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Abstract

Neural operators extend data-driven models to map between infinite-dimensional
functional spaces. These models have successfully solved continuous dynamical
systems represented by differential equations, viz weather forecasting, fluid flow,
or solid mechanics. However, the existing operators still rely on real space, thereby
losing rich representations potentially captured in the complex space by functional
transforms. In this paper, we introduce a Complex Neural Operator (CONO),
that parameterizes the integral kernel in the complex fractional Fourier domain.
Additionally, the model employing a complex-valued neural network along with
aliasing-free activation functions preserves the complex values and complex alge-
braic properties, thereby enabling improved representation, robustness to noise,
and generalization. We show that the model effectively captures the underlying
partial differential equation with a single complex fractional Fourier transform.
We perform an extensive empirical evaluation of CONO on several datasets and
additional tasks such as zero-shot super-resolution, evaluation of out-of-distribution
data, data efficiency, and robustness to noise. CONO exhibits comparable or su-
perior performance to all the state-of-the-art models in these tasks. Altogether,
CONO presents a robust and superior model for modeling continuous dynamical
systems, providing a fillip to scientific machine learning.

1 Introduction

Continuous dynamical systems span various scientific and engineering fields, such as physical
simulations, molecular biology, climatic modeling, and fluid dynamics, among others [5]. These
systems are mathematically represented using PDEs, which are numerically solved to obtain the
system’s time evolution. The resolution of PDEs necessitates the identification of an optimal
solution operator, which maps from functional spaces encompassing initial conditions and coefficients.
Achieving this mapping entails discretization procedures for the data capture. Traditionally, numerical
methods, such as finite element and spectral methods, have been employed to approximate the solution
operator for PDEs. However, these approaches often incur high computational costs and exhibit
limited adaptability to arbitrary resolutions and geometries [25, 27].
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Recently, neural operators have shown promise in solving these PDEs in a data-driven fashion [14].
Neural operators extend the neural network to map between infinite dimensional functional space
and are a universal approximation of the operator [14]. Operator learning was first proposed by
[18], namely, DeepOnet, which theoretically established the universal approximation of operators.
DeepONet consists of a branch net and trunk net, where the branch learns the input function operator,
and the trunk learns the function space onto which it is projected. Another widely used architecture,
Fourier Neural Operator (FNO), a frequency domain method (FDM), was proposed by [17], which
consists of uplifting Fourier kernel-based integral using fast Fourier transform and projection blocks.
Following this, several frequency transformation-based kernel integral neural operators have been
proposed. For instance, [6] introduced spectral methods such as Chebyshev and Fourier series to avoid
aliasing error and opaque output in FNO, [30] blends integral kernels with wavelet transformation,
which uses time-frequency wavelet localization.

Despite several successes of operator learning for solving PDEs, [2] showed that several problems
persist and must be addressed. These include aliasing errors, generalization, robustness to noise,
and structure-preserving equivalent operator [2, 6]. Operators must respect the continuous-discrete
equivalence while learning the underlying operation, not just a discretized version. This is challenging
since the data used for training the operator is provided as a discretized version of the continuous
field. As at any finite resolution, the possible mismatch between the continuous-discrete version
should not introduce any lead-in error, i.e., this should not lead to any aliasing error [19]. Several
operators, such as FNO, suffer from continuous-discrete equivalence, i.e., aliasing error, introduced
by pointwise activation.

In the realm of data-driven methods, introducing a learnable order for the fractional discrete Fourier
transform [3], which facilitates the seamless integration of features between the time and frequency
domains, has been an open research problem. However, this concept becomes less clear when applied
to the study of continuous systems, representing a broader, more generalized form of the Fourier
transform. Recent research by [23] has significantly addressed the challenge of aliasing errors within
the operator framework. Their approach involves the utilization of convolution operators explicitly
parameterized in the physical space, diverging from traditional frequency domain methods. Moreover,
they have harnessed UNET-based architectures [24] to enhance the architecture’s efficiency and
memory utilization. It is also worth noting that the study conducted by [26] emphasizes the critical
role of overparametrization in achieving superior generalization and optimization performance.

Another aspect that has received less attention is the complex representation of FDMs. The traditional
FDMs in operator learning, including FNO, do not perform non-linear transformations on the complex
representations of the Fourier transform. Thus, these models do not exploit the rich representations of
complex numbers. The allure of complex number representations has grown considerably due to their
ability to capture richer information through phase information [21] in complex neural networks [8].
They exhibit advantages such as faster convergence [4, 1] and improved generalization [9]. While
[29] highlighted the benefits of combining complex neural networks with their real representation
counterparts, their application in the Operator learning framework remains largely unexplored.

Our Contributions. To address these challenges, we present an operator that utilizes Complex neural
networks based on frequency domain representations in this work. Specifically, we introduce the
Complex Neural Operator (CONO), a novel deep learning operator designed to establish mappings
between infinite-dimensional functional spaces. Table 1 compares several features of CONO with
other existing operators. Our contributions are outlined as follows:

1. Complex Neural Operator: CONO represents the first instance of a Complex Neural
Operator that performs operator learning employing a complex neural network.

2. Fractional Kernel Integral: CONO parameterizes the integral kernel within the complex
fractional Fourier transform using a single transformation operation with learnable fractional
parameters, thereby reducing the number of transformations in comparison to previous
operators.

3. Data efficiency and Robustness to noise: CONO demonstrates high generalization even
with minimal samples, data instances, and training epochs. Specifically, CONO gives the
same performance as FNO with 1/4 size of the training data. Further, CONO exhibits
improved robustness to noise in the training or testing dataset compared to SOTA operators.
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Operators FDM Alias Free Learnable Order Downscaling Complex Rep

DeepONet % % % % %

FNO ! % % % %

WNO ! % % % %

SNO ! ! % % %

CoNO (Ours) ! ! ! ! !

Table 1: Comparison of the features of different neural operators with CONO.

2 Preliminaries

2.1 Operator Learning Framework

Problem Setting: We have followed and adopted the notations in [17]. Let us denote a bounded
open set as D ⊂ Rd, with A = A(D;Rda) and U = U(D;Rdu) as separable Banach spaces of
functions, representing elements in Rda and Rdu , respectively. Consider G† : A → U to be a
nonlinear mapping, arising from the solution operator for a parametric partial differential equation
(PDE). It is assumed that there is access to independent and identically distributed observations
(aj , uj)

N
j=1, where aj ∼ µ, drawn from the underlying probability measure µ supported on A, and

uj = G†(aj).

The objective of operator learning is to construct an approximation for G† via a parametric mapping
G : A×Θ → U , or equivalently, Gθ : A → U, θ ∈ Θ, within a finite-dimensional parameter space
Θ. The aim is to select θ† ∈ Θ such that G(·, θ†) = G†

θ ≈ G†. This framework facilitates learning in
infinite dimensional spaces as the solution to the optimization problem in Equation 1 constructed
using a with a loss function L : U × U → R.

min
θ∈Θ

Ea∼µ

[
L(G(a, θ), G†(a))

]
, (1)

In neural operator learning frameworks, the above optimization problem is solved using a data-driven
empirical approximation of the loss function akin to the regular supervised learning approach using
train-test observations. Usually, Gθ is parameterized using deep neural networks.

2.2 Complex Neural Networks

In our proposal, we use complex neural networks for approximating Gθ. Here, each neuron will
separately output a real and an imaginary part. As demonstrated by [20] [21], complex neural
networks often outperform their real-valued counterparts on function approximation tasks. Notably,
since they have both real and imaginary parts, they can facilitate learning of mutually orthogonal
decision boundaries in the real and imaginary domains, thereby enhancing generalization capabilities.
Furthermore, it was observed that critical points in complex neural networks predominantly manifest
as saddle points rather than local minima, in contrast to real-valued neural networks [20, 21]. It is
noted that stochastic gradient-based optimization algorithms such as SGD can largely avoid saddle
points but not local minima [15, 10]. Additionally, complex neural networks exhibit improved training
efficiency and enhanced generalization compared to standard CNNs [13].

Note that the activation functions employed in complex neural networks should also respect the
complex operations. In our method, we incorporate Complex GeLU (CGeLU) activation functions,
which apply independent GeLU [7] [16] functions to a neuron’s real and imaginary components,
respectively. Formally, this can be expressed as:

CGeLU(z) = GeLU(Re(z)) + iGeLU(Im(z)). (2)

The CGeLU activation function satisfies the Cauchy-Riemann equations when the real and imaginary
parts are strictly positive or negative.
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2.3 Fractional Fourier transform

In the Operator Learning framework, Operators are defined via architectures comprising functional
compositions of integral transforms and nonlinear activation functions in the operator learning
framework. For instance, while in DeepONet [18], integral transforms happen in the physical domain,
FNO [17] incorporates integral transforms in the frequency domain. In our architecture, we propose
to use the Discrete Fractional Fourier Transform (FrFT) with learnable order as the integral transform.
This enables learning anywhere ‘in between’ the physical and the frequency domains. This transform
can be of great interest in deep learning due to its ability to capture different types of frequency
content and directional features present in data.

Fractional Fourier Transform (FrFT) is a mathematical operation that generalizes the classical Fourier
transform by introducing a parameter that controls the transform’s degree of rotation [22]. Formally,
the FrFT of a function f(x) with respect to the fractional order α is defined as:

Fαf(x)(u) =
1√
|2π|

∫ ∞

−∞
e−iπαsgn(t)t2f(t)e−i2πut, dt, (3)

In the above Equation 3, α is the fractional order, u is the transformed variable, and sgn(t) is the
signum function applied to the variable t.

2.4 Mitigation of Aliasing

The operator learning framework necessitates approximation through non-linear operations, including
non-linear pointwise activations, which may introduce arbitrarily high-frequency components into the
output signal. The emergence of nonlinearity-induced aliasing can precipitate the symmetry distortion
inherent in the physical signal, consequently leading to adverse effects. Moreover, translational
invariance, desired in a neural operator, is susceptible to degradation due to aliasing [11, 2].

We employ a two-step process to mitigate aliasing errors within the operator learning paradigm
for continuous equivariance. First, before applying any activation function, we upsample the input
function at a rate exceeding its frequency bandwidth. Subsequently, we apply a non-linear operation to
the upsampled signal, then apply a sinc-based filter [33] followed by downsampling. The sinc-based
low-pass filter effectively attenuates higher frequency components in the output signal, thus averting
aliasing artifacts and preserving the complex domain information. This approach minimizes aliasing
in the operator learning framework, as demonstrated empirically later (Sec. 4.6), maintaining the
fidelity and integrity of the physical signal.

3 Complex Neural Operator (CONO)

In this subsection, we introduce our proposed architecture, Complex Neural Operator CONO. Our
goal is to construct the operator in a structure-preserving manner where we band-limit a function
over a given spectrum [32], thus preserving complex continuous-discrete equivalence such that
Shannon-Whittaker-Kotel’nikov theorem is obeyed for all continuous operations [31].

Let a : DA → RdA denote the input function. We initiate the procedure by applying a point-wise
operator P to a and obtaining v0 : DA → Rd0 . The point-wise operator P is parameterized as
Pθ : RdA → Rd0 , which operates as v0(x) = Pθ(a(x)) for x ∈ D0, where D0 = DA. Typically,
Pθ is realized as a deep neural network. In this paper, we set d0 ≫ dA, designating P as a lifting
operator.

Subsequently, we apply the operator Q to v0(x). This operator is realized as a Complex Convolu-
tional Neural Network (CCNN) with a residual connection, as depicted in Figure 1. This facilitates
discretized inversion, thereby maintaining continuous-discrete equivalence through functional in-
terpolation in the complex domain. We compute v1 : Dv0 → Rd1 using v1(x) = Qθ(v0(x)) for
x ∈ Dv0

, where Qθ : Rdv0 → Rdv1 .

Subsequent to this, we employ a complex point-wise operator R on v1 to obatain v2 : D1 → Rd2 .
The point-wise operator R is parameterized as Rθ : Rd1 → Rd2 , operating as v2(x) = Rθ(v1(x))
for x ∈ D1, implemented as a complex deep neural network. In this work, we set d2 = d1.
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Figure 1: The full architecture of CONO. (1) Input function a(x) is projected into higher dimension
through P operation. (2) P is passed through the R operation, which converts the embedding from a
real to a complex domain. (3) Lift operation is applied to Q in the complex domain to obtain v2(x)
(4) v2(x) is passed through a complex fractional integral operator with learnable order parameters
where U denotes complex UNET. (5) Then, projection operation Q′ is applied to the output. (6) Then
it is passed through operation R′, which converts the output from the complex to the real domain. (7)
Lastly, the operation P ′ maps to output function u. Inversion denotes the discretization inversion
operation on which the complex integral transform is trained during super-resolution.

Following this, we employ a complex fractional nonlinear operator on v2(x), to obtain v3(x), which
involves a complex UNET-shaped operator with a 3 × 3 kernel size. During upsampling, zero
padding is applied to the signal and convolved with a sinc-based low-pass filter. Downsampling,
on the other hand, involves removing the signal components outside the spectrum. This process is
implemented using filter-based convolution, accompanied by removing the signal samples at the
indices corresponding to padding done during upsampling.

Specifically, v3 : Dv2 → Rd3 is calculated as v3(x) = Wv2(x) + K(α;ϕ)v2(x) + K ′(ϕ)v2(x),
where K(α;ϕ) and K ′(ϕ) are kernel integral transformation and convolutional operators, respectively,
parameterized by complex neural networks. Here, α represents the fractional complex Fourier
transform with a learnable order parameter, and W denotes pointwise complex convolution. In the
complex UNET encoding stage, the input function is mapped to vector-valued functions characterized
by increasingly contracted domains and higher-dimensional co-domains. Specifically, for each i,
we have µ(Di) ≥ µ(Di+1) and dvi+1 ≥ dvi . For this to be feasible, in this study, without loss of
generality, we adopt the Lebesgue measure µ for µi’s.

Further, we apply the R′ operation to v3, leading to the computation of v4 : D3 → Rd4 . The
point-wise operator R′ is parameterized as R′

θ : Rd3 → Rd4 , acting as v4(x) = Rθ(v3(x)) for
x ∈ D3. Typically, R′

θ is realized as a complex deep neural network. In this paper, we set d3 = d4.

Lastly, we employ a Complex CNN with a residual connection to transition from the complex domain
to the real domain. This results in the computation of v5 : Dv4 → Rd5 , where v5(x) = Q′

θ(v4(x))
for x ∈ Dv4 , and Q′

θ : Rdv4 → Rdv5 . Finally, we utilize the P ′ projection operator to map back to
the solution domain u(x), resulting in u : Dv5 → Rdu with u(x) = P ′

θ(v5(x)) for x ∈ Dv5 . The
entire architectural details of CONO are depicted in Fig. 1.

4 Numerical Experiments and Results

This section presents a comprehensive empirical analysis of CONO compared to various neural
operator baselines, mainly including FDMs, DeepONet[18], FNO[17], Wavelet NO (WNO) [30], and
Spectral NO (SNO)[6], on standard datasets. We ensure a diverse selection of partial differential
equations (PDEs) taken from [28], encompassing both time-dependent and time-independent prob-
lems, to account for the intrinsic computational complexity of the tasks. Further, we evaluate CONO
on several tasks, such as performance on out-of-distribution datasets, data efficiency, and robustness
to noise. Finally, we perform ablation studies to understand the contribution of several architectural
features in CONO, such as complex neural network, fractional Fourier transform, aliasing-free
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activation function, and bias towards its final performance. All the experiments are conducted on
a Linux machine running Ubuntu 20.04.3 LTS on an Intel(R) Core(TM) i9-10900X processor and
NVIDIA RTX A6000 GPUs with 48 GB RAM.

4.1 Datasets Description and Baseline Experiments

Setting: In our experiment, we have leveraged a diverse set of partial differential equations (PDEs),
encompassing time-independent models, including Burgers and Darcy Flow, and time-dependent
models, such as Navier-Stokes, shallow water, and diffusion equations from [28]. This wide-ranging
assortment of PDEs has been carefully chosen to facilitate a comprehensive evaluation of the efficacy
of our proposed methods. The relative L2 error is presented in Table 2. The descriptions of datasets
used in the present work are as follows.

Burger’s Dataset: The flow of a viscous fluid in one dimension is modeled by a nonlinear PDE as

∂u

∂t
(x, t) +

∂

∂x

(
u2(x, t)

2

)
= ν

∂2u

∂x2
(x, t), x ∈ (0, 1), , t ∈ (0, 1] (4)

This equation, referred to as the 1D Burger’s equation, is numerically solved to generate the dataset.
This dataset presents the time evolution for one timestep of the equation for a given initial condition.
Thus, we aim to learn an operator that maps the initial condition to the next time step. The dataset
consists of 2048 training and testing data.

Darcy Flow Dataset: Another widely used dataset, Darcy’s equation, represents the flow through
porous media. 2D Darcy flow over a unit square is given by

∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2, (5)

u(x) = 0, x ∈ ∂(0, 1)2. (6)
where a(x) is the viscosity, f(x) is the forcing term, and u(x) is the solution. This dataset employs a
constant value of forcing term F (x) = β. Further, Equation 5 is modified in the form of a temporal
evolution as

∂tu(x, t)−∇ · (a(x)∇u(x, t)) = f(x), x ∈ (0, 1)2, (7)
Thus, the goal on this dataset is to learn the operator that maps the diffusion coefficient to the solution.
The dataset consists of 10,000 training and testing data.

Navier Stokes Dataset: 2D Navier-Stokes equation describes the flow of a viscous, incompressible
fluid in vorticity form on the unit torus as

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ] (8)

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ] (9)

w(x, 0) = w0(x), x ∈ (0, 1)2 (10)

where, u represents the velocity field, w = ∇× u is the vorticity, w0 is the initial vorticity, ν is the
viscosity coefficient, and f is the forcing function. The goal on this dataset is to learn the operator
G†, mapping the vorticity up to time 10 to the vorticity up to some later time T > 10. The training
and test data in this dataset comprises 5,000 samples with 50 timestamps.

Shallow Water Dataset: Compressible Navier-Stokes equations, that model free-surface flow in the
form of hyperbolic PDEs, can be used to model shallow water in 2D as

∂th+∇ · (hu) = 0, (11)

∂thu+∇ ·
(
u2h+

1

2
grh2

)
= −grh∇b, (12)

where, u and v denote velocities in the horizontal and vertical directions, h represents water depth,
and b characterizes spatially varying bathymetry. The quantity hu corresponds to directional
momentum, and g denotes gravitational acceleration. Similar to the previous dataset, the goal on this
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dataset is to learn the operator G†, which maps velocity up to time 10 to the vorticity up to some later
time T > 10. The training and test data comprises 1,000 samples with 101 timestamps.

Diffusion Reaction Equation Dataset: Consider a 2D domain characterized by two non-linearly
coupled variables, namely, the activator u = u(t, x, y) and the inhibitor v = v(t, x, y). Assuming
that their dynamics are governed by the equations given below

∂tu = Du∂xxu+Du∂yyu+Ru, (13)
∂tv = Dv∂xxv +Dv∂yyv +Rv, (14)

the goal is to learn the operator responsible for mapping the activator’s and inhibitor’s initial conditions
to their respective states later T > 0. The training and test data comprises 1,000 samples with 101
timestamps.
Metric: The metric used for experimentation is the mean relative L2 error

L =
1

n

n∑
j=1

∥û(j)− u(j)∥22
∥u(j)∥22

(15)

where n is the size of the training data, u(j) represents the j-th ground truth sample of the training
data, û(j) represents the j-th sample prediction.
Training Details and Baselines: We adhere to standard experimental practices by splitting the
dataset into training, testing, and validation sets in ratios of 0.8, 0.1, and 0.1. We employ an ensemble
training approach to maintain a level playing field for each operator. This involves specifying a
hyperparameter range and randomly selecting a subset of hyperparameters. For the experiments, we
use Adam optimizer [12]. We conduct model training for each optimal hyperparameter configuration
using random seeds and data splits. And the weight of the best-performing model on the evaluation.
Each experiment is repeated three times, and the mean of relative L2 loss is reported.

4.1.1 Comparison with Baselines

First, we evaluate the performance CONO in comparison to baselines on the five PDE datasets
considered. Table 2 shows that CONO outperforms the baselines on all the datasets except Burgers.
We observe among the baselines, FNO outperforms all other models consistently. In Burgers, the
performance of FNO and CONO are comparable with FNO being slightly better. However, it is
worth noting that the Burgers dataset corresponds to a 1D equation, which is lower dimensional
than all other datasets. These results suggest that CONO outperforms FNO in more complex and
higher dimensional PDEs, while FNO and CONO may have similar performance in simpler, low
dimensional PDEs.

Datasets DeepONet FNO WNO SNO CONO(Ours)
Burgers 0.027±0.002 0.021±0.003 0.032±0.001 0.23±0.01 0.022±0.002

Darcy 0.028±0.001 0.024±0.003 0.054±0.004 0.61±0.02 0.021±0.003

Navier Stokes 0.65±0.02 0.41±0.02 0.73±0.01 8.4±0.2 0.36±0.01

Shallow Water 0.0064±0.0003 0.00049±0.00004 0.0074±0.0005 0.032±0.001 0.00047±0.00003

Diffusion 0.92±0.01 0.91±0.02 0.95±0.02 7.3±0.1 0.89±0.01

Table 2: Relative L2 error of CONO and other baselines for different PDE datasets. The best result is
highlighted in blue and the second best in orange.

4.2 Zero Shot Superresolution

The neural operator exhibits mesh invariance, allowing it to undergo training on lower-resolution data
and subsequently be applied to higher-resolution data, thereby achieving zero-shot superresolution.
CONO has the capability for zero-shot superresolution, while among the baselines only FNO can
perform zero-shot superresolution. To this extent, the neural operators were trained on a 128× 128
resolution and tested on higher and lower resolutions for the Darcy flow dataset. Table 3, presents
the relative L2 error of CONO and FNO on superresolution. We note that CONO outperforms FNO
significantly on all the resolutions. This analysis concludes that the L2 error of CONO does not grow
significantly compared to FNO across varying resolutions.
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Resolution DeepONet FNO WNO SNO CONO(Ours)
85x85 - 0.052±0.002 - - 0.044±0.001

128x128 0.028±0.002 0.024±0.002 0.054±0.002 0.61±0.02 0.021±0.002

256x256 - 0.039±0.002 - - 0.029±0.002

512x512 - 0.058±0.002 - - 0.043±0.002

Table 3: Relative L2 error for zero-shot superresolution by CONO and FNO. Note that all the models
are trained on 85× 85 resolution and tested on other resolutions. The best result is highlighted in
blue and the second best in orange.

4.3 Out-of-Distribution Generalization

In this study, we conducted experiments on the Darcy flow dataset, where during training, we set
the force term f to a constant value of β = 1.0. Subsequently, we evaluated the trained model on
various values of β to assess its out-of-distribution generalization capabilities, as illustrated in Table
4. Remarkably, our results consistently demonstrate that CONO exhibits superior generalization
performance compared to other operators.

Beta Coeff DeepONet FNO WNO SNO CONO (Ours)
0.01 0.80±0.01 0.79±0.03 0.80±0.03 10.80±0.2 0.76±0.01

1.0 0.028±0.001 0.024±0.002 0.054±0.003 0.61±0.02 0.021±0.001

10.0 0.068±0.001 0.068±0.002 0.084±0.003 0.54±0.02 0.067±0.001

100.0 0.075±0.001 0.074±0.002 0.089±0.003 0.53±0.02 0.072±0.001

Table 4: Zero shot out of distribution generalization where we trained on beta coeff 1.0 for Darcy
Flow and tested for other beta coeff for different Neural Operators. The best result is highlighted in
blue and the second best in orange.

4.4 Data Efficiency

Now, we evaluate the data efficiency of CONO in comparison to other baselines. Specifically, we
conducted experiments with various training splitting ratios, ranging from 0.8 to 0.2, to investigate
data efficiency. All the experiments are performed on the Darcy flow dataset with a forcing term
β = 1.0. Our findings reveal that CONO consistently outperforms alternatives across all splitting
ratios. Notably, with just 20% of the training data, CONO performs equivalent to FNO (see Tab. 5).

Ratio DeepONet FNO WNO SNO CONO(Ours)
0.8 0.028±0.001 0.024±0.002 0.054±0.003 0.61±0.02 0.021±0.001

0.6 0.029±0.01 0.025±0.001 0.054±0.003 0.64±0.02 0.021±0.001

0.4 0.031±0.001 0.025±0.002 0.057±0.003 0.65±0.02 0.022±0.001

0.2 0.034±0.001 0.028±0.002 0.061±0.003 0.67±0.02 0.024±0.001

Table 5: Data Efficiency for the different ratio of dataset which is used for training for different
Neural Operators. The best result is highlighted in blue and the second best in orange.

4.5 Robustness to Noise

In this study, we performed experiments introducing different noise levels into the training and testing
datasets using Gaussian noise. The noise addition process can be explained as follows: For each
input sample denoted as x(n) within the dataset D, we modified it by adding Gaussian noise with
parameters γN(0, σ2

D). Here, σ2
D represents the variance of the entire dataset, and γ indicates the

specified noise intensity level.

Further, the models were trained on pristine and noisy data with 1% and 5% noise. These models
were then cross-evaluated again on pristine data, and noisy data with 1% and 5% noise, covering all
combinations. Our investigation yielded notable results, particularly when evaluating the performance
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of CONO in the presence of noise within both the training and testing datasets (see Tab. 6). Remark-
ably, CONO exhibits consistent performance irrespective of the presence of noise. Specifically, the
noisy training + testing yielded the same result as the pristine dataset confirming the robustness of
CONO to noisy dataset.

Setting γ % DeepONet FNO WNO SNO CONO (Ours)
- 0.028±0.001 0.024±0.003 0.054±0.004 0.61±0.02 0.021±0.003

Noisy Training 1% 0.029±0.003 0.025±0.003 0.054±0.004 0.61±0.02 0.022±0.003

5% 0.030±0.003 0.026±0.003 0.055±0.004 0.62±0.02 0.023±0.003

Noisy Testing 1% 0.032±0.003 0.028±0.003 0.054±0.003 0.64±0.03 0.022±0.003

5% 0.033±0.003 0.028±0.003 0.054±0.003 0.65±0.03 0.022±0.003

Noisy Training + Testing 1% 0.030±0.003 0.025±0.003 0.055±0.004 0.62±0.02 0.021±0.003

5% 0.032±0.003 0.025±0.003 0.055±0.004 0.62±0.02 0.021±0.003

Table 6: Robustness to Gaussian noise during training and testing for different settings for different
Neural Operator. The best result is highlighted in blue and the second best in orange.

4.6 Ablation and Comparison

In order to gain insight into the CONO architecture and how different components impact the
performance, we perform ablation studies. All ablation experiments were conducted for the Darcy
flow dataset with beta coeff 1.0. Vanilla CONO Architecture: First, we started with the FNO
architecture, where Fourier layers are fused into one layer, and a complex neural network is used
in a complex domain. Our findings demonstrate that this configuration consistently performs at a
level equivalent to FNO as evident from Table 7. Fractional Fourier Transform Experiment: In an
alternative experiment, we replaced the CONO transformation layer with a Fourier transform. This
modification resulted in a slightly diminished performance compared to the CONO architecture as
evident from Table 7. Also, in CONO with the Fractional Fourier transform layer, we found that
order along different dimensions after training was 0.98 and 0.97, respectively.

Analysis of Alias-Free Activation: We
conducted experiments to assess the impact
of alias-free activation within our proposed
architecture. The results indicate that the absence
of alias-free activation leads to degradation in
performance of the CONO as depicted in Table 7.
Effect of Bias Removal: In a separate investiga-
tion, we removed the W and U components from
the CONO model. This adjustment decreased the
model’s performance, strongly indicating that
bias also plays an important role in the learning
dynamics of the system.

Relative L2 error
Vanilla CoNO 0.024±0.002

CoNO - FrFT 0.024±0.001

CoNO - Alias Free 0.022±0.003

CoNO - Bias 0.026±0.001

CoNO 0.021±0.001

Table 7: Ablation results to study the impact of
different components on CONO.

5 Concluding Insights

Altogether, we present a novel operator learning paradigm, namely Complex Neural Operator
(CONO), that leverages complex neural networks and the complex fractional Fourier transform as
an integral operator, thereby ensuring continuous equivalence. This work demonstrates that the rich
representation of complex neural networks can be exploited in the operator learning paradigm to
develop robust, data-efficient, and superior neural operators that can learn the function-to-function
maps in an improved fashion. CONO outperforms existing operators in terms of performance,
zero-shot superresolution, out-of-distribution generalization, and robustness to noise. CONO, thus,
paves the way for creating efficient operators for inferring real-time partial differential equations
(PDEs).

Limitations and future work. Although not demonstrated empirically, the architecture of CONO
is capable of effectively downscaling and upscaling the output. Thus, CONO can also be trained
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with differing input and output resolutions. However, the performance of CONO upon upscal-
ing/downscaling requires further investigation. To further advance our understanding of CONO, it is
crucial to delve into the underlying mathematical and algorithmic principles. Specifically, we need to
unravel the learning mechanisms within the latent space and provide the theoretical foundation of
complex operators. Furthermore, our research presents novel challenges that warrant investigation.
These include tackling the initialization procedures for fractional orders, devising streamlined archi-
tectures for complex neural operators, delving into the creation of equivariant complex operators, and
elucidating the crucial role played by the fractional Fourier transform in the acquisition of insights
into the continuous dynamics of complex systems. These can be pursued as part of future studies.
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