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ABSTRACT

Modeling radio frequency (RF) signal propagation is essential for understanding
the environment, as RF signals offer valuable insights beyond the capabilities of
RGB cameras, which are limited by the visible-light spectrum, lens coverage, and
occlusions. It is also useful for supporting wireless diagnosis, deployment, and
optimization. However, accurately predicting RF signals in complex environments
remains a challenge due to interactions with obstacles such as absorption and
reflection. We introduce Diffusion?, a diffusion-based approach that uses 3D point
clouds to model the propagation of RF signals across a wide range of frequencies,
from Wi-Fi to millimeter waves. To effectively capture RF-related features from
3D data, we present the RF-3D Encoder, which encapsulates the complexities of
3D geometry along with signal-specific details. These features undergo multi-scale
embedding to simulate the actual RF signal dissemination process. Our evaluation,
based on synthetic and real-world measurements, demonstrates that Diffusion?
accurately estimates the behavior of RF signals in various frequency bands and
environmental conditions, with an error margin of just 1.9 dB and 27x faster
than existing methods, marking a significant advancement in the field. Refer to
https://rfvision—-project.github. io/ for more information.

1 INTRODUCTION

Motivation: Generative Al has reached remarkable milestones, as evidenced by ChatGPT (Achiam
et al.,|2023) and more recently Sora (Brooks et al.,[2024). In particular, Sora has captivated the field
with its ability to generate stunningly realistic videos that follow the laws of physics. We are driven
by a fundamental question: Can generative Al comprehend beyond the visible-light spectrum?

In this paper, we specifically explore the use of generative Al to accurately estimate radio frequency
(RF) heatmaps for 3D environments. An RF heatmap visualizes the distribution of signal strength
across various locations within a given space, providing a comprehensive overview of wireless
coverage and signal behavior. Our goal is to leverage generative models to predict these heatmaps
with high fidelity, even under complex and dynamic environmental conditions.

The motivation behind this initiative stems from the diverse and critical applications that reliable RF
heatmaps can enable across multiple domains. These include optimizing access point (AP) placement,
advanced transmitter and receiver configuration, facilitating smart environments and IoT deployments,
and automating site surveys and wireless diagnosis (Zheng et al.l 2019; |Chen & Zhang], 2023).

Although the propagation of RF signals in free space can be modeled using Maxwell’s equations
and the Friis transmission equation, real-world scenarios introduce numerous obstacles that disrupt
the radiance field (Yun & Iskander, [2015)). Environmental obstacles cause various effects, such as
absorption, diffraction, reflection, and scattering. For example, scattering occurs when the RF signal
interacts with objects or surface irregularities, resulting in the signal being redirected in multiple
directions. Moreover, the topology and material properties of objects in the environment further
complicate the understanding of signal propagation. Understanding and addressing these complexities
is pivotal in our quest to generate accurate and reliable RF signal heatmaps for practical applications.

Existing work: Several studies have applied machine learning (ML) to estimate the RF signal at a
receiver (Chi et al.} [2024; [Zhao et al., |2023b; |Chen & Zhang, [2023)). For instance, NeRF? (Zhao
et al.| 2023b) combines knowledge of the physical wave signal with NeRF (Mildenhall et al., 2021)
to compute the strength of the wireless signal at a given location. Although recent work has
shown promising results, both rely on pre-measured signal data in a specific environment (e.g., 4k
measurements). This incurs significant computational and pre-measurement costs, severely limiting
their ability to generalize beyond experimental sites. Moreover, if there is a change in the location of
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Figure 1: Results for Diffusion?, AUTOMS (Ma et al.| [2024), NeRF? (Zhao et al.| [2023b), and
MRI (Shin et al., |2014) for one example environment at two frequencies. The transmitter is located
in the upper right corner of the room. 5.16 GHz and 77 GHz are used for Wi-Fi and millimeter wave
(mmWave). Diffusion? and NeRF? are tested using the same 15 pre-measurements.

an object or a shift in the operating frequency, a large volume of new measurements must be collected
to retrain the model.

Significant efforts have been made in environment modeling approaches that use 3D geometry,
such as LiDAR point clouds or video footage, to simulate RF signal propagation based on physical
laws (Wireless InSite} 2025; Ma et al.| 2024). However, existing ray-tracing simulators struggle to
balance high accuracy and efficiency. For example, Wireless InSite (Wireless InSite}, [2025)), a widely
used commercial ray-tracing software, requires over 1.5 hours to estimate signals in a small room with
4,140 receivers. In general, the computational complexity of ray tracing-based approaches increases
significantly with the number of receivers, making them less efficient for larger-scale environments.

Our approach: To address the challenges mentioned above, we introduce a novel approach, Diffu-
sion?, which transforms a 3D model of an environment into an RF heatmap. Specifically, it begins by
capturing a 3D model of the environment using a smartphone application (e.g., the Polycam (Polycam)|
2025))), utilizing the LiDAR sensor available on mobile devices (e.g., iPhones and iPads). This step
takes approximately one minute. The 3D model and RF features are then fed into our neural network,
which employs a diffusion model to generate the RF heatmap. The diffusion approach simplifies
complex optimization problems into probabilistic calculations over multiple steps, thereby reducing
the difficulty of learning (Ho et al., [2020; [Song et al., 2020; |Saharia et al., 2022).

The motivation for leveraging diffusion models for RF signal map generation lies in two key factors.
First, diffusion models exhibit remarkable resilience to the inherent uncertainties of real-world
environments caused by unobservable variables. Their multi-step probabilistic framework allows for
generating results that closely adhere to the principle of maximum likelihood estimation, making
them well-suited to handle complex environments. Second, despite being inherently stochastic,
diffusion models offer excellent controllability. They can flexibly incorporate multi-dimensional and
rich control parameters, enabling the generation of RF signals that accurately reflect the physical
world, based on environmental details such as 3D geometry and RF data.

Specifically, a diffusion model is a generative ML framework designed to create new data samples.
It operates in two phases: the forward diffusion process, where Gaussian noise is gradually added
to the data until it is transformed into pure noise, and the reverse process, which reconstructs the
original data from the noise. During training, the diffusion model learns the underlying distribution
of the training data and refines its ability to effectively denoise, allowing it to generate realistic RF
heatmaps that mirror the complexities of real-world signal propagation.

To apply the diffusion model for generating an RF heatmap corresponding to a 3D environment
model, we leverage conditioning during the diffusion process. Conditioning is a technique that
enables the generation of samples that meet specific criteria (Wang et al.| 2024} |Chen et al.l 2023aj;
Dai et al.,|2023). Each step of the diffusion process learns the conditional probability guided by the
conditioning signal, ensuring that the generated output not only conforms to the RF signal distribution
but also satisfies predefined conditions. To ensure that the generated RF signal map accurately
reflects real-world outcomes, we propose the RF-3D Encoder, which extracts features from the
3D environment model and RF-related information. These features serve as conditions during the
reverse diffusion process. By fine-tuning the model parameters, the generation process is optimized
to produce samples that align with the desired criteria.
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Beyond generating an RF heatmap from a static 3D model of the environment, it is also valuable
to create a dynamic RF heatmap video as the 3D environment changes (e.g., a human is moving).
Video heatmap generation can greatly benefit various applications, including network provisioning,
diagnosis, and wireless sensing, in dynamic environments. Inspired by Sora (Brooks et al.} 2024)’s
innovative video diffusion results, we extend our image diffusion to video diffusion, dynamically
adapting to environmental changes, such as human locomotion, by incorporating temporal layers.
These layers enable the interaction of our features and RF signal maps across multiple frames.

Diffusion? advances the state of the art by leveraging a 3D environment model with only a handful
of pre-measurements, as illustrated in Fig. [T} It offers several distinct advantages over existing
work: (1) It achieves high accuracy with minimal signal measurements (e.g., 15 measurements in
our evaluation) and eliminates the need for detailed information about the surrounding objects. In
comparison, RF-Diffusion (Chi et al.| 2024) and NeRF? (Zhao et al.,[2023b) require thousands of
measurements. (2) It enables fast computation (e.g., processing over 200,000 receivers (RXs) in
under one second), achieving a 27x speedup over AUTOMS (Ma et al., 2024)) and a 33x speedup
over NeRF?. (3) It can generate RF heatmaps across multiple frequencies, a capability that is highly
valuable for operational tasks such as channel allocation and interference management. (4) It can
transform both static 3D scenes into RF heatmap images and dynamic 3D scenes into RF heatmap
videos. Our contributions are as follows:

» To the best of our knowledge, Diffusion? is the first generative diffusion model designed to estimate
RF signal propagation using a 3D model of an environment. It is highly accurate, fast, easy to use,
and generalizable, while supporting both Wi-Fi and mmWave frequencies.

* We propose the RF-3D Encoder for efficient feature extraction from 2D, 3D, and RF modalities,
and the RF-3D Pairing Block, which enables effective cross-modal integration during diffusion.

« Diffusion? supports video diffusion, enabling fast adaptation to dynamic environmental shifting.

* We conduct extensive experiments across multiple frequencies with over 55k+ synthetic rooms and
validate the robustness using real-world measurements. Our results show high accuracy within 1.9
dB while inferring over 27 x faster than others, achieving real-time speed.

2 RELATED WORK

Ray tracing. MRI (Shin et al.,|2014) estimates received signal strength indicator (RSSI) using a
simple propagation model. Deng et al.|(2017) survey hardware acceleration for ray tracing. Wireless
InSite (Wireless InSitel 2025]), a commercial software, and AUTOMS (Ma et al., 2024}, a recent
optimization using software and hardware, both utilize 3D point clouds for RF heatmaps.

Despite decades of great effort on ray tracing, it still faces several key challenges: 1) High compu-
tational demands and scalability issues persist, as the computation cost increases rapidly with the
number of receivers. 2) It requires material information about each object, such as the reflection
and attenuation coefficients, which are difficult to obtain in the real world. 3) Accurately modeling
complex physical phenomena, such as soft diffraction, scattering due to edges, penetration through
complex objects, and near-field propagation, remains an ongoing challenge.

ML approaches. To address the limitations of ray tracing, various ML approaches have been pro-
posed. For instance, CGAN (Parralejo et al.,[2021) uses a conditional generative adversarial network
to directly predict RSSI values, eliminating the need for a specific physical model. NeRF? (Zhao
et al.} 2023b) introduces a deep learning framework designed to model wireless channels, integrating
the physical model of electromagnetic wave transmission into the channel learning process. NeRF~
supports various application-layer tasks, such as indoor localization and massive MIMO commu-
nication. However, NeRF? requires a large volume of measurements of the environment to train
the model. If the environment changes, new data should be collected, and the model needs to be
retrained.

The diffusion approach has proven to be effective in generating realistic images from prompts or
images (Nichol et al.,[2021; Rombach et al.,|2022; Saharia et al.,|2022)). DiffusionDet (Chen et al.|
2023b)) extends the diffusion process by incorporating it into the generation of detection box proposals,
while DiffusionDepth (Duan et al., 2025) explores using diffusion models to generate depth images
guided by monocular visual conditions. LDM3D (Stan et al., 2023) applies a diffusion model to
estimate depth, enabling the simultaneous generation of both an RGB image and its corresponding
depth map from a text prompt. Another recent advancement is the use of diffusion to create videos (Ho
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Figure 2: Overview of the diffusion process in Diffusion?. RF-3D features condition the denoising
process, while different modalities are fused through the RF-3D Pairing Block.

t al}[2022; [Singer et al.,[2022). Recently, Stable Video Diffusion (Blattmann et al.l[2023), Sora (Sora,
2024), and Cosmos (NVIDIA et al.| 2025) have demonstrated exceptional performance in this domain.

Most existing research on diffusion in RF signals focuses on generating signal information. RF-
Diffusion and RF Genesis (Chen & Zhang|, [2023)) are notable examples of applying
diffusion to RF signals. RF-Diffusion uses a diffusion model to generate RF signals across the spatial,
temporal, and frequency domains. However, like NeRF?, RF-Diffusion requires substantial data from
the target environment. RF Genesis, on the other hand, combines diffusion models with a ray-tracing
approach to generate dynamic 3D scenes and RF signals, with a primary focus on generating data for
sensing applications in the mmWave frequency range. In contrast, our diffusion model generates the
RF heatmap and supports a broader range of frequencies, including mmWave and Wi-Fi.

3 DESIGN OF Diffusion?

3.1 OVERVIEW

Diffusion? is a generative diffusion model designed to produce realistic RF signal heatmaps from 3D

point clouds of indoor environments. The model operates through a forward and reverse diffusion
process, where random noise is iteratively transformed into a coherent signal map. This process is
guided by a conditioning mechanism using our proposed RF-3D Encoder (see Section [3.3), which
encodes the geometric and physical context of the environment.

Conditioning is essential for accurately capturing signal propagation effects. Without it, the diffusion
model would lack spatial and semantic awareness of the room layout, object locations, or the
transmitter (TX) position. Our approach enables the generation of both static heatmaps and temporally
consistent heatmap sequences for dynamic scenes.

To this end, we address four key questions: (1) How can physical environments be embedded into a
condition vector? (2) How should 2D, 3D, and RF-specific features be represented? (3) How can
these signals be fused in the denoising process? (4) How can the system be extended to video-level
predictions? We propose: (i) the RF-3D Encoder for cross-modal feature extraction, and (ii) the
RF-3D Pairing Block for integrating them into the diffusion process.

Condition-guided denoising process. To incorporate RF signals during the denoising process, we
reformulate the reverse function p(.) of diffusion by adding a visual condition ¢ (Duan et al. [2025):

pg(zt,1|zt,c) = N(thl;ue(ztatacx Zg(zt,t)) (M

where z; denotes the noisy signal at timestep ¢, c is the visual condition representing our RF-3D
Features. 0 indicates it is trained through neural networks. The design of c is crucial, as it enhances the
richness of signals used to capture environmental information, ultimately influencing how accurately
the generated RF heatmap reflects real-world scenarios.

3.2 RF-3D Pairing Block

The RF-3D Pairing Block integrates the noisy prediction z; € with the environment-aware
features generated from the RF-3D Encoder to guide denoising. First, the noisy prediction is processed
through a noise embedding and upsampling block through noise embedding and upsampling to

= Upsample(Embed(z;)). This reduces spatial resolution while increasing the number of feature
channels, resulting in a compact representation that encodes richer signal semantics suitable for fusion

RHXWXC
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Figure 3: RF-3D Encoder embedding 2D, 3D, and RF signal

with the environment-aware features. We then fuse the upsampled latent z; with the multi-modal
features Frpsp extracted using the encoder described in Section @]through element-wise addition,
Fmixed = 2t + FrF3D, Where the resulting Frixeq captures both spatial and temporal characteristics of
signal propagation and serves as the input condition c for Eq.[T} This fusion ensures that the denoising
step is informed by both the current prediction state and the surrounding environment. Therefore,
this enables the diffusion model to simulate RF signal propagation with geometric consistency and
physical plausibility. Fpixeq is then used to compute the next latent state z; ;.

3.3 RF-3D Encoder

The core of our conditioning representation c is the RF-3D Features (Frgsp), Which integrates
multi-modal information from 3D geometry, 2D images, and RF signal properties. This encoder
extracts semantically and spatially aligned features across modalities to guide the diffusion process.

3D feature. Given any point cloud P = {z;}¥; C R?, we use MinkUNet18A (Choy et al., 2019)

to extract multi-scale sparse features, denoted as }"?Eg = MinkUNet(P) forl = 1,2, 3, 4. To capture
hierarchical context and enhance spatial reasoning, we process the multi-level 3D features as:

T30 = Interpolate(MHSA(FPN({F{)1))) )
where we first apply a feature pyramid network (FPN) (Lin et al.,|2017)) to merge hierarchical features
from different levels, enabling multi-scale contextual understanding. Then, a multi-head self-attention

(MHSA) module enhances global spatial reasoning. Finally, since the dimension of 3D features may
vary by environment, we interpolate it to obtain a consistent feature size.

We further incorporate material properties by mapping the refractive index to a color embedding at
each 3D coordinate, enabling the model to capture signal interactions such as reflection, refraction,
and scattering. However, since our multi-scale 3D features from MinkNet encode categorical
semantics at each 3D coordinate (e.g., sofa, window), Diffusion? achieves comparable performance
without explicitly relying on refractive index information, which is typically challenging to acquire in
real-world environments. This is enabled by the implicit object-level understanding embedded in the
3D feature representation, as discussed in Section@
2D feature. We encode the overview image I € R XW'x3 and the pre-measured heatmap
M € RExW' using a Swin Transformer (Liu et al.,[2021)) and fuse their multi-level features via
hierarchical aggregation and heterogeneous interaction (HAHI):

(F#P, F2P) = (HAHI(Swin(I)), HAHI(Swin(M))). 3)
We then aggregate the two hierarchical representations to obtain the final 2D feature, F2L0, =

Aggregate(F2P F2P). This modular design mirrors the multi-scale 3D feature processing and
enables effective hierarchical reasoning over both visual and RF signal contexts.

RF signal feature. We apply Fourier embedding to the transmitter location by, the mesh structure
Mesh (walls/floors), and the signal frequency f:

fgingal}al = Concat <¢Fourier(bTX)7 ¢F0urier(Mmesh)v ¢Fourier(f)) (4)
where ¢rouier(z) = [sin(2F72), cos(2Fmz)];,'. This encoding is well-suited for the sinusoidal
nature of RF phase and amplitude modulation, enabling learning across multi-frequency settings.
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Unified condition representation. We fuse all features to form a complete multi-modal condition,

Frrsp = Fuse(FR0, 720 ]-";Eal). The final representation Frpsp serves as the conditioning input
c to the denoising distribution in Eq.[1] To fuse it with the upsampled latent z; € R *W*C we

reshape JFrpsp to match the spatial dimensions (H, W, C).

Mapping features between 2D and 3D. RF-3D Features integrate information from both 3D point
clouds and 2D data, but mapping between these modalities is nontrivial due to inherent ambiguities.
Unlike 2D images with fixed resolution, 3D point clouds have a variable number of coordinates and
lack structured mappings. Moreover, unlike prior works (Peng et al.l 2023} [Singh et al.| [2023), our
setting lacks camera models (e.g., pinhole projection) to directly align 2D and 3D spaces. For 2D-3D
alignment, we embed spatial cues into RF-3D Features. First, a 2D overview image offers a top-down
view with the transmitter (TX) marked as a blue pentagon. Second, we encode the TX bounding box
and 3D mesh structures (e.g., walls, floors) using Fourier embeddings to preserve geometric context.
These cues guide Diffusion? in aligning 3D features with the 2D representation.

3.4 NETWORK TRAINING

Transform to signal latent space. Training diffusion models directly in pixel space is computation-
ally intensive (Rombach et al.,|2022). To mitigate this, we follow prior work (Rombach et al.| 2022;
Duan et al.| [2025) and encode the input into a latent signal space before the diffusion process. The
model then decodes this latent to generate RF heatmaps. Both encoder and decoder are trained by
minimizing signal loss in pixel space, not latent space.

Loss function. We train neural networks, denoted as 6 in the reverse process, as shown in Eq.[1] We
design our loss with the scaling factor \ as follows:

L=MLp+ XLy + AsLpre &)

where Lp denotes the diffusion loss, and L1 captures two pixel-wise losses using both L1 and L2
norms between the prediction and ground truth. L p,.. is an RSSI error computed as the mean squared
error between the predicted map and the pre-measured input (see Appendix [C.1]for details).

3.5 GENERATING RF HEATMAP VIDEO

To accommodate dynamic environments, we extend our method to support RF video generation,
enabling applications such as network provisioning, diagnosis, and wireless sensing (Zheng et al.,
2019; Jiang et al.| 2018} /Chen & Zhang| 2023)). We first extract 3D features from each 3D snapshot.
Then we extend the noise model by incorporating a temporal dimension, which needs to be learned
concurrently with spatial features. This requires modifications to the U-Net architecture to process
temporal correlations. In addition, we introduce temporal layers into the conditioning network to
capture the frame-to-frame differences. Specifically, we include multiple frames as input, each
containing both RF-3D Features and noisy latent z;. Environmental changes, such as variations in
human positions, are embedded in the 3D geometry input corresponding to each frame. In addition,
we apply a multi-head cross-attention layer that aggregates the 3D features and frame index. This
attention mechanism helps identify and highlight relationships between features, such as focusing on
the 3D features that dynamically change across frames. For further details, see Appendix[C.2]

4 EVALUATION

4.1 EXPERIMENT SETUP

REF signal frequency. We evaluate the model across 10 frequencies in the mmWave band. For Wi-Fi,
we include one 2.4 GHz frequency and 10 frequencies in the 5 GHz band. We conduct extensive
experiments with various frequency combinations, while maintaining a constant quantity of training
data, unless otherwise specified, to ensure fair comparisons. We collect over 55k data samples from
diverse 3D environments and frequency ranges, utilizing 80% for training and 20% for testing.

Comparative methods of amplitude. We compare amplitudes with the received signal strength
indicator (RSSI) values measured at the receivers (RXs). Five baseline schemes are as follows:

* Ground truth: We adopt AUTOMS (Ma et al., 2024)) as the ground truth due to its high accuracy
and fast inference, despite its reliance on ray-based computation. As real-world datasets are
unavailable, we train our model using this simulated data. Nonetheless, we demonstrate that the
trained model achieves comparable accuracy in real-world scenarios.
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Figure 4: Wi-Fi signal prediction Figure 5: mmWave signal prediction

o NeRF? (Zhao et al.l[2023b)): This is the state-of-the-art approach for RSSI prediction, driven by a
large training dataset for each 3D environment. In line with the existing NeRF? setup, we use 5k
points as a training dataset to infer the RXs for the entire environment.

» NeRF2(Fix): This variant inherits the structure of NeRF? but uses the same amount of pre-
measurement as ours (i.e., fix the training dataset to contain 15 points and iterate until convergence).

* MRI (Shin et al.,|2014): An interpolation-based RSSI predictor using a basic propagation model.

* DiffusionDepth (Duan et al.l [2025): An image diffusion model that generates the depth space
from the RGB image. This method incorporates only the 2D features from our RF-3D Features to
observe the benefits of incorporating 2D, 3D, and RF features.

Although prior works such as RF-3DGS (Zhang et al.,|2024), RF-Diffusion (Chi et al.,[2024), and
RF-Genesis (Chen & Zhangl [2023) also address RF signal generation, a direct comparison with
our approach is not feasible due to differing objectives. Specifically, while these methods focus on
synthesizing realistic RF signals for a single RX, our model is designed to generate RF heatmaps that
capture signal distributions across a large number of RXs.

4.2 CHANNEL PREDICTION
4.2.1 AMPLITUDE

In both Wi-Fi and mmWave scenarios (Fig. El , Diffusion? outperforms all baselines, achieving
median RSSI errors of 1.9 dB (Wi-Fi) and 1.20 dB (mmWave). It reduces errors by 51-72% in Wi-Fi
and 54-77% in mmWave across NeRF?, NeRF?(Fix), MRI, and DiffusionDepth. The improvements
stem from two key factors: NeRF? and MRI rely heavily on pre-measured data, causing uncertainty
and blurring in unmeasured regions (Fig. , and the inclusion of multi-modal data enables Diffusion?
to better capture the complexities of RF signal propagation. Although DiffusionDepth uses fewer
pre-measured points, its limited 2D input restricts its ability to model these propagation effects.

Importance of multi-frequency dataset. We

Mixture of 10 mmWave Frequencies

Only 77 GHz

find that training on a single frequency limits the -

model’s ability to capture signal-environment 1820585 11/ 20008 10/20 005
relationships. Incorporating data across multi- - g

ple frequencies, as shown in Fig.[6] allows the 17/ 2010 20205103 17/ 20t .

model to better understand how signals inter-
act with the environment. Using 10 mmWave
frequencies, with just 1/10 of the data per fre-
quency, enables the diffusion process to more

accurately mimic signal propagation. This im-  gjoyre 6: Effect of frequency diversity in training:
provement arises from multi-frequency data sup- 1 frequencies (77-77.072 GHz) vs. a single fre-

porting signal-based diffusion rather than simple quency (77 GHz) at 11, 14, 17, 20 diffusion steps
image-based diffusion.

Pre-measured Map

Overview Image Ground Truth

4.2.2 AMPLITUDE VIDEO

We compare the amplitude video results with the ground truth at the mmWave frequency. NeRF?,
MRI, and Wireless InSite are excluded as they do not support video. Diffusion? achieves a median
RSSI error of 2.07 dB, effectively capturing dynamic human locomotion and adapting to changes in
the 3D environment through video diffusion (see Appendix [E.3|for details).

4.3 REAL-WORLD SCENARIOS

To validate the practicality of Diffusion?, we further examine its performance in real-world envi-
ronments beyond synthetic data. Specifically, we consider three static indoor scenarios where 3D
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Figure 10: The RSSI error of real-world scenarios

models are reconstructed using commodity smartphones and RSSI measurements are collected under
mmWave frequencies. This evaluation enables us to assess how well Diffusion? generalizes to
realistic deployment conditions and to compare its predictive accuracy against strong baselines.

Fig.[10|summarizes the results, comparing Diffusion? with AUTOMS, Wireless InSite, NeRF?, and
MRI across the real-world scenarios. Fig.|l1|then illustrates the corresponding 3D smartphone
scans, measured RSSI, and predicted heatmaps from these methods. Diffusion? delivers accurate
RSSI estimates across diverse locations (e.g., behind walls, outside doors), consistently achieving
lower median errors than other methods. Compared to AUTOMS, the strongest baseline, Diffusion?
achieves 0.9 dB, 1.27 dB, and 0.03 dB lower median RSSI across the three scenarios. Against NeRF2,
the improvements are 0.94 dB, 4.93 dB, and 3.23 dB, respectively. We further compare Diffusion?
and AUTOMS on RF video generation, where Diffusion? achieves comparable accuracy and a slightly
better median error of 0.05 dB (see Appendix [E.3|for details).

4.4 MICRO-BENCHMARKS

Effectiveness of RF-3D Encoder design. We conduct ablation testing to assess the impact of each
component, as shown in Table[I] The embeddings of 3D features and RF signal features resulted in a
performance improvement of approximately 11-23%. Furthermore, the use of multi-scale aggregation
and multi-head self-attention on the 3D features led to additional performance improvements of
8-26%. These results demonstrate that each internal component of the RF-3D Encoder plays a crucial
role in understanding signal propagation.

Dataset diversity with multiple frequencies. We explore the ~ Table 1: Ablation study of Frrsp
significance of incorporating multiple frequencies in the train- ~ Signal Type Component RSSI Error (dB)
ing dataset in Section[d.2] As shown in Fig.[0] we measure the Fina 263

- . . Wi-Fi +F3b 2.32
RSSI error by gradually increasing the number of frequencies, 4 el 212
referred to as frequency levels, used for training from 2 to 10. F2b 243
Increasing the number of frequencies leads to a 31.69% reduc- ~ mmWave  +F0 1.85
tion in RSSI error. We find that using more than 5 frequencies + Pt 1.36

in training is useful for generating accurate RF signal maps.

Inference without detailed input. Reflection coefficients and pre-measured maps provide valuable
information for estimating RF signal propagation; however, acquiring them in real environments is
often challenging. Diffusion? addresses this limitation by leveraging a pre-trained MinkNet to infer
object categories at each 3D coordinate, enabling the diffusion model to produce results comparable
to those obtained with full inputs (Fig.[8). When the reflection coefficient is omitted, the mean and
median RSSI errors increase by approximately 0.5 dB and 0.04 dB, respectively. Similarly, excluding
the pre-measured map raises mean and median errors by roughly 0.81 dB and 0.06 dB. Notably, the
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Figure 11: Overview of real-world scenarios, showing 3D smartphone scans, measured RSSI, and
predicted heatmaps from AUTOMS, Wireless InSite, and Diffusion?. The AP location is marked by
ared circle, and the experiment regions are outlined with white dotted lines.

impact on median error is minimal, and although some localized uncertainty persists without these
inputs, the overall quality and fidelity of the generated RF signal maps remain largely intact.

Robustness against untrained frequencies. To evaluate frequency generalization across broader
bands, we test on an unseen 5.34 GHz signal after training only on 2.4 GHz, 5.16 GHz, and mmWave
data. The resulting error of 2.25 dB is comparable to the 2.12 dB error achieved using the full Wi-Fi
frequency set. This demonstrates that Diffusion? can effectively generalize to unseen frequencies by
leveraging nearby frequency information.

Inference time. We measure the average inference time using DiffusionZ, AUTOMS, NeRF2, and
Wireless InSite. As shown in Fig. |7, Diffusion? takes only 0.59 seconds to generate the RF signal
image, as its inference time is primarily determined by the neural network size. In contrast, NeRF?
and AUTOMS require about 20 seconds to calculate signals, while Wireless InSite takes over 1.5
hours. In addition, Diffusion? generates an 8-frame video in 8.9 seconds, which is 3.1 times faster
than AUTOMS. Importantly, while the computational cost of ray-tracing algorithms like Wireless
InSite and AUTOMS increases exponentially with the number of RXs, Diffusion? scales more
efficiently. In Diffusion?, the number of RXs corresponds to the image resolution, leading to a more
gradual increase in inference time as the number of RXs grows.

We further evaluate Diffusion? under three challenging conditions: (i) generalization to operating
frequencies unseen during training, (ii) robustness to out-of-distribution material conditions, and (iii)
resilience to incomplete 3D inputs from sensing limitations. As detailed in Appendix Diffusion®
maintains low RSSI errors in these scenarios, demonstrating strong generalization to unseen materials,
robustness with up to 20% missing 3D points, and reliable performance under frequency shifts.

5 LIMITATION

Collecting finely paired 3D and RF datasets across diverse environments is challenging due to dense
receiver requirements and labor-intensive setups in each space. As a result, most existing works are
limited to small laboratory settings. To overcome this, we use a ray-based simulator to efficiently
model complex environments and human motion, enabling faster inference while maintaining realism.
While we validate generalizability in three real-world environments, potential distribution gaps
between simulated and real data may still impact performance.

6 CONCLUSION

We propose Diffusion?, an innovative generative diffusion model to estimate RF signal propagation
using 3D environments. Diffusion? introduces the novel RF-3D Encoder encapsulating the complex
3D point clouds, 2D images, and RF-related features. Then, our RF-3D Pairing Block fuses the
RF-3D Features as the condition to guide the diffusion steps. We further extend our image diffusion
to video diffusion to capture temporal changes in the 3D environment. Our extensive evaluations
demonstrate the accuracy and efficiency of Diffusion?. We incorporate a 3D environment model into
the diffusion for the first time to significantly reduce the measurement overhead.
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A ADDITIONAL RELATED WORK

3D scene understanding. There has been extensive research in the field of visual 3D scene under-
standing. Previous studies have primarily focused on training models using accurate 3D labels (Schult
et al.;2020; (Choy et al.,|2019), addressing tasks such as 3D object classification (Wu et al.| [2015)),
3D object detection (Caesar et al., [2020; (Chen et al., 2020), and 3D semantic and instance seg-
mentation (Behley et al., 2019; [Huang et al., 2019). OpenScene (Peng et al.l [2023)) introduces a
zero-shot method for understanding 3D scenes with an open vocabulary. This approach leverages
CLIP embeddings to calculate dense features for 3D points, co-embedded with text strings and image
pixels, to facilitate 3D semantic segmentation.

In comparison to existing ML-based approaches that rely solely on RF measurements, Diffusion?
requires significantly fewer RF measurements for training due to the use of the 3D environment
model. 2) By using the 3D environment model as input, it supports various environments without
significant measurement overhead or retraining, whereas approaches like NeRF? and RF-Diffusion
necessitate extensive new measurements and retraining whenever the environment changes. 3) It
supports multiple frequencies. 4) It can generate RF heatmaps for both static and dynamic 3D scenes.
In short, Diffusion? combines the strengths of both ray tracing and ML-based approaches to achieve
high accuracy, fast performance, flexibility (supporting multiple frequencies and both RF heatmap
images and videos), ease of use, and requires minimal training data.

B MODELING RF PROPAGATION WITH DIFFUSION MODELS

Predicting radio frequency (RF) propagation is challenging. While the underlying physics is deter-
ministic, real-world environments introduce significant uncertainty from factors like noisy 3D scans,
unknown material properties, and complex multipath interference. Consequently, exact, path-based
simulations are often computationally intractable, and simple regression models struggle to capture
the full range of possible outcomes (Zhao et al.,|2023b).

We propose a diffusion-based framework that learns a distribution over plausible RF fields rather than
predicting a single, deterministic outcome. This approach embraces uncertainty and decomposes the
complex problem of field prediction into a sequence of manageable denoising steps. This paradigm
has proven effective in other physics-grounded domains, such as world modeling in Cosmos (NVIDIA
et al.,|2025), by progressively refining an output to ensure it remains physically plausible. Our work
extends this concept to RF propagation, demonstrating that diffusion models can accurately fit
simulated data while respecting the physical principles of wave propagation.

B.1 OVERCOMING THE LIMITATIONS OF PRIOR MODELS

Previous attempts to model RF propagation with generative models often fell short. As noted in
the NeRF? (Zhao et al.| [2023b), models like DCGANs and VAEs failed to generalize because they
treated RF heatmaps as static spatial signatures tied to a transmitter’s location. Instead of learning
the physics of propagation, they simply memorized geometric patterns. NeRF? made progress by
incorporating a more physically grounded radiance field representation.

Our model, which we call Diffusion?, builds on this insight. We structure the diffusion process to
explicitly mimic the temporal dynamics of wave propagation. As shown in Fig.[6] our model initiates
the process with high signal intensity concentrated near the transmitter, which then gradually diffuses
outward. This behavior is not just a generative artifact; it is an emergent property that aligns with
physical reality.

This physically grounded approach is crucial for learning true propagation semantics. We observed
that when key components of our architecture were removed (e.g., in a single-frequency baseline),
the model reverted to overfitting, reproducing spatial artifacts of the environment (e.g., apartment
layouts) without modeling genuine signal dynamics. In contrast, our full model generates coherent
and physically plausible propagation trajectories.
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B.2 THE ADVANTAGE OF A PROBABILISTIC FRAMEWORK

The core advantage of diffusion over deterministic methods is its ability to represent a distribution
over possible RF fields. This probabilistic approach provides inherent robustness to the uncertainties
and incomplete observations common in real-world scenarios, such as material variations or missing
geometry in a 3D scan. By learning a range of plausible outcomes, the model generalizes more
effectively.

In summary, diffusion offers a physics-aligned and uncertainty-aware framework that bridges the
gap between computationally expensive deterministic simulations and brittle pattern-matching ap-
proaches.

C DIFFUSION PROCESS WITH CONDITION

The overall diffusion consists of two processes: forward noising ¢(.) and reverse denoising p(.) as
shown in Fig.[2]

Forward process. Following a Markov chain, a forward process generates z; starting from the
original signal latent zy by sequentially adding a Gaussian noise distribution ¢ times. The forward
process finally generates the random noisy latent 27, which becomes a normal distribution N (0, I).
However, since the diffusion step 7 is usually set over 1,000, forwarding all steps sequentially is
inefficient from a computing resource perspective. So, DDPM applies the reparameterization trick
that samples with some steps skipped to process directly from zg to z; as follows:

q(zt|z0) := N (z1; Vazo, (1 — ) I) (6)
= /arzo + V1 — age @)

where oy = Hf:o aj, ap = 1 — B, and € ~ N(0,1). (3 represents noise variance schedule and ¢
denotes sampled noise from a normal distribution.

Reverse process. In the denoising process, we use the same normal distribution as the forward
process and assign the task of predicting a mean i and a diagonal covariance matrix 3 of the
distribution to neural networks as follows:

po(ze—1|2t) = N(ze—1; po (2, 1), Xo (2, 1)) (®)

where p denotes the predicted mean of the distribution and X represents the predicted variance. We
append the symbol 6 indicating it is trained through neural networks. With this process, we can
finally infer the original signal latent zy from random noisy latent z7.

Visual-condition guided denoising process. To consider RF signal information during the denoising
process, we reformulate Eq. [§]by adding a visual condition ¢ (Duan et al.| 2025):

po(zi—1]zt,¢€) := N(Zt—1; po(zt,t,€), Xg(zt,1)) ©)

The visual condition ¢, which represents our RF-3D Features, turns the probability formula in Eq.
into a conditional probability Eq.[9] It requires that every step of the diffusion process adheres to
the given conditioning ¢, which reflects the real physical environment. The design of conditioning
c is critical as it determines whether we can provide rich input signals to feedback environmental
information, thereby making the generated RF signal map as consistent with the real scenario as
possible. The detailed design of the conditioning c is described in Section[3.3]

Inference acceleration with DDIM. DDPM follows a Markov chain, so the inference is slow because
generating a single image requires passing 7', typically over 1,000 diffusion steps. DDIM notices that
the objective function of DDPM depends directly on the marginal distribution ¢(z|zo) not the joint
distribution ¢(z1.7|2¢) and introduces the non-Markov chain to speed up the reverse process with
little performance degradation. DDIM reformulates the forward process as follows:

T
q(z1.7|%0) = q(zrl20) [ [ a(ze-112, 20)- (10)

t=2
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According to Bayes’ theorem, ¢(z;—1|2¢,20) is also a Gaussian distribution, and the mean and
variance are determined to ensure q(z¢|z0) := N (2¢; v/@t20, (1 — a;)I) according to Eq. E]for all
t > 1 as follows:

q(Zt—1|Zt,ZO) = N(Zt—l;ﬁ(ztvz())aﬂt[) (1D
where
¥ — 1 Vo (l — oy
Az ) = YO 1P YVl mG) (12)
1-— Qi 1-— (677
~ 11—y
Br=—— P (13)
S

Note that the forward process of DDIM is a non-Markovian process because z; is dependent on not
only z;_1 but also zg. We adopt the improved inference process (Song & Ermon, [2020) by fixing
the variance schedulers « and 3 during the forward process and setting 3 to O during the reverse
process. In other words, our neural networks focus on predicting p¢ in the denoising process to
generate deterministic outputs.

C.1 NETWORK TRAINING

Transform to signal latent space. Training and inference of diffusion models directly based on
pixel space require a lot of computing resources and time for optimization (Rombach et al., 2022).
Following the latent designs (Rombach et al., [2022; [Duan et al.,2025)), we encode the pixel space into
latent signal space before the diffusion process and decode it backward to generate the RF signal map
on a pixel-by-pixel basis. The latent encoder consists of two sequentially connected 2D convolution
layers and Tanh as an activation function, while the latent decoder has one sequentially connected
2D transposed convolution layer, one 2D convolution layer, and a sigmoid function as an activation.
This transformation into latent space allows for in-depth analysis of the relationships between pixels,
which are receivers (RXs) in our problem. The neural networks of the decoder and encoder are
indirectly trained by minimizing the signal loss calculated pixel by pixel, not latent space, as shown

in Eq.[T4]
Loss function. We have neural networks to train, denoted as 6, in the reverse process as shown in

Eq.[1} Since we set Xg(z¢, t) to O for deterministic predictions, we only consider the L2 loss for the
denoising prediction and diffusion output, as follows:

Lp =|lze—1 — po(ze,t, )| (14)

where z;_; is calculated based on Eq.[/] We also include two pixel-wise signal losses between the
ground truth and the prediction result using L1 and L2 as follows:

Ly = l20(i, ) = 2000, )| + (2000, ) = 200, 1)) (15)

where zj is the ground truth and 2 is the predicted signal map. ¢ and j represent the pixel indices.
Lastly, we have pre-measured map input that works as the baseline for prediction. So, we apply the
mean squared error to calculate point-wise loss between the pre-measured map and our prediction as:

1

LPre = N Z(p(zvj) - éO(Za]))2 (16)
0,J

where p represents the pre-measured signal map and N is the number of actually measured points in

p. Finally, we get our loss with the scaling factor A as follows:

Loss = M Lp + XLy + A3Lpye. (17
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Figure 12: Diffusion model for video generation

C.2 GENERATING RF HEATMAP VIDEO

Following the approach in (Rombach et al., [2022), we incorporate one Conv3D temporal layer and
one temporal attention layer for both the noisy images z; and the RF-3D Features, labeled T1 and
T2 in Fig.[I2Za] While the spatial layer processes information within each individual frame, these
two temporal layers manipulate the feature dimensions across frames. Specifically, the initial input
shape is (b, f, ¢, h,w), where b is the batch size, f is the frame index, c is the image channel, and h
and w are the height and width of the images. The spatial layer processes this input for each frame
individually.

The Conv3D temporal layer reshapes the input in the following steps:

(b, fye, hyw) = (b,c, £, h,w) — (b, f, ¢, h,w)
The temporal attention layer reshapes as follows:

b, f,c,h,w) — (b,h,w,f,c) = (b, f,c, h,w)

These temporal layers mix the features across frames by reordering the dimensions, rather than
stacking layers across frames or batch units. Importantly, although these layers perform reshaping
internally, the final output shape matches the original input shape, allowing these temporal layers to
be seamlessly integrated into the architecture without altering the existing design.

D IMPLEMENTATION DETAILS

3D dataset. Our problem requires a 3D environment dataset that can be used to place the transmitter
(TX) in the appropriate position. Therefore, each object should be stored separately to facilitate
manipulation. However, popular datasets like Matterport (Sulaiman et al.| 2020} and ScanNet (Dai
et al.||2017) only offer a unified mesh file for the entire environment, lacking the desired granularity.
Consequently, we adopt 3D-FRONT (Fu et al.|[2021)), a dataset that aligns with our requirements and
features synthetic indoor scenes with professionally crafted layouts, encompassing 18,797 rooms
with diverse objects.

3D dataset augmentation. 3D-FRONT provides about 18K rooms, but the structure of each room is
quite similar, and the number of datasets is not enough, limiting its ability to train our large-scale
diffusion model. Therefore, we apply two data augmentation methods. First, the structure of the
3D-FRONT dataset contains one apartment, which is divided into several rooms such as a living
room and bathroom. We extract different rooms from the apartments and generate more apartments
by randomly combining rooms. Second, our environment requires one TX to be located. Therefore,
we enhance the diversity of the dataset by randomly placing TXs inside the room. In particular, this
augmentation is suitable for our problem because signal propagation plays a crucial role in predictions
both indoors and outdoors. As a result, we secure over 55k rooms with a variety of layouts and an
appropriately located TX.

RF signal dataset. We utilize the wireless channel simulator of AUTOMS (Ma et al. [2024) to
generate the amplitude and phase of the 3D environments. We generate the RF signal map for both
Wi-Fi and mmWave considering the multiple channels. For Wi-Fi, we consider 2.4 GHz and 10
different channels for 5 GHz as follows: 5.16, 5.18, 5.20, ..., and 5.34 GHz. For mmWave, we divide
into 10 different channels based on the frequency equation within each sweep (Mao et al., |2016):
f= foin+ BT—ft where B is the signal bandwidth, ¢ is a sweep index, and 7. is the chirp length. ¢ is

determined by sampling rate R as [0 : 1/R, : T']. All variables except T are fixed according to the
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board specifications, i.e., B = 4€9, S, = 25¢6, and f,,;, = 77e¢9. We set T, as 20e-6 to chirp into
501 frequencies from mmWave and select the first 10 frequencies for our dataset, i.e., 77, 77.008,
77.016, ..., and 77.072 GHz. We extensively evaluate Diffusion? by varying the combinations of
frequencies in the input dataset, such as using 1 to 10 frequencies. Note that we fix the total number
of training datasets across all evaluations to ensure a fair comparison.

2D feature. The Swin Transformer (Liu et al.,[2021]) is employed to generate visual conditions as
multi-scale layers for the overview image and pre-measured map, and we incorporate these features
using a hierarchical aggregation and heterogeneous interaction (L1 et al., 2023). This multi-scale
feature embedding is particularly effective for RF signal estimation because it spans small to large
scales, similar to signal propagation properties. Additionally, a feature pyramid neck (FPN) (Lin
et al.,[2017) is utilized to consolidate features into diffusion conditions. For the Swin Transformer,
we specify channel dimensions as [192, 384, 768, 1536]. Also, we randomly choose 15 points in the
RF signal map for the pre-measured map.

3D feature. We use the pre-trained MinkNet model (Choy et al., 2019) with 21 classes for 3D
geometry embedding. We use four levels of multi-scale features before the final layer and apply the
FPN for these features to align with the 2D multi-scale embedding. We then use interpolation to
unify the feature size at each level. The interpolation size is (fea, coords) = (64,30000), where
fea is the feature size and coords represents the 3D coordinates. In addition, we apply multi-head
self-attention for the last layer from the MinkNet model using Perceiver IO (Jaegle et al.| [2021). We
use 512 latent dimensions and 12 heads for cross-attention and latent self-attention.

Hyperparameters. We employ the PyTorch framework (Paszke et al.,2019) and conduct training
with a batch size of 16 over 20 epochs with a single NVIDIA A100 GPU. We use the Adam
optimizer (Kingma & Bal [2014) and a linear learning rate warm-up strategy for the first 15% of
iterations. The initial learning rate is 10~ and decreases sequentially over 10, 15, and 20 epochs,
applying a multiplicative gamma factor of 0.8, 0.2, and 0.04, respectively. We set an equal ratio of
Lp, Ly, and Lp,. in the loss function.

Diffusion setup. We use the improved sampling process (Song & Ermon, 2020) with 1,000 diffusion
steps for training and 20 inference steps for inference. The learning rate is 10~ for image diffusion
and 10~ for video diffusion. The maximum signal strength of the amplitude is 70 for all experiments.
The resolution of the results is 352 x 705 and 52 x 72 for image and video, respectively. Our video
generation model outputs 8 frames. Our model requires approximately 40 GB of GPU memory
during training and completes training in about one day.

Human locomotion dataset. To collect a dataset for video diffusion, we use DIMOS (Zhao et al.,
2023al), which generates human locomotion in a 3D environment. DIMOS uses a Markov decision
process to create reasonable human movements while avoiding collisions between surrounding
objects. We extract 8 snapshots for each room through DIMOS and generate an amplitude map
according to each snapshot environment through the wireless channel simulator (Ma et al., [2024)).

E EVALUATION DETAILS

E.1 REAL-WORLD MEASUREMENT SETUP

We conduct experiments in three indoor scenarios as shown in Fig. We use Polycam (Polycam,
2025) to obtain the 3D models of the experiment environment. We use two Acer Travelmate P658
laptops with Qualcomm QCA6320 chipset-based 60 GHz commercial Wi-Fi cards to measure the
mmWave received signal strength indicator (RSSI). The access point (AP) and station use a 6x6
uniform planar array (UPA) with a 120° field-of-view (Song et al., 2023 and 4 corner antennas
deactivated. The antenna element spacing is 0.58\ (Zhao et al.,|2020). Each antenna has a 1-bit
switch (on or off) and a 2-bit phase shifter. All antennas share a single RF chain. The central carrier
frequency is 60.48 GHz. We also conduct real measurements for the RF signal video where an object
1.5 meters in height moves in Scenario III. We place the wireless receiver at designated locations for
measurement.
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Table 2: Robustness to unseen frequencies

Trained Frequencies (GHz) Test Frequency (GHz) RSSI Error (dB)

77-77.024, 77.040-77.072 77.032 152
2.4,5.16, 77-11.072 534 225
Table 3: Generalization to unseen materials Table 4: Robustness to incomplete 3D data
Material Replacement Ratio ~ RSSI Error (dB) 3D Input Removed Ratio  RSSI Error (dB)
0% (baseline) 1.36 0% (baseline) 1.36
10% 1.40 5% 137
30% 1.53 10% 1.40
50% 1.68 20% 1.48
40% 1.87

E.2 MICRO-BENCHMARKS

Robustness against untrained frequencies. We evaluate the ability of Diffusion? to infer RF signal
maps for frequencies not included in the training set, as presented in Table[2] When excluding the
77.032 GHz frequency from a set of 10 mmWave frequencies, the mean RSSI error is 1.52 dB,
which is comparable to the 1.36 dB error when the full mmWave set is used. Furthermore, to assess
frequency generalizability across wider bands, we test on an unseen 5.34 GHz frequency spanning
both Wi-Fi and mmWave ranges. The resulting error is 2.25 dB, closely aligned with the 2.12 dB
error observed when using the complete Wi-Fi frequency set. These results indicate that Diffusion?
can effectively generalize to unseen frequencies by leveraging information from adjacent frequency
datasets.

Generalization across unseen material conditions. In real-world scenarios, the electromagnetic
characteristics of objects vary substantially with their material composition, leading models to
inevitably face unseen material distributions at deployment. To rigorously assess this generalization
capability, we constructed a dedicated test set in which object materials differ from those in the
training set (e.g., walls replaced with plasterboard instead of concrete/brick). Without any fine-tuning,
the pretrained model exhibits only a gradual increase in RSSI error with higher material replacement
ratios, remaining below 1.7 dB, thereby demonstrating strong robustness to out-of-distribution
material conditions.

Robustness to incomplete 3D data. In real-world deployments, 3D input data are often incomplete
due to sensing limitations and occlusions. To evaluate robustness under such conditions, we randomly
removed 3D input points for the FMCW signal. The model remains robust up to 20% missing data,
exhibiting only a modest increase in error. This robustness can be attributed to MinkowskiNet’s
sparse convolutional architecture, which effectively handles incomplete and irregular 3D inputs.

E.3 AMPLITUDE VIDEO

We compare amplitude video results with the ground truth using the mmWave signal frequency,
as shown in Fig.[I3] The real-world measurement in Scenario III is shown in Fig.[I3a] while the
simulated mmWave result is presented in Fig. NeRF2, MRI, and Wireless InSite are excluded,
as they do not support video output. In the real-world evaluation, Diffusion? achieves comparable
accuracy and a slightly improved median error, outperforming AUTOMS by 0.05 dB. On the simulated
dataset, Diffusion? attains a median RSSI error of 2.07 dB, effectively captures dynamic human
locomotion, and adapts flexibly to changes in the 3D environment through our video diffusion.
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Figure 13: Evaluation of amplitude video generation for simulated and real-world measurements.
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Figure 14: Video diffusion examples from synthetic dataset. (c) and (d) are snapshots from the video.
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