

a
F (s, a, zr)

⊤zr. (5)

This structure provides a direct mapping from any reward function to a corresponding policy via a
latent vector zr, eliminating the need for planning or iterative optimization at test time.

ZERO-SHOT ADAPTATION FROM REWARD AND COST EMBEDDINGS

Once the forward and backward models have been pretrained, the FB agent performs zero-shot
adaptation by constructing the latent task vector: zr = E(s,a)∼ρ[r(s, a)B(s, a)], which can be
estimated from a small number of reward-labeled transitions or computed analytically if r is known.
The resulting policy, πzr (s) = argmaxa F (s, a, zr)

⊤zr, is then deployed directly without further
learning or fine-tuning. However, many real-world applications demand that agents operate under
explicit constraints, such as staying within a safety budget or limiting energy consumption. To address
this, one might analogously define a cost embedding vector: zc = E(s,a)∼ρ[c(s, a)B(s, a)], where
c(s, a) is a task-specific cost function. Touati & Ollivier (2021) suggested incorporating constraints
by modifying the latent vector to z = zr − zc, thereby combining reward and cost into a single
direction in the latent space. While this approach is simple, it imposes a fixed trade-off between
reward and cost. Crucially, it fails to accommodate task-dependent constraints, such as different users
or environments specifying distinct cost budgets η.

4 EXTENDING ZERO-SHOT RL TO CONSTRAINED SETTINGS: PROMISE AND
PITFALLS

Zero-shot RL offers a promising alternative by enabling agents to generalize to new reward functions
without additional training. This raises a natural question: Can zero-shot RL be extended to con-
strained settings to enable zero-shot adaptation across varying cost budgets? While such an extension
appears theoretically plausible, particularly through formulations based on primal-dual optimization,
we demonstrate in Section 4.2 that it struggles in practice due to issues in constraint estimation,
enforcement fidelity, and optimization stability.
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4.1 THEORETICAL EXTENSION OF FB TO CONSTRAINED RL

To enable the FB framework to generalize across different cost budgets, we aim to construct a
representation that supports direct, zero-shot policy inference in tasks governed by both reward
maximization and cost budget constraints. Specifically, we define a forward encoder that takes as
input the reward and cost latent vectors as well as the cost budget η:

F : S ×A× Rd × Rd × R→ Rd, B : S ×A → Rd,

where F is conditioned on task-specific latent vectors and the constraint level η, while B provides a
shared, task-independent encoding of state-action pairs.

Given a reward function r and a cost function c, their respective latent embeddings are defined as:

zr := E(s,a)∼ρ[r(s, a)B(s, a)], zc := E(s,a)∼ρ[c(s, a)B(s, a)], (6)

where ρ denotes a fixed state-action distribution used during the reward-free pretraining phase. We
then approximate the Q-functions and corresponding constrained policies as:

Q∗
r(s, a) ≈ F (s, a, zr, zc, η)⊤zr, subject to F (s, a, zr, zc, η)

⊤zc ≤ η, (7)

πzr,zc,η(s) = argmax
a

F (s, a, zr, zc, η)
⊤zr, subject to F (s, a, zr, zc, η)

⊤zc ≤ η. (8)

This formulation allows zero-shot deployment in unseen constrained tasks by estimating the latent
vectors zr and zc, and computing the policy πzr,zc,η through a single forward pass. This avoids
the need for online constraint-sensitive optimization at deployment time. The overall constrained
optimization objective becomes:

max
π

Es∼ρ0

[
F (s, π(s), zr, zc, η)

⊤zr
]
, subject to Es∼ρ0

[
F (s, π(s), zr, zc, η)

⊤zc
]
≤ η. (9)

Using Lagrangian relaxation, we convert the problem into a min-max saddle-point formulation:

min
λ≥0

max
π

Es∼ρ0

[
F (s, π(s), zr, zc, η)

⊤zr − λ(zr, zc, η)
(
F (s, π(s), zr, zc, η)

⊤zc − η
)]
. (10)

The Lagrangian objective enables us to train a zero-shot constrained RL agent using the FB frame-
work, allowing efficient policy inference that satisfies cost constraints without further environment
interaction.
Theorem 4.1 (Constrained RL Representations Encode All Optimal Policies). Let (F,B, πzr,zc,η)
be a constrained RL representation of a reward-free MDP with respect to ρ. For any bounded reward
function r and cost function c, define:

zR :=

∫
r(s, a)B(s, a)ρ(ds, da), zC :=

∫
c(s, a)B(s, a)ρ(ds, da). (11)

Then the policy πzR,zC ,η is an optimal constrained policy, and the associated Q-function is given by:

Q∗(s, a) = F (s, a, zR, zC , η)
⊤zR − λ(zR, zC , η) · F (s, a, zR, zC , η)⊤zC .

4.2 ZERO-SHOT CONSTRAINED RL FAILS IN PRACTICE

The preceding results demonstrate that the FB framework, when extended to embed both rewards and
constraints, is theoretically capable of representing the optimal solution to any bounded constrained
RL problem. However, although the constrained RL representation described in Section 4.1 is
sufficiently expressive to encode optimal policies, this formulation may not lead to reliable zero-shot
constrained learning in practice. In particular, it suffers from several key limitations, including
instability in optimization, weak constraint enforcement, and approximation error.

Limitation 1. Instability and Conservativeness of Primal-Dual Training. Jointly optimizing the
policy π and the dual variable λ using alternating updates introduces optimization instability (Achiam
et al., 2017; Chow et al., 2018) and high sample complexity (Mondal & Aggarwal, 2024; Gu et al.,
2024a; Le et al., 2019; Stooke et al., 2020). Even when the value estimates are accurate, the updates
to λ may oscillate or converge slowly. Moreover, such methods tend to produce overly conservative
policies that aim to satisfy constraints across all possible latent conditions z, even when constraints
are rarely activated.
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Limitation 2. Discounted Values Obscure True Constraint Violation. In practice, value functions
typically estimate cumulative discounted costs Cz := Eπz

[
∑∞

t=0 γ
tc(st, at)] (Tessler et al., 2018;

Achiam et al., 2017; Altman, 1999). However, satisfying the constraint Cz ≤ η under discounting
does not imply that the true cumulative cost

∑T
t=0 c(st, at) respects the same limit (Geibel, 2006).

This mismatch renders discounted estimates unreliable for enforcing hard constraints.

Limitation 3. Function Approximation Error Compromises Safety. In most practical settings,
value functions V π and V π

c are approximated using neural networks. Let Ĉz be the approximated
expected cost: Ĉz = Es∼ρ0

[V̂ π
c (s)] (Zhang et al., 2024; Saglam et al., 2021). Hence Ĉz ≤ η does not

mean Cz ≤ η. This undermines the reliability of zero-shot adaptation under strict safety conditions.

The challenges mentioned above reveal that, while zero-shot constrained RL is theoretically feasible,
its practical realization is hindered by issues in cost estimation, constraint fidelity, and optimization
instability. This motivates our proposed alternative: an efficient approach that exploits latent structure
while allowing adaptive constraint satisfaction through limited interaction.

5 DUALITY-DRIVEN ADAPTATION WITHOUT RETRAINING

To overcome the challenges of zero-shot constrained RL, we leverage the expressiveness of the
unconstrained FB latent representation to enable efficient and reliable constraint satisfaction. Our
key insight is to reduce the complexity of the primal-dual constrained optimization problem by
reformulating it as a simpler latent-space search, requiring only minimal online calibration.

5.1 LATENT-SPACE SIMPLIFICATION VIA PRIMAL-DUAL REPARAMETERIZATION

In Section 4.1, the formulation addresses the constrained problem by jointly updating the models F
and B, policy π, and Lagrange multiplier λ. However, it suffers from optimization instability due to
the simultaneous updates. To address this, we revisit the standard Lagrangian relaxation approach
and introduce a novel reformulation. Let us consider the following constrained optimization problem:

max
π

E

[ ∞∑
t=0

γtR(st, π(st))

]
s.t. E

[ ∞∑
t=0

γt C(st, π(st))

]
≤ η. (12)

This problem can be equivalently formulated as a dual optimization problem:

min
λ≥0

[
max
π

E

[ ∞∑
t=0

γt (R(st, π(st))− λC(st, π(st)))

]
+ λ η

]
, (13)

where λ ≥ 0 is the Lagrange multiplier associated with the cost constraint.

While solving the min-max problem in Eq. equation 13 typically requires joint optimization over
policies and multipliers, we offer the key insight that enable a more efficient solution.

Reward Reparameterization. For any fixed λ, solving the constrained problem is equivalent to
solving an unconstrained RL problem with a modified reward:

Rλ(s, a) := R(s, a)− λC(s, a). (14)

Key Insight: Leveraging Optimal Policies through Pretrained FB. According to Theorem 2 in
Touati & Ollivier (2021), the FB framework is capable of representing optimal policies for arbitrary
reward functions. This implies that, for each value of λ, we can obtain the corresponding optimal
policy π∗

zλ
without retraining. Unlike conventional constrained RL settings, where neither the optimal

policy nor the optimal Lagrange multiplier is known in advance and must be jointly optimized, our
approach benefits from having access to the entire family of optimal policies indexed by λ. As a
result, the constrained optimization problem, originally requiring simultaneous optimization
over both policy and multiplier, is reduced to a much simpler task: identifying the optimal
Lagrange multiplier λ ∈ R+ that satisfies the cost constraint.

The insight enables us to leverage the FB model pretrained without considering cost budgets, denoted
by F̄ , B̄, π̄, for constraint-aware policy inference. In particular, the latent representation associated

6
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with the modified reward Rλ becomes: zλ = E(s,a)∼ρ

[
Rλ(s, a)B̄(s, a)

]
= zr − λzc, where zr and

zc are the latent embeddings of the reward and cost, respectively.

Given this reparameterization, we approximate the action-value functions of the policy π̄zλ as:

Q
π̄zλ
r (s, a) ≈ F̄ (s, a, zλ)⊤zr, Q

π̄zλ
c (s, a) ≈ F̄ (s, a, zλ)⊤zc. (15)

This formulation enables us to reduce constrained policy inference to the task of selecting an
appropriate λ ∈ R+, allowing for efficient and scalable adaptation without retraining.

5.2 LATENT-SPACE LAGRANGIAN MULTIPLIER SEARCH

Building on the latent-space formulation in Section 5.1, we now describe how to efficiently search for
the appropriate Lagrange multiplier λ that ensures constraint satisfaction. As we vary λ, the expected
cost F̄⊤zc changes. This allows us to apply a bisection method to identify the appropriate λ such
that the induced policy satisfies the constraint threshold η. Specifically, we iteratively adjust λ by
observing whether the predicted surrogate cost F̄⊤zc is above or below the constraint η, and update λ
accordingly. This avoids the need for full optimization and provides a simple yet effective mechanism
for constraint-aware adaptation (Algorithm 1 in Appendix).

5.3 ONLINE CALIBRATION

While the surrogate cost F̄⊤zc provides an efficient approximation, it may differ from the true
cumulative cost incurred during real-world execution (see Limitations 2 and 3 in Section 4.2). To
bridge this gap, we introduce a surrogate budget η′, representing that when F̄⊤zc ≤ η′, the actual
environmental cost Creal satisfies the real constraint η. The gap between the surrogate cost and the
actual cost can be seen in Table 1.

η′ = 100 η′ = 0 η′ = -100 η′ = -200
Creal F̄⊤zc Creal F̄⊤zc Creal F̄⊤zc Creal F̄⊤zc

stand 457 -23 457 -23 269 -99 118 -199
run 391 28 296 -0.3 159 -100 69 -199

walk 296 53 253 -0.4 134 -100 11 -200
Flip 421 16 411 -0.3 404 -99 124 -200

Table 1: This table reports the actual environmental cost observed across tasks when the surrogate
budget η′ is used as the constraint threshold. It highlights the discrepancy between the surrogate cost,
F̄⊤zc, and the true cumulative cost Creal incurred during evaluation. Notably, when F⊤zc ≪ η′, the
constraint is inherently satisfied, resulting in a Lagrange multiplier λ = 0; that is, no additional cost
penalty is needed to meet the constraint.

We propose an efficient calibration strategy that operates under a total online sampling budget of
T × n episodes. In each iteration t = 1, . . . , T , we first use a bisection search to find a latent vector
zλ such that the surrogate cost F̄⊤zc ≈ η′. We then evaluate the resulting policy π̄zλ by deploying
it for n episodes and measuring the average realized cost: C̄(t)

real =
1
n

∑n
i=1 C

(t)
i . Based on whether

C̄
(t)
real is greater or smaller than the desired budget η, we adjust the surrogate threshold η′ accordingly.

This feedback loop continues until the sampling budget is exhausted. After all T iterations, we select
the λ that yields an empirical cost closest to the target constraint. This procedure is formalized in
Algorithm 2, provided in the Appendix.

Remark 5.1 (Optional Statistical Guarantee via Hoeffding). In this work, we limit the number of
online samples to ensure calibration efficiency. However, if statistical guarantees are desired, one
can incorporate Hoeffding’s inequality to determine whether the observed cost is sufficiently close
to the expected cost with high confidence. Let C1, . . . , Cn be the costs observed in n episodes of
executing a fixed policy. Assuming each cost is bounded in [0, Cmax], the empirical average satisfies:

|C̄real − E[Creal]| ≤ ϵ, where ϵ := Cmax

√
log(2/δ)

2n
,
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with probability at least 1 − δ. This bound can be used as a confidence-aware stopping rule for
selecting λ, complementing our fixed-budget approach. This procedure is formalized in Algorithm 3,
provided in the Appendix.

5.4 IMPLEMENTATION DETAILS

Our approach enables the use of an unconstrained FB model to satisfy constraints without requiring
any retraining. Specifically, we utilize the FB model introduced by Jeen et al. (2024). To obtain
the pretrained model, we adhere strictly to their original network architecture and hyperparameter
settings, without introducing any additional loss functions, auxiliary networks, or hyperparameter
tuning beyond what is necessary for FB pretraining.

The bisection-based solver operates entirely in the latent space and is executed post hoc using a small
number of cost evaluations in the target environment, ensuring both computational efficiency and
reproducibility. For online calibration, we use a sample budget of T = 30 iterations with n = 1
episode per iteration, and 1000 transitions per episode, resulting in a total of 30K online samples.

6 EVALUATIONS

6.1 BASELINES AND EXPERIMENT SETUP

To the best of our knowledge, constrained policy adaptation has not been systematically explored
within the Zero-Shot RL framework. To evaluate our approach, we compare it against three variants of
the FB framework: FB (Touati & Ollivier, 2021), FB(zr−zc), and FB (Primal-dual). The standard FB
baseline considers only reward representations. FB(zr − zc) implements the latent vector subtraction
method proposed by Touati & Ollivier (2021), where the combined latent representation is defined
as z = zr − zc. CRL_FB refers to our implementation of the primal-dual approach described in
Section 4.1. All models were pretrained using the publicly available codebase from Jeen et al. (2024).
Note that the models of FB, FB(zr − zc), and our method were identical in the comparison. The three
methods differ only in the input representations.

We conducted experiments using the ExORL benchmark datasets (Yarats et al., 2022), which comprise
data collected by unsupervised exploratory algorithms on the DeepMind Control Suite (Tassa et al.,
2018). Following prior work (Touati et al., 2023; Jeen et al., 2024), we selected three representative
domains: Walker, Quadruped, and Maze. These encompass two locomotion tasks and one goal-
reaching task. Within each domain, we evaluated performance across all tasks provided in the
DeepMind Control Suite, totaling 13 tasks. To pretrain the FB models, we use datasets collected via
Random Network Distillation (RND) (Burda et al., 2019), along with an additional 1 million online
samples, resulting in a total of 2 million training samples. This setup aligns with the total sample
budget used in Sun et al. (2025). To incorporate safety considerations, we adopted the velocity-based
safety constraint setting as described in Gu et al. (2024a). All experiments were repeated five times
to ensure statistical robustness, and all models are trained on NVIDIA RTX 4090 GPUs (more
experiment settings are listed in Appendix A.3).

6.2 RESULTS

Table 2 summarizes the performance and cost metrics, averaged over five random seeds, under
a budget constraint of 100. Notably, FB(zr − zc) does not consider the budget during policy
inference, limiting its ability to adapt to varying budget levels. CRL_FB, while capable of zero-shot
generalization to different constraints, tends to be overly conservative due to the need to satisfy
all potential constraint scenarios, leading to suboptimal performance. In contrast, by leveraging a
targeted search over the Lagrange multiplier λ, our method can effectively utilize the available budget
and achieve superior task performance.

While both CRL_FB and our method are constraint-aware, our approach offers significant advantages.
Specifically, it leverages the standard FB model pretrained without considering constraints, thereby
avoiding the stability issues associated with joint optimization. Although both FB and CRL_FB are
trained using 2 million samples, CRL_FB requires simultaneous optimization over reward and cost

8
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representations, which leads to substantially longer training times (18 hours vs. 40 hours) and often
results in overly conservative behaviors that hinder task performance.

Our method includes a lightweight online calibration step, which uses an additional 30K samples for
adjusting the surrogate budget η′. Since this step does not modify the parameters of the forward or
backward models (F and B), it can be completed within a few minutes. Importantly, since surrogate
cost estimates can deviate from actual costs due to discounting factors and approximation errors, all
baselines require such calibration to reliably satisfy real-world constraints.

Environment FB FB (zr - zc) CRL_FB Ours
Walker Performance Cost Performance Cost Performance Cost Performance Cost

stand 799±33 427±227 433±169 68±36 125±20 0±0 672±196 82±10
walk 531±117 327±143 90±57 45±79 21±4 0±0 204±154 70±24
run 215±41 412±136 50±28 28±28 20±2 0±0 136±64 94±4
Flip 403±46 360±40 135±155 83±151 21±1 0±0 317±105 75±23

Quadruped
Stand 795±122 366±236 187±187 15±18 246±187 0.44±0.93 737±419 89±7
Roll 805±85 479±305 167±113 19±17 157±113 0.44±0.93 761±153 81±16

Roll Fast 484±60 463±290 123±83 28±37 128±96 0.44±0.94 427±255 65±33
Jump 628±80 404±258 161±122 69±75 181±136 0.45±0.93 542±329 91±8

Escape 69±12 433±262 9±14 65±112 5±4 0.43±0.95 41±33 73±25
Maze

Top Left 933±23 85±35 41±60 245±125 17±22 0±0 710±463 80±14
Top Right 129±258 122±137 0±0 242±247 0±0 0±0 125±251 66±8

Bottom Left 20±41 106±114 1±1 732±404 0±0 0±0 0±0 62±22
Bottom Right 0±0 92±72 0±0 99±107 0±0 0±0 0±0 86±7

Table 2: Performance and cost comparison across 13 ExORL tasks under a cost budget of 100. Our
method consistently achieves strong performance while adhering to the constraint, outperforming
prior FB-based approaches. Since the budget is fixed at 100, the objective is not to minimize cost
arbitrarily, but rather to utilize it as effectively as possible, ideally approaching the budget
without exceeding it.

6.3 ABLATION STUDIES

To further evaluate the effectiveness of our proposed method, we conducted ablation studies under
varying cost budgets and statistical guarantee via Hoeffding Bound. These experiments are essential
for providing deeper insights into the behavior of our approach, elucidating its strengths, and
identifying areas for potential improvement. Through this analysis, we aim to demonstrate the
adaptability of our method and validate its applicability across a wide range of safe RL scenarios.
Due to space limitations, detailed results and discussion of the ablation studies are presented in
Appendix A.4.

7 CONCLUSIONS

We have introduced a novel extension of the FB representation framework to the constrained RL
setting, enabling zero-shot adaptation to tasks specified by both reward functions and cost constraints.
By embedding both rewards and constraints into a shared latent space and formulating policy
inference as a latent-space optimization problem, our method allows for efficient adaptation without
retraining. This approach bridges the gap between zero-shot RL and constrained RL, offering a unified
framework for safe and flexible policy deployment in dynamic environments. Through comprehensive
experiments on the ExORL benchmark, we demonstrate that our method consistently satisfies cost
budgets while achieving strong task performance, significantly outperforming existing FB-based
and primal-dual constrained RL baselines. These results highlight the potential of latent-space
representations for scalable and constraint-aware generalization in reinforcement learning.
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A APPENDIX

A.1 ALGORITHMS

Algorithm 1 Bisection Search for Lagrange Multiplier λ
1: Input: reward embedding zr, cost embedding zc, constraint threshold η, tolerance ϵ
2: Initialize λmin ← 0, λmax ← Λ (a large enough upper bound)
3: while λmax − λmin > ϵ do
4: λ← (λmin + λmax)/2
5: zλ ← zr − λzc
6: Compute surrogate cost estimate: Ĉλ ← F⊤zc
7: if Ĉλ > η then
8: λmin ← λ
9: else

10: λmax ← λ
11: end if
12: end while
13: return λ, zλ, πzλ

Algorithm 2 Efficient Constrained RL via Latent Calibration and Online Evaluation
1: Given: Budget η, pre-trained FB model with F,B, total online sampling budget T × n, cost

bound Cmax

2: Initialize λ← random, η′ ← η
3: Initialize history bufferH ← ∅
4: for t = 1 to T do
5: repeat
6: Compute zλ ← zr − λzc
7: Evaluate latent cost estimate: Ĉlatent ← Es∼ρ0 [F

⊤zc]

8: if Ĉlatent > η′ then
9: Increase λ

10: else if Ĉlatent < η′ then
11: Decrease λ
12: end if
13: until Ĉlatent < η′ − ϵlatent

14: Deploy πzλ for n episodes and collect costs {C(t)
i }ni=1

15: Compute empirical average C̄(t)
real =

1
n

∑n
i=1 C

(t)
i

16: Store (λ, C̄
(t)
real) inH

17: if C̄(t)
real > η then

18: Decrease η′

19: else if C̄(t)
real < η then

20: Increase η′
21: end if
22: end for
23: Select (λ∗, C̄∗) ∈ H such that |C̄∗ − η| is minimized and C̄∗ < η
24: return Calibrated zλ∗ , policy πzλ∗
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Algorithm 3 Efficient Constrained RL via Latent Calibration and Hoeffding Bound
1: Given: Budget η, pre-trained FB model with F,B, confidence level δ, cost bound Cmax

2: Initialize λ← random, η′ ← η, number of episodes n← 0
3: repeat
4: repeat
5: Compute zλ ← zr − λzc
6: Evaluate latent cost estimate: Ĉlatent ← Es∼ρ0

[F⊤zc]

7: if Ĉlatent > η′ then
8: Increase λ
9: else if Ĉlatent < η′ then

10: Decrease λ
11: end if
12: until Ĉlatent < η′ − ϵlatent
13: Deploy πzλ for n episodes and collect costs {Ci}ni=1

14: Compute empirical average C̄real =
1
n

∑n
i=1 Ci

15: Compute Hoeffding bound: ϵ← Cmax

√
log(2/δ)

2n

16: if C̄real > η + ϵ then
17: Decrease η′
18: else if C̄real < η − ϵ then
19: Increase η′
20: end if
21: until C̄real ≤ η − ϵ
22: return Calibrated zλ, policy πzλ

A.2 PROOF OF THEOREM 4.1

Proof. Following the proof structure for the unconstrained FB representation in Touati & Ollivier
(2021), we use an extended model of the successor state distribution. Specifically, we approximate
the goal-conditioned occupancy measure mπ(s, a, g) using a bilinear component plus a residual:

mπ(s, a, g) = F (s, a, zR, zC , η)
⊤B(g) + m̄(s, zR, zC , η, g),

where F and B are learnable encoders, and m̄ is an action-independent residual that captures parts of
the occupancy measure not modeled by the rank-limited term F⊤B. This residual term enables a
more expressive approximation while restricting only the advantage component to be low-rank.

Let r(s, a) and c(s, a) be any bounded functions. Define their latent embeddings:

zR :=

∫
r(s, a)B(s, a) ρ(ds, da), zC :=

∫
c(s, a)B(s, a) ρ(ds, da).

We consider a linear combination in the latent space using Lagrangian relaxation:

zλ := zR − λ(zR, zC , η) zC , λ(zR, zC , η) ≥ 0.

For any policy π, let mπ(s, a, g) denote the state-action-goal occupancy density, with g = φ(s, a)
and g ∼ ρ. Then the FB representation yields:

mπ(s, a, g) = F (s, a, zR, zC , η)
⊤B(g) + m̄(s, zR, zC , η, g).

Define the surrogate reward rλ(g) := r(g) − λ(zR, zC , η) c(g). Then the Q-function under this
surrogate becomes:

Qπ(s, a) =

∫
rλ(g)m

π(s, a, g) ρ(dg)

=

∫
[r(g)− λ(zR, zC , η) c(g)]

[
F (s, a, zR, zC , η)

⊤B(g) + m̄(s, zR, zC , η, g)
]
ρ(dg)

= F (s, a, zR, zC , η)
⊤
∫

[r(g)− λ(zR, zC , η) c(g)]B(g) ρ(dg) +

∫
rλ(g) m̄(s, zR, zC , η, g) ρ(dg)

= F (s, a, zR, zC , η)
⊤zλ + V̄ zλ(s),

14
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where V̄ zλ(s) absorbs the residual term independent of a. The corresponding residual value function
is defined as:

V̄ zλ(s) :=

∫
m̄(s, zR, zC , η, g) rλ(g) ρ(dg),

which vanishes when m̄ = 0.

Define the policy:
πzλ,η(s) := argmax

a
F (s, a, zR, zC , η)

⊤zλ.

Then, since V̄ zλ(s) is constant in a, this policy maximizes the Q-function.

By strong duality in constrained MDPs, there exists λ∗ = λ(zR, zC , η) ≥ 0 such that the policy
πzλ∗ ,η satisfies the constraint:

Es∼ρ0

[
F (s, πzλ∗ ,η(s), zR, zC , η)

⊤zC
]
= η.

Thus, the policy πzλ∗ ,η is optimal for the original constrained problem. Hence, the latent embedding
and FB representation encode all optimal constrained policies.

A.3 EXPERIMENT SETTINGS

A.3.1 EXORL DOMAINS

Walker. This environment involves a two-legged robot that must perform locomotion starting
from a bent-knee position. The state and action spaces are 24- and 6-dimensional, respectively,
encompassing joint torques, velocities, and positions. The ExORL benchmark defines four tasks for
this domain: stand, walk, run, and flip. The stand task incentivizes an upright posture with
extended legs, while walk and run build upon this by additionally rewarding forward motion, with
run placing greater emphasis on speed. The flip task encourages angular motion of the torso after
standing. All tasks provide dense reward signals.

Quadruped. This environment features a four-legged robot required to perform locomotion inside
a 3D maze. The state space is 78-dimensional and the action space is 12-dimensional, consisting of
joint torques, velocities, and positions. ExORL provides five tasks: stand, roll, roll fast,
jump, and escape. The stand task rewards a minimum torso height and straightened legs. The
roll and roll fast tasks involve flipping from a back position, with the latter emphasizing
speed. The jump task encourages vertical displacement, and the escape task requires the agent to
navigate out of the maze. Rewards are dense across all tasks.

Maze. This domain consists of a 2D environment divided into four rooms, where the agent must
move a point-mass to a designated goal room. The state space is 4-dimensional (positions and
velocities in x and y), and the action space is 2-dimensional (forces in x and y). ExORL defines four
goal-reaching tasks: top left, top right, bottom left, and bottom right. The mass
is initialized in the top-left room, and the agent receives a sparse reward that is only provided when it
is sufficiently close to the specified goal.

A.3.2 HYPERPARAMETERS

See Table 3.

A.4 ABLATION STUDY

A.4.1 VARIOUS COST BUDGETS

To evaluate whether our method can handle varying cost budgets, we conducted experiments with
budget levels set to 150, 100, and 50. As shown in Table 4, our method successfully produces feasible
solutions across all budget settings. Moreover, we observe that higher budget thresholds generally
lead to improved task performance.
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Hyperparameter Value
Latent dimension d 50 (100 for maze)
F / ψ dimensions (1024, 1024)
B / φ dimensions (256, 256, 256)
Preprocessor dimensions (1024, 1024)
Std. deviation for policy smoothing σ 0.2
Truncation level for policy smoothing 0.3
Learning steps 1,000,000
Batch size 512
Optimiser Adam Kingma & Ba (2015)
Learning rate 0.0001
Discount γ 0.98 (0.99 for maze)
Activations (unless otherwise stated) ReLU
Target network Polyak smoothing coefficient 0.01

Table 3: Hyperparameters used in all experiments. The settings follow those used in (Jeen et al.,
2024).

Different cost budget Cost Budget = 150 Cost Budget = 100 Cost Budget = 50

Performance Cost Performance Cost Performance Cost
Walker target  ≤  150 target ≤ 100 target  ≤ 50

stand 713±116 132±17 672±196 82±10 604±194 40±6
run 331±149 124±19 204±154 70±24 184±153 22±15

walk 146±12 139±12 136±64 94±4 131±34 30±16
Flip 325±91 123±15 317±105 75±23 204±130 37±13

Quadruped
Stand 734±320 135±25 737±419 89±7 400±447 36±12
Roll 762±216 114±24 761±153 81±16 177±69 17±13

Roll Fast 447±116 119±20 427±255 65±33 353±252 30±21
Jump 624±259 122±10 542±329 91±8 179±103 11±16

Escape 35±32 107±36 41±33 73±25 25±17 33±17
Maze

Top Left 900±450 138±6 710±463 80±14 411±379 35±9
Top Right 128±256 140±8 125±251 66±8 101±203 32±21

Bottom Left 0±0 126±21 0±0 62±22 0±0 34±23
Bottom Right 0±0 124±13 0±0 86±7 0±0 45±2

Table 4: Performance and cost comparison across 13 ExORL tasks under various budget requirements.
The objective is not to minimize cost arbitrarily, but rather to utilize it as effectively as possible,
ideally approaching the budget without exceeding it. Our method is capable of satisfying varying
budget requirements.

A.4.2 STATSTICAL GUARANTEE VIA HOEFFDING BOUND

In Algorithm 3, we set ϵlatent = 0, which means that the full online sample budget is used to search
for the best surrogate threshold η′ and Lagrange multiplier λ. Alternatively, ϵlatent can be determined
using the Hoeffding inequality (van de Geer, 2002; Liu et al., 2025), which guarantees that the
constraint will be satisfied with probability at least 1− δ if

ϵ← Cmax

√
log(2/δ)

2n
.
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This statistically grounded variant of the algorithm is detailed in Algorithm 3. It aims to provide
formal guarantees by setting the threshold using Cmax, which results in a relatively large ϵ. As
a consequence, even policies with costs significantly below the budget can satisfy the constraint,
since lower costs make the statistical guarantee easier to achieve. This leads to a more conservative
solution that may not fully utilize the available cost budget. Nevertheless, this approach is particularly
well-suited for risk-averse users who prioritize reliability over aggressive cost utilization. The
corresponding results are shown in Table 5.

Ours Ours +
Environment W/O Hoeffding Hoeffding δ= 0.05

Walker Performance Cost Performance Cost
stand 672±196 82±10 581±219 36±43
run 204±154 70±24 207±211 41±43

walk 136±64 94±4 126±77 53±38
Flip 317±105 75±23 186±110 37±48

Quadruped
Stand 737±419 89±7 18±5 0±0
Roll 761±153 81±16 78±140 13±27

Roll Fast 427±255 65±33 38±48 21±41
Jump 542±329 91±8 18±15 0±0

Escape 41±33 73±25 3±3 16±26
Maze

Top Left 710±463 80±14 703±269 66±26
Top Right 125±251 66±8 125±250 12±27

Bottom Left 0±0 62±22 0±0 20±45
Bottom Right 0±0 86±7 0±0 39±45

Table 5: Performance and cost comparison across 13 ExORL tasks using the Hoeffding bound with
δ = 0.05 in Algorithm 3. Since the Hoeffding bound provides a statistical guarantee, the results
are more conservative compared to those in Table 2.
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