

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNCONSTRAINED MODELS AS CONSTRAINED PROBLEM SOLVERS: DUALITY-DRIVEN ADAPTATION WITHOUT RETRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

We present a novel extension of the forward-backward (FB) representation framework that enables zero-shot constrained reinforcement learning (RL) by embedding both reward and cost functions into a shared latent space. While existing FB methods excel in generalizing across rewards, they fail to account for constraints, a critical limitation in real-world applications where agents must satisfy varying cost budgets or safety requirements. Our approach overcomes this gap through a latent-space reparameterization grounded in Lagrangian duality, allowing efficient inference of constraint-aware policies without requiring any retraining at deployment. By leveraging a latent-space reparameterization grounded in Lagrangian duality, our method allows for efficient inference of constraint-aware policies. Extensive experiments on the ExORL benchmark demonstrate that our method achieves superior task performance while adhering to cost constraints, consistently outperforming prior FB-based and primal-dual baselines. These results highlight the effectiveness and practicality of latent-space constrained policy inference for scalable and safe RL.

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable success in domains such as games, robotics, and decision-making under uncertainty, but its adaptability to changing task specifications remains limited. When the reward function is modified, the policy often requires full retraining, even if the environment transition probabilities remain unchanged, which severely restricts scalability in dynamic real-world settings. To address this challenge, the paradigm of *Zero-Shot RL* (Dayan, 1993; Barreto et al., 2017; 2018) has been developed, aiming to train agents that can immediately adapt to new tasks defined by unseen reward functions without further environment interaction. A particularly promising approach is the *forward-backward (FB) representation framework* (Touati & Ollivier, 2021; Touati et al., 2023; Pirotta et al., 2023; Jeen et al., 2024), where the agent learns a reward-agnostic representation of the environment during pretraining and, at test time, computes a latent vector for a given reward function to directly recover the corresponding optimal policy. This framework enables efficient and scalable adaptation to unseen tasks.

On the other hand, many real-world RL applications require agents to optimize performance while satisfying safety, budget, and risk constraints, making constraint handling a critical requirement for deployment (Altman, 1999; Achiam et al., 2017). Violations can be catastrophic in safety-critical settings such as robotics or autonomous driving (Brunke et al., 2022; Shi et al., 2023), and in resource-limited domains exceeding a budget can invalidate a solution regardless of reward (Bhatia et al., 2019; Wang et al., 2023). In practice, constraints are often formalized as cost functions with certain budgets, and the objective is to maximize expected reward while keeping the cumulative costs below the thresholds (Ghosh et al., 2022; 2024).

While FB generalizes well across rewards, enabling Zero-Shot adaptation, extensions to handle constraints are nontrivial. A seemingly natural FB-based surrogate, proposed by Touati & Ollivier (2021), subtracts cost embeddings from reward embeddings, thereby treating costs as negative rewards. However, this provides no guarantee to budget satisfaction since it does not prevent trading rare but high-cost violations for a higher expected reward. Moreover, a single weighted sum can not

adapt across tasks with different budgets, where different optimal trade-offs are required. As a result, it conflates feasibility with preference and fails to deliver the principled guarantees required for constrained RL.

A second line adopts *primal-dual optimization* for constrained RL. The idea is to build a Lagrangian that penalizes constraint violations via a Lagrange multiplier λ . The algorithm then alternates updates of the *primal variable* (the policy) and the *dual variable* λ , maximizing the Lagrangian with respect to the policy and adjusting λ to balance reward and cost satisfaction (Ding et al., 2021; Paternain et al., 2022). While a (near-)zero duality gap holds under mild conditions (Paternain et al., 2019), two practical issues occur: (i) the instability and conservativeness that arise during primal-dual training, and (ii) the use of discounted values that obscure whether the budgets are truly met in expectation.

In this paper, we argue that neither explicitly retraining an FB model with primal-dual machinery or folding costs into negative rewards is necessary to enforce budgets. The key insight is that the FB framework already encodes optimal policies across a broad spectrum of reward functions during pretraining. Thus, constrained RL can be reframed more simply: rather than learning both the policy and the multiplier, one only needs to identify the optimal λ that enforces the budget. In effect, FB reduces the constrained problem to *tuning* λ while reusing the pretrained policy family, enabling constraint enforcement that is both more efficient and more stable than standard primal-dual approaches.

We also highlight a practical challenge: the estimated cost in the model can differ from the actual cost due to the presence or absence of discount factors and various approximation errors. These discrepancies can lead to significant performance issues, especially when constraint thresholds are tight or the model’s latent representations are not highly accurate. To address this, we introduce a surrogate threshold, an adjusted version of the original cost limit, estimated from online samples, that is more reliable in the model’s latent space. By jointly tuning this surrogate threshold and the Lagrange multiplier through a few trial runs in the environment, we can effectively select a policy that satisfies the actual constraint while maintaining strong performance.

In Section 6, we evaluate our approach using the ExORL benchmark suite (Yarats et al., 2022), which is built on the DeepMind Control Suite (Tassa et al., 2018) and includes a diverse set of tasks spanning locomotion and goal-reaching domains. To measure constraint satisfaction, we introduce a velocity-based safety cost and systematically vary the constraint thresholds across experiments. Our results demonstrate that the proposed method delivers strong task performance while adhering to the specified cost budgets. Importantly, these outcomes are achieved using an FB model that was unaware of costs during pretraining. These findings highlight the effectiveness of our approach as a practical and scalable solution for constrained policy adaptation, showing that high-quality, constraint-aware policies can be recovered without the need for retraining.

2 RELATED WORK

2.1 CONSTRAINED REINFORCEMENT LEARNING

Constrained RL aims to train agents that maximize expected return while satisfying constraints on cumulative cost or risk signals. A classic formulation is the constrained Markov Decision Process (MDP) (Altman, 1999), which augments the RL objective with constraint functions and associated cost budgets. Numerous works have proposed approaches based on Lagrangian duality (Achiam et al., 2017; Tessler et al., 2018; Chow et al., 2019; Yang et al., 2020; Ding et al., 2021; Paternain et al., 2022), wherein a dual variable (Lagrange multiplier) is updated alongside the policy to enforce constraints. Lagrangian duality methods are theoretically well-founded: recent results establish that constrained RL problems exhibit *zero duality gap* under mild assumptions, ensuring that primal-dual methods can recover optimal constrained solutions (Paternain et al., 2019). However, despite these guarantees, such approaches face notable practical limitations.

One major challenge is *sample inefficiency*. Even recent advances using improved optimization schemes (Mondal & Aggarwal, 2024; Gu et al., 2024a) show that constrained RL typically requires 7-10 times more samples than unconstrained RL to reach comparable performance. This is partly due to the difficulty of balancing reward and cost gradients, which may conflict in practice and hinder stable policy learning (Xu et al., 2021; Gu et al., 2024a). To address this issue, Gu et al.

(2024a) proposed a dynamic sample manipulation strategy based on reward-cost gradient conflict to improve efficiency. However, even with adaptive sampling, constrained RL remains substantially more expensive.

Another critical limitation is the *lack of generalization*. Most constrained RL algorithms are trained for a fixed cost function and budget, and cannot generalize across different constraint specifications without retraining (Stooke et al., 2020; Xu et al., 2022; Brunke et al., 2022; Gu et al., 2024b). This inflexibility restricts their usability in real-world settings where agents must operate under evolving or task-dependent safety profiles.

Our work addresses these limitations by introducing a latent-space formulation that enables post-hoc adaptation to novel cost functions and budget thresholds. Specifically, we build upon the forward-backward representation framework from the Zero-Shot RL literature (Touati & Ollivier, 2021; Pirotta et al., 2023; Touati et al., 2023; Jeen et al., 2024), which is designed to generalize across unseen reward functions without further environment interaction. Leveraging the same reward-agnostic representations that make Zero-Shot adaptation possible, we extend the framework to incorporate constraints. This extension preserves the compositional and efficient adaptation properties of FB, allowing constrained policy optimization to be performed from a single model pretrained without explicitly considering constraints.

2.2 ZERO-SHOT REINFORCEMENT LEARNING

Zero-Shot RL aims to train agents that can adapt to new tasks without requiring further environment interaction. Classical approaches in Zero-Shot RL often assume that the reward for each task can be expressed as a linear combination of predefined feature functions (Barreto et al., 2018; 2017; Dayan, 1993), limiting their applicability to tasks with specific reward representations. These methods depend heavily on manually specified features, which are infeasible to scale to complex or continuous task spaces. On the other hand, although goal-conditioned value functions (Schaul et al., 2015; Andrychowicz et al., 2017) allow greater flexibility, they still require explicit specification of goal families during training and cannot adapt to novel reward compositions after training is completed.

In contrast, the FB representation (Touati & Ollivier, 2021; Pirotta et al., 2023; Touati et al., 2023; Jeen et al., 2024) learns a pair of representations of the environment dynamics in a reward-free phase. These representations, denoted as F and B , summarize the successor dynamics of all possible policies in latent space. This enables efficient generalization across arbitrary reward functions, including those defined after training, and supports expressive policy composition beyond goal-conditioned methods. To address the inherent challenges of reward-free learning, Sun et al. (2025) proposed an exploration strategy that improves training stability and overall performance. Additionally, Tirinzoni et al. (2025) incorporated demonstrations to guide training and demonstrated that FB-derived embeddings can generalize across a wide range of complex physical tasks, achieving Zero-Shot whole-body humanoid control with a single model.

Despite their success in learning task-generalizable representations, none of these works incorporates generalization across varying cost budgets into the FB framework. That is, FB-based models support adaptation to arbitrary reward functions, they overlook the constrained RL setting where policies must also satisfy diverse budgetary requirements. Our work fills this gap by extending the FB framework to constrained RL via an efficient latent-space primal-dual formulation.

3 PRELIMINARY

CONSTRAINED REINFORCEMENT LEARNING

Constrained RL seeks to learn policies that not only maximize cumulative reward but also satisfy constraints on expected cumulative cost. Formally, given a constrained MDP defined by $(\mathcal{S}, \mathcal{A}, P, r, c, \gamma, \rho_0)$, where $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is a reward function and $c : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}_+$ is a cost function, the Constrained RL objective is (Liu et al., 2021; Malik et al., 2021):

$$\max_{\pi} \mathbb{E}_{s \sim \rho_0} [V^\pi(s)], \quad \text{subject to} \quad \mathbb{E}_{s \sim \rho_0} [V_c^\pi(s)] \leq \eta, \quad (1)$$

where $V^\pi(s) := \mathbb{E}_\pi [\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_0 = s]$, and $V_c^\pi(s)$ is defined analogously for the cost. The constraint threshold $\eta \in \mathbb{R}_+$ typically encodes safety or resource limits.

162 This formulation is commonly addressed via Lagrangian duality, a standard technique in constrained
 163 optimization (Liu et al., 2020; Chow et al., 2018). Introducing a Lagrange multiplier $\lambda \geq 0$, the
 164 associated Lagrangian is given by:

$$165 \quad \mathcal{L}(\pi, \lambda) = \mathbb{E}_{s \sim \rho_0} [V^\pi(s) - \lambda (V_c^\pi(s) - \eta)]. \quad (2)$$

166 The resulting optimization is expressed as the following saddle-point problem:

$$167 \quad \min_{\pi} \max_{\lambda \geq 0} -\mathcal{L}(\pi, \lambda). \quad (3)$$

170 FORWARD-BACKWARD REPRESENTATIONS AS POLICY ENCODERS

172 Let $M = \langle \mathcal{S}, \mathcal{A}, P, \gamma \rangle$ denote a reward-free MDP, where \mathcal{S} and \mathcal{A} are the state and action spaces,
 173 $P(ds' | s, a)$ defines the transition dynamics, and $\gamma \in [0, 1]$ is the discount factor. Given an initial
 174 state-action pair (s_0, a_0) , the *successor measure* of a policy π is defined as:

$$175 \quad M^\pi(s_0, a_0, X) := \sum_{t=0}^{\infty} \gamma^t \Pr((s_t, a_t) \in X | s_0, a_0, \pi), \quad \forall X \subseteq \mathcal{S} \times \mathcal{A}. \quad (4)$$

177 This quantity describes the discounted visitation frequency over the trajectory induced by π , and
 178 serves as the foundational object approximated in the FB framework. The central insight in the FB
 179 approach is that the optimal Q-function for any reward $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ can be expressed using a
 180 latent representation. Specifically, the FB representation comprises two learnable functions (Touati &
 181 Ollivier, 2021; Pirotta et al., 2023; Touati et al., 2023; Jeen et al., 2024; Sun et al., 2025; Tirinzoni
 182 et al., 2025):

$$183 \quad F : \mathcal{S} \times \mathcal{A} \times \mathbb{R}^d \rightarrow \mathbb{R}^d, \quad B : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^d,$$

184 which approximate the decomposition of the successor measure. In the standard RL setting,
 185 the optimal Q-function can be expressed as $Q_r^* = Mr$, where M denotes the successor operator.
 186 The FB representation approximates this by factorizing $M \approx FB$, such that: $Q_r^*(s, a) \approx (F(s, a, \cdot)B(\cdot)^\top)r$. Given this factorization, we define the latent encoding of the reward function r
 187 as $z_r := \mathbb{E}_{(s,a) \sim \rho}[r(s, a)B(s, a)]$, so that the FB model yields the following approximation:
 188

$$189 \quad Q_r^*(s, a) \approx F(s, a, z_r)^\top z_r, \quad \pi_{z_r}(s) = \arg \max_a F(s, a, z_r)^\top z_r. \quad (5)$$

191 This structure provides a direct mapping from any reward function to a corresponding policy via a
 192 latent vector z_r , eliminating the need for planning or iterative optimization at test time.

194 ZERO-SHOT ADAPTATION FROM REWARD AND COST EMBEDDINGS

195 Once the forward and backward models have been pretrained, the FB agent performs zero-shot
 196 adaptation by constructing the latent task vector: $z_r = \mathbb{E}_{(s,a) \sim \rho}[r(s, a)B(s, a)]$, which can be
 197 estimated from a small number of reward-labeled transitions or computed analytically if r is known.
 198 The resulting policy, $\pi_{z_r}(s) = \arg \max_a F(s, a, z_r)^\top z_r$, is then deployed directly without further
 199 learning or fine-tuning. However, many real-world applications demand that agents operate under
 200 explicit constraints, such as staying within a safety budget or limiting energy consumption. To address
 201 this, one might analogously define a cost embedding vector: $z_c = \mathbb{E}_{(s,a) \sim \rho}[c(s, a)B(s, a)]$, where
 202 $c(s, a)$ is a task-specific cost function. Touati & Ollivier (2021) suggested incorporating constraints
 203 by modifying the latent vector to $z = z_r - z_c$, thereby combining reward and cost into a single
 204 direction in the latent space. While this approach is simple, it imposes a fixed trade-off between
 205 reward and cost. Crucially, it fails to accommodate task-dependent constraints, such as different users
 206 or environments specifying distinct cost budgets η .

208 4 EXTENDING ZERO-SHOT RL TO CONSTRAINED SETTINGS: PROMISE AND 209 PITFALLS

211 Zero-shot RL offers a promising alternative by enabling agents to generalize to new reward functions
 212 without additional training. This raises a natural question: Can zero-shot RL be extended to con-
 213 strained settings to enable zero-shot adaptation across varying cost budgets? While such an extension
 214 appears theoretically plausible, particularly through formulations based on primal-dual optimization,
 215 we demonstrate in Section 4.2 that it struggles in practice due to issues in constraint estimation,
 enforcement fidelity, and optimization stability.

216 4.1 THEORETICAL EXTENSION OF FB TO CONSTRAINED RL
217

218 To enable the FB framework to generalize across different cost budgets, we aim to construct a
219 representation that supports direct, zero-shot policy inference in tasks governed by both reward
220 maximization and cost budget constraints. Specifically, we define a forward encoder that takes as
221 input the reward and cost latent vectors as well as the cost budget η :

$$222 \quad F : \mathcal{S} \times \mathcal{A} \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R}^d, \quad B : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^d,$$

223 where F is conditioned on task-specific latent vectors and the constraint level η , while B provides a
224 shared, task-independent encoding of state-action pairs.
225

226 Given a reward function r and a cost function c , their respective latent embeddings are defined as:

$$227 \quad z_r := \mathbb{E}_{(s,a) \sim \rho} [r(s,a)B(s,a)], \quad z_c := \mathbb{E}_{(s,a) \sim \rho} [c(s,a)B(s,a)], \quad (6)$$

228 where ρ denotes a fixed state-action distribution used during the reward-free pretraining phase. We
229 then approximate the Q-functions and corresponding constrained policies as:
230

$$231 \quad Q_r^*(s,a) \approx F(s,a,z_r,z_c,\eta)^\top z_r, \quad \text{subject to} \quad F(s,a,z_r,z_c,\eta)^\top z_c \leq \eta, \quad (7)$$

$$232 \quad \pi_{z_r,z_c,\eta}(s) = \arg \max_a F(s,a,z_r,z_c,\eta)^\top z_r, \quad \text{subject to} \quad F(s,a,z_r,z_c,\eta)^\top z_c \leq \eta. \quad (8)$$

234 This formulation allows zero-shot deployment in unseen constrained tasks by estimating the latent
235 vectors z_r and z_c , and computing the policy $\pi_{z_r,z_c,\eta}$ through a single forward pass. This avoids
236 the need for online constraint-sensitive optimization at deployment time. The overall constrained
237 optimization objective becomes:

$$238 \quad \max_{\pi} \mathbb{E}_{s \sim \rho_0} [F(s, \pi(s), z_r, z_c, \eta)^\top z_r], \quad \text{subject to} \quad \mathbb{E}_{s \sim \rho_0} [F(s, \pi(s), z_r, z_c, \eta)^\top z_c] \leq \eta. \quad (9)$$

240 Using Lagrangian relaxation, we convert the problem into a min-max saddle-point formulation:

$$242 \quad \min_{\lambda \geq 0} \max_{\pi} \mathbb{E}_{s \sim \rho_0} [F(s, \pi(s), z_r, z_c, \eta)^\top z_r - \lambda(z_r, z_c, \eta) (F(s, \pi(s), z_r, z_c, \eta)^\top z_c - \eta)]. \quad (10)$$

244 The Lagrangian objective enables us to train a zero-shot constrained RL agent using the FB frame-
245 work, allowing efficient policy inference that satisfies cost constraints without further environment
246 interaction.

247 **Theorem 4.1** (Constrained RL Representations Encode All Optimal Policies). *Let $(F, B, \pi_{z_r, z_c, \eta})$ be a constrained RL representation of a reward-free MDP with respect to ρ . For any bounded reward function r and cost function c , define:*

$$250 \quad z_R := \int r(s,a)B(s,a)\rho(ds,da), \quad z_C := \int c(s,a)B(s,a)\rho(ds,da). \quad (11)$$

253 Then the policy $\pi_{z_R, z_C, \eta}$ is an optimal constrained policy, and the associated Q-function is given by:

$$254 \quad Q^*(s,a) = F(s,a,z_R,z_C,\eta)^\top z_R - \lambda(z_R, z_C, \eta) \cdot F(s,a,z_R,z_C,\eta)^\top z_C.$$

255 4.2 ZERO-SHOT CONSTRAINED RL FAILS IN PRACTICE
256

258 The preceding results demonstrate that the FB framework, when extended to embed both rewards and
259 constraints, is theoretically capable of representing the optimal solution to any bounded constrained
260 RL problem. However, although the constrained RL representation described in Section 4.1 is
261 sufficiently expressive to encode optimal policies, this formulation may not lead to reliable zero-shot
262 constrained learning in practice. In particular, it suffers from several key limitations, including
263 instability in optimization, weak constraint enforcement, and approximation error.

264 **Limitation 1. Instability and Conservativeness of Primal-Dual Training.** Jointly optimizing the
265 policy π and the dual variable λ using alternating updates introduces optimization instability (Achiam
266 et al., 2017; Chow et al., 2018) and high sample complexity (Mondal & Aggarwal, 2024; Gu et al.,
267 2024a; Le et al., 2019; Stooke et al., 2020). Even when the value estimates are accurate, the updates
268 to λ may oscillate or converge slowly. Moreover, such methods tend to produce overly conservative
269 policies that aim to satisfy constraints across all possible latent conditions z , even when constraints
are rarely activated.

270 **Limitation 2. Discounted Values Obscure True Constraint Violation.** In practice, value functions
 271 typically estimate cumulative discounted costs $C_z := \mathbb{E}_{\pi_z} [\sum_{t=0}^{\infty} \gamma^t c(s_t, a_t)]$ (Tessler et al., 2018;
 272 Achiam et al., 2017; Altman, 1999). However, satisfying the constraint $C_z \leq \eta$ under discounting
 273 does not imply that the true cumulative cost $\sum_{t=0}^T c(s_t, a_t)$ respects the same limit (Geibel, 2006).
 274 This mismatch renders discounted estimates unreliable for enforcing hard constraints.
 275

276 **Limitation 3. Function Approximation Error Compromises Safety.** In most practical settings,
 277 value functions V^π and V_c^π are approximated using neural networks. Let \hat{C}_z be the approximated
 278 expected cost: $\hat{C}_z = \mathbb{E}_{s \sim \rho_0} [\hat{V}_c^\pi(s)]$ (Zhang et al., 2024; Saglam et al., 2021). Hence $\hat{C}_z \leq \eta$ does not
 279 mean $C_z \leq \eta$. This undermines the reliability of zero-shot adaptation under strict safety conditions.
 280

281 The challenges mentioned above reveal that, while zero-shot constrained RL is theoretically feasible,
 282 its practical realization is hindered by issues in cost estimation, constraint fidelity, and optimization
 283 instability. This motivates our proposed alternative: an efficient approach that exploits latent structure
 284 while allowing adaptive constraint satisfaction through limited interaction.
 285

286 5 DUALITY-DRIVEN ADAPTATION WITHOUT RETRAINING

288 To overcome the challenges of zero-shot constrained RL, we leverage the expressiveness of the
 289 unconstrained FB latent representation to enable efficient and reliable constraint satisfaction. Our
 290 key insight is to reduce the complexity of the primal-dual constrained optimization problem by
 291 reformulating it as a simpler latent-space search, requiring only minimal online calibration.
 292

293 5.1 LATENT-SPACE SIMPLIFICATION VIA PRIMAL-DUAL REPARAMETERIZATION

294 In Section 4.1, the formulation addresses the constrained problem by jointly updating the models F
 295 and B , policy π , and Lagrange multiplier λ . However, it suffers from optimization instability due to
 296 the simultaneous updates. To address this, we revisit the standard Lagrangian relaxation approach
 297 and introduce a novel reformulation. Let us consider the following constrained optimization problem:
 298

$$300 \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, \pi(s_t)) \right] \quad \text{s.t.} \quad \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t C(s_t, \pi(s_t)) \right] \leq \eta. \quad (12)$$

301 This problem can be equivalently formulated as a dual optimization problem:
 302

$$303 \min_{\lambda \geq 0} \left[\max_{\pi} \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t (R(s_t, \pi(s_t)) - \lambda C(s_t, \pi(s_t))) \right] + \lambda \eta \right], \quad (13)$$

305 where $\lambda \geq 0$ is the Lagrange multiplier associated with the cost constraint.
 306

307 While solving the min-max problem in Eq. equation 13 typically requires joint optimization over
 308 policies and multipliers, we offer the key insight that enable a more efficient solution.
 309

310 **Reward Reparameterization.** For any fixed λ , solving the constrained problem is equivalent to
 311 solving an unconstrained RL problem with a modified reward:
 312

$$R_\lambda(s, a) := R(s, a) - \lambda C(s, a). \quad (14)$$

314 **Key Insight: Leveraging Optimal Policies through Pretrained FB.** According to Theorem 2 in
 315 Touati & Ollivier (2021), the FB framework is capable of representing optimal policies for arbitrary
 316 reward functions. This implies that, for each value of λ , we can obtain the corresponding optimal
 317 policy $\pi_{z_\lambda}^*$ without retraining. Unlike conventional constrained RL settings, where neither the optimal
 318 policy nor the optimal Lagrange multiplier is known in advance and must be jointly optimized, our
 319 approach benefits from having access to the entire family of optimal policies indexed by λ . **As a**
 320 **result, the constrained optimization problem, originally requiring simultaneous optimization**
 321 **over both policy and multiplier, is reduced to a much simpler task: identifying the optimal**
 322 **Lagrange multiplier $\lambda \in \mathbb{R}_+$ that satisfies the cost constraint.**

323 The insight enables us to leverage the FB model pretrained without considering cost budgets, denoted
 324 by $\bar{F}, \bar{B}, \bar{\pi}$, for constraint-aware policy inference. In particular, the latent representation associated

324 with the modified reward R_λ becomes: $z_\lambda = \mathbb{E}_{(s,a) \sim \rho} [R_\lambda(s,a) \bar{B}(s,a)] = z_r - \lambda z_c$, where z_r and
 325 z_c are the latent embeddings of the reward and cost, respectively.
 326

327 Given this reparameterization, we approximate the action-value functions of the policy $\bar{\pi}_{z_\lambda}$ as:
 328

$$Q_r^{\bar{\pi}_{z_\lambda}}(s, a) \approx \bar{F}(s, a, z_\lambda)^\top z_r, \quad Q_c^{\bar{\pi}_{z_\lambda}}(s, a) \approx \bar{F}(s, a, z_\lambda)^\top z_c. \quad (15)$$

330 This formulation enables us to reduce constrained policy inference to the task of selecting an
 331 appropriate $\lambda \in \mathbb{R}_+$, allowing for efficient and scalable adaptation without retraining.
 332

333 5.2 LATENT-SPACE LAGRANGIAN MULTIPLIER SEARCH

335 Building on the latent-space formulation in Section 5.1, we now describe how to efficiently search for
 336 the appropriate Lagrange multiplier λ that ensures constraint satisfaction. As we vary λ , the expected
 337 cost $\bar{F}^\top z_c$ changes. This allows us to apply a *bisection method* to identify the appropriate λ such
 338 that the induced policy satisfies the constraint threshold η . Specifically, we iteratively adjust λ by
 339 observing whether the predicted surrogate cost $\bar{F}^\top z_c$ is above or below the constraint η , and update λ
 340 accordingly. This avoids the need for full optimization and provides a simple yet effective mechanism
 341 for constraint-aware adaptation (Algorithm 1 in Appendix).
 342

343 5.3 ONLINE CALIBRATION

345 While the surrogate cost $\bar{F}^\top z_c$ provides an efficient approximation, it may differ from the true
 346 cumulative cost incurred during real-world execution (see Limitations 2 and 3 in Section 4.2). To
 347 bridge this gap, we introduce a surrogate budget η' , representing that when $\bar{F}^\top z_c \leq \eta'$, the actual
 348 environmental cost C_{real} satisfies the real constraint η . The gap between the surrogate cost and the
 349 actual cost can be seen in Table 1.
 350

	$\eta' = 100$		$\eta' = 0$		$\eta' = -100$		$\eta' = -200$	
	C_{real}	$\bar{F}^\top z_c$						
stand	457	-23	457	-23	269	-99	118	-199
run	391	28	296	-0.3	159	-100	69	-199
walk	296	53	253	-0.4	134	-100	11	-200
Flip	421	16	411	-0.3	404	-99	124	-200

351 Table 1: This table reports the actual environmental cost observed across tasks when the surrogate
 352 budget η' is used as the constraint threshold. It highlights the discrepancy between the surrogate cost,
 353 $\bar{F}^\top z_c$, and the true cumulative cost C_{real} incurred during evaluation. Notably, when $\bar{F}^\top z_c \ll \eta'$, the
 354 constraint is inherently satisfied, resulting in a Lagrange multiplier $\lambda = 0$; that is, no additional cost
 355 penalty is needed to meet the constraint.
 356

357 We propose an efficient calibration strategy that operates under a total online sampling budget of
 358 $T \times n$ episodes. In each iteration $t = 1, \dots, T$, we first use a bisection search to find a latent vector
 359 z_λ such that the surrogate cost $\bar{F}^\top z_c \approx \eta'$. We then evaluate the resulting policy $\bar{\pi}_{z_\lambda}$ by deploying
 360 it for n episodes and measuring the average realized cost: $\bar{C}_{\text{real}}^{(t)} = \frac{1}{n} \sum_{i=1}^n C_i^{(t)}$. Based on whether
 361 $\bar{C}_{\text{real}}^{(t)}$ is greater or smaller than the desired budget η , we adjust the surrogate threshold η' accordingly.
 362 This feedback loop continues until the sampling budget is exhausted. After all T iterations, we select
 363 the λ that yields an empirical cost closest to the target constraint. This procedure is formalized in
 364 Algorithm 2, provided in the Appendix.
 365

366 **Remark 5.1** (Optional Statistical Guarantee via Hoeffding). *In this work, we limit the number of*
 367 *online samples to ensure calibration efficiency. However, if statistical guarantees are desired, one*
 368 *can incorporate Hoeffding’s inequality to determine whether the observed cost is sufficiently close*
 369 *to the expected cost with high confidence. Let C_1, \dots, C_n be the costs observed in n episodes of*
 370 *executing a fixed policy. Assuming each cost is bounded in $[0, C_{\text{max}}]$, the empirical average satisfies:*
 371

$$|\bar{C}_{\text{real}} - \mathbb{E}[C_{\text{real}}]| \leq \epsilon, \quad \text{where } \epsilon := C_{\text{max}} \sqrt{\frac{\log(2/\delta)}{2n}},$$

378 with probability at least $1 - \delta$. This bound can be used as a confidence-aware stopping rule for
 379 selecting λ , complementing our fixed-budget approach. This procedure is formalized in Algorithm 3,
 380 provided in the Appendix.

382 5.4 IMPLEMENTATION DETAILS 383

384 Our approach enables the use of an unconstrained FB model to satisfy constraints without requiring
 385 any retraining. Specifically, we utilize the FB model introduced by Jeen et al. (2024). To obtain
 386 the pretrained model, we adhere strictly to their original network architecture and hyperparameter
 387 settings, without introducing any additional loss functions, auxiliary networks, or hyperparameter
 388 tuning beyond what is necessary for FB pretraining.

389 The bisection-based solver operates entirely in the latent space and is executed post hoc using a small
 390 number of cost evaluations in the target environment, ensuring both computational efficiency and
 391 reproducibility. For online calibration, we use a sample budget of $T = 30$ iterations with $n = 1$
 392 episode per iteration, and 1000 transitions per episode, resulting in a total of 30K online samples.
 393

394 6 EVALUATIONS 395

396 6.1 BASELINES AND EXPERIMENT SETUP 397

398 To the best of our knowledge, constrained policy adaptation has not been systematically explored
 399 within the Zero-Shot RL framework. To evaluate our approach, we compare it against three variants of
 400 the FB framework: FB (Touati & Ollivier, 2021), $\text{FB}(z_r - z_c)$, and FB (Primal-dual). The standard FB
 401 baseline considers only reward representations. $\text{FB}(z_r - z_c)$ implements the latent vector subtraction
 402 method proposed by Touati & Ollivier (2021), where the combined latent representation is defined
 403 as $z = z_r - z_c$. CRL_FB refers to our implementation of the primal-dual approach described in
 404 Section 4.1. All models were pretrained using the publicly available codebase from Jeen et al. (2024).
 405 Note that the models of FB, $\text{FB}(z_r - z_c)$, and our method were identical in the comparison. The three
 406 methods differ only in the input representations.
 407

408 We conducted experiments using the ExORL benchmark datasets (Yarats et al., 2022), which comprise
 409 data collected by unsupervised exploratory algorithms on the DeepMind Control Suite (Tassa et al.,
 410 2018). Following prior work (Touati et al., 2023; Jeen et al., 2024), we selected three representative
 411 domains: Walker, Quadruped, and Maze. These encompass two locomotion tasks and one goal-
 412 reaching task. Within each domain, we evaluated performance across all tasks provided in the
 413 DeepMind Control Suite, totaling 13 tasks. To pretrain the FB models, we use datasets collected via
 414 Random Network Distillation (RND) (Burda et al., 2019), along with an additional 1 million online
 415 samples, resulting in a total of 2 million training samples. This setup aligns with the total sample
 416 budget used in Sun et al. (2025). To incorporate safety considerations, we adopted the velocity-based
 417 safety constraint setting as described in Gu et al. (2024a). All experiments were repeated five times
 418 to ensure statistical robustness, and all models are trained on NVIDIA RTX 4090 GPUs (more
 419 experiment settings are listed in Appendix A.3).
 420

421 6.2 RESULTS 422

423 Table 2 summarizes the performance and cost metrics, averaged over five random seeds, under
 424 a budget constraint of 100. Notably, $\text{FB}(z_r - z_c)$ does not consider the budget during policy
 425 inference, limiting its ability to adapt to varying budget levels. CRL_FB, while capable of zero-shot
 426 generalization to different constraints, tends to be overly conservative due to the need to satisfy
 427 all potential constraint scenarios, leading to suboptimal performance. In contrast, by leveraging a
 428 targeted search over the Lagrange multiplier λ , our method can effectively utilize the available budget
 429 and achieve superior task performance.

430 While both CRL_FB and our method are constraint-aware, our approach offers significant advantages.
 431 Specifically, it leverages the standard FB model pretrained without considering constraints, thereby
 432 avoiding the stability issues associated with joint optimization. Although both FB and CRL_FB are
 433 trained using 2 million samples, CRL_FB requires simultaneous optimization over reward and cost

432 representations, which leads to substantially longer training times (18 hours vs. 40 hours) and often
 433 results in overly conservative behaviors that hinder task performance.

434 Our method includes a lightweight online calibration step, which uses an additional 30K samples for
 435 adjusting the surrogate budget η' . Since this step does not modify the parameters of the forward or
 436 backward models (F and B), it can be completed within a few minutes. Importantly, since surrogate
 437 cost estimates can deviate from actual costs due to discounting factors and approximation errors, all
 438 baselines require such calibration to reliably satisfy real-world constraints.

441	442	Environment		FB		FB (zr - zc)		CRL_FB		Ours	
		443 Walker	444 Performance	445 Cost	446 Performance	447 Cost	448 Performance	449 Cost	450 Performance	451 Cost	
444	445	stand	799±33	427±227	433±169	68±36	125±20	0±0	672±196	82±10	
		walk	531±117	327±143	90±57	45±79	21±4	0±0	204±154	70±24	
		run	215±41	412±136	50±28	28±28	20±2	0±0	136±64	94±4	
		Flip	403±46	360±40	135±155	83±151	21±1	0±0	317±105	75±23	
445	446	Quadruped									
		Stand	795±122	366±236	187±187	15±18	246±187	0.44±0.93	737±419	89±7	
		Roll	805±85	479±305	167±113	19±17	157±113	0.44±0.93	761±153	81±16	
		Roll Fast	484±60	463±290	123±83	28±37	128±96	0.44±0.94	427±255	65±33	
		Jump	628±80	404±258	161±122	69±75	181±136	0.45±0.93	542±329	91±8	
		Escape	69±12	433±262	9±14	65±112	5±4	0.43±0.95	41±33	73±25	
446	447	Maze									
		Top Left	933±23	85±35	41±60	245±125	17±22	0±0	710±463	80±14	
		Top Right	129±258	122±137	0±0	242±247	0±0	0±0	125±251	66±8	
		Bottom Left	20±41	106±114	1±1	732±404	0±0	0±0	0±0	62±22	
		Bottom Right	0±0	92±72	0±0	99±107	0±0	0±0	0±0	86±7	

459 Table 2: Performance and cost comparison across 13 ExORL tasks under a cost budget of 100. Our
 460 method consistently achieves strong performance while adhering to the constraint, outperforming
 461 prior FB-based approaches. Since the budget is fixed at 100, **the objective is not to minimize cost**
 462 **arbitrarily, but rather to utilize it as effectively as possible, ideally approaching the budget**
 463 **without exceeding it.**

465 6.3 ABLATION STUDIES

467 To further evaluate the effectiveness of our proposed method, we conducted ablation studies under
 468 varying cost budgets and statistical guarantee via Hoeffding Bound. These experiments are essential
 469 for providing deeper insights into the behavior of our approach, elucidating its strengths, and
 470 identifying areas for potential improvement. Through this analysis, we aim to demonstrate the
 471 adaptability of our method and validate its applicability across a wide range of safe RL scenarios.
 472 Due to space limitations, detailed results and discussion of the ablation studies are presented in
 473 Appendix A.4.

475 7 CONCLUSIONS

477 We have introduced a novel extension of the FB representation framework to the constrained RL
 478 setting, enabling zero-shot adaptation to tasks specified by both reward functions and cost constraints.
 479 By embedding both rewards and constraints into a shared latent space and formulating policy
 480 inference as a latent-space optimization problem, our method allows for efficient adaptation without
 481 retraining. This approach bridges the gap between zero-shot RL and constrained RL, offering a unified
 482 framework for safe and flexible policy deployment in dynamic environments. Through comprehensive
 483 experiments on the ExORL benchmark, we demonstrate that our method consistently satisfies cost
 484 budgets while achieving strong task performance, significantly outperforming existing FB-based
 485 and primal-dual constrained RL baselines. These results highlight the potential of latent-space
 representations for scalable and constraint-aware generalization in reinforcement learning.

486 REFERENCES
487

- 488 Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
489 *International conference on machine learning*, pp. 22–31. PMLR, 2017.
- 490 Eitan Altman. *Constrained Markov Decision Processes*, volume 7. CRC Press, 1999.
491
- 492 Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
493 McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
494 *Advances in neural information processing systems*, 30, 2017.
- 495 André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
496 and David Silver. Successor features for transfer in reinforcement learning. *Advances in neural
497 information processing systems*, 30, 2017.
- 498 Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel Mankowitz,
499 Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using successor features
500 and generalised policy improvement. In *International Conference on Machine Learning*, pp. 501–
501 510. PMLR, 2018.
- 502 Abhinav Bhatia, Pradeep Varakantham, and Akshat Kumar. Resource constrained deep reinforcement
503 learning. In *Proceedings of the International Conference on Automated Planning and Scheduling*,
504 volume 29, pp. 610–620, 2019.
- 505 Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
506 Angela P Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
507 learning. *Annual Review of Control, Robotics, and Autonomous Systems*, 5(1):411–444, 2022.
- 508 Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
509 distillation. *International Conference on Learning Representations*, 2019.
- 510 Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained
511 reinforcement learning with percentile risk criteria. *Journal of Machine Learning Research*, 18
512 (167):1–51, 2018.
- 513 Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
514 Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control. In *International
515 conference on machine learning*. PMLR, 2019.
- 516 Peter Dayan. Improving generalization for temporal difference learning: The successor representation.
517 *Neural computation*, 5(4):613–624, 1993.
- 518 Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo Jovanovic. Provably
519 efficient safe exploration via primal-dual policy optimization. In *International conference on
520 artificial intelligence and statistics*, pp. 3304–3312. PMLR, 2021.
- 521 Peter Geibel. Reinforcement learning for mdps with constraints. In *Machine Learning: ECML
522 2006: 17th European Conference on Machine Learning Berlin, Germany, September 18-22, 2006
523 Proceedings 17*, pp. 646–653. Springer, 2006.
- 524 Arnob Ghosh, Xingyu Zhou, and Ness Shroff. Provably efficient model-free constrained rl with linear
525 function approximation. *Advances in Neural Information Processing Systems*, 35:13303–13315,
526 2022.
- 527 Arnob Ghosh, Xingyu Zhou, and Ness Shroff. Towards achieving sub-linear regret and hard constraint
528 violation in model-free rl. In *International Conference on Artificial Intelligence and Statistics*, pp.
529 1054–1062. PMLR, 2024.
- 530 Shangding Gu, Laixi Shi, Yuhao Ding, Alois Knoll, Costas J Spanos, Adam Wierman, and Ming Jin.
531 Enhancing efficiency of safe reinforcement learning via sample manipulation. *Advances in Neural
532 Information Processing Systems*, 37:17247–17285, 2024a.
- 533 Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll. A
534 review of safe reinforcement learning: Methods, theories and applications. *IEEE Transactions on
535 Pattern Analysis and Machine Intelligence*, 2024b.

- 540 Scott Jeen, Tom Bewley, and Jonathan Cullen. Zero-shot reinforcement learning from low quality
 541 data. *Advances in Neural Information Processing Systems*, 37:16894–16942, 2024.
- 542
- 543 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *International
 544 Conference on Learning Representations*, 2015.
- 545
- 546 Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In *Inter-
 547 national Conference on Machine Learning*, pp. 3703–3712. PMLR, 2019.
- 548
- 549 Jinpeng Liu, Yuanyuan Liu, and Lin Zhou. Hoeffding’s inequality for continuous-time markov chains
 via the spectral gap. *Potential Analysis*, pp. 1–16, 2025.
- 550
- 551 Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under constraints.
 552 In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 4940–4947, 2020.
- 553
- 554 Yongshuai Liu, Avishai Halev, and Xin Liu. Policy learning with constraints in model-free reinforce-
 555 ment learning: A survey. In *The 30th international joint conference on artificial intelligence (ijcai)*,
 2021.
- 556
- 557 Shehryar Malik, Usman Anwar, Alireza Aghasi, and Ali Ahmed. Inverse constrained reinforcement
 558 learning. In *International conference on machine learning*, pp. 7390–7399. PMLR, 2021.
- 559
- 560 Washim Mondal and Vaneet Aggarwal. Sample-efficient constrained reinforcement learning with
 561 general parameterization. *Advances in Neural Information Processing Systems*, 37:68380–68405,
 2024.
- 562
- 563 Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained
 564 reinforcement learning has zero duality gap. *Advances in Neural Information Processing Systems*,
 32, 2019.
- 565
- 566 Santiago Paternain, Miguel Calvo-Fullana, Luiz FO Chamon, and Alejandro Ribeiro. Safe policies
 567 for reinforcement learning via primal-dual methods. *IEEE Transactions on Automatic Control*, 68
 (3):1321–1336, 2022.
- 568
- 569 Matteo Pirotta, Andrea Tirinzoni, Ahmed Touati, Alessandro Lazaric, and Yann Ollivier. Fast
 570 imitation via behavior foundation models. In *NeurIPS 2023 Foundation Models for Decision
 571 Making Workshop*, 2023.
- 572
- 573 Baturay Saglam, Enes Duran, Dogan C Cicek, Furkan B Mutlu, and Suleyman S Kozat. Estimation
 574 error correction in deep reinforcement learning for deterministic actor-critic methods. In *2021
 575 IEEE 33rd international conference on tools with artificial intelligence (ICTAI)*, pp. 137–144.
 576 IEEE, 2021.
- 577
- 578 Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
 In *International conference on machine learning*, pp. 1312–1320. PMLR, 2015.
- 579
- 580 Ming Shi, Yingbin Liang, and Ness Shroff. A near-optimal algorithm for safe reinforcement learning
 581 under instantaneous hard constraints. In *International Conference on Machine Learning*, pp.
 31243–31268. PMLR, 2023.
- 582
- 583 Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by pid
 584 lagrangian methods. In *International Conference on Machine Learning*, pp. 9133–9143. PMLR,
 2020.
- 585
- 586 Jingbo Sun, Songjun Tu, Haoran Li, Xin Liu, Yaran Chen, Ke Chen, Dongbin Zhao, et al. Unsuper-
 587 vised zero-shot reinforcement learning via dual-value forward-backward representation. In *The
 588 Thirteenth International Conference on Learning Representations*, 2025.
- 589
- 590 Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
 591 Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. *arXiv preprint
 592 arXiv:1801.00690*, 2018.
- 593
- Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization.
 International Conference on Learning Representations, 2018.

- 594 Andrea Tirinzoni, Ahmed Touati, Jesse Farebrother, Mateusz Guzek, Anssi Kanervisto, Yingchen Xu,
 595 Alessandro Lazaric, and Matteo Pirotta. Zero-shot whole-body humanoid control via behavioral
 596 foundation models. 2025.
- 597
- 598 Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. *Advances in*
 599 *Neural Information Processing Systems*, 34:13–23, 2021.
- 600 Ahmed Touati, Jérémie Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist?
 601 *International Conference on Learning Representations*, 2023.
- 602
- 603 Sara A van de Geer. On hoeffding’s inequality for dependent random variables. In *Empirical process*
 604 *techniques for dependent data*, pp. 161–169. Springer, 2002.
- 605 Zhihai Wang, Taoxing Pan, Qi Zhou, and Jie Wang. Efficient exploration in resource-restricted rein-
 606 force learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37,
 607 pp. 10279–10287, 2023.
- 608
- 609 Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline rein-
 610 force learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36,
 611 pp. 8753–8760, 2022.
- 612 Tengyu Xu, Yingbin Liang, and Guanghui Lan. Crpo: A new approach for safe reinforcement
 613 learning with convergence guarantee. In *International Conference on Machine Learning*, pp.
 614 11480–11491. PMLR, 2021.
- 615
- 616 Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
 617 constrained policy optimization. *International Conference on Learning Representations*, 2020.
- 618 Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric,
 619 and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for offline
 620 reinforcement learning. *arXiv preprint arXiv:2201.13425*, 2022.
- 621
- 622 Yujia Zhang, Lin Li, Wei Wei, Xiu You, and Jiye Liang. Controlling estimation error in reinforcement
 623 learning via reinforced operation. *Information Sciences*, 675:120736, 2024.
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647

648 A APPENDIX
649

650

651

652

653

654

655

656

657 **A.1 ALGORITHMS**

```

658 1: Input: reward embedding  $z_r$ , cost embedding  $z_c$ , constraint threshold  $\eta$ , tolerance  $\epsilon$ 
659 2: Initialize  $\lambda_{\min} \leftarrow 0$ ,  $\lambda_{\max} \leftarrow \Lambda$  (a large enough upper bound)
660 3: while  $\lambda_{\max} - \lambda_{\min} > \epsilon$  do
661 4:    $\lambda \leftarrow (\lambda_{\min} + \lambda_{\max})/2$ 
662 5:    $z_\lambda \leftarrow z_r - \lambda z_c$ 
663 6:   Compute surrogate cost estimate:  $\hat{C}_\lambda \leftarrow F^\top z_c$ 
664 7:   if  $\hat{C}_\lambda > \eta$  then
665 8:      $\lambda_{\min} \leftarrow \lambda$ 
666 9:   else
667 10:     $\lambda_{\max} \leftarrow \lambda$ 
668 11:   end if
669 12: end while
670 13: return  $\lambda, z_\lambda, \pi_{z_\lambda}$ 
671
672
673
674
675
676

```

Algorithm 2 Efficient Constrained RL via Latent Calibration and Online Evaluation

```

677 1: Given: Budget  $\eta$ , pre-trained FB model with  $\mathbf{F}, \mathbf{B}$ , total online sampling budget  $T \times n$ , cost
678 2: Initialize  $\lambda \leftarrow \text{random}$ ,  $\eta' \leftarrow \eta$ 
679 3: Initialize history buffer  $\mathcal{H} \leftarrow \emptyset$ 
680 4: for  $t = 1$  to  $T$  do
681 5:   repeat
682 6:     Compute  $z_\lambda \leftarrow z_r - \lambda z_c$ 
683 7:     Evaluate latent cost estimate:  $\hat{C}_{\text{latent}} \leftarrow \mathbb{E}_{s \sim \rho_0}[\mathbf{F}^\top z_c]$ 
684 8:     if  $\hat{C}_{\text{latent}} > \eta'$  then
685 9:       Increase  $\lambda$ 
686 10:    else if  $\hat{C}_{\text{latent}} < \eta'$  then
687 11:      Decrease  $\lambda$ 
688 12:    end if
689 13:    until  $\hat{C}_{\text{latent}} < \eta' - \epsilon_{\text{latent}}$ 
690 14: Deploy  $\pi_{z_\lambda}$  for  $n$  episodes and collect costs  $\{C_i^{(t)}\}_{i=1}^n$ 
691 15: Compute empirical average  $\bar{C}_{\text{real}}^{(t)} = \frac{1}{n} \sum_{i=1}^n C_i^{(t)}$ 
692 16: Store  $(\lambda, \bar{C}_{\text{real}}^{(t)})$  in  $\mathcal{H}$ 
693 17: if  $\bar{C}_{\text{real}}^{(t)} > \eta$  then
694 18:   Decrease  $\eta'$ 
695 19: else if  $\bar{C}_{\text{real}}^{(t)} < \eta$  then
696 20:   Increase  $\eta'$ 
697 21: end if
698 22: end for
699 23: Select  $(\lambda^*, \bar{C}^*) \in \mathcal{H}$  such that  $|\bar{C}^* - \eta|$  is minimized and  $\bar{C}^* < \eta$ 
700 24: return Calibrated  $z_{\lambda^*}$ , policy  $\pi_{z_{\lambda^*}}$ 

```

702 **Algorithm 3** Efficient Constrained RL via Latent Calibration and Hoeffding Bound

```

703 1: Given: Budget  $\eta$ , pre-trained FB model with  $\mathbf{F}, \mathbf{B}$ , confidence level  $\delta$ , cost bound  $C_{\max}$ 
704 2: Initialize  $\lambda \leftarrow$  random,  $\eta' \leftarrow \eta$ , number of episodes  $n \leftarrow 0$ 
705 3: repeat
706 4:   repeat
707 5:     Compute  $z_\lambda \leftarrow z_r - \lambda z_c$ 
708 6:     Evaluate latent cost estimate:  $\hat{C}_{\text{latent}} \leftarrow \mathbb{E}_{s \sim \rho_0} [\mathbf{F}^\top z_c]$ 
709 7:     if  $\hat{C}_{\text{latent}} > \eta'$  then
710 8:       Increase  $\lambda$ 
711 9:     else if  $\hat{C}_{\text{latent}} < \eta'$  then
712 10:      Decrease  $\lambda$ 
713 11:    end if
714 12:  until  $\hat{C}_{\text{latent}} < \eta' - \epsilon_{\text{latent}}$ 
715 13: Deploy  $\pi_{z_\lambda}$  for  $n$  episodes and collect costs  $\{C_i\}_{i=1}^n$ 
716 14: Compute empirical average  $\bar{C}_{\text{real}} = \frac{1}{n} \sum_{i=1}^n C_i$ 
717 15: Compute Hoeffding bound:  $\epsilon \leftarrow C_{\max} \sqrt{\frac{\log(2/\delta)}{2n}}$ 
718 16: if  $\bar{C}_{\text{real}} > \eta + \epsilon$  then
719 17:   Decrease  $\eta'$ 
720 18: else if  $\bar{C}_{\text{real}} < \eta - \epsilon$  then
721 19:   Increase  $\eta'$ 
722 20: end if
723 21: until  $\bar{C}_{\text{real}} \leq \eta - \epsilon$ 
724 22: return Calibrated  $z_\lambda$ , policy  $\pi_{z_\lambda}$ 
725
726
727 A.2 PROOF OF THEOREM 4.1
728
729 Proof. Following the proof structure for the unconstrained FB representation in Touati & Ollivier
730 (2021), we use an extended model of the successor state distribution. Specifically, we approximate
731 the goal-conditioned occupancy measure  $m^\pi(s, a, g)$  using a bilinear component plus a residual:
732

$$m^\pi(s, a, g) = F(s, a, z_R, z_C, \eta)^\top B(g) + \bar{m}(s, z_R, z_C, \eta, g),$$

733 where  $F$  and  $B$  are learnable encoders, and  $\bar{m}$  is an action-independent residual that captures parts of
734 the occupancy measure not modeled by the rank-limited term  $F^\top B$ . This residual term enables a
735 more expressive approximation while restricting only the advantage component to be low-rank.
736 Let  $r(s, a)$  and  $c(s, a)$  be any bounded functions. Define their latent embeddings:
737

$$z_R := \int r(s, a) B(s, a) \rho(ds, da), \quad z_C := \int c(s, a) B(s, a) \rho(ds, da).$$

738 We consider a linear combination in the latent space using Lagrangian relaxation:
739

$$z_\lambda := z_R - \lambda(z_R, z_C, \eta) z_C, \quad \lambda(z_R, z_C, \eta) \geq 0.$$

740 For any policy  $\pi$ , let  $m^\pi(s, a, g)$  denote the state-action-goal occupancy density, with  $g = \varphi(s, a)$ 
741 and  $g \sim \rho$ . Then the FB representation yields:
742

$$m^\pi(s, a, g) = F(s, a, z_R, z_C, \eta)^\top B(g) + \bar{m}(s, z_R, z_C, \eta, g).$$

743 Define the surrogate reward  $r_\lambda(g) := r(g) - \lambda(z_R, z_C, \eta) c(g)$ . Then the Q-function under this
744 surrogate becomes:
745

$$\begin{aligned} Q^\pi(s, a) &= \int r_\lambda(g) m^\pi(s, a, g) \rho(dg) \\ &= \int [r(g) - \lambda(z_R, z_C, \eta) c(g)] [F(s, a, z_R, z_C, \eta)^\top B(g) + \bar{m}(s, z_R, z_C, \eta, g)] \rho(dg) \\ &= F(s, a, z_R, z_C, \eta)^\top \int [r(g) - \lambda(z_R, z_C, \eta) c(g)] B(g) \rho(dg) + \int r_\lambda(g) \bar{m}(s, z_R, z_C, \eta, g) \rho(dg) \\ &= F(s, a, z_R, z_C, \eta)^\top z_\lambda + \bar{V}^{z_\lambda}(s), \end{aligned}$$


```

756 where $\bar{V}^{z_\lambda}(s)$ absorbs the residual term independent of a . The corresponding residual value function
 757 is defined as:

$$758 \quad 759 \quad \bar{V}^{z_\lambda}(s) := \int \bar{m}(s, z_R, z_C, \eta, g) r_\lambda(g) \rho(dg),$$

760 which vanishes when $\bar{m} = 0$.

761 Define the policy:

$$762 \quad \pi_{z_\lambda, \eta}(s) := \arg \max_a F(s, a, z_R, z_C, \eta)^\top z_\lambda.$$

763 Then, since $\bar{V}^{z_\lambda}(s)$ is constant in a , this policy maximizes the Q-function.

764 By strong duality in constrained MDPs, there exists $\lambda^* = \lambda(z_R, z_C, \eta) \geq 0$ such that the policy
 765 $\pi_{z_{\lambda^*}, \eta}$ satisfies the constraint:

$$766 \quad 770 \quad \mathbb{E}_{s \sim \rho_0} [F(s, \pi_{z_{\lambda^*}, \eta}(s), z_R, z_C, \eta)^\top z_C] = \eta.$$

771 Thus, the policy $\pi_{z_{\lambda^*}, \eta}$ is optimal for the original constrained problem. Hence, the latent embedding
 772 and FB representation encode all optimal constrained policies. \square

773 A.3 EXPERIMENT SETTINGS

774 A.3.1 ExORL DOMAINS

775 **Walker.** This environment involves a two-legged robot that must perform locomotion starting
 776 from a bent-knee position. The state and action spaces are 24- and 6-dimensional, respectively,
 777 encompassing joint torques, velocities, and positions. The ExORL benchmark defines four tasks for
 778 this domain: `stand`, `walk`, `run`, and `flip`. The `stand` task incentivizes an upright posture with
 779 extended legs, while `walk` and `run` build upon this by additionally rewarding forward motion, with
 780 `run` placing greater emphasis on speed. The `flip` task encourages angular motion of the torso after
 781 standing. All tasks provide dense reward signals.

782 **Quadruped.** This environment features a four-legged robot required to perform locomotion inside
 783 a 3D maze. The state space is 78-dimensional and the action space is 12-dimensional, consisting of
 784 joint torques, velocities, and positions. ExORL provides five tasks: `stand`, `roll`, `roll fast`,
 785 `jump`, and `escape`. The `stand` task rewards a minimum torso height and straightened legs. The
 786 `roll` and `roll fast` tasks involve flipping from a back position, with the latter emphasizing
 787 speed. The `jump` task encourages vertical displacement, and the `escape` task requires the agent to
 788 navigate out of the maze. Rewards are dense across all tasks.

789 **Maze.** This domain consists of a 2D environment divided into four rooms, where the agent must
 790 move a point-mass to a designated goal room. The state space is 4-dimensional (positions and
 791 velocities in x and y), and the action space is 2-dimensional (forces in x and y). ExORL defines four
 792 goal-reaching tasks: `top left`, `top right`, `bottom left`, and `bottom right`. The mass
 793 is initialized in the top-left room, and the agent receives a sparse reward that is only provided when it
 794 is sufficiently close to the specified goal.

795 A.3.2 HYPERPARAMETERS

800 See Table 3.

801 A.4 ABLATION STUDY

802 A.4.1 VARIOUS COST BUDGETS

803 To evaluate whether our method can handle varying cost budgets, we conducted experiments with
 804 budget levels set to 150, 100, and 50. As shown in Table 4, our method successfully produces feasible
 805 solutions across all budget settings. Moreover, we observe that higher budget thresholds generally
 806 lead to improved task performance.

Hyperparameter	Value
Latent dimension d	50 (100 for maze)
F / ψ dimensions	(1024, 1024)
B / φ dimensions	(256, 256, 256)
Preprocessor dimensions	(1024, 1024)
Std. deviation for policy smoothing σ	0.2
Truncation level for policy smoothing	0.3
Learning steps	1,000,000
Batch size	512
Optimiser	Adam Kingma & Ba (2015)
Learning rate	0.0001
Discount γ	0.98 (0.99 for maze)
Activations (unless otherwise stated)	ReLU
Target network Polyak smoothing coefficient	0.01

Table 3: Hyperparameters used in all experiments. The settings follow those used in (Jeen et al., 2024).

Different cost budget	Cost Budget = 150		Cost Budget = 100		Cost Budget = 50	
	Performance	Cost	Performance	Cost	Performance	Cost
Walker	target ≤ 150		target ≤ 100		target ≤ 50	
stand	713 \pm 116	132 \pm 17	672 \pm 196	82 \pm 10	604 \pm 194	40 \pm 6
run	331 \pm 149	124 \pm 19	204 \pm 154	70 \pm 24	184 \pm 153	22 \pm 15
walk	146 \pm 12	139 \pm 12	136 \pm 64	94 \pm 4	131 \pm 34	30 \pm 16
Flip	325 \pm 91	123 \pm 15	317 \pm 105	75 \pm 23	204 \pm 130	37 \pm 13
Quadruped						
Stand	734 \pm 320	135 \pm 25	737 \pm 419	89 \pm 7	400 \pm 447	36 \pm 12
Roll	762 \pm 216	114 \pm 24	761 \pm 153	81 \pm 16	177 \pm 69	17 \pm 13
Roll Fast	447 \pm 116	119 \pm 20	427 \pm 255	65 \pm 33	353 \pm 252	30 \pm 21
Jump	624 \pm 259	122 \pm 10	542 \pm 329	91 \pm 8	179 \pm 103	11 \pm 16
Escape	35 \pm 32	107 \pm 36	41 \pm 33	73 \pm 25	25 \pm 17	33 \pm 17
Maze						
Top Left	900 \pm 450	138 \pm 6	710 \pm 463	80 \pm 14	411 \pm 379	35 \pm 9
Top Right	128 \pm 256	140 \pm 8	125 \pm 251	66 \pm 8	101 \pm 203	32 \pm 21
Bottom Left	0 \pm 0	126 \pm 21	0 \pm 0	62 \pm 22	0 \pm 0	34 \pm 23
Bottom Right	0 \pm 0	124 \pm 13	0 \pm 0	86 \pm 7	0 \pm 0	45 \pm 2

Table 4: Performance and cost comparison across 13 ExORL tasks under various budget requirements. The objective is not to minimize cost arbitrarily, but rather to utilize it as effectively as possible, ideally approaching the budget without exceeding it. **Our method is capable of satisfying varying budget requirements.**

A.4.2 STATSTICAL GUARANTEE VIA HOEFFDING BOUND

In Algorithm 3, we set $\epsilon_{\text{latent}} = 0$, which means that the full online sample budget is used to search for the best surrogate threshold η' and Lagrange multiplier λ . Alternatively, ϵ_{latent} can be determined using the Hoeffding inequality (van de Geer, 2002; Liu et al., 2025), which guarantees that the constraint will be satisfied with probability at least $1 - \delta$ if

$$\epsilon \leftarrow C_{\max} \sqrt{\frac{\log(2/\delta)}{2n}}.$$

This statistically grounded variant of the algorithm is detailed in Algorithm 3. It aims to provide formal guarantees by setting the threshold using C_{\max} , which results in a relatively large ϵ . As a consequence, even policies with costs significantly below the budget can satisfy the constraint, since lower costs make the statistical guarantee easier to achieve. This leads to a more conservative solution that may not fully utilize the available cost budget. Nevertheless, this approach is particularly well-suited for risk-averse users who prioritize reliability over aggressive cost utilization. The corresponding results are shown in Table 5.

Environment	Ours		Ours +	
	W/O Hoeffding	Hoeffding $\delta = 0.05$	Performance	Cost
Walker				
stand	672±196	82±10	581±219	36±43
run	204±154	70±24	207±211	41±43
walk	136±64	94±4	126±77	53±38
Flip	317±105	75±23	186±110	37±48
Quadruped				
Stand	737±419	89±7	18±5	0±0
Roll	761±153	81±16	78±140	13±27
Roll Fast	427±255	65±33	38±48	21±41
Jump	542±329	91±8	18±15	0±0
Escape	41±33	73±25	3±3	16±26
Maze				
Top Left	710±463	80±14	703±269	66±26
Top Right	125±251	66±8	125±250	12±27
Bottom Left	0±0	62±22	0±0	20±45
Bottom Right	0±0	86±7	0±0	39±45

Table 5: Performance and cost comparison across 13 ExORL tasks using the Hoeffding bound with $\delta = 0.05$ in Algorithm 3. **Since the Hoeffding bound provides a statistical guarantee, the results are more conservative compared to those in Table 2.**