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Abstract
This paper considers “model diagnosis”, which
we formulate as a classification problem. Given
a pre-trained neural network (NN), the goal is
to predict the source of failure from a set of
failure modes (such as a wrong hyperparameter,
inadequate model size, and insufficient data)
without knowing the training configuration of
the pre-trained NN. The conventional diagnosis
approach uses training and validation errors to
determine whether the model is underfitting
or overfitting. However, we show that rich
information about NN performance is encoded in
the optimization loss landscape, which provides
more actionable insights than validation-based
measurements. Therefore, we propose a diagnosis
method called MD tree based on loss land-
scape metrics and experimentally demonstrate
its advantage over classical validation-based
approaches. We verify the effectiveness of MD
tree in multiple practical scenarios: (1) use
several models trained on one dataset to diagnose
a model trained on another dataset, essentially a
few-shot dataset transfer problem; (2) use small
models (or models trained with small data) to
diagnose big models (or models trained with big
data), essentially a scale transfer problem. In a
dataset transfer task, MD tree achieves an ac-
curacy of 87.7%, outperforming validation-based
approaches by 14.88%. Our code is available at
https://github.com/YefanZhou/ModelDiagnosis.

1. Introduction
There is a notable gap in the literature in systematically diag-
nosing the reason for the underperformance of a pre-trained
neural network (NN). For example, it is often difficult to

*Equal contribution 1Department of Computer Science,
Dartmouth College, NH, USA 2Zhejiang University, Zhejiang,
China 3University of Illinois Urbana-Champaign, IL, USA
4University of St. Gallen, SUI. Correspondence to: Yefan Zhou
<yefan.zhou.gr@dartmouth.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

One trained model Model Diagnosis Loss landscape analysis  

Q1: What’s wrong with optimizer hyperparameter?

Large

Q2: What’s wrong with model config?
configuration 
is unknown  

Optimizer hyperparameterModel size         ✓

Small✓

Figure 1. (Overview of our model-diagnostic framework using
MD tree). This framework is designed to analyze and diagnose
NNs where the training configuration is unknown. By examining
the loss landscape structure of a given trained model, MD tree
can identify potential failure sources of suboptimal performance.

access proprietary datasets, detailed configuration parame-
ters, and complete training methodologies to develop these
models. When a trained model underperforms, the conven-
tional approach to troubleshooting through retraining with
alternative settings thus becomes impractical. Therefore,
we should develop diagnostic methods that do not involve
complete datasets, retraining processes, and explicit config-
uration details. Can we say anything about why the model
is underperforming in this setting? Answering this question
requires a comprehensive analysis of the individual-trained
model to uncover the root causes of failure and identify
targeted strategies for improvement. The critical question in
this context is the following:

How can we methodically diagnose the root causes of the
underperformance of a model without the need for detailed
configuration specifics, retraining processes, and extensive
reliance on the dataset?

Canonical Problems in Model Diagnosis. In this paper,
we define the problem of “model diagnosis” and present
a systematic framework for evaluating and approaching it.
The goal is to identify the causes of underperformance in
trained models without relying on configuration specifics,
retraining processes, or extensive use of validation datasets.
See Figure 1 for an overview of the framework. We cate-
gorize the sources that lead to model failure into four: (1)
small optimizer hyperparameter (e.g., small batch size); (2)
large optimizer hyperparameter; (3) inadequate model size;
and (4) insufficient data amount. The four sources of failure
are inspired by the statistical physics viewpoint of learn-
ing (Seung et al., 1992; Watkin et al., 1993; Haussler et al.,
1994; Engel & den Broeck, 2001; Martin & Mahoney, 2017;
Yang et al., 2021; Zhou et al., 2023). According to prior
works in this area (Martin & Mahoney, 2017; Yang et al.,
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2021), the most important optimizer hyperparameters are the
temperature-like parameters that characterize the magnitude
of noise introduced in stochastic training. These can be as
common as the learning rate and batch size. Similarly, these
works use load-like parameters to refer to the size of the data
relative to the size of the model. They use temperature-like
and load-like parameters together to model the peculiar gen-
eralization properties of deep learning, an approach known
as the very simple deep-learning model (Martin & Mahoney,
2017; Yang et al., 2021). Therefore, our framework con-
siders temperature-like hyperparameters (mainly batch size
in this paper) and load-like parameters (data amount and
model size) 1. Controlling these parameters is also con-
sidered important in recent large-scale studies, such as the
neural scaling law (Kaplan et al., 2020).

More concretely, we decompose the four sources into two
canonical binary classification problems. That is, given a
trained model, without knowing the training configurations,
MD tree aims to answer the following questions:

Q1 Can we determine whether the optimizer hyperparame-
ter (e.g. batch size) used to train the model is large or
small, compared to the optimal hyperparameter?

Q2 Can we determine the more severe failure source be-
tween inadequate model size and wrong optimizer hy-
perparameter? Which one should be addressed first?

In Section 2, we discuss why our approach to defining and
addressing model diagnosis is orthogonal or complementary
to previous work.

Good Features for Model Diagnosis. The key to answer-
ing these questions is to extract informative features from
trained models associated with different failure sources.
Conventional metrics, as discussed in Raschka (2018), typ-
ically diagnose a trained model by analyzing training and
validation error (loss), which can be used to (roughly) de-
termine whether the model is overfitting or underfitting.
However, if we want a fine-grained model diagnosis, such
as answering questions like Q1 and Q2, the validation-
based metrics have several limitations. First, we show that
validation-based metrics provide limited information on the
root causes of underperformance. For example, while large
training errors may indicate underfitting, they do not dis-
tinguish between insufficient model size and suboptimal
optimizer hyperparameters. Second, a detailed visualization
of the model diagnosis shows that validation-based metrics
exhibit complex relationships with failure sources, resulting
in complicated nonlinear classification boundaries in the
binary classification problems Q1 and Q2. These bound-
aries not only lead to inaccurate diagnoses but also transfer

1Note that large data/model size can also hurt (Nakkiran et al.,
2021a) due to double descent (Belkin et al., 2019; Bartlett et al.,
2020; Hastie et al., 2022; Mei & Montanari, 2022), but we do
not consider large data/model size as primary failure sources
here, as appropriate regularization can often mitigate double de-
scent (Nakkiran et al., 2021b).

poorly across different groups of models.

Again, inspired by the statistical physics viewpoint of learn-
ing, this research uses metrics from the NN loss land-
scape to extract useful features for model diagnosis. Prior
works (Yang et al., 2021; Zhou et al., 2023) identify sev-
eral useful loss landscape metrics, including sharpness (Yao
et al., 2020), connectivity (Garipov et al., 2018; Nguyen
et al., 2021) and similarity (Kornblith et al., 2019), in deter-
mining the distinct regimes to characterize the test accuracy
of NNs, where each regime represents a range of configu-
rations where the loss landscape properties remain homoge-
neous. Our work, however, takes one step further and uses
these features for model diagnosis, aiming to answer fine-
grained questions such as Q1 and Q2, as shown in Figure 1.

A Simple Model for Model Diagnosis. Our framework em-
ploys an interpretable tree-based method called MD tree
to address Q1 and Q2. This method uses a divide-and-
conquer way to partition the NN configuration space into
distinct regimes using loss landscape metrics. Each iden-
tified regime is then associated with a particular source of
failure, allowing for interpretable diagnostic predictions.
Unlike traditional decision trees (DTs) that rely on infor-
mation gain for branching, MD tree adopts a hierarchy
inspired by the statistical physics viewpoint. That is, we
prioritize the metrics shown in previous work to capture the
sharp transitions of the NN regimes by placing these metrics
at shallower levels of the tree.

We evaluate MD tree in few-shot learning scenarios. Few-
shot means that a few trained NNs are used as a “training
set” to develop a function that maps loss landscape metrics
to diagnostic predictions. We evaluate the diagnostic ability
of this classifier under two transfer learning scenarios:
dataset transfer, where the NNs to be diagnosed are models
trained on different datasets, possibly with label noise, and
scale transfer, where the training involves diagnosing small
models, while the testing involves diagnosing large ones.

Main Findings. Our empirical analysis uses datasets of pre-
trained models with 1690 different configurations, including
different model sizes, data amounts, and optimization hy-
perparameters. Our analysis shows that MD tree, which
uses loss landscape metrics, can effectively diagnose the
sources of model failures and significantly outperform the
validation-based method. Our key observations to support
this main claim include:

O1 MD tree uses loss landscape metrics to distinguish
the “regime” of the models: the models within the same
regime are homogeneous and share the same failure
source (e.g., the failure is caused by a small optimizer
hyperparameter value). Also, most of the boundaries
between the regimes are sharp, so the models with dif-
ferent failure sources are linearly separable by applying
simple thresholding to the loss landscape metrics.

O2 The boundaries determined by MD tree have high
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transferability across different groups of models (e.g.,
transferring from models trained on clean data to those
with label noise). For example, MD tree trained with
small-scale models (e.g., models with 0.01M parame-
ters) can be used to diagnose failures in models with up
to 44.66M parameters and can achieve an accuracy of
82.56%. Therefore, MD tree’s decision thresholds
determined by a few known sample models can be ef-
fectively transferred to diagnose other unseen models.

O3 The tree hierarchy of MD tree, inspired by recent
studies from Yang et al. (2021), is beneficial to our
model diagnosis problem. The effectiveness of the
hierarchy is demonstrated by MD tree’s better
performance compared to standard DTs using the
same set of loss landscape metrics. Specifically, in a
few-shot setting with 12 training samples, MD tree
outperforms standard DT by 12.71%.

In summary, we introduce MD tree, a useful model di-
agnostic tool that uses previous research on loss landscape
metrics to provide actionable insights on model failures.
Our key contributions are as follows:

• We introduce a model diagnosis method called MD tree,
which can identify the specific failure source within ML
pipelines (optimizer, model size, data amount) that affects
a model. In cases where multiple failure sources are at
play, MD tree can determine which failure source is
most detrimental to performance.

• We show that MD tree can be applied to a range of
practical transfer learning cases, including (i) diagnosing
models trained with noisy data given models trained with
clean data; (ii) diagnosing models trained with large-scale
parameter/data given trials on small-scale models; (iii)
diagnosing models evaluated on out-of-distribution
(OOD) test data (Hendrycks & Dietterich, 2019) or
trained on class-imbalanced training data (Cui et al.,
2019) given normal models; (iv) diagnosing Transformer
models given ResNet models.

• Moreover, MD tree outperforms validation-based
methods in diagnostic accuracy by a significant margin of
14.88%. In Appendix A, we apply MD tree to a novel
task of determining a “one-step configuration change” to
improve test performance. We show that MD tree can
lead to superior CIFAR-10 test accuracy improvement
compared to validation-based methods.

2. Related Work
2.1. Model Diagnosis

Model diagnostics are widely studied for linear regression
models (Weisberg, 2005; Chatterjee & Hadi, 2009). These
approaches typically validate several assumptions, such as
the normality of the residuals, the linearity of the relation-
ship between the explanatory and response variables, and
the presence of outliers or influential data points. These

diagnostics provide “actionable” insights and allow us to
choose to remove or handle outlier points, transform fea-
tures, or include or remove features to better explain the
data. However, for NNs, applying linear regression diagnos-
tics is not straightforward. Nonetheless, model diagnostics
for deep NNs is a growing field with ongoing efforts to
understand model failures and behaviors. This section dis-
cusses these efforts and shows that our unique perspective
on model diagnosis is orthogonal to previous studies.

The work most closely related to ours in the literature uses
theoretically principled approaches to measure NNs. One
such approach is Heavy-tailed Self-regularization (HT-SR)
theory (Martin & Mahoney, 2017; 2021b; Martin et al.,
2021; Martin & Mahoney, 2021a; Yang et al., 2023; Zhou
et al., 2024), which analyzes weight matrices to predict and
explain model performance. This line of work also connects
to generalization metrics (McAllester, 1999; Keskar et al.,
2017; Bartlett et al., 2017; Jiang et al., 2019; Dziugaite
et al., 2020; Baek et al., 2022; Jiang et al., 2022; Kim et al.,
2023; Andriushchenko et al., 2023). Previous research on
generalization metrics has primarily focused on predicting
test performance trends and designing regularizers during
training. In contrast, our study develops metrics to diag-
nose sources of model failure and predict optimal ways to
improve model configuration.

Recent research on LLMs often uses the self-diagnosis abil-
ity to evaluate output quality (Schick et al., 2021; Chen
et al., 2023; Fu et al., 2023; Ji et al., 2023; Zheng et al.,
2024). Although these methods provide useful information,
many lack transparency, making their diagnostic processes
difficult to interpret. In contrast, our work uses theoretically
motivated metrics and easy-to-interpret tree models for di-
agnostics. Research in mechanistic interpretability aims to
understand the learned circuits in models (Wang et al., 2023;
Conmy et al., 2023; Chughtai et al., 2023) and to probe the
learned features or concepts (Gurnee et al., 2023). Other
studies (Ilyas et al., 2022) focus on data attribution, attribut-
ing model behavior to training samples, and extending this
approach to large-scale models (Park et al., 2023) and ana-
lyzing training algorithms (Shah et al., 2023). Instead of con-
centrating on specific model components (e.g., mechanistic
interpretability) or individual training data samples (e.g.,
data attribution), our work aims to diagnose failures arising
from generic sources in machine learning pipelines, such
as training hyperparameters, data quantity, and model size.
While model editing (De Cao et al., 2021; Mitchell et al.,
2022; Meng et al., 2022) is also related to diagnosis, it pri-
marily focuses on downstream control and knowledge edit-
ing, which is beyond the scope of our diagnostic approach.

2.2. Learning Curve Prediction

Learning curves, as seen in Banko & Brill (2001); Hestness
et al. (2017); Sun et al. (2017); Mohr & van Rijn (2022);
Viering & Loog (2023), measure a model’s generalization
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performance relative to training data size. Recent research
has focused on neural scaling laws (NSLs) (Kaplan et al.,
2020; Alabdulmohsin et al., 2022; Hoffmann et al., 2022;
Caballero et al., 2023; Muennighoff et al., 2024), particu-
larly in LLMs. These laws indicate that language model
performance scales with model size, dataset size, and train-
ing computation in a power-law manner. However, NSLs are
typically used to predict optimal resource allocation before
or during the early stages of training, assuming known train-
ing configurations to generate initial points on the curves. In
contrast, our diagnosis framework focuses on post-training
analysis, where a single pre-trained model is available, and
the exact training configuration is unknown. Our paper also
focuses on developing transferable metrics that enable ro-
bust model diagnostics when hyperparameter tuning on the
original training data is not feasible. Furthermore, the sim-
ple power-law relationship in NSLs may overlook complex
behaviors that arise from the joint influence of load and
temperature parameters. For example, recent work shows
that a model’s performance exhibits such complex behaviors
when both load and temperature change simultaneously, po-
tentially leading to multi-regime patterns (Yang et al., 2021;
Zhou et al., 2023) and double descent (Bartlett et al., 2020;
Nakkiran et al., 2021a; Mei & Montanari, 2022; Hastie et al.,
2022; Caballero et al., 2023), beyond simple power-law-like
patterns. Our work incorporates load and temperature pa-
rameters to handle these multi-regime patterns effectively.

2.3. Statistical Physics of Learning

Our framework builds on the statistical physics of learn-
ing (Seung et al., 1992; Watkin et al., 1993; Engel, 2001;
Zdeborová & Krzakala, 2016; Bahri et al., 2020) and con-
siders factors such as data amount and model size. From the
perspective of statistical physics, load-like parameters char-
acterize the quantity and/or quality of data relative to model
size. Temperature-like parameters, on the other hand, char-
acterize the magnitude of noise introduced during stochastic
training. Several recent papers (Martin & Mahoney, 2017;
Yang et al., 2021; Zhou et al., 2023) use load and tempera-
ture parameters to analyze multi-regime patterns in NNs.

3. Preliminaries and Background
NN Training. We consider training a NN f , with trainable
parameters θ ∈ Rp, on a training dataset comprising n
datapoint/label pairs, using an optimizer parameterized by a
hyperparameter t. This paper mostly considers temperature-
like hyperparameters t, such as the learning rate or batch
size. We denote the error of NNs (evaluated on a particular
dataset) by E and the loss by L. The error evaluated using
the training and validation sets is thus denoted as Etr and
Eval, respectively, while the loss is denoted by Ltr and Lval.

Loss Landscape Metrics. Three types of metrics were
introduced in Yang et al. (2021) to quantify the local

and global geometric structures of loss landscapes,
and they were used to study “phase transitions” in the
hyperparameter space. In particular, these metrics are:
“connectivity” metrics such as mode connectivity (Garipov
et al., 2018; Draxler et al., 2018), “similarity” metrics such
as Centered Kernel Alignment (Kornblith et al., 2019),
and “local sharpness” metrics such as the Hessian trace
and largest Hessian eigenvalue (Yao et al., 2020). The
mode connectivity (C) quantifies how well different local
minima are connected to each other in the loss landscape.
The Hessian trace (Ht) and largest Hessian eigenvalue (He)
contain the curvature information of the loss landscape,
which could be used to quantify the local sharpness. Since
Ht and He have been shown to provide similar information
in determining the regime (Yang et al., 2021), we mainly
use Ht to measure sharpness. CKA similarity (S) captures
the similarity between the outputs of trained models. These
metrics are precisely defined in the Appendix B.

4. Constructing Model Diagnosis Framework
In this section, we build the framework of MD tree. Sec-
tion 4.1 presents definitions of the diagnosis problems. Sec-
tion 4.2 presents MD tree method. Section 4.3 presents
different model metrics and the few-shot diagnosis method.
Section 4.4 presents the evaluation setup, including the di-
agnostic datasets and transfer setups.

4.1. Defining the Diagnosis Problem

Given a training algorithm A, a NN f0 trained with a spe-
cific setting of p parameters, n data samples, and optimizer
hyperparameter t can be represented as f0 = A(p, n, t). In
the context of real-world constraints, we set the maximum
allowable values for data amount, model size, and the
range for optimizer hyperparameters as nmax, pmax and
[tmin, tmax]. Our goal is to identify the “failure source”
m of a trained model f0, which is the hyperparameter
primarily responsible for its suboptimal performance. The
impact of the failure source is measured using a metric we
call room for improvement (RFI).

Failure Sources. We consider four types of failure sources:

• Failure m↓
t : the optimizer hyperparameter (t) is smaller

than the optimal choice.
• Failure m↑

t : the optimizer hyperparameter (t) is larger
than the optimal choice.

• Failure mp: the number of parameters (p) is too small.
• Failure mn: the amount of data (n) is too small.

The above taxonomy defines the set of failure sources con-
sidered in this paper: M = {m↓

t ,m
↑
t ,mp,mn}.

Room for Improvement (RFI). The RFI of a failure source
m is defined as the gap (in validation error) between the
current configuration (p, n, t) and the optimal configuration
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when changing the single hyperparameter in (p, n, t) that
corresponds to the failure source m. For example, the RFI
of failure source mp is defined as

RFI(mp, f0) = Eval(f0)− Eval(f
∗),

where f∗ = A(q∗, n, t),

q∗ = argmin
q∈[p,pmax]

Eval(A(q, n, t)).
(1)

where the last two lines indicate finding the optimal number
of model parameters larger than or equal to the current
value p but smaller than or equal to the maximum allowable
model size pmax. The RFI for other failure sources are
defined similarly and presented in Appendix C.1.

Canonical Diagnosis Questions. Using RFI, we define the
diagnosis questions Q1 and Q2. We define the RFI gap
as the RFI difference between two failure sources, denoted
as G. For example, the RFI gap between large and small
optimizer hyperparameters is G(m↑

t ,m
↓
t ) = RFI(m↑

t ) −
RFI(m↓

t ). Then, Q1 can be defined as the following binary
classification problem:

Q1 : f0 → {G(m↑
t ,m

↓
t ) > 0, G(m↑

t ,m
↓
t ) < 0}. (2)

Similarly, Q2 can be defined as

Q2 : f0 → {G(mp,mt) > 0, G(mp,mt) < 0}, (3)

where G(mp,mt) = RFI(mp)− RFI(mt) and RFI(mt) =

max{RFI(m↑
t ),RFI(m↓

t )}. We write G(m,m′) simply as
G when the two failure sources m,m′ are clear. In Ap-
pendix C.2, we explain why G = 0 is not considered as a
third class in the problem.

Diagnosis Objective. Given a sample (which is a pre-
trained model f0), one can use equation (1) to define the
RFI and then define the binary label using equation (2)
or equation (3). The goal is to learn a function that maps
a pre-trained model f0 to the binary label in {G(m,m′) >
0, G(m,m′) < 0}, using only features extracted from f0,
without calculating G(m,m′), and no retraining is allowed.

4.2. Defining MD tree

We now introduce MD tree, which is a tree-based method
to predict whether G(m,m′) is greater than 0. The main
idea of MD tree is to use a divide-and-conquer way to
diagnose failure sources using loss landscape metrics. See
Figure 2 for the tree structure. We aim to partition the hy-
perparameter space into multiple regimes, where the models
in the same regime roughly share the same failure source.
Yang et al. (2021) use these loss landscape metrics to deter-
mine the NN regimes and predict test performance. Our tree
construction borrows the regime partition from this work to
grow a partial tree and then completes it using more exper-
imentally useful branch partitions. The tree is constructed
hierarchically, prioritizing metrics that have been shown

Training error

Input: one trained model

Connectivity Connectivity

Sharpness

Interpolating 
(close to zero) 

Not interpolating 
(larger than zero) 

Negative Close to zero

More 
sharp

Less 
sharp

Sharpness

Negative
 

More 
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Less 
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Figure 2. (MD tree based on loss landscape structure of trained
models). A DT using loss landscape metrics to determine distinct
regimes of model configurations such that each regime has the
same root cause of failure. The tree hierarchy is fixed, while the
decision threshold is trained in a few-shot manner. Part of the tree
hierarchy is selected using ideas from Yang et al. (2021), which
suggests a “multi-regime” structure of the hyperparameter space.

to lead to sharp transitions in the hyperparameter space,
such as training error and mode connectivity. The similar-
ity measure tends to have a smooth transition and is given
a lower priority. Therefore, the tree is constructed in the
following order: training error at the root, connectivity at
the first depth level, and finally sharpness or similarity. This
order emphasizes the importance of the interpolation thresh-
old (Nakkiran et al., 2021a) and connectivity (Yang et al.,
2021; Zhou et al., 2023) because they can be used to measure
sharp and clear transitions in NN behaviors. Thus, the tree
structure is fixed. MD tree only optimizes the thresholds
of the metrics at each internal node sequentially from top
to bottom. Initial values and search ranges are provided for
each threshold, and the bounded Brent method (Brent, 1973)
is used to optimize these thresholds to maximize training
accuracy. The hyperparameters are provided in Appendix D.

4.3. Defining Baseline Methods

We introduce baseline diagnosis methods for solving Q1 and
Q2, which cover the model metrics that are used as features
and the diagnosis functions.

Model Metrics. To predict failure sources based on a
trained model f0, we define a feature vector P, which com-
prises several metrics derived from f0. We study loss land-
scape metrics and two conventional baselines:

• Loss landscape: combining the local and global loss land-
scape metrics defined in Section 3 with training error. The
components of the feature vector are P = [Etr, C,Ht,S].

• Validation: training error/loss, and validation error/loss,
formally P = [Eval, Etr,Lval,Ltr].

• Hyperparameter: the hyperparameters of trained NN
that are not related to the diagnosis question. For example,
when predicting whether t is large or small (m↑

t vs m↓
t ),

t is not considered a metric. However, the parameter
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amount p and the data amount n are considered.

Diagnosis Function. We adopt a standard DT as a base-
line classifier to map the feature vector P to the binary
decision {G > 0, G < 0}. Recall that G denotes the RFI
gap between two failure sources. We adopt the standard
implementation of DT in Hastie et al. (2001), with details
provided in Appendix D.2.

4.4. Experimental Setup

Collections of Pre-trained Models. We introduce the
datasets used to evaluate MD tree, primarily obtained
from the collections of pre-trained models studied by
Yang et al. (2021). We release these collections for future
research on model diagnosis2. The collection of models,
denoted as F , includes various ResNet models trained on
CIFAR-10 with differing number of parameters (p), data
amounts (n), and optimizer hyperparameters (t, batch size).
This collection comprises a total of 1690 configurations,
each with five runs (models) using different random seeds.
Additionally, we have another set, F ′, which includes 1690
configurations trained with the same varying parameters but
trained with 10% label noise. For details, see Appendix C.3.

Few-shot Setup. We consider a few practical model di-
agnostic problems, where the training set for MD tree is
small (few-shot). We elaborate on how the corresponding
training sets are constructed here, with more details about
the training sample labeling provided in Appendix C.4.

• w/ dataset transfer: For Q1 (which is to determine
whether the hyperparameter t is large or small), the train-
ing set consists of models randomly sampled from F for
a fixed parameter count and data amount (p, n). For Q2
(determining model size versus optimizer), the training
set consists of models randomly sampled from F for a
fixed data amount. For both cases, the test set is F ′.

• w/ scale transfer: The training set includes models
trained with data amounts below certain thresholds (e.g.,
5K data points) or with parameter counts below specific
limits (e.g., 0.04M). The test set is F ′, the same as dataset
transfer. Note that using F ′ as the test set in the scale
transfer study inherently includes dataset transfer. This
design ensures consistency in our test set F ′ across the
different transfer studies, allowing for comparability of
results and ensuring that the test set does not include any
training samples from F .

In addition to the two primary cases, we consider three ad-
ditional transfer scenarios. We first examine OOD general-
ization, where pre-trained models handle distribution shifts
during testing. Second, we investigate class-imbalanced
training, where pre-trained models are initially trained on
long-tailed datasets. Finally, we explore diagnosing unseen
model architectures, specifically focusing on Vision Trans-

2https://github.com/YefanZhou/ModelDiagnosis

formers, while the training set includes ResNet models. The
details are presented in Appendix E.1.
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Figure 3. (Comparing MD tree to baseline methods on Q1
tasks with dataset and scale transfer). The y-axis indicates
the diagnosis accuracy. (a) The x-axis indicates the number of
pre-trained models used for building the training set. (b) The x-
axis indicates the maximum amount of training (image) data for
training models in the training set. (c) The x-axis indicates the
maximum number of parameters of the models in the training set.

5. Is the Optimizer Hyperparameter Large or
Small

In this section, we focus on Q1, which is to determine
whether an optimizer hyperparameter (e.g., batch size) is
too large or too small. This is formulated as a binary clas-
sification problem defined in equation (2). In Section 5.1,
we evaluate MD tree on the dataset transfer and the scale
transfer tasks. In Appendix A.2, we further study MD tree
on a one-step configuration change task. In Appendix E.2,
we study three additional transfer scenarios.

5.1. Evaluating Diagnosis Methods

We evaluate MD tree by comparing it with two baseline
methods: normal DT with Validation or Hyperparameter
as features, defined in Sections 4.3. In Figure 3, we report
the diagnosis accuracy in the few-shot setting on two tasks:
dataset transfer and scale transfer. We repeat all experiments
in Figure 3 for five runs and report the mean and standard
deviation. Figure 3(a) shows the diagnosis accuracy ver-
sus the size of the training set, for which the training data
is randomly subsampled, which leads to a large standard
deviation. Figure 3(b) and Figure 3(c), on the other hand,
show the results of model diagnosis when the training set
is restricted to the subset of models trained with limited
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(a) MD tree for Q1
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Decision boundary of MD tree

(b) Training (w/o label noise) (c) Training (w/o label noise)

(d) Test (w/ label noise) (e) Test (w/ label noise)

Figure 4. (Visualizing MD tree and its diagnosis results for Q1). Left: structure of the tree defined in Section 4.2. The color of the leaf
node indicates the predicted class by MD tree. The threshold values are learned from the training set. Right: The first row represents
training samples, and the second row represents test samples. Each colored circle represents one sample (which is one pre-trained model
configuration), and the color represents the ground-truth label: blue means the hyperparameter is too small, while red means too large.
The black dashed line indicates the decision boundary of MD tree. Each numbered regime on the right corresponds to the leaf node
with the same number on the tree. The samples in 4(b) and those in 4(c) are separated by training error. The same applies to 4(d) and 4(e).

data or model size. We do not perform any subsampling
in this subset. Therefore, the training set is deterministic,
and the diagnostic accuracy has low standard deviations.
In Appendix F.1, we conduct an ablation study comparing
our method with baselines using normal DT with combined
Validation and Hyperparameter features.

MD tree provides accurate and interpretable diagnosis.
Figure 3(a) shows that MD tree reaches around 87.7%
accuracy when trained using 96 samples. When trained with
96 samples, MD tree outperforms normal DTs with Vali-
dation metrics by 14.88%. When trained with 12 samples,
MD tree can still reach an accuracy of 76.64%.

Further, in Figure 4, we analyze MD tree by visualizing
how the samples are categorized into each leaf node. On
the left side, we show the MD tree structure along with
the metric thresholds used to split each internal node. The
color of each leaf node represents the predicted labels. On
the right side, we illustrate the classification boundaries
(black dashed lines) established by MD tree. Each regime
corresponds to a leaf node on the left side, and the color of
each circle represents the actual label of the failure source.
In Figures 4(b) and 4(c), we see that the regimes (numbered
from 1⃝ to 4⃝), separated by MD tree’s black boundaries,
mainly consist of circles of uniform color, matching
the color of the corresponding leaf node in Figure 4(a).
The same observation holds for test samples shown in
Figure 4(d) and 4(e). This indicates that MD tree accu-

rately classifies samples into the correct categories. More
importantly, the diagnosis results from MD tree are in-
terpretable. For example, it can predict that a model’s batch
size is too large because that leads to poor connectivity and
sharper local minima (regime 2⃝), which is indeed an issue
with large-batch training discussed in Keskar et al. (2017).

Loss landscape metrics are more effective than valida-
tion metrics in diagnosing model failures. Comparing
the visualization of MD tree in Figure 4 and validation
metrics in Figure 19 further explains why MD tree out-
performs the latter in diagnosis accuracy. Validation-based
metrics result in nonlinear classification boundaries between
failure sources, with significant discrepancies between
models in the training set (Figure 19(a), w/o label noise) and
models in the test set (Figure 19(c)). On the contrary, in Fig-
ure 4, representing pre-trained models using loss landscape
metrics as features makes them piecewise linearly separable.
In addition, the threshold (or boundaries) learned during
training (top) can be generalized to the test set (bottom).

MD tree has high transferability from small-scale to
large-scale models. As evidenced in Figures 3(b) and
3(c), MD tree demonstrates strong transferability from
small-scale to large-scale models. Recall that the test set F ′

comprises 1560 pre-trained models, including large-scale
models trained with up to 50K data points and 44.66M pa-
rameters. From Figure 3(b), we see that MD tree achieves
75.90% accuracy in predicting across the entire test set
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Figure 5. (Visualizing MD tree and its diagnosis results for Q2). Left: structure of the tree defined in Section 4.2. The color of the leaf
node indicates the predicted class by MD tree. The threshold values are learned from the training set. Right: The first row represents
training samples, and the second row represents test samples. Each colored circle represents one sample (which is one pre-trained model
configuration), and the color represents the ground-truth label: blue means the failure source is the optimizer, while red means model size.
The black dashed line indicates the decision boundary of MD tree. Each numbered regime on the right corresponds to the leaf node
with the same number on the tree. The samples in 5(b) and those in 5(c) are separated by training error. The same applies to 5(d) and 5(e).

F ′ when trained on small-scale models with only 5K data
points. In Figure 3(c), MD tree achieves 82.56% accuracy
on F ′ when trained on models with fewer than 0.01M param-
eters. This high transferability is attributed to the universal
multi-regime pattern in the space of model configurations
(as illustrated in Yang et al. (2021) using extensive experi-
ments), which emerges early even if we only consider small-
scale models. The multi-regime pattern is further illustrated
in Figure 21, which shows that the decision boundaries es-
tablished by MD tree for models trained with small data
amounts closely resemble those of models trained with large
data amounts. This observation underscores the practicality
of our method, as MD tree can be trained in few-shot ex-
periments using small-scale models. In turn, MD tree can
be used to diagnose failures in large-scale models.

A notable transition of diagnosis performance is ob-
served in scale transfer. A significant transition in diagnos-
tic performance occurs during scale transfer. In Figure 3(c),
we note a sudden increase in MD tree’s accuracy from
82.82% to 91.28% when the training set begins to include
models with 0.10M parameters. This jump in accuracy can
be attributed to including models that represent a more com-
plete range of loss landscape regimes. Figure 23 in the Ap-
pendix provides the details of this transition. Models smaller
than 0.10M parameters are often limited to a certain range of
loss landscape metric values, such as consistently negative
mode connectivity, making it challenging to establish accu-

rate and generalizable diagnostic thresholds. This highlights
the challenges in extrapolating diagnostic insights from very
small-scale models to larger ones, a phenomenon discussed
by Zhou et al. (2023), where the optimal hyperparameters
differ significantly between small and large models. Inter-
estingly, this also suggests that, for an effective diagnosis of
extremely large models, extremely large models are not nec-
essary; medium-sized models (those with adequate mode
connectivity, as defined by Zhou et al. (2023)), are sufficient.

6. Which Hyperparameter Leads to Failure
We now turn to Q2, which considers situations where, de-
spite the possibility of altering two hyperparameters for im-
proved performance, budget constraints require prioritizing
the search for only one of them. Specifically, we compare
two factors: the optimizer hyperparameter (t) and the model
size (p), defined in equation (3). Similar to Q1, we also
study a one-step configuration change task in Appendix A.3.
We will evaluate MD tree using the accuracy of the diag-
nosis. In addition, we study a variation of Q2 that focuses
on the amount of data versus the optimizer in Appendix G.
All findings demonstrate the effectiveness of MD tree.

6.1. Evaluating Diagnosis Methods

Similar to Section 5.1, we compare MD tree with the
baseline methods and provide an interpretable visualization

8



MD tree: a model-diagnostic tree grown on loss landscape

Hyperparameter + DT Validation + DT MD tree

250 500 750 100012501500
Number of trained models used

50

60

70

80

D
ia

gn
os

is
 a

cc
ur

ac
y 

(%
)

(a) Dataset transfer

5 10 15 20 25 30 35 40 45 50
Data amount (K) limit

50

60

70

80

D
ia

gn
os

is
 a

cc
ur

ac
y 

(%
)

(b) Scale transfer
Figure 6. (Comparing MD tree to baseline methods on Q2
in dataset and scale transfer). y-axis indicate the diagnosis
accuracy. (a) x-axis indicates the number of pre-trained models
in the training set. (b) x-axis indicates the maximum amount of
training (image) data for the models in the training set.

in Figure 5. The diagnosis accuracy is reported in Figure 6.

MD tree can provide interpretable visualization and
transfer well from small-scale to large-scale models. In
Figure 6(a), MD tree reaches 74.11% with 160 trained
models, significantly outperforming the validation-based
method by 18.31%. The visualizations in Figure 5 highlight
MD tree’s ability to use loss landscape metrics to dis-
tinctly separate models. In contrast, the validation metrics
shown in Figure 20 present complex and less interpretable
boundaries.

Figure 6(b) demonstrates MD tree’s effective transferabil-
ity, maintaining high performance (78.17%) even when
trained on small-scale models with 5K data points. This is
supported by Figure 22, which shows that the connectivity-
based decision boundary established with limited data can
be successfully applied to models trained with larger data
amount. However, MD tree exhibits some limitations,
such as the misclassification of some test models in Fig-
ure 5(d), numbered regime 1⃝. This limitation results in MD
tree achieving a maximum accuracy of 79.56% in Q2,
which is lower than the 89.85% accuracy in Q1. This could
be attributed to shifts in the model’s distribution caused
by training with label noise. Future research could ex-
plore whether fine-tuning in the target domain enhances
MD tree’s generalization.

Comparing MD tree with validation-based methods.
We provide insights into the advantages of using loss land-
scape metrics in MD tree. We find that loss landscape
metrics are more sensitive to hyperparameter changes than
validation metrics. This is demonstrated by the case study
in Figure 7, which addresses Q2 in a zero-shot scenario.
Two pretrained models, A and B, need to be diagnosed. Val-
idation metrics only show both models with high training
errors, indicating underfitting, but fail to distinguish the dif-
ferent failure sources (optimizer vs. model size) that lead to
the underfitting. However, loss landscape metrics reveal that
Model A, with poor connectivity, suffers from model size
issues, whereas Model B, with good connectivity, is affected

Sharpness
4

Connectivity

Similarity

765

0.35 0.650.55 0.45

Training error:     19.19 %  
Validation error:  24.19 % 

Both models are 
under-fitting

Model A Model B

       pooly-connected       well-connected 

Training error:     17.68 %  
Validation error:  28.00 % 

MD tree

The failure sources 
of two models are 
different.

-25 -15  15  25

Room for improvement

Figure 7. (Case Study: MD tree vs. validation method for Q2).
Top: Validation metrics provide limited diagnosis: both models
have the same underfitting issues. Middle: Loss landscape metrics
distinguish the models: Model A has poor connectivity, while
Model B has good connectivity. Bottom: Model A suffers from a
size issue, and Model B has a training hyperparameter issue.

by optimizer settings. This is further confirmed by the radar
plot, where Model A shows a higher RFI in model size, and
Model B has a higher RFI in optimizer hyperparameters.
In Figure 26, we show a similar zero-shot analysis on two
overfitting models.

The importance of MD tree’s tree hierarchy. Lastly, we
evaluate the role of MD tree’s fixed tree structure, which
partitions data according to a specific sequence of metrics:
training error, connectivity, and then sharpness or similarity.
This structure is inspired by Yang et al. (2021), which high-
lights the usefulness of encoding known inductive biases in
model diagnosis. We evaluate a conventional DT employing
the same loss landscape metrics {Etr, C,Ht,S} but without
adhering to this precise order. As shown in Figure 17, MD
tree consistently outperforms standard DT in Q1 and Q2,
especially with a limited number of trained models. This
shows that this inductive bias imposes a beneficial regu-
larization on MD tree when data is limited. Details are
provided in Appendix F.2.

7. Conclusion
In conclusion, MD tree introduces an innovative frame-
work for diagnosing the underperformance of trained NN
models without retraining, meeting the urgent need for ef-
fective diagnostics with low computational cost. Using
loss landscape metrics, MD tree outperforms conventional
validation-based methods by providing more accurate and
generalizable diagnoses. Through quantitative few-shot clas-
sifier predictions and qualitative visualization, MD tree
proves its efficacy in identifying critical failure sources, such
as inappropriate optimizer hyperparameters or inadequate
model sizes. This has been demonstrated in various scenar-
ios, including dataset and scale transfers, without relying on
detailed training configurations.

9



MD tree: a model-diagnostic tree grown on loss landscape

Impact Statement
Our research focuses on creating a diagnostic method for
pre-trained models. Although MD tree can be used in
various applications, including those with potential adverse
effects, the algorithm itself does not present immediate neg-
ative social impacts. On the contrary, MD tree has signif-
icant social value, particularly in helping universities and
researchers with limited computing resources to effectively
use pre-trained models.
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Appendix

A. Applying Diagnosis to One-step Configuration Change

A.1. Experimental Setup

Here we elaborate on the experimental setup for the one-step configuration change task. The one-step change includes
1) determining the change direction, and 2) determining the size of the adjustment step. The first one, for Q1, means
determining whether to increase or decrease the optimizer hyperparameter. For Q2, it means first determining whether to
increase the model size or adjust the optimizer hyperparameter, if the first decision chooses the latter one, then the second
decision has to be made to decide whether to increase or decrease. This change direction is determined by the diagnosis
method such as MD tree, e.g. if MD tree finds that the failure source is the optimizer hyperparameter is too large (m↑

t ),
then we choose to decrease it.

In addition to comparing MD tree with the diagnosis methods Validation + DT and Hyperparameter + DT, we also
compare it with Random diagnosis and Optimal diagnosis. Random diagnosis, which selects the change direction randomly
between two options, represents the lower bound of performance for diagnosis-based hyperparameter changes. Optimal di-
agnosis, using the ground-truth label to choose the best direction, represents the upper bound of performance, equivalent to a
diagnosis method achieving 100% test accuracy. We examine three approaches for determining the change steps: “fixed (one)
step size”, “random step size”, and “optimal step size”. The “fixed” refers to taking one tuning step, “random” refers to taking
a random step size along the determined direction, and “optimal” refers to taking the step size that can reach the best perfor-
mance along the chosen direction, representing the upper bound of performance improvement of a specific diagnosis method.

A.2. One-step Change on Optimizer Hyperparameter (Q1)

We extend the practicality of MD tree, by applying it to a task involving a one-step change in the model configuration.
These methods predict the direction–either an increase or decrease–of an adjustment in an optimizer hyperparameter (e.g.
batch size here). This adjustment is executed using one of three different types of step size: a fixed (one) step size, a
random step size, or the optimal step size. We then evaluate the impact of this adjustment by measuring the test accuracy
improvement of the adjusted model on CIFAR-10. Diagnosis methods are built using the training set F and evaluated on the
test set F ′. More information on the setup and evaluation can be found in Appendix A.1.

Table 1 shows that MD tree enhances task performance, outperforming three baselines, including the Validation approach,
across three different step size settings. The task performance gains correlate with the diagnostic accuracy shown in Figure 3,
with MD tree leading, followed by the Validation method, and then the Hyperparameter approaches. An important
takeaway is the impact of accurate diagnostics on improving task performance through a single hyperparameter adjustment.
Specifically, an accurate diagnosis like MD tree can boost performance by 5.52% with the optimal step size, markedly
better than the Random diagnosis (3.50%). This highlights the importance of precise diagnostic tools for effective tuning.
Future work will explore predicting the optimal step size for hyperparameter adjustments using loss landscape metrics.

Table 1. (Q1: task performance improvement (CIFAR-10 accuracy (↑, %)) of performing one-step change only on the optimizer
hyperparameter). The diagnosis methods decide whether to increase or decrease the given trained model’s hyperparameter and then the
decision is combined with three types of step sizes. We trained using 96 configurations randomly sampled from F and evaluated the
average improvement across 1560 sub-optimal model configurations from F ′ for testing. Each experiment was repeated with five random
seeds, and we reported the mean and standard deviation.

Diagnosis method w/ fixed step w/ random step w/ optimal step

Optimal diagnosis 1.48 ± 0.00 2.92 ± 0.03 5.83 ± 0.00

Random diagnosis 0.92 ± 0.03 1.78 ± 0.03 3.50 ± 0.10
Hyperparameter + DT 0.92 ± 0.07 1.84 ± 0.26 3.52 ± 0.50

Validation + DT 1.24 ± 0.12 2.31 ± 0.17 4.63 ± 0.23
MD tree 1.34 ± 0.06 2.74 ± 0.13 5.52 ± 0.15

A.3. One-step Change on Optimizer Hyperparameter or Model Size (Q2)

We applied the diagnosis methods for addressing Q2 to a one-step configuration change task, with the setup detailed in
Appendix A.1. The diagnosis methods decide whether to adjust the optimizer hyperparameter or increase the model size.
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If the former option is selected, the diagnosis method for Q1 will further determine whether to increase or decrease the hy-
perparameter, and all decisions are combined with three types of adjustment step sizes. Table 2 demonstrates that MD tree
surpasses three baseline methods in enhancing task performance, affirming its better diagnostic accuracy. This experiment
highlights the importance of precise hyperparameter adjustment for task improvement, a goal that MD tree facilitates.

Table 2. (Q2: task performance improvement (CIFAR-10 accuracy (↑, %)) of performing one-step hyperparameter change on the
optimizer hyperparameter and model size). The diagnosis method decides whether to adjust the optimizer hyperparameter or increase
the model size. We used 156 configurations randomly sampled from F for training and evaluated the average improvement on 1560
sub-optimal configurations from F ′. Each experiment was repeated with five random seeds, and we reported the mean and standard
deviation.

Method w/ fixed step w/ random step w/ optimal step

Optimal diagnosis 1.92 ± 0.00 5.47 ± 0.05 8.83 ± 0.00

Random diagnosis 1.19 ± 0.03 3.09 ± 0.11 5.03 ± 0.10
Hyperparameter + DT 1.48 ± 0.00 4.36 ± 0.09 6.59 ± 0.00

Validation + DT 1.42 ± 0.12 4.09 ± 0.59 6.33 ± 0.61
MD tree 1.73 ± 0.04 4.79 ± 0.16 8.10 ± 0.22

B. Loss Landscape Metrics
In this section, we define loss landscape metrics, then we discuss the related work on sharpness. Lastly, we discuss the
computational efficiency of these metrics.

Connectivity Metrics. For two models with two parameter configurations θ,θ′, we can learn a curve γ(t), t ∈ [0, 1] con-
necting θ and θ′ such that γ(0) = θ, γ(1) = θ′, and the training error (loss) evaluated on γ(t) for any t ∈ [0, 1] is minimal.
One approach to parameterizing γ(t) is to use a Bezier curve (Garipov et al., 2018) with k+1 bends, γϕ(t) =

∑k
j=0

(
k
j

)
(1−

t)k−jtjθj , t ∈ [0, 1], where θ0 = θ, θk = θ′, and ϕ = {θ1, ...,θk−1} are trainable parameters of additional models. In this
study, we use Bezier curves with three bends (k = 2). We use the peak of the curve to quantify whether there exists a barrier:

C(θ,θ′) = −Etr(γ(t
∗)),

where, t∗ = argmax
t

∣∣∣∣12 (Etr(θ) + Etr (θ
′))− Etr (γϕ(t))

∣∣∣∣ (4)

Similarity Metrics. CKA similarity measures the difference in features between two parameter configurations θ,θ′. Let
{x1,x2, . . . ,xs} be randomly sampled data points, and let Fθ = [fθ(x1) . . . fθ(xs)]

⊤ ∈ Rs×dout be the output of the
network. Then, the CKA similarity between two parameter configurations θ,θ′ is given by:

S(θ,θ′) =
Cov(Fθ, Fθ′)√

Cov(Fθ, Fθ) Cov(Fθ′ , Fθ′)
. (5)

where Cov(X,Y) = (s− 1)−2 tr
(
XX⊤HsYY⊤Hs

)
, and Hs = Is − s−111⊤ is a centering matrix.

Measuring the connectivity and similarity metrics necessitates two distinct sets of weights, θ and θ′, each corresponding
to the same configuration trained with different random seeds. In the diagnostic dataset, each data sample is a training
configuration instead of a single trained model. This is because each configuration contains five pre-trained models trained
with different random seeds. For each training configuration, we evaluate a single similarity/connectivity score.

Sharpness Metrics. The Hessian matrix at a given point θ0 in the parameter space can be represented as ∇2
θL (θ0). We

report the leading eigenvalue He = λmax

(
∇2

θL (θ0)
)

and the trace Ht = tr
(
∇2

θL (θ0)
)

to summarize the local curvature
properties in a single value.

Here, we discuss related work on sharpness. We elaborate the connection between Yang et al. (2021) and Dinh et al. (2017);
Keskar et al. (2017); Foret et al. (2021); Yao et al. (2018). The connection is that prior work finds that in some cases flat
minima have better generalization (Keskar et al., 2017; Foret et al., 2021), but there exist some cases such as adversarial
training and reduction of ℓ2 regularization that sharp minima generalize better (Dinh et al., 2017; Yao et al., 2018). Yang
et al. (2021) studies why this happens, and the explanation was that prior work neglects global loss landscape properties
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such as connectivity. Furthermore, Yang et al. (2021) shows that combining the local and global metrics leads to a more
accurate prediction of generalization performance. This motivates us to combine connectivity and sharpness in our MD tree
to predict the failure sources.

Computational Efficiency. To demonstrate the low computational burden of loss landscape measurements, we provide
details on calculating sharpness and connectivity, along with additional runtime results. For measuring sharpness, we follow
the implementation by Yao et al. (2020), using the Hessian trace to represent sharpness. The Hessian trace is computed
using Hutchinson’s method (Avron & Toledo, 2011) from RandNLA. Let H denote the Hessian matrix. This method
approximates the Hessian trace using E[vTHv], where v is a random vector with components i.i.d. sampled from the
Rademacher distribution. The computational cost of a Hessian matrix-vector multiplication is equivalent to a single gradient
backpropagation. We estimate the expectation by drawing multiple random samples until convergence or until 100 iterations
are reached. Thus, the cost of measuring sharpness for a trained model is at most 100 backpropagations. For measuring
connectivity, we adopt the implementations of Yang et al. (2021) and Garipov et al. (2018) to compute mode connectivity.
This process involves 50 epochs of training to search for a three-bend Bezier curve and five inferences on the training set to
evaluate the curve’s barrier.

In Table 3, we compare the runtime of training a single model configuration with the time taken to evaluate two loss
landscape metrics on the same configuration. The model configuration involves training ResNet18 on CIFAR-10 with a
batch size of 128, using five random seeds for 150 epochs. Our measurements indicate that, on average over 10 runs, each
training epoch takes 23.32 seconds. We also calculate the percentage increase in time due to measuring loss landscape
metrics compared to model training. Our results show that measuring sharpness and connectivity increases the total training
time by only 0.244% and 7.04%, respectively, indicating that the computational burden is reasonable. The testing platform
used was a Quadro RTX 6000 GPU paired with an Intel Xeon Gold 6248 CPU.

Table 3. Comparison of runtime for model training versus sharpness and connectivity measurements used in MD tree.

Model training Sharpness Connectivity

Runtime (seconds) 17492.25 42.73 1232.76
Increase in runtime compared to model training (%) - 0.244% 7.04%

C. Model Diagnosis Framework
C.1. Room for Improvement (RFI) of Failure Sources

Here, we provide the complete definitions of RFI for the failure sources. We define four failure sources M =

{m↓
t ,m

↑
t ,mp,mn}, and RFI of mp is defined by equation (1) in Section 4.1.

The RFI of failure source m↑
t (the optimizer hyperparameter is larger than the optimal choice) is defined as

RFI(m↑
t , f0) = Eval(f0)− Eval(f

∗),

where f∗ = A(p, n, q∗),

q∗ = argmin
q∈[tmin,t]

Eval(A(p, n, q)).
(6)

The RFI of failure source m↓
t (the optimizer hyperparameter is smaller than the optimal choice) is defined as

RFI(m↓
t , f0) = Eval(f0)− Eval(f

∗),

where f∗ = A(p, n, q∗),

q∗ = argmin
q∈[t,tmax]

Eval(A(p, n, q)).
(7)

The RFI of failure source mn (the amount of data n is too small) is defined as

RFI(mn, f0) = Eval(f0)− Eval(f
∗),

where f∗ = A(p, q∗, t),

q∗ = argmin
q∈[n,nmax]

Eval(A(p, q, t)).
(8)
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C.2. Rationale for Considering a Binary Classification Problem

We consider a binary classification problem that predicts {G > 0, G < 0}, rather than including near-optimal cases (G = 0)
to avoid a three-class classification. First, the number of near-optimal configurations is relatively low compared to the
other two classes, leading to a class imbalance in the training set. For example, when predicting whether an optimizer
hyperparameter is large or small, only 130 out of 1690 configurations are “optimal” (given our current sampling granularity),
while the remaining 1560 configurations fall into the other two classes. Second, this imbalance will not disappear even if we
increase the sampling granularity because, technically speaking, the “optimal” configurations form the set of critical points
in the hyperparameter space and thus should have a lower dimensionality than the hyperparameter space itself. That is, even
if we increase the granularity by 100×, the “optimal” configurations will only occupy an even lower ratio. Therefore, we
exclude these optimal configurations from the training and test sets and do not consider the third class in the problem.

C.3. Collections of Trained Models

In our few-shot studies, we use models sampled from F as the training set to train the MD tree classifier; then we use
another model collection F ′ as the test set. F ′ comprises models trained with the same varying factors, but each model is
trained with 10% label noise. Both F and F ′ include various ResNet models trained on the CIFAR-10 dataset from scratch,
and each differs in three factors: 1) the number of parameters (p) is varied by changing the width of ResNet-18 among {2, 3,
4, 6, 8, 11, 16, 23, 32, 45, 64, 91, 128}, 2) the optimizer hyperparameter (t) is varied by changing the batch size among {16,
24, 32, 44, 64, 92, 128, 180, 256, 364, 512, 724, 1024}, 3) the amount of data samples (n) is varied via subsampling the
subset from CIFAR-10 training set between 10% to 100%, with increments of 10%. The combination of these three factors
provides 1690 configurations, each comprising 5 runs with different random seeds.

C.4. Setup of Dataset/Scale Transfer

In the few-shot transfer learning setup, we detail the procedure for labeling RFI and G for each sample in the training set.
The training/test set refers to the collections of pre-trained models. To label a training sample, additional models are required
to compute RFI and G. We build the training set by sampling F in a structured manner. For example, to diagnose whether
the optimizer hyperparameter of model f0 is too large or too small, we sample F by fixing the parameter and data amount
(p, n). We then obtain all the possible optimizer hyperparameters within the range [tmin, t] and [t, tmax], where t is the
optimizer hyperparameter used to train f0, and tmin and tmax are the minimum and maximum allowable values. Using this
sampling, we can label RFI(m↑

t ) using equation (6), RFI(m↓
t ) using equation (7), and compute G = RFI(m↑

t )− RFI(m↓
t ).

In all experiments, when we report the number of pre-trained models, that includes those used for labeling G and RFI.

D. Diagnosis Methods
D.1. Tree Construction

In addition to Section 4.2, we provide further details on constructing MD tree. We prioritize connectivity over sharpness at
the shallower levels of the tree due to its effectiveness in distinguishing dichotomous phenomena in the NN hyperparameter
space. Prior work (Yang et al., 2021; Zhou et al., 2023) has demonstrated that the trends of sharpness, similarity, and
model performance, influenced by temperature-like parameters, can vary significantly depending on the connectivity value,
even exhibiting opposite behaviors. We treat sharpness and similarity as alternatives at the same level, using sharpness
in the main experiments. An ablation study in Appendix H demonstrates that using similarity instead of sharpness provides
comparable results.

For Q1 and Q2, we use different fixed subtree structures derived from the complete tree shown in Figure 2. We ensure the
tree structures for each task remain consistent across all evaluations. While the tree structures are fixed, the metric thresholds
at each internal node are learned from the training set. Future work could explore developing an algorithm that dynamically
terminates the branching.

D.2. Hyperparameters

Hyperparameters for Baseline Methods. Our baseline methods include Hyperparameter + DT, Validation + DT, and
Loss landscape + DT. We implement the standard DT method with the Gini impurity criterion and the best splitting strategy.
We set the maximum depth of the tree to be 4 and the minimum number of samples required to split an internal node to be 2.
We run all the methods for five runs with random seeds {42, 90, 38, 18, 72}.
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Hyperparameters for MD tree. We provide the hyperparameters of our method in Table 4. We run MD tree for five
runs with random seeds {42, 90, 38, 18, 72}.

Table 4. Initial values and search ranges of loss landscape metric threshold used in MD tree.

Training error Connectivity Sharpness Similarity

Initial value 0.5 -10 {5, 7} 0.5
Bound [0, 1] [-30, 0] [4, 9] [0.2, 0.8]

E. Broader Transfer Scenarios of MD tree

In this section, we demonstrate the robustness of the proposed MD tree in diagnosing failure sources across three common
scenarios. The first scenario involves out-of-distribution (OOD) generalization (Hendrycks & Dietterich, 2019), where
pre-trained models handle distribution shifts during testing. The second scenario considers class-imbalanced training, in
which pre-trained models are initially trained on long-tailed datasets. The third scenario involves diagnosing unseen model
architectures, specifically when the target models are Vision Transformer (Dosovitskiy et al., 2021), while MD tree is
trained on ResNet architecture models.

E.1. Experimental Setup of Additional Transfer Scenarios

In the three additional studies, we focus on the first diagnostic task (Q1), which assesses whether the optimizer hyperparame-
ter is large or small. The training set for MD tree in these studies remains consistent with the original setup described in Sec-
tion 4.4, using pre-trained ResNet-18 models sampled from F , trained on a class-balanced, in-distribution CIFAR-10 dataset.
The deviation from the original setup is the creation of new test sets to evaluate the diagnostic methods under three scenarios:

• OOD generalization: test models are generated as in the original setup, sampled from F ′, but are evaluated on CIFAR-
10C (Hendrycks & Dietterich, 2019) to obtain corruption accuracy. Failure source labels are then annotated based on the
corruption accuracy.

• Class-imbalanced training: the test set consists of models trained on CIFAR-10-LT with an imbalance ratio of 10, evaluated
using the standard CIFAR-10 test set. To get enough test models to evaluate MD tree, we varied model widths in the
range {4, 6, 8, 16, 32, 45, 64} and training batch sizes within the range {8, 16, 32, 64, 128, 256, 512, 1024} in the test set.
Each configuration was trained for 50 epochs using three random seeds.

• Transformer architecture: the test set comprises ViT-tiny models trained on CIFAR-10, evaluated using the standard
CIFAR-10 test set. We vary the model configuration by changing the embedding size over {6, 12, 24, 48, 60, 96, 192},
and changing batch size over {8, 16, 32, 64, 128, 256, 364, 512}. We train each configuration for 150 epochs using three
random seeds.
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Figure 8. (Comparing MD tree to baseline methods in diagnosing trained models under three additional transfer scenarios). The
y-axis represents diagnosis accuracy, while the x-axis shows the number of pre-trained models used for the training set. (a) Models
in the test set are evaluated on OOD CIFAR-10C test sets instead of the original ID test sets. (b) Models in the test set are trained on
class-imbalanced CIFAR-10-LT datasets. (c) Models in the test set use transformer architectures.
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E.2. Empirical Evaluation

We compared MD tree to two baseline methods across three transfer scenarios. Figure 8 and Figure 9 show that MD tree
consistently outperforms the baselines, demonstrating its robust generalizability. Visualizations interpreting these methods
are available in Appendix E.3. Our observations indicate that in challenging transfer scenarios, validation-based methods
perform worse due to increased distribution shifts between the training set’s pre-trained models and the new test sets. For
example, in the class-imbalanced training scenario, the validation errors of CIFAR-10-LT models differ markedly from those
of CIFAR-10 models, causing decision trees built on this feature to fail in generalizing. However, the loss landscape regimes
remain transferable, providing interpretable diagnostics.
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Figure 9. (Diagnosing trained models tested on out-of-distribution data (CIFAR-10-C)). The y-axis indicates the diagnosis accuracy.
(a) The x-axis indicates the maximum amount of training (image) data for training models in the training set. (b) The x-axis indicates the
maximum number of parameters of the models in the training set.

E.3. Visualization

We present additional results of the studies on diagnosis under the three transfer scenarios, with the experimental setup
shown in Section E.1.

OOD Generalization. Figure 9 illustrates the results of combining scale transfer and OOD generalization, confirming
the effectiveness of the proposed methods. The visualizations of the validation-based method and our method are shown
in Figures 10 and 11, respectively. Figure 10 highlights the issues associated with using validation metrics, showing a
significant distribution shift between the training and test sets. Figure 11(a) presents the MD tree structure and threshold.
Comparing Figures 11(b) and 11(d), we observe that pre-trained models generally exhibit similar ID and OOD failure
sources, which are effectively classified by our method’s decision boundary. This observation aligns with the findings of
Miller et al. (2021), which indicate a positive correlation between ID and OOD performance, suggesting that models often
share the same ID and OOD failure sources.
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Figure 10. (Applying validation metrics to diagnose the models tested on out-of-distribution data (CIFAR-10-C)). (a) models in the
training set are evaluated on ID CIFAR-10 test data, (b) models in the test set are evaluated on OOD CIFAR-10-C test data.
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Figure 11. (Visualizing MD tree and its diagnosis results on models tested on out-of-distribution data (CIFAR-10-C)). Left side:
structure of the MD tree. The color of the leaf node indicates the predicted class by MD tree. The threshold values are learned from
the training set. Right side: The first row represents training samples, and the second row represents test samples. Each colored circle
represents one sample (which is one pre-trained model configuration), and the color represents the ground-truth label: blue means the
hyperparameter is too large, while red means small. The black dashed line indicates the decision boundary of MD tree. Each numbered
regime on the right corresponds to the leaf node with the same number on the tree. The samples in 11(b) and those in 11(c) are separated
by training error. The same applies to 11(d) and 11(e).

Class-imbalanced Training. This subsection presents the visualization results for the class-imbalanced training scenario.
Figure 12 illustrates the substantial distribution shift in validation metrics between CIFAR-10 and CIFAR-10-LT models.
Notably, the validation error for CIFAR-10-LT models is predominantly above 25%, whereas most CIFAR-10 models exhibit
validation errors below this threshold. Figure 13 demonstrates that the decision boundaries learned by the MD tree from
CIFAR-10 models effectively transfer to CIFAR-10-LT models, highlighting the robustness of the MD tree’s loss landscape
metrics in handling class imbalance.
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Figure 12. (Applying validation metrics to diagnose the models trained with imbalanced data (CIFAR-10-LT)). (a) training set
comprises ResNet18 models trained with CIFAR-10, (b) test set comprises ResNet18 models trained with CIFAR-10-LT.
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Figure 13. (Visualizing MD tree and its diagnosis results on models trained on imbalanced data (CIFAR-10-LT)). Left side: structure
of the MD tree. The color of the leaf node indicates the predicted class by MD tree. The threshold values are learned from the training
set. Right side: The first row represents training samples, and the second row represents test samples. Each colored circle represents one
sample (which is one pre-trained model configuration), and the color represents the ground-truth label: blue means the hyperparameter is
too large, while red means small. The black dashed line indicates the decision boundary of MD tree. Each numbered regime on the
right corresponds to the leaf node with the same number on the tree. The samples in 13(b) and those in 13(c) are separated by training
error. The same applies to 13(d) and 13(e).

Transformer Architecture. Figure 14 shows a significant shift in the training and validation error ranges between ResNet18
models in the training set and Vision Transformer (ViT) models in the test set. This shift leads to poor performance when
transferring diagnostic results from ResNet18 models to ViT models based on validation metrics. This discrepancy aligns
with findings by Raghu et al. (2021) and d’Ascoli et al. (2021), which highlight the challenges of training ViT models from
scratch on small-scale datasets, resulting in high training and validation errors. In contrast, convolutional architectures, such
as ResNet18, train efficiently on small datasets and exhibit low errors.

Figure 15 reveals that ViT models fall into Regimes 1⃝ and 2⃝ within our MD tree constructed from ResNet18 models,
with Regimes 3⃝ and 4⃝ absent for these ViT models. This finding shows the differing loss landscape properties between
convolutional neural networks and transformer architectures. Despite this difference, the MD tree maintains strong diagnostic
performance for ViT models. This result is attributed to the effective transfer of the sharpness metric’s decision boundary,
which separates Regimes 1⃝ and 2⃝, from ResNet18 to ViT models.
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Figure 14. (Applying validation metrics to diagnose the ViT-tiny models trained with CIFAR-10). (a) training set comprises ResNet18
models trained on CIFAR-10, (b) test set comprises ViT-tiny models trained on CIFAR-10.
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Figure 15. (Visualizing MD tree and its diagnosis results on ViT-tiny models trained on CIFAR-10). Left side: structure of the MD
tree. The color of the leaf node indicates the predicted class by MD tree. The threshold values are learned from the training set. Right
side: The first row represents training samples, and the second row represents test samples. Each colored circle represents one sample
(which is one pre-trained model), and the color represents the ground-truth label: blue means the hyperparameter is too large, while red
means small. The black dashed line indicates the decision boundary of MD tree. Each numbered regime on the right corresponds to the
leaf node with the same number on the tree.

F. Corroborating Results
We provide additional results to corroborate the findings in the main paper. Section F.1 presents the comparison with
more baseline methods. Section F.2 demonstrates that MD tree’s tree hierarchy helps improve its generalization ability.
Section F.3 visualizes the validation metrics of the pre-trained models in Q1 and Q2 tasks, which is used to explain why
validation metrics are not effective in failure source diagnosis. Section F.4 visualizes the loss landscape metrics of the
pre-trained models under scale transfer scenario in Q1 and Q2 tasks, which is used to explain why MD tree can transfer
from small-scale models to large-scale models.

F.1. More Baseline Comparison

In Figure 16, we present additional results by comparing our method to a stronger baseline that utilizes the validation metric
and hyperparameter as the features of the decision tree. This method is titled “Hyperparameter + Validation + DT” and is
represented as the purple curve. We can see that the additional baseline outperforms the previous two baseline methods.
However, MD tree (orange curve) still outperforms the three baselines in both the dataset and the scale transfer scenarios.
The experiments are repeated for five runs and the mean and standard deviation are reported.

F.2. Investigating Importance of MD tree’s Tree Hierarchy

We summarize the two main reasons why MD tree can generalize to diagnosing unseen models: 1) the multi-phase pattern
in the NN hyperparameter space, and 2) the fixed tree hierarchy of our method. The first reason has been discussed in
Section 5.1, here we elaborate on the second reason. To achieve better generalization, we restricted the capacity of the
decision tree by using a decision tree with only a few loss landscape features and fixing the tree hierarchy, prioritizing
those features that are shown by Yang et al. (2021) to have sharp phase transitions. The goal is to evaluate whether the loss
landscape metrics are useful and avoid overfitting. In Figure 17, we compare two methods on Q1 and Q2: 1) MD tree is
our method, which uses a fixed hierarchy. 2) “Loss landscape + DT” is the baseline method, which uses the same set of loss
landscape metrics as MD tree, but uses a decision tree with unfixed and learnable architecture. The results show that MD
tree outperforms the baseline method in both tasks, particularly when using fewer models as the training set. The same
advantage of MD tree holds for scale transfer in Figure 18. These findings demonstrate the importance of a fixed tree
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Figure 16. (Comparing MD tree to additional baseline method (Hyperparameter + Validation + DT) on Q1 tasks of predicting
optimizer hyperparameter is large or small). The y-axis indicates the diagnosis accuracy. (a) The x-axis indicates the number of
pre-trained models used for building the training set. (b) The x-axis indicates the maximum amount of training (image) data for training
models in the training set. (c) The x-axis indicates the maximum number of parameters of the models in the training set. The additional
baseline outperforms the other two baseline methods, but our method MD tree still outperforms all three in dataset transfer and scale
transfer scenarios.

hierarchy in enhancing the generalizability of the diagnostic method.
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Figure 17. (Comparing MD tree to standard DT on Q1 and Q2 task, with both utilizing the loss landscape metrics as features).
The y-axis indicates the diagnosis accuracy. The x-axis indicates the number of pre-trained models used for building the training set. MD
tree outperforms normal DT with unfixed hierarchy trained with loss landscape metrics especially when using fewer models as the
training set.

0.01 0.04 0.18 0.70 2.80 11.1744.66
Parameter amount (M) limit

50

60

70

80

90

D
ia

gn
os

is
 a

cc
ur

ac
y 

(%
)

Loss landscape+DT MD tree (fixed hierarchy)

Figure 18. (The fixed hierarchy of MD tree helps MD tree to generalize to unseen models with larger scales). The y-axis indicates
diagnosis accuracy in Q1 while the x-axis represents the maximum number of parameters of the models in the training set. MD tree
outperforms normal DT with unfixed hierarchy trained with loss landscape metrics especially when using small-scale models as the
training set.
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F.3. Visualization for Validation Metrics in Q1 and Q2
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Figure 19. (Applying validation metrics such as training/validation error and loss to diagnose the failure source of models). (a)(b)
Training set comprises models trained without label noise, (c)(d) test set comprises models trained with label noise.

Figure 19 visualizes the validation metrics and the ground-truth labels Q1 diagnosis task (optimizer hyperparameter is large
or small) of pre-trained models from the training or test set. We can tell that the validation metrics have a nonlinear and
complicated correlation with the failure source labels. Also, the red-versus-blue boundary in the training set (Figure 19(a)
and 19(b)) are unable to make a good transfer to the test set (Figure 19(c) and 19(d)). This indicates the low transferability
of validation metrics between different sets of models.

Figure 20 presents the visualization of validation metrics of pre-trained models in the Q2 diagnosis task (optimizer versus
model size). Compared to those in Q1, we observe a more complicated correlation between failure source labels and
validation metrics and worse transferability of decision boundary between training and test.
F.4. Visualization for Scale Transfer in Q1 and Q2

Figure 21 visualizes the loss landscape metrics of pre-trained models in Q1 and data amount transfer scenarios. We can
find that the decision boundaries established by MD tree for small data sets (20K data points) closely resemble those for
larger scales (up to 50K data points), demonstrating the transferability of MD tree. Figure 22 visualizes the loss landscape
metrics of pre-trained models in Q2 and data amount transfer scenarios. For this task, we observe that the transferability of
MD tree can be better even in the smallest data amount (less than 5K). Figure 23 visualizes the loss landscape metrics of
pre-trained models in Q1 and parameter amount transfer scenarios. Again, it shows that boundaries determined for small-size
models (less than 0.1M parameters) resemble those for larger scales (up to 44.66M parameters). From all figures, we observe
notable transitions of decision boundaries varying from small-scale to large-scale. These transitions occur because very
small-scale models often exhibit limited ranges in loss landscape metrics, such as consistently high sharpness or consistently
negative connectivity. This demonstrates the limitations of transferring from very small-scale to large-scale models.
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Figure 20. (Applying validation metrics such as training/validation error and loss to diagnose the failure source of models.) (a)(b)
training set comprises models trained without label noise, (c)(d) test set comprises models trained with label noise.
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Figure 21. (Visualization of models in training set in scale (data amount) transfer and decision boundary of MD tree in Q1).
Each subfigure presents the models under a specific data amount limit. The x-axis presents the connectivity and the y-axis presents the
sharpness.
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Figure 22. (Visualization of models in training set in scale (data amount) transfer and decision boundary of MD tree in Q2 task).
Each subfigure presents the models under a specific data amount limit. The models are partitioned into non-interpolating (larger training
error) regimes by MD tree. The x-axis presents the connectivity and the y-axis presents the sharpness.
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Figure 23. (Visualization of models in training set in scale (number of model parameters) transfer and decision boundary of MD
tree in Q1 task). Each subfigure presents the models under a specific parameter amount limit. The x-axis presents the connectivity and
the y-axis presents the sharpness.
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G. A Variant of Q2: Which Hyperparameter (Data amount or Optimizer) Leads to failure
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Figure 24. (Comparing MD tree to baseline methods in Q2 task in dataset and scale transfer). y-axis indicates the diagnosis
accuracy. (a) x-axis indicates the number of pre-trained models used for building the training set. (b) x-axis indicates the maximum
number of parameters of trained models in the training set for fitting the classifier.

We investigate a variation of Q2, aiming to identify the failure source between data amount and optimizer settings. The
specifics of the dataset and the transfer setup are outlined in Section C. Diagnosis accuracy, presented in Figure 24, indicates
that MD tree exceeds validation-based methods by a 10% accuracy margin. Moreover, MD tree offers clear visual
insights in Figure 25, showing that models with lower sharpness typically suffer from insufficient data, whereas those with
higher sharpness face optimizer issues. A case study in Figure 26 contrasts MD tree with validation-based approaches,
demonstrating MD tree’s ability to differentiate between two distinct failure sources that both result in overfitting.
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Figure 25. (Visualizing MD tree and its diagnosis results for a variant of Q2 (determining models’ failure source on optimizer
hyperparameter or data amount)). Left: structure of the tree defined in Section 4.2. The color of the leaf node indicates the predicted
class. The threshold values are learned from the training set. Right: each circle represents one model configuration, the color represents
the ground truth label RFI gap G, the blue color means the failure source is the optimizer, while red means the data amount. The black
dashed line indicates the decision boundary of MD tree. The samples in 25(b) and those in 25(c) are separated by training error. The
same applies to 25(d) and 25(e).

27



MD tree: a model-diagnostic tree grown on loss landscape

Both models are 
over-fitting

MD tree

The failure sources 
of two models are 
different.

Model DModel C

     Dissimilar & more sharp      Dissimilar & less sharp

Sharpness
4

Connectivity

Similarity

765

0.55 0.850.75 0.65

-25 -15  15  25

Training error:       0.0 %  
Validation error:  17.69 % 

Training error:       0.0 %  
Validation error:  23.53% 

Room for improvement

Figure 26. (Case Study: MD tree vs. validation-based method for Q2). Top: Validation metrics provide limited diagnosis: both
models are overfitting. Middle: Loss landscape metrics further distinguish the two models: Model C has sharper local minima, while
Model D has lower similarity. Bottom: Model C has an optimizer issue, while Model D’s problem is due to insufficient data.
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(a) Ablation study of MD tree for Q1
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Figure 27. (Ablation study of MD tree structure by using similarity instead of sharpness for Q1). Left: structure of the tree. The
color of the leaf node indicates the predicted class. The threshold values are learned from the training set. Right: The first row represents
training samples, and the second row represents test samples. Each colored circle represents one sample (which is one pre-trained model),
and the color represents the ground-truth label: blue means the hyperparameter is too large, while red means small. The black dashed line
indicates the decision boundary of MD tree. Each numbered regime on the right corresponds to the leaf node with the same number on
the tree. The samples in 27(b) and those in 27(c) are separated by training error. The same applies to 27(d) and 27(e).

H. Ablation Study on Structure of MD tree

In this section, we present an ablation study that uses a similarity metric for splitting nodes at deeper levels of the tree, as
opposed to employing sharpness as outlined in the main paper, for diagnostic task Q1. We demonstrate that similarity, much
like sharpness, is a useful metric for constructing the decision tree, offering an effective alternative for node splitting.
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In the main paper, we mainly use training error Etr, connectivity C, and sharpness Ht to construct the tree structure referred
to as MD tree. The tree structure to solve Q1 is shown in Figure 4(a). In this ablation study, we replace the sharpness
metric at the leftmost deep internal node with the similarity metric S . The resulting tree structure is shown in Figure 27(a).
We follow the same experimental setup in Section C. From Figure 27(b) and Figure 27(d), we can see that the similarity
metric separates the left space into regime 1⃝ and regime 2⃝. In each regime, models have the same failure source. This
achieves a similar effect as sharpness in Figure 4(b) and 4(d). This means that the alternative structure of MD tree using
similarity also provides precise and interpretable classification results.

In Figure 28, we compare two tree structures: one using similarity and the other using sharpness, across dataset transfer
and scale transfer for Q1. Both structures achieve comparably high diagnosis accuracy in all three settings. The structure
employing sharpness demonstrates marginally superior performance in scale transfer scenarios. Based on these findings,
we conclude that both sharpness and similarity are valuable metrics for node splitting at deeper levels of the tree, offering
practical utility in constructing diagnostic tree structures.
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Figure 28. (Varying MD tree structure by using similarity or sharpness in splitting the node in the deepest level for task Q1).
y-axis indicates the diagnosis accuracy. (a) x-axis indicates the number of pre-trained models used for building the training set. (b) x-axis
indicates the maximum amount of training (image) data for training models in the training set for fitting the classifier. (c) x-axis indicates
the maximum number of parameters of the models in the training set.

29


