
Large Language Model-driven Large Neighborhood Search for
Large-Scale MILP Problems

Huigen Ye 1 2 Hua Xu 1 2 An Yan 1 2 Yaoyang Cheng 1 2

Abstract
Large Neighborhood Search (LNS) is a widely
used method for solving large-scale Mixed Inte-
ger Linear Programming (MILP) problems. The
effectiveness of LNS crucially depends on the
choice of the search neighborhood. However, ex-
isting strategies either rely on expert knowledge
or computationally expensive Machine Learning
(ML) approaches, both of which struggle to scale
effectively for large problems. To address this,
we propose LLM-LNS, a novel Large Language
Model (LLM)-driven LNS framework for large-
scale MILP problems. Our approach introduces
a dual-layer self-evolutionary LLM agent to au-
tomate neighborhood selection, discovering ef-
fective strategies with scant small-scale training
data that generalize well to large-scale MILPs.
The inner layer evolves heuristic strategies to en-
sure convergence, while the outer layer evolves
evolutionary prompt strategies to maintain di-
versity. Experimental results demonstrate that
the proposed dual-layer agent outperforms state-
of-the-art agents such as FunSearch and EOH.
Furthermore, the full LLM-LNS framework sur-
passes manually designed LNS algorithms like
ACP, ML-based LNS methods like CL-LNS, and
large-scale solvers such as Gurobi and SCIP. It
also achieves superior performance compared to
advanced ML-based MILP optimization frame-
works like GNN&GBDT and Light-MILPopt, fur-
ther validating the effectiveness of our approach.

1. Introduction
Mixed Integer Linear Programming (MILP) is a versatile
and widely used mathematical framework for solving com-

1Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China 2Beijing National Research
Center for Information Science and Technology, Beijing 100084,
China. Correspondence to: Hua Xu <xuhua@tsinghua.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

plex optimization problems across various domains, includ-
ing transportation management (Klanšek, 2015), bin pack-
ing (Fleszar, 2022), and production planning (Adrio et al.,
2023). MILPs are challenging to solve efficiently due to
their NP-hard nature (Kim et al., 2021) and the exponen-
tial growth of the search space as problem size increases
(Vázquez et al., 2018). To address these challenges, re-
searchers have developed two primary approaches (Zhang
et al., 2023): exact algorithms, such as branch-and-bound,
and heuristic-based approximation methods.

While exact algorithms like branch-and-bound (Boyd &
Mattingley, 2007; Morrison et al., 2016) are effective for
small to medium-sized problems, they struggle with the
computational demands of larger instances. This has led to
the rise of heuristic methods, particularly Large Neighbor-
hood Search (LNS) (Ahuja et al., 2002; Mara et al., 2022),
which iteratively improves solutions by destroying and re-
pairing parts of the current solution, allowing for exploration
of large neighborhoods without full re-optimization (Song
et al., 2020; Ye et al., 2023a). However, LNS performance
depends heavily on neighborhood selection, which is often
hand-crafted and requires significant domain expertise. De-
signing these operators can be labor-intensive and prone to
cold-start issues, where limited prior knowledge is available
to guide the search (Zhang et al., 2023).

In recent years, machine learning (ML) techniques, includ-
ing reinforcement learning (Wu et al., 2021; Song et al.,
2020) and imitation learning (Sonnerat et al., 2021; Nair
et al., 2020), have been applied to automate the design of
neighborhood selection strategies. These methods aim to
learn heuristic strategies from training datasets, reducing
reliance on expert knowledge and allowing the algorithms to
adapt to new, homogeneous instances. However, ML-based
LNS approaches come with their own challenges. For re-
inforcement learning, slow convergence is a common issue
(Beggs, 2005), particularly in large-scale MILP problems,
due to the vast search space and the need for extensive
exploration before identifying effective strategies. On the
other hand, imitation learning requires large amounts of
high-quality, labeled data, which can be computationally
expensive to generate using expert algorithms (Huang et al.,
2023b). As a result, both hand-crafted and ML-based meth-
ods struggle to efficiently solve large-scale MILP problems.

1

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

The rise of Large Language Models (LLMs) offers a promis-
ing solution to these challenges. Unlike traditional hand-
crafted methods, LLMs come pretrained with vast general
knowledge, allowing them to reason about complex tasks
and learn problem structures with minimal training data,
thus avoiding cold-start issues. Additionally, LLMs can
adapt to new problems through interactive reasoning, reduc-
ing the need for extensive exploration and addressing the
slow convergence of reinforcement learning. Furthermore,
LLMs can dynamically generate heuristic strategies with-
out relying on large labeled datasets, which significantly
reduces the computational overhead typically associated
with imitation learning (Yang et al., 2024; Lange et al.,
2024). While LLMs have shown potential in generating
strategies for combinatorial optimization problems(Ye et al.,
2024; Elhenawy et al., 2024), they often lack the problem-
specific refinement needed to produce efficient heuristics
without additional guidance (Plaat et al., 2024). Approaches
like FunSearch (Romera-Paredes et al., 2024) and Evolu-
tion of Heuristic (EOH) (Liu et al., 2024) combine LLMs
with evolutionary algorithms (Simon, 2013), but rely on
fixed strategies, limiting solution diversity and leading to
poor convergence due to insufficient directionality. This
underscores the need for a more adaptive framework to fully
harness LLMs for large-scale MILP problems.

In this paper, we propose LLM-LNS, a novel Large Lan-
guage Model-driven Large Neighborhood Search framework
designed specifically for solving large-scale MILP problems,
which can discover effective neighborhood selection strate-
gies for LNS with scant small-scale training data that gener-
alize well to large-scale MILPs. The code of LLM-LNS is
open-sourced at https://github.com/thuiar/LLM-LNS. Our
key innovations are as follows:

• Dual-layer Self-evolutionary LLM Agent: We pro-
pose a novel LLM agent with a dual-layer self-
evolutionary mechanism for automatically generat-
ing heuristic strategies. The inner layer evolves both
thoughts and code representations of heuristic strate-
gies, ensuring convergence, while the outer layer
evolves evolutionary prompt strategies to maintain
diversity, preventing the search process from getting
trapped in local optima.

• Differential Memory for Directional Evolution: We
introduce differential evolution in the agent to guide
both crossover and variation. By feeding the fitness val-
ues of parent strategies back into the LLM, we leverage
its memory to learn how to evolve from less effective
to more effective strategies. This feedback mechanism
enables the LLM to act as an optimizer, identifying
promising directions and leading to more efficient im-
provements.

• Application to Neighborhood Selection in LNS: We

apply the proposed dual-layer LLM agent to the neigh-
borhood selection strategy generation in LNS. By uti-
lizing only a small amount of training data from small-
scale problems, the LLM agent can discover new neigh-
borhood selection strategies that generalize well to
large-scale MILP problems.

• Comprehensive Experimental Validation: We val-
idate the effectiveness of our proposed LLM-LNS
at two levels. First, we test its agent’s performance
on heuristic generation tasks of combinatorial opti-
mization problems, demonstrating its superiority over
state-of-the-art methods such as FunSearch and EOH.
Second, we evaluate its performance on large-scale
MILP problems, where it outperforms traditional LNS
methods, ML-based LNS methods, and leading solvers.
Furthermore, our proposed LLM-LNS surpasses mod-
ern ML-based optimization frameworks for large-scale
MILP, confirming the effectiveness of our LLM-LNS
in solving large-scale optimization problems.

2. Related Work
2.1. Mixed Integer Linear Programming

Mixed Integer Linear Programming (MILP) problems rep-
resent a class of combinatorial optimization problems char-
acterized by a linear objective function subject to a set of
linear constraints, where some or all decision variables are
restricted to integer values. An MILP can be defined as
follows:

min
x

cTx, s.t.Ax ≤ b, l ≤ x ≤ u, xi ∈ Z, i ∈ I, (1)

where x represents the decision variables, with n ∈ Z denot-
ing the dimensionality of the integer variables and l, u, c ∈
Rn corresponding to the lower bounds, upper bounds, and
coefficients of the decision variables, respectively. The ma-
trix A ∈ Rm×n and the vector b ∈ Rm define the linear
constraints of the problem. The set I ⊆ {1, 2, . . . , n} de-
notes the indices of variables that are constrained to integer
values. A feasible solution to the MILP problem satisfies all
constraints, and the optimal solution minimizes the objective
function value. (Artigues et al., 2015; Pisaruk, 2019)

2.2. Large Neighborhood Search

Large Neighborhood Search (LNS) is a widely used heuris-
tic for solving MILP problems. It iteratively improves so-
lutions by exploring predefined neighborhoods around a
current solution. However, the effectiveness of LNS heav-
ily relies on the neighborhood selection strategy, as poor
choices can lead to stagnation in local optima.

Several approaches have been proposed to address this chal-
lenge. One common method is random-LNS (Song et al.,

2

https://github.com/thuiar/LLM-LNS

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

2020), which randomly partitions integer variables into dis-
joint subsets and optimizes one subset in each iteration
while fixing the others. However, random-LNS uses a fixed
neighborhood size and overlooks correlations between de-
cision variables, limiting its performance. To overcome
these drawbacks, the Adaptive Constraint Partitioning (ACP)
framework (Ye et al., 2023a) introduces a dynamic strategy
that adjusts the neighborhood size, optimizing all decision
variables associated with randomly selected constraints in
each iteration. This ensures that highly correlated variables
are optimized together, improving performance. Similar
strategies have been explored in other works (Huang et al.,
2023a; Han et al., 2023), but they still rely on manually
designed heuristics, requiring expert knowledge and lacking
adaptability to new problem instances.

To address this limitation, machine learning methods have
been applied to automate neighborhood selection. Rein-
forcement learning (RL) approaches define reward functions
based on solution improvements, allowing models to learn
promising neighborhoods through interaction with the prob-
lem (Wu et al., 2021; Song et al., 2020; Nair et al., 2020).
Imitation learning, on the other hand, uses large amount of
large-scale sampling (Huang et al., 2023b; Zhou et al., 2023)
or expert algorithms (Sonnerat et al., 2021) to guide the se-
lection process. While these techniques reduce reliance on
handcrafted strategies, RL struggles with convergence in
large-scale MILP problems, and imitation learning requires
extensive sampling, making it computationally expensive.
This highlights the need for more efficient, automatically
designed neighborhood selection strategies.

2.3. Large Language Model for Heuristic Design

The rise of Large Language Models (LLMs) has opened
new possibilities for generating heuristic strategies to solve
combinatorial optimization problems (Yang et al., 2024;
Lange et al., 2024). LLMs excel at generating high-level
ideas and reasoning over complex tasks, but they often lack
problem-specific knowledge, limiting their ability to cre-
ate effective heuristics without additional guidance (Plaat
et al., 2024). To overcome these limitations, recent works
have integrated LLMs with evolutionary algorithms (EA) to
iteratively refine heuristics.

FunSearch (Romera-Paredes et al., 2024) is a notable at-
tempt that combines LLMs with evolutionary frameworks.
FunSearch uses LLMs to generate functions, which are
then evolved through an evolutionary search process. This
approach has demonstrated success in outperforming hand-
crafted algorithms on specific optimization problems. How-
ever, FunSearch is computationally expensive, often requir-
ing millions of LLM queries to identify effective heuristic
functions, which limits its practicality in many real-world ap-
plications. A more recent approach, Evolution of Heuristic

Table 1. Comparison of Features Between Difference Methods
FunSearch EOH LLM-LNS

Heuristic Evolution ✓ ✓ ✓
Thought Evolution × ✓ ✓
Prompt Evolution × × ✓

Directional Evolution × × ✓

(EOH) (Liu et al., 2024), builds on the strengths of LLMs
and evolutionary computation while addressing some of
FunSearch’s limitations. EOH introduces a novel evolu-
tionary paradigm where heuristics, represented as natural
language ”thoughts,” are translated into executable code
by LLMs. These thoughts and their corresponding code
are evolved within an EA framework, enabling the efficient
generation of high-performance heuristics. As shown in
Table 1, while FunSearch and EOH have advanced the in-
tegration of LLMs with evolutionary algorithms, they still
have limitations. All methods focus on Heuristic Evolution
for generating strategies, but FunSearch evolves only at the
code level and lacks Thought Evolution. Meanwhile, EOH
incorporates Thought Evolution but uses fixed evolutionary
strategies, lacking Prompt Evolution to enhance solution
diversity. Additionally, both methods lack Directional Evo-
lution, where crossover operations are guided by differential
memory to improve efficiency and adaptability. These lim-
itations reduce their ability to guide the search effectively,
often leading to premature convergence. These challenges
highlight the need for more adaptive frameworks to fully
harness LLMs in large-scale optimization tasks.

3. Method
In this section, we introduce LLM-LNS, a Large Language
Model-driven Large Neighborhood Search framework de-
signed to solve large-scale MILP problems. As shown in
Figure 1, the framework is composed of two main compo-
nents: a Dual-layer Self-evolutionary LLM Agent and a
Adaptive Large Neighborhood Search process. For the
framework’s detailed pseudocode, see Appendix B.1.

3.1. Dual-layer Self-evolutionary LLM Agent

The Dual-layer Self-evolutionary LLM Agent is the core
component of our framework, responsible for generating
and evolving heuristic and prompt strategies. The Dual-
layer Self-evolutionary Structure consists of an Inner
Layer that evolves heuristic strategies to accelerate conver-
gence, and an Outer Layer that evolves evolutionary prompt
strategies to enhance diversity in heuristic generation. An-
other key innovation is the incorporation of Differential
Memory for Directional Evolution, which accelerates con-
vergence by learning the direction of improvement from
less effective strategy to better ones. Together, these innova-
tions ensure a balance between exploration and exploitation,
significantly improving the efficiency and preventing stag-

3

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Dual-layer Self-evolution LLM Agent

min c1x1 + ... + cnxn

s.t. a11x1 + ... + a1n xn ≤ b1

am 1x1 + ... + am nxn ≤ bm

...

Small-scale Training Dataset

l ≤ x ≤ u, 𝑥𝑖 ∈ ℤ,
𝑖 ∈ 𝕀 = {1, 2, … , 𝑛}

min c1x1 + ... + cnxn

s.t. a11x1 + ... + a1n xn ≤ b1

am 1x1 + ... + am nxn ≤ bm

...

Large-scale Testing Dataset

l ≤ x ≤ u, 𝑥𝑖 ∈ ℤ,
𝑖 ∈ 𝕀 = {1, 2, … , 𝑛}

.
x .
r

Large
Neighborhood

Search

Neighborhood
Selection

Adaptive Large Neighborhood Search

Initial Solution Search Adaptive RadioVariable Scoring

Inner Layer: Heuristic Strategy Evolution

Population of Heuristic Strategy

Code Thought Fitness

Outer Layer: Evolutionary Prompt Strategy Evolution

Population of Crossover Strategy

Crossover
Prompt Strategy

Fitness

Population of Variation Strategy

Variation
Prompt Strategy

Fitness

Evolutionary Prompt

Evolutionary Prompt

Parents Selection

Fitness Value

Heuristic strategy

Parents Selection

Fitness Value
Differential

Evolution Memory
Large Language

Model

Evolution of Heuristic Strategy

Differential
Evolution Memory

Large Language
Model

Evolution of Prompt Strategy

New Heuristic Strategy

Code Thought

New Heuristic Strategy

Crossover
Prompt Strategy

Variation
Prompt Strategy

MILP Dataset

Prompt Strategy
Initialization

Initial Hand-craft
Prompt Strategy

Heuristic Strategy Initialization

Initial ization
Prompt Strategy

Problem
Structure

Large Language
Model

Figure 1. An overview of the proposed LLM-LNS framework. The framework consists of a dual-layer self-evolutionary LLM agent for
solving large-scale MILP problems. In the outer layer, evolutionary prompt strategies are generated and passed to the inner layer, where
heuristic strategies are evolved. A differential memory mechanism uses fitness feedback to refine these strategies across iterations. The
refined strategies are fed into the Adaptive Large Neighborhood Search process, which iteratively improves solutions.

nation in local optima.

3.1.1. DUAL-LAYER SELF-EVOLUTIONARY STRUCTURE

The Dual-layer Self-evolutionary Structure is the core com-
ponent of the LLM-LNS framework. It is designed to evolve
both evolutionary prompt strategies and heuristic strategies
in a synergistic manner, leveraging LLMs for automated
heuristic design and refinement. This dual-layered structure
mimics the heuristic development process of human experts,
ensuring a balance between exploration and exploitation
throughout the search process.

Inner Layer: Heuristic Strategy Evolution. The Inner
Layer focuses on evolving heuristic strategies, which consist
of both natural thought and corresponding code implemen-
tations, with an emphasis on convergence. Key aspects of
Inner Layer, as illustrated in Figure 1 , include:

• Initialization of Heuristic Strategies: The initial set of
heuristics is generated by feeding the structural infor-
mation from small-scale training problems, along with
an initialization prompt strategy, into the LLM. This
produces the first generation of heuristic strategies.

• Evolution of Heuristic Strategies: In each generation,
new heuristic strategies are evolved by selecting parent
strategies from the current heuristic population. As
detailed in Appendix B.3, strategies with higher fitness
values are more likely to be selected as parents. These
parents are then combined with evolutionary strate-
gies, selected from the Outer Layer’s population of
prompt strategies (e.g., crossover or variation prompts),
to guide the LLM in generating offspring strategies.

• Evaluation and Final Selection: After new heuristic
strategies are generated, they are evaluated by inte-
grating them into the Adaptive Large Neighborhood
Search process, where each heuristic is applied to solve
small-scale instances from the training dataset. The
performance of each strategy is measured by its objec-
tive function value, which serves as its fitness score.
After multiple iterations of evolution and evaluation,
the best-performing heuristic strategies are identified
based on their fitness.

Outer Layer: Evolutionary Prompt Strategy Evolution.
The Outer Layer focuses on evolving evolutionary prompt
strategies, which guide the LLM in generating new heuristic
strategies. The emphasis in this layer is on exploration to
maintain diversity and prevent premature convergence in
the heuristic strategy population. The key stages of Outer
Layer, as illustrated in Figure 1, include:

• Initialization of Prompt Strategies: The initial set of
evolutionary prompt strategies is handcrafted and de-
signed to perform basic crossover and variation op-
erations, instructing the LLM on how to combine or
modify existing heuristic strategies in the inner layer.

• Evolution of Prompt Strategies: As the evolution pro-
gresses, more complex prompt strategies are intro-
duced to address stagnation in the heuristic population.
Specifically, if the top-l individuals in the heuristic
population remain unchanged for t consecutive genera-
tions, we infer that the evolution may have converged
to a local optimum. This triggers the evolution of new
prompt strategies. This systematic evolution of prompt

4

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Number of generations

Fi
tn

es
s V

al
ue

(P
er

fo
rm

an
ce

)

5 10 15 200

0.9595

0.9911
0.9916

0.9934 0.9934 0.9942 0.9942

0.9911
0.9916

0.9918

Initialization of Evolutionary Prompt Strategy
• Cross1：Create a completely new algorithm.
• Cross2：Create a new algorithm inspired by the given ones.
• Variation1：Modify the given algorithm.
• Variation2：Change the parameters of the given algorithm.

Initialization of Heuristic Strategy
• Capacity ratio with penalty
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠
× 1

𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑏𝑖𝑛+0.5

Evolution of Heuristic Strategy
• Added power and proximity penalties
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠+1𝑒−5
− (𝑏𝑖𝑛𝑠/10)2

𝑚𝑎𝑥(𝑏𝑖𝑛𝑠
10)2

− (1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚
𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)

)

Evolution of Heuristic Strategy
• Added randomness for exploration
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠+1𝑒−5
− (𝑏𝑖𝑛𝑠/10)2

𝑚𝑎𝑥(𝑏𝑖𝑛𝑠
10)2

−

(1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚
𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)

) + 𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑒𝑠𝑠 × 0.1

Evolution of Heuristic Strategy
• Randomized adjustment for diversity
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠+1𝑒−5
− (𝑏𝑖𝑛𝑠/10)2

𝑚𝑎𝑥(𝑏𝑖𝑛𝑠
10)2

− (1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚
𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)

) + random adjustment

Evolution of Heuristic Strategy
• Hybrid optimization with genetic algorithm + tabu search
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠+1𝑒−5
− ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 −

(𝑏𝑖𝑛𝑠/15)2

𝑚𝑎𝑥((𝑏𝑖𝑛𝑠/15)2)
+ 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 − (1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚

𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)+1𝑒−5
)

Evolution of Evolutionary Prompt Strategy
• Cross5：Develop a novel heuristic by synthesizing methodologies to reduce the objective function.
• Cross6：Create a heuristic using unique elements and adaptive learning for minimization.
• Variation5：Adjust score function parameters to optimize exploration strategies.
• Variation6：Investigate and redesign heuristics using unconventional techniques for better optimization.

Management of Evolutionary Prompt Strategy
• Cross1：Create a completely new algorithm.
• Cross3：Design an advanced algorithm with complexity reduction.
• Variation2：Change the parameters of the given algorithm.
• Variation4：Add stochastic elements and adaptive learning.

Evolution of Evolutionary Prompt Strategy
• Cross3：Design an advanced algorithm with complexity reduction.
• Cross4：Suggest a new heuristic for better efficiency.
• Variation3：Reconfigure core principles for a new heuristic.
• Variation4：Add stochastic elements and adaptive learning.

Evolution of Heuristic Strategy
• Swarm intelligence + simulated annealing

• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)
𝑏𝑖𝑛𝑠+1𝑒−5

× 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − (𝑏𝑖𝑛𝑠/12)2

𝑚𝑎𝑥((𝑏𝑖𝑛𝑠/12)2)
−

(1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚
𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)

) + (𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 − 𝑠𝑐𝑜𝑟𝑒𝑠) × 0.1 + 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡

Figure 2. Evolution of Dual-layer Self-evolutionary LLM Agent for online bin packing. We outline the key thoughts of the best heuristics
produced in some generations during the evolution of heuristic strategies. Additionally, we highlight the evolution of evolutionary prompt
strategies, which dynamically adapt the prompt strategies to guide the LLM in generating more effective and diverse heuristics.

strategies helps ensure that the heuristic population
does not get trapped in local optima.

• Evaluation and Management of Prompt Strategies: To
ensure the efficiency and effectiveness of the prompt
strategy population, each prompt strategy is evaluated
based on the performance of the heuristic strategies it
generates. Specifically, for each prompt strategy, the
top-k performing heuristic strategies it produces are
tracked, and the average fitness score of these heuristics
is used as the fitness score for the prompt strategy itself.
This fitness-based evaluation allows us to manage the
prompt population and control its size. As the number
of prompt strategies increases over generations, under-
performing strategies are pruned to prevent excessive
growth and focus on the most effective strategies. This
pruning process ensures that only the most effective
prompt strategies continue to evolve, maintaining both
diversity and efficiency in the evolutionary process.
For parameter details, see Appendix C.

The synergy between the Inner Layer and Outer Layer
drives rapid evolution of effective heuristics and novel evo-
lutionary prompt strategies, as shown in Figure 2. Early
generations focus on basic principles, but with the intro-
duction of advanced prompt strategies, such as complexity
reduction and adaptive learning, the system quickly adapts
to overcome local optima. Notably, the sharp performance
improvements between generations 5 to 15 demonstrate
the framework’s ability to autonomously discover and re-
fine creative strategies, leading to continuous enhancements

in heuristic performance. This dual-layered approach en-
sures efficient exploration and exploitation, enabling the
LLM-LNS framework to tackle large-scale problems with
minimal human intervention. For a more detailed example
of the evolution process, please refer to Appendix B.2.

3.1.2. DIFFERENTIAL MEMORY FOR DIRECTIONAL
EVOLUTION

In our Dual-layer Self-evolutionary LLM Agent, both heuris-
tic strategies and evolutionary prompt strategies evolve
through a process that incorporates Differential Memory
for Directional Evolution. This mechanism allows the LLM
to leverage the fitness history of strategies, learning from the
differences between higher- and lower-performing strategies
to guide the generation of improved candidates. Differential
memory enables the LLM to act as both a generator and an
optimizer, dynamically refining strategies over successive
generations.

At each generation t, the LLM is provided with a set of m
strategy-thought-fitness tuples:

S(t) = {⟨H(t)
i , thoughti, f(H

(t)
i)⟩}mi=1, (2)

where H
(t)
i represents the i-th parent heuristic strategy se-

lected for this generation, thoughti is its corresponding nat-
ural language description, and f(H

(t)
i) is its fitness score.

The size of S(t) is m, which is a predefined parameter rep-
resenting the number of parent strategies used in a single
evolutionary operation. These tuples encapsulate both the
structural and performance information of the selected par-

5

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

ent strategies, providing the necessary context for generating
offspring strategies.

To generate the next generation of strategies H(t+1), the
LLM employs a meta-prompt pmeta, which combines two
key components: a directive plearn that instructs the LLM
to learn from the differences between higher- and lower-
performing strategies, emphasizing traits that contribute to
higher fitness; and an evolutionary prompt strategy pevo,
provided by the Outer Layer, which specifies the goals and
rules for the evolutionary operation, such as crossover, mu-
tation, or hybrid operations. The generation process can be
formalized as:

H
(t+1)
i =M(pmeta∥S(t)), (3)

where M is the LLM model, pmeta = ⟨plearn, pevo⟩ is
the meta-prompt, and S(t) represents the strategy-thought-
fitness tuples from the current generation. By integrating
these components, the LLM generates new strategies H(t+1)

that are informed by past evolutionary performance and
aligned with the objectives defined by the Outer Layer. This
iterative feedback-refinement loop ensures that the LLM
dynamically balances exploration and exploitation. Differ-
ential memory accumulates across generations, enabling
the LLM to focus on areas of the search space that demon-
strate promise while avoiding stagnation in local optima.
The result is an increasingly proficient evolution process,
accelerating convergence toward optimal solutions while
maintaining population diversity.

3.2. Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search (ALNS) dynamically
adjusts neighborhood size and leverages the Dual-layer Self-
evolutionary LLM Agent for variable scoring and selection.
At each iteration t, the LLM agent computes scores s(t)i for
decision variables xi based on their potential to improve the
objective value. The top-k variables are selected to form the
neighborhood N (t):

N (t) = {xi | rank(s(t)i) ≤ k}, (4)

where N (t) is the neighborhood at iteration t, and k is the
current neighborhood size. A subproblem is then solved
withinN (t), and the solution x is updated if an improvement
is found.

The neighborhood size k is adaptively adjusted based
on search progress. If the improvement in the objective
value falls below a threshold ϵ for p consecutive iterations,
k is expanded to explore a broader search space k ←
min(kmax, k + ⌈u% · n⌉), where u% is the adjustment rate
and n is the total number of decision variables. Conversely,
if the time spent solving subproblems within the neighbor-
hood exceeds a predefined limit, k is reduced to focus on a
smaller subset of variables k ← max(kmin, k − ⌈u% · n⌉).

The key innovation of ALNS lies in the use of the LLM
agent to generalize variable selection strategies. Trained on
small-scale MILP problems, the LLM agent learns to rank
variables based on their impact on the objective function, en-
abling the generalization of these strategies to larger, more
complex problems. This transfer of knowledge ensures
that neighborhood selection is both adaptive and intelligent,
dynamically balancing exploration and exploitation. By
focusing computational resources on the most promising re-
gions of the solution space, ALNS efficiently navigates the
vast search space of large-scale MILPs. For a detailed de-
scription of the process and the corresponding pseudocode,
please refer to Appendix B.4.

4. Experiment
To validate the effectiveness of the proposed LLM-LNS
framework, we conduct two sets of experiments. First, we
evaluate our proposed Dual-layer Self-evolutionary LLM
Agent on heuristic generation tasks for combinatorial opti-
mization problems, comparing it against methods like Fun-
Search (Romera-Paredes et al., 2024) and EOH (Liu et al.,
2024). Second, we assess the full LLM-LNS framework on
large-scale MILP problems, where it is compared against
traditional LNS methods (e.g., ACP (Ye et al., 2023a)),
ML-based LNS approaches (e.g., CL-LNS (Huang et al.,
2023b)), the SOTA solvers like Gurobi (Gurobi Optimiza-
tion, LLC, 2023) and SCIP (Maher et al., 2016), and mod-
ern ML optimization frameworks such as GNN&GBDT
(Ye et al., 2023c) and Light-MILPopt (Ye et al., 2023b).
More experimental results and details are provided in the
Appendices C to F.

4.1. Heuristic Generation for Combinatorial
Optimization Problems

In this section, we evaluate the performance of the Dual-
layer Self-evolutionary LLM Agent in generating heuristic
strategies for well-known combinatorial optimization prob-
lems. We focus on two widely studied problems: Online Bin
Packing (Seiden, 2002) and the Traveling Salesman Prob-
lem (TSP) (Hoffman et al., 2013). Our method is compared
against several hand-crafted heuristics, state-of-the-art ML-
based methods, and other automatically designed heuristics.

4.1.1. ONLINE BIN PACKING

The objective of the Online Bin Packing problem is to al-
locate a collection of items into the fewest possible bins
of fixed capacity. We follow the experimental setup from
Romera-Paredes et al. (2024), using Weibull distribution
instances with varying numbers of items (1k to 10k) and bin
capacities (100 and 500). The performance of each method
is measured by the fraction of excess bins used, where lower
values indicate better performance. We compare our method

6

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Table 2. Online Bin Packing Heuristic Comparison. This table compares the performance of various bin packing heuristics based on
the fraction of excess bins (lower values indicate better performance) across different Weibull distribution instances.

1k C100 5k C100 10k C100 1k C500 5k C500 10k C500 Avg
First Fit 5.32% 4.40% 4.44% 4.97% 4.27% 4.28% 4.61%
Best Fit 4.87% 4.08% 4.09% 4.50% 3.91% 3.95% 4.23%

FunSearch 3.78% 0.80% 0.33% 6.75% 1.47% 0.74% 2.31%
EOH 4.48% 0.88% 0.83% 4.32% 1.06% 0.97% 2.09%
Ours 3.58% 0.85% 0.41% 3.67% 0.82% 0.42% 1.63%

Table 3. Traveling Salesman Problems Heuristic Performance Evaluation. This table provides a comparison of the relative distance to
the best-known solutions for different routing heuristics (lower values indicate better performance) on a subset of TSPLib benchmark
instances.

rd100 pr124 bier127 kroA150 u159 kroB200 Avg
NI 19.91% 15.50% 23.21% 18.17% 23.59% 24.10% 20.75%
FI 9.38% 4.43% 8.04% 8.54% 11.15% 7.54% 8.18%

Or-Tools 0.01% 0.55% 0.66% 0.02% 1.75% 2.57% 0.93%
AM 3.41% 3.68% 5.91% 3.78% 7.55% 7.11% 5.24%

POMO 0.01% 0.60% 13.72% 0.70% 0.95% 1.58% 2.93%
LEHD 0.01% 1.11% 4.76% 1.40% 1.13% 0.64% 1.51%
EOH 0.01% 0.00% 0.42% 0.29% -0.01% 0.26% 0.16%
Ours 0.01% 0.00% 0.01% 0.00% -0.01% 0.44% 0.08%

against several baselines, including hand-crafted heuristics
First Fit (Tang et al., 2016) and Best Fit (Shor, 1991), which
are widely used in practice, as well as automatically gen-
erated heuristics FunSearch (Romera-Paredes et al., 2024)
and EOH (Liu et al., 2024), which represent state-of-the-art
approaches.

As shown in Table 2, our method consistently achieves
the best performance across different problem sizes and
capacities, with an average excess bin fraction of 1.63%,
outperforming both hand-crafted heuristics and automati-
cally generated methods. In particular, our approach excels
on the 10k items, capacity 500 instance, achieving a fraction
of excess bins of 0.42%, outperforming FunSearch (0.74%)
and EOH (0.97%), highlighting the strong scalability and
generalization ability of our method, making it particularly
effective in handling large-scale, high-capacity scenarios.

4.1.2. TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem (TSP) is a classic com-
binatorial optimization problem where the goal is to find
the shortest route that visits all given locations exactly once.
We evaluate our method on a subset of TSPLib benchmark
instances (Reinelt, 1991), with performance measured by
the relative distance to the best-known solutions (lower val-
ues indicate better performance). We compare our method
against two types of baselines: hand-crafted heuristics and
AI-generated heuristics. The hand-crafted heuristics in-
clude Nearest Insertion (NI) and Farthest Insertion (FI)
(Rosenkrantz et al., 1977), two widely used constructive
heuristics. We also include Google OR-Tools (Perron &
Furnon), a popular solver, using its default settings and the
recommended local search option. Beyond EOH (Liu et al.,
2024), we compare against the Attention Model (AM) (Kool
et al., 2018), POMO (Kwon et al., 2020), and LEHD (Luo

et al., 2023), all of which are ML-based methods.

As shown in Table 3, our method achieves the best aver-
age performance with a 0.08% gap to the best-known solu-
tions, outperforming both hand-crafted heuristics and neural
network-based methods. Notably, on the bier127 instance,
our method achieves a relative distance of just 0.01% to
the best-known solution, significantly outperforming EOH
(0.42%) and other baselines, including LEHD (4.76%) and
AM (5.91%). This substantial improvement highlights the
effectiveness of our approach in solving challenging in-
stances of the TSP.

It is important to note that both the Online Bin Packing
and TSP problems use the same GPT-4o-mini LLM, with
identical settings: 20 iterations and a population size of 20
for Online Bin Packing, and 10 for the TSP problem. De-
spite these identical settings, our method consistently out-
performs EOH in both problems, showcasing the superior
efficiency of the dual-layer self-evolutionary mechanism in
exploring the solution space. This mechanism allows our
method to dynamically adapt and refine solutions, resulting
in better overall performance with the same computational
resources. These results underscore the robustness and scal-
ability of our approach, offering a promising direction for
solving large-scale combinatorial optimization problems
using LLMs.

4.2. Performance of LLM-LNS on Large-Scale MILP
Problems

To validate the effectiveness of the proposed LLM-LNS
framework for large-scale MILP problems, we evaluate
its performance on four widely-used benchmark datasets:
Set Covering (SC) (Caprara et al., 2000), Minimum Vertex
Cover (MVC) (Dinur & Safra, 2005), Maximum Indepen-

7

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Table 4. Comparison of objective values on large-scale MILP instances across different methods. For each instance, the best-
performing objective value is highlighted in bold. The - symbol indicates that the method was unable to generate samples for any instance
within 30,000 seconds, while * indicates that the GNN&GBDT framework could not solve the MILP problem.

SC1(Min) SC2(Min) MVC1(Min) MVC2(Min) MIS1(Max) MIS2(Max) MIKS1(Max) MIKS2(Max)
Random-LNS 16140.6 169417.5 27031.4 276467.5 22892.9 223748.6 36011.0 351964.2

ACP 17672.1 182359.4 26877.2 274013.3 23058.0 226498.2 34190.8 332235.6
CL-LNS - - 31285.0 - 15000.0 - - -
Gurobi 17934.5 320240.4 28151.3 283555.8 21789.0 216591.3 32960.0 329642.4
SCIP 25191.2 385708.4 31275.4 491042.9 18649.9 9104.3 29974.7 168289.9

GNN&GBDT 16728.8 252797.2 27107.9 271777.2 22795.7 227006.4 * *
Light-MILPOPT 16108.1 160015.5 26950.7 269571.5 22966.5 230432.9 36125.5 362265.1
LLM-LNS(Ours) 15802.7 158878.9 26725.3 268033.7 23169.3 231636.9 36479.8 363749.5

dent Set (MIS) (Tarjan & Trojanowski, 1977), and Mixed
Integer Knapsack Set (MIKS) (Atamtürk, 2003). Initially,
LLM-LNS is trained on smalle-scale problems with tens
of thousands of variables and constraints and then tested
on large-scale instances with millions of variables and con-
straints to assess its scalability and generalization.

We compare LLM-LNS with several state-of-the-art base-
lines, including heuristic LNS methods like Random-LNS
(Song et al., 2020), Adaptive Constraint Propagation (ACP)
(Ye et al., 2023a), and the learning-based CL-LNS frame-
work (Huang et al., 2023b). Additionally, we include tra-
ditional solvers like Gurobi (Gurobi Optimization, LLC,
2023) and SCIP (Maher et al., 2016), as well as modern
ML-based frameworks such as GNN&GBDT (Ye et al.,
2023c) and Light-MILPopt (Ye et al., 2023b). To ensure
a fair comparison, Gurobi is used as the sub-solver in the
neighborhood search step across all methods. For LLM-
LNS, the neighborhood selection strategy is trained over 20
iterations on smaller problems before being applied to larger
instances. Detailed results and discussions are provided in
the Appendix F.

4.2.1. EFFECTIVENESS COMPARISON

In this section, we evaluate the effectiveness of LLM-LNS
by comparing its performance with various state-of-the-art
methods across different problem instances. To ensure a
fair comparison, all methods are evaluated under the same
computational time limit, and the final objective function
values are used as the primary metric for comparison. This
allows us to assess not only the solution quality but also the
efficiency with which each method converges to the optimal
or near-optimal solutions. The results, summarized in Table
4, show that LLM-LNS consistently outperforms traditional
LNS-based heuristics and learning-based methods. Unlike
hand-crafted LNS strategies, which are typically static and
less effective as problem complexity increases, LLM-LNS
dynamically adapts through its dual-layer self-evolutionary
mechanism, enabling more efficient exploration of the solu-
tion space. Even compared to state-of-the-art learning-based
LNS methods like CL-LNS, LLM-LNS demonstrates supe-
rior performance. Although CL-LNS represents one of the
most advanced learning-based approaches, it often fails to

complete sampling within an acceptable time for large-scale
instances, and even when results are obtained, the solution
quality is significantly lower. This highlights the challenges
faced by existing LNS-based methods when dealing with
large and complex MILP problems, while underscoring the
robustness and adaptability of LLM-LNS.

In addition, LLM-LNS shows a clear advantage over tra-
ditional solvers like Gurobi and SCIP, as well as learning-
based methods such as GNN&GBDT and Light-MILPopt.
While traditional solvers perform competitively on smaller
instances, their performance degrades significantly as the
problem size increases. Similarly, learning-based methods
struggle with large-scale MILPs, finding it difficult to ef-
ficiently explore the exponentially growing solution space.
In contrast, LLM-LNS consistently delivers superior re-
sults across both small and large-scale problems, offering a
scalable and efficient solution. These findings suggest that
LLM-LNS not only bridges the gap between traditional and
learning-based methods, but also opens new avenues for
scalable optimization in large-scale MILPs.

4.2.2. EFFICIENCY AND CONVERGENCE ANALYSIS

To further assess the efficiency and convergence behavior of
LLM-LNS on large-scale MILP problems, we analyze both
the objective-time trajectories and the primal integrals of
all evaluated methods. The objective-time plots, shown in
Figure 3, illustrate how quickly each method improves the
solution quality over time, while the primal integral values,
a common way in the MILP literature to quantify heuristic
performance over time, summarized in Table 5, provide a
holistic measure of convergence efficiency over the entire
optimization period. Across all benchmark instances, LLM-
LNS demonstrates the fastest convergence and most stable
performance, consistently reaching high-quality solutions
earlier than all baselines. This is particularly evident on
large and complex instances like SC2, MVC2, and MIKS2,
where traditional solvers and learning-based methods either
converge slowly or stagnate. LLM-LNS shows a sharp drop
(for minimization) or rapid rise (for maximization) in the
objective value early in the optimization process, indicating
superior efficiency. The primal integral results (Table 5) fur-
ther highlight its effectiveness, with LLM-LNS achieving

8

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Figure 3. Convergence curves of objective values over time on large-scale MILP instances. Each subplot corresponds to one benchmark
instance, illustrating how the objective value evolves over time for different methods using Gurobi as optimizer.

Table 5. Comparison of primal integral on large-scale MILP instances across different methods. For each instance, the best-
performing primal integral is highlighted in bold.

SC1(Min) SC2(Min) MVC1(Min) MVC2(Min) MIS1(Max) MIS2(Max) MIKS1(Max) MIKS2(Max)
Random-LNS 3.41e+07 1.61e+09 5.50e+07 2.29e+09 4.47e+07 1.73e+09 7.08e+07 4.06e+09

ACP 5.43e+07 1.71e+09 5.90e+07 2.41e+09 4.11e+07 1.60e+09 6.02e+07 3.50e+09
CL-LNS - - 7.31e+07 - 3.17e+07 - - -
Gurobi 3.81e+07 2.65e+09 5.69e+07 2.36e+09 4.25e+07 1.75e+09 6.45e+07 3.86e+09
SCIP 5.18e+07 6.33e+09 6.39e+07 3.92e+09 3.34e+07 7.26e+07 5.77e+07 7.03e+08

GNN&GBDT 5.52e+07 3.75e+09 5.85e+07 2.55e+09 4.00e+07 1.40e+09 * *
Light-MILPOPT 3.73e+07 1.80e+09 5.44e+07 2.27e+09 4.30e+07 1.70e+09 6.78e+07 4.03e+09

LLM-LNS(Ours) 3.27e+07 1.38e+09 5.42e+07 2.19e+09 4.48e+07 1.81e+09 7.17e+07 4.18e+09

the best scores on all instances, outperforming both classic
solvers and learning-based frameworks. Notably, it achieves
over 20% improvement in primal integral compared to the
closest competitor on SC2 and MVC2, while CL-LNS fails
to produce results on most large-scale instances, underscor-
ing the scalability limitations of existing learning-based
LNS frameworks.

While LLM-LNS offers advantages in efficiency and conver-
gence, its simplicity also brings practical deployment bene-
fits over traditional ML methods. LLM-based approaches
often require less infrastructure and are easier to implement
and maintain compared to neural networks, which need ex-
tensive training data and ongoing updates. This trade-off
between performance and ease of deployment makes LLMs
a compelling choice for real-world applications.

Overall, the experimental results demonstrate the effec-
tiveness of our proposed innovations. In the first set of
experiments, we validate the capability of the Dual-layer
Self-evolutionary LLM Agent to autonomously generate
competitive heuristic strategies for combinatorial optimiza-
tion problems, consistently outperforming state-of-the-art
methods such as FunSearch and EOH. Further supporting
this, the ablation experiments presented in Appendix G
confirm the effectiveness of each component of the Dual-
layer Self-evolutionary Agent. This confirms the agent’s

ability to balance exploration and exploitation, as guided
by the Differential Memory for Directional Evolution.
In the second set, we apply the LLM-LNS framework
to large-scale MILP problems. LLM-LNS not only out-
performs traditional LNS methods and advanced solvers
like Gurobi and SCIP but also shows superior scalability
compared to modern ML-based frameworks. It achieves
faster convergence and better solution quality, especially on
large instances like SC2 and MIKS2, where other methods
struggle. These results highlight the success of our LLM
agent to neighborhood selection in LNS, showcasing its
ability to generalize across complex problems with minimal
training data, while demonstrating clear advantages in both
efficiency and convergence.

5. Conclusion
In this paper, we propose LLM-LNS, a Large Language
Model-driven LNS framework for solving large-scale MILP
problems, utilizing a dual-layer self-evolutionary LLM
agent to automate heuristic strategy generation. Experi-
ments show that LLM-LNS consistently outperforms tradi-
tional solvers, learning-based methods, and state-of-the-art
LNS frameworks. Future work will explore new agent archi-
tectures and broader problems, aiming to further enhance
the integration of LLMs with optimization techniques.

9

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Adrio, G., Garcı́a-Villoria, A., Juanpera, M., and Pastor,

R. Milp model for the mid-term production planning in
a chemical company with non-constant consumption of
raw materials. an industrial application. Computers &
Chemical Engineering, 177:108361, 2023.

Ahuja, R. K., Ergun, Ö., Orlin, J. B., and Punnen, A. P.
A survey of very large-scale neighborhood search tech-
niques. Discrete Applied Mathematics, 123(1-3):75–102,
2002.

Angelopoulos, S. Online search with a hint. Information
and Computation, 295:105091, 2023.

Arnold, F. and Sörensen, K. Knowledge-guided local search
for the vehicle routing problem. Computers & Operations
Research, 105:32–46, 2019.

Artigues, C., Koné, O., Lopez, P., and Mongeau, M. Mixed-
integer linear programming formulations. Handbook on
project management and scheduling vol. 1, pp. 17–41,
2015.

Atamtürk, A. On the facets of the mixed-integer knapsack
polyhedron. Mathematical Programming, 98(1-3):145–
175, 2003.

Beggs, A. W. On the convergence of reinforcement learning.
Journal of economic theory, 122(1):1–36, 2005.

Berthold, T. Primal heuristics for mixed integer programs.
PhD thesis, Zuse Institute Berlin (ZIB), 2006.

Boyd, S. and Mattingley, J. Branch and bound methods.
Notes for EE364b, Stanford University, 2006:07, 2007.

Caprara, A., Toth, P., and Fischetti, M. Algorithms for the
set covering problem. Annals of Operations Research,
98:353–371, 2000.

Danna, E., Rothberg, E., and Pape, C. L. Exploring relax-
ation induced neighborhoods to improve mip solutions.
Mathematical Programming, 102:71–90, 2005.

Dinur, I. and Safra, S. On the hardness of approximating
minimum vertex cover. Annals of mathematics, pp. 439–
485, 2005.

Elhenawy, M., Abutahoun, A., Alhadidi, T. I., Jaber, A.,
Ashqar, H. I., Jaradat, S., Abdelhay, A., Glaser, S., and
Rakotonirainy, A. Visual reasoning and multi-agent ap-
proach in multimodal large language models (mllms):
Solving tsp and mtsp combinatorial challenges. arXiv
preprint arXiv:2407.00092, 2024.

Fleszar, K. A milp model and two heuristics for the bin
packing problem with conflicts and item fragmentation.
European Journal of Operational Research, 303(1):37–
53, 2022.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2023. URL https://www.gurobi.com.

Han, Q., Yang, L., Chen, Q., Zhou, X., Zhang, D., Wang, A.,
Sun, R., and Luo, X. A gnn-guided predict-and-search
framework for mixed-integer linear programming. arXiv
preprint arXiv:2302.05636, 2023.

Hoffman, K. L., Padberg, M., Rinaldi, G., et al. Traveling
salesman problem. Encyclopedia of operations research
and management science, 1:1573–1578, 2013.

Huang, T., Ferber, A., Tian, Y., Dilkina, B., and Steiner, B.
Local branching relaxation heuristics for integer linear
programs. In International Conference on Integration
of Constraint Programming, Artificial Intelligence, and
Operations Research, pp. 96–113. Springer, 2023a.

Huang, T., Ferber, A. M., Tian, Y., Dilkina, B., and Steiner,
B. Searching large neighborhoods for integer linear pro-
grams with contrastive learning. In International Con-
ference on Machine Learning, pp. 13869–13890. PMLR,
2023b.

Kim, M., Park, J., et al. Learning collaborative policies
to solve np-hard routing problems. Advances in Neural
Information Processing Systems, 34:10418–10430, 2021.

Klanšek, U. A comparison between milp and minlp ap-
proaches to optimal solution of nonlinear discrete trans-
portation problem. Transport, 30(2):135–144, 2015.

Kool, W., Van Hoof, H., and Welling, M. Attention,
learn to solve routing problems! arXiv preprint
arXiv:1803.08475, 2018.

Kwon, Y.-D., Choo, J., Kim, B., Yoon, I., Gwon, Y., and
Min, S. Pomo: Policy optimization with multiple optima
for reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 33:21188–21198, 2020.

Lange, R., Tian, Y., and Tang, Y. Large language models as
evolution strategies. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion, pp.
579–582, 2024.

10

https://www.gurobi.com

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Liu, F., Xialiang, T., Yuan, M., Lin, X., Luo, F., Wang,
Z., Lu, Z., and Zhang, Q. Evolution of heuristics: To-
wards efficient automatic algorithm design using large
language model. In Forty-first International Conference
on Machine Learning, 2024.

Luo, F., Lin, X., Liu, F., Zhang, Q., and Wang, Z. Neural
combinatorial optimization with heavy decoder: Toward
large scale generalization. Advances in Neural Informa-
tion Processing Systems, 36:8845–8864, 2023.

Maher, S., Miltenberger, M., Pedroso, J. P., Rehfeldt, D.,
Schwarz, R., and Serrano, F. PySCIPOpt: Mathematical
programming in python with the SCIP optimization suite.
In Mathematical Software – ICMS 2016, pp. 301–307.
Springer International Publishing, 2016. doi: 10.1007/
978-3-319-42432-3 37.

Mara, S. T. W., Norcahyo, R., Jodiawan, P., Lusiantoro, L.,
and Rifai, A. P. A survey of adaptive large neighbor-
hood search algorithms and applications. Computers &
Operations Research, 146:105903, 2022.

Morrison, D. R., Jacobson, S. H., Sauppe, J. J., and Sewell,
E. C. Branch-and-bound algorithms: A survey of recent
advances in searching, branching, and pruning. Discrete
Optimization, 19:79–102, 2016.

Nair, V., Alizadeh, M., et al. Neural large neighborhood
search. In Learning Meets Combinatorial Algorithms at
NeurIPS2020, 2020.

Perron, L. and Furnon, V. Or-tools. URL https://
developers.google.com/optimization/.

Pisaruk, N. Mixed integer programming: Models and meth-
ods. Minsk: BSU, 2019.

Plaat, A., Wong, A., Verberne, S., Broekens, J., van Stein,
N., and Back, T. Reasoning with large language models,
a survey. arXiv preprint arXiv:2407.11511, 2024.

Reinelt, G. Tsplib—a traveling salesman problem library.
ORSA journal on computing, 3(4):376–384, 1991.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J., Ellenberg, J. S.,
Wang, P., Fawzi, O., et al. Mathematical discoveries from
program search with large language models. Nature, 625
(7995):468–475, 2024.

Rosenkrantz, D. J., Stearns, R. E., and Lewis, II, P. M. An
analysis of several heuristics for the traveling salesman
problem. SIAM journal on computing, 6(3):563–581,
1977.

Seiden, S. S. On the online bin packing problem. Journal
of the ACM (JACM), 49(5):640–671, 2002.

Shor, P. W. How to pack better than best fit: tight bounds for
average-case online bin packing. In [1991] Proceedings
32nd Annual Symposium of Foundations of Computer
Science, pp. 752–759. IEEE Computer Society, 1991.

Simon, D. Evolutionary optimization algorithms. John
Wiley & Sons, 2013.

Song, J., Yue, Y., Dilkina, B., et al. A general large neigh-
borhood search framework for solving integer linear pro-
grams. Advances in Neural Information Processing Sys-
tems, 33:20012–20023, 2020.

Sonnerat, N., Wang, P., Ktena, I., Bartunov, S., and
Nair, V. Learning a large neighborhood search al-
gorithm for mixed integer programs. arXiv preprint
arXiv:2107.10201, 2021.

Tang, X., Li, Y., Ren, R., and Cai, W. On first fit bin packing
for online cloud server allocation. In 2016 IEEE Inter-
national Parallel and Distributed Processing Symposium
(IPDPS), pp. 323–332. IEEE, 2016.

Tarjan, R. E. and Trojanowski, A. E. Finding a maximum
independent set. SIAM Journal on Computing, 6(3):537–
546, 1977.

Vázquez, D., Fernández-Torres, M. J., Ruiz-Femenia, R.,
Jiménez, L., and Caballero, J. A. Milp method for objec-
tive reduction in multi-objective optimization. Computers
& Chemical Engineering, 108:382–394, 2018.

Voudouris, C., Tsang, E. P., and Alsheddy, A. Guided local
search. In Handbook of metaheuristics, pp. 321–361.
Springer, 2010.

Wu, Y., Song, W., Cao, Z., and Zhang, J. Learning large
neighborhood search policy for integer programming. Ad-
vances in Neural Information Processing Systems, 34:
30075–30087, 2021.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and
Chen, X. Large language models as optimizers. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=Bb4VGOWELI.

Ye, H., Wang, H., Xu, H., Wang, C., and Jiang, Y. Adap-
tive constraint partition based optimization framework for
large-scale integer linear programming (student abstract).
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 37, pp. 16376–16377, 2023a.

Ye, H., Xu, H., and Wang, H. Light-milpopt: Solving large-
scale mixed integer linear programs with lightweight op-
timizer and small-scale training dataset. In The Twelfth
International Conference on Learning Representations,
2023b.

11

https:// developers.google.com/optimization/
https:// developers.google.com/optimization/
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=Bb4VGOWELI

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Ye, H., Xu, H., Wang, H., Wang, C., and Jiang, Y.
GNN&GBDT-guided fast optimizing framework for
large-scale integer programming. In Proceedings of the
40th International Conference on Machine Learning, vol-
ume 202, pp. 39864–39878. PMLR, 2023c.

Ye, H., Wang, J., Cao, Z., and Song, G. Reevo: Large
language models as hyper-heuristics with reflective evo-
lution. arXiv preprint arXiv:2402.01145, 2024.

Zhang, J., Liu, C., Li, X., Zhen, H.-L., Yuan, M., Li, Y., and
Yan, J. A survey for solving mixed integer programming
via machine learning. Neurocomputing, 519:205–217,
2023.

Zhou, J., Wu, Y., Cao, Z., Song, W., Zhang, J., and Chen, Z.
Learning large neighborhood search for vehicle routing
in airport ground handling. IEEE Transactions on Knowl-
edge and Data Engineering, 35(9):9769–9782, 2023.

12

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

A. Overview of Appendix
This Appendix contains four sections, each addressing a specific aspect of the experimental setup and results. Below is a
brief overview of each section:

• Detailed Methodology of the Proposed LLM-LNS Framework (Appendix B): This section provides a detailed
explanation of the LLM-LNS framework, including the pseudocode of the framework, a detailed example of the dual-
layer evolution process, the population management strategy, and the pseudocode of the Adaptive Large Neighborhood
Search (ALNS) algorithm.

• Parameter Settings (Appendix C): This section describes key experimental parameters, including the number of top-
performing heuristic strategies evaluated, thresholds for stagnation detection, and criteria for evolutionary convergence.
Parameter values for Bin Packing (BP), Maximum Vertex Covering (MVC), and Mixed Integer Knapsack Set (MIKS)
are also outlined.

• Evolutionary Process of LLM-LNS (Appendix D): This section explains the co-evolution of the inner and outer layers
in the Dual-layer Self-Evolutionary LLM Agent. It includes comparisons between the Evolution of Heuristic (EoH)
method and the proposed dual-layer approach for problems like Bin Packing and Traveling Salesman Problem (TSP).

• Convergence Analysis of LLM-LNS (Appendix E): This section analyzes the convergence behavior of the LLM-LNS
method compared to EoH. Faster convergence rates, superior solution quality, and greater stability in problems like
Online Bin Packing and Traveling Salesman Problem are demonstrated through graphs and figures.

• Supplementary Experiments for LLM-LNS on Large-Scale MILP Problems (Appendix F): This section presents
the performance of LLM-LNS on large-scale Mixed Integer Linear Programming (MILP) problems, evaluated with
different subsolvers (e.g., SCIP) and compared to traditional and learning-based methods. Error bar comparisons
highlight solution consistency and reliability.

• Ablation Study of the Dual-Layer Self-evolutionary LLM Agent (Appendix G): This section evaluates the contribu-
tions of the dual-layer framework, analyzing the roles of Prompt Evolution (outer layer) and Directional Evolution
(inner layer). Results from small- and large-scale datasets highlight their complementary effects on convergence,
diversity, and performance.

• Additional Validation Experiments (Appendix H): This section presents experiments validating the stability, general-
ization, and robustness of LLM-LNS, with deeper insights into its scalability and consistency.

• Limitations and Future Directions (Appendix I): This section discusses the limitations of the proposed framework
and outlines potential future directions to enhance its scalability and applicability.

These appendices provide a comprehensive overview of the experimental setup, evolutionary process, convergence analysis,
and supplementary experiments, offering a deeper understanding of the performance and robustness of the LLM-LNS
method in solving complex combinatorial optimization problems.

B. Detailed Methodology of the Proposed LLM-LNS Framework
This appendix provides a detailed explanation of the methodology used in the LLM-LNS framework, with a focus on the
evolutionary process and optimization strategies. The section is divided into four parts:

1. Pseudocode of the Proposed LLM-LNS Framework: A pseudocode representation of the overall LLM-LNS
framework, providing an overview of its dual-layer self-evolutionary structure and integration with the Adaptive Large
Neighborhood Search process.

2. Detailed Example of Dual-layer Evolution Process: A detailed example of the evolutionary process, highlighting the
evolution of heuristic strategies and evolutionary prompt strategies over generations, as illustrated in Figure 4.

3. Population Management Strategy: A comprehensive description of the population management strategy employed to
balance exploration and exploitation during the evolution.

4. ALNS Pseudocode: The complete pseudocode of the Adaptive Large Neighborhood Search (ALNS) algorithm, which
was omitted from the main text due to space constraints.

13

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Algorithm 1 Pseudocode of the Proposed LLM-LNS Framework
Require: Small-scale MILP training dataset Dtrain, large-scale MILP testing dataset Dtest, maximum outer iterations Touter, maximum

inner iterations Tinner, stagnation threshold tstagnation, population size N , ALNS parameters
1: Step 0: Initialization
2: Initialize heuristic strategy populationH0 using the LLM with initialization prompt strategies
3: Initialize prompt strategy populations Pcross and Pvar with handcrafted prompts
4: Set stagnation counter tno improve ← 0 and best fitness best fitness←∞
5: for touter = 1 to Touter do ▷ Outer Layer: Prompt Strategy Evolution
6: Fix current prompt strategies Pcross and Pvar
7: for tinner = 1 to Tinner do ▷ Inner Layer: Heuristic Strategy Evolution
8: Step 1: Generate New Heuristic Strategies
9: for each selected heuristic strategy H inHtinner−1 do

10: Use fixed prompt strategies (from Pcross or Pvar) to guide the LLM
11: Generate new heuristic strategies through crossover, variation, or hybrid operations
12: end for
13: Add newly generated heuristic strategies toHtinner and prune to maintain population size N
14: Step 2: Evaluate Heuristic Strategies
15: for each heuristic strategy H inHtinner do
16: Apply H in the ALNS process to solve small-scale MILP instances from Dtrain
17: Compute fitness score f(H) based on objective values
18: end for
19: UpdateHtinner by selecting top-N heuristic strategies based on their fitness scores
20: Increment tno improve if no improvement in best fitness
21: end for ▷ End of Inner Layer
22: Step 3: Evaluate Prompt Strategies and Avoid Stagnation
23: if no improvement in best fitness for tstagnation outer iterations then
24: for each prompt strategy P in {Pcross,Pvar} do
25: Use LLM to generate new prompt strategies through crossover/variation prompts
26: Evaluate new prompt strategies based on the fitness scores of the heuristics they generate
27: end for
28: Prune underperforming prompt strategies and retain top-N strategies
29: Reset tno improve ← 0
30: end if
31: end for ▷ End of Outer Layer
32: Step 4: Apply ALNS with Best Heuristic Strategy (Testing on Dtest)
33: Select the best heuristic strategy H∗ fromHTinner

34: Use H∗ to guide the ALNS process for solving large-scale MILP instances from Dtest
35: return Best heuristic strategy H∗ and corresponding solution

B.1. Pseudocode of the Proposed LLM-LNS Framework

The pseudocode outlined in Algorithm 1 follows a dual-layer structure, with an Outer Layer responsible for evolving prompt
strategies to maintain diversity and an Inner Layer focusing on evolving heuristic strategies for improved convergence. The
process is divided into the following steps:

• Initialization. The framework initializes two key populations: (1) the heuristic strategy populationH0, generated
by the LLM using initial prompt strategies and small-scale MILP problem structures; and (2) the prompt strategy
populations Pcross and Pvar, handcrafted to perform basic crossover and variation operations. A stagnation counter and
the best fitness value are also initialized to monitor the evolution process.

• Outer Layer: Prompt Strategy Evolution. This layer maintains and evolves the prompt strategy populations Pcross
and Pvar. At the beginning of each outer iteration, the current prompt strategies are fixed and passed to the Inner Layer
for heuristic strategy evolution. After the inner loop completes, the Outer Layer evaluates whether the prompt strategies
need to evolve to avoid stagnation. If no improvement in fitness is observed over multiple outer iterations, new prompt
strategies are generated using the LLM, evaluated, and updated to ensure diversity in heuristic generation.

• Inner Layer: Heuristic Strategy Evolution. Under the guidance of fixed prompt strategies, the Inner Layer evolves
the heuristic strategy populationH. This process involves:

– Generating New Heuristic Strategies. Using prompt strategies (crossover or variation) from the Outer Layer,
the LLM generates offspring heuristic strategies by applying operations such as crossover or mutation to parent

14

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

strategies. The offspring strategies are added to the population, and low-performing strategies are pruned to
maintain a fixed population size N .

– Evaluating Heuristic Strategies. Each heuristic strategy is integrated into the ALNS process and applied to
small-scale MILP instances. The fitness of each strategy is calculated based on its performance (e.g., objective
value). High-performing strategies are selected to form the next generation, ensuring the population improves
over time.

• Step 4: Apply ALNS with Best Heuristic Strategy. After the dual-layer evolution completes, the best-performing
heuristic strategy H∗ is selected from the final heuristic strategy populationH. This strategy is applied to large-scale
MILP problems in the testing dataset Dtest using the ALNS process. The heuristic guides the ALNS framework in
dynamically selecting and exploring variable neighborhoods, enabling efficient navigation of the solution space for
large-scale optimization problems.

The dual-layer framework provides a robust method for solving large-scale MILP problems by combining the exploration
capabilities of prompt strategy evolution in the Outer Layer with the optimization power of heuristic strategy evolution in
the Inner Layer. This structure ensures a balance between exploration and exploitation, while the LLM efficiently generates
creative and effective strategies for both layers.

B.2. Detailed Example of Dual-layer Evolution Process

This subsection provides a detailed example of the evolution process for the Dual-layer Self-evolutionary LLM Agent,
corresponding to Figure 4. This example illustrates how heuristic strategies and evolutionary prompt strategies are iteratively
refined over generations to improve performance, with specific focus on the interplay between the Inner and Outer Layers.

B.2.1. INNER LAYER: HEURISTIC STRATEGY EVOLUTION

The Inner Layer evolves heuristic strategies iteratively, starting from basic initializations and progressively incorporating
advanced techniques. The evolution process includes the following key stages:

• Generation 0: Initialization. The heuristic strategies are initialized using simple capacity-based methods derived
from problem structures. For instance, a heuristic employs a capacity ratio with penalties:

scores[bins > item] =
bins− item

bins
× 1

index of bin + 0.5
. (5)

At this stage, the fitness value is 0.9595. The Outer Layer initializes basic prompt strategies (e.g., Cross1 and Variation1)
to generate variations of these heuristics, creating a foundation for further exploration.

• Generation 5: Exploration with Randomness. To encourage exploration, randomness is introduced into the heuristic
scoring functions. This adjustment enables the system to escape local optima, resulting in a fitness value of 0.9916. For
example:

scores[bins > item] =
bins− item
bins + 10−5

−
(bins
10)

2

max(bins
10

2
)

(
1− bins− item

max(bins)

)
+ randomness× 0.1. (6)

This improvement is guided by Outer Layer prompts such as Cross2, which emphasizes ”creating new algorithms
inspired by existing ones,” and Variation2, which ”adjusts parameters of given algorithms for better exploration.”

• Generation 8: Hybrid Optimization. Advanced hybrid optimization methods, such as genetic algorithms combined
with tabu search, are introduced. These methods allow the system to explore more diverse solutions while avoiding
local optima. The fitness value improves to 0.9934. An example heuristic adapts historical penalties to refine its search
direction:

scores[bins > item] =
bins− item
bins + 10−5

− history penalty− (bins/15)2

max((bins/15)2)

+ mutation variance−
(
1− bins− item

max(bins) + 10−5

)
.

(7)

15

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Number of generations

Fi
tn

es
s V

al
ue

(P
er

fo
rm

an
ce

)

5 10 15 200

0.9595

0.9911
0.9916

0.9934 0.9934 0.9942 0.9942

0.9911
0.9916

0.9918

Initialization of Evolutionary Prompt Strategy
• Cross1：Create a completely new algorithm.
• Cross2：Create a new algorithm inspired by the given ones.
• Variation1：Modify the given algorithm.
• Variation2：Change the parameters of the given algorithm.

Initialization of Heuristic Strategy
• Capacity ratio with penalty
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠
× 1

𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑏𝑖𝑛+0.5

Evolution of Heuristic Strategy
• Added power and proximity penalties
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠+1𝑒−5
− (𝑏𝑖𝑛𝑠/10)2

𝑚𝑎𝑥(𝑏𝑖𝑛𝑠
10)2

− (1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚
𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)

)

Evolution of Heuristic Strategy
• Added randomness for exploration
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠+1𝑒−5
− (𝑏𝑖𝑛𝑠/10)2

𝑚𝑎𝑥(𝑏𝑖𝑛𝑠
10)2

−

(1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚
𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)

) + 𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑒𝑠𝑠 × 0.1

Evolution of Heuristic Strategy
• Randomized adjustment for diversity
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠+1𝑒−5
− (𝑏𝑖𝑛𝑠/10)2

𝑚𝑎𝑥(𝑏𝑖𝑛𝑠
10)2

− (1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚
𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)

) + random adjustment

Evolution of Heuristic Strategy
• Hybrid optimization with genetic algorithm + tabu search
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠+1𝑒−5
− ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 −

(𝑏𝑖𝑛𝑠/15)2

𝑚𝑎𝑥((𝑏𝑖𝑛𝑠/15)2)
+ 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 − (1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚

𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)+1𝑒−5
)

Evolution of Evolutionary Prompt Strategy
• Cross5：Develop a novel heuristic by synthesizing methodologies to reduce the objective function.
• Cross6：Create a heuristic using unique elements and adaptive learning for minimization.
• Variation5：Adjust score function parameters to optimize exploration strategies.
• Variation6：Investigate and redesign heuristics using unconventional techniques for better optimization.

Management of Evolutionary Prompt Strategy
• Cross1：Create a completely new algorithm.
• Cross3：Design an advanced algorithm with complexity reduction.
• Variation2：Change the parameters of the given algorithm.
• Variation4：Add stochastic elements and adaptive learning.

Evolution of Evolutionary Prompt Strategy
• Cross3：Design an advanced algorithm with complexity reduction.
• Cross4：Suggest a new heuristic for better efficiency.
• Variation3：Reconfigure core principles for a new heuristic.
• Variation4：Add stochastic elements and adaptive learning.

Evolution of Heuristic Strategy
• Swarm intelligence + simulated annealing

• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)
𝑏𝑖𝑛𝑠+1𝑒−5

× 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − (𝑏𝑖𝑛𝑠/12)2

𝑚𝑎𝑥((𝑏𝑖𝑛𝑠/12)2)
−

(1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚
𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)

) + (𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 − 𝑠𝑐𝑜𝑟𝑒𝑠) × 0.1 + 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡

Figure 4. Evolution of Dual-layer Self-evolutionary LLM Agent for online bin packing. We outline the key thoughts of the best heuristics
produced in some generations during the evolution of heuristic strategies. Additionally, we highlight the evolution of evolutionary prompt
strategies, which dynamically adapt the prompt strategies to guide the LLM in generating more effective and diverse heuristics.

Outer Layer prompts evolve to introduce complexity-reducing techniques (e.g., Cross3: ”Reconfigure heuristic
principles to reduce computational complexity while maintaining effectiveness”), enabling the generation of lighter yet
more powerful heuristics.

• Generation 12: Swarm Intelligence and Diversity Increase. By combining swarm intelligence methods (e.g.,
simulated annealing) with randomized adjustments, the heuristic strategies achieve a fitness value of 0.9942. The
scoring function now incorporates global optimization techniques:

scores[bins > item] =
bins− item
bins + 10−5

× temperature− (bins/12)2

max((bins/12)2)
−
(
1− bins− item

max(bins)

)
+ (global best− scores)× 0.1 + random adjustment.

(8)

Prompts such as Variation4 (”Add stochastic elements and adaptive learning”) guide this evolution, introducing diversity
and enabling broader exploration of the solution space.

B.2.2. OUTER LAYER: EVOLUTIONARY PROMPT STRATEGY EVOLUTION

The Outer Layer evolves evolutionary prompt strategies to guide the LLM in generating new heuristic strategies. The
evolution of prompts adapts to the performance of the Inner Layer, as follows:

• Generation 1: Initialization. Basic prompt strategies, such as Cross1 (”Create a completely new algorithm”) and
Variation1 (”Modify the given algorithm”), are handcrafted to initialize the system. These prompts enable the LLM to
generate simple heuristics based on problem structures.

• Generation 6: Addressing Stagnation. As performance stagnates, advanced prompt strategies are introduced. For
example, Cross3 emphasizes reducing algorithmic complexity:

– Example Prompt: ”Reconfigure heuristic principles to reduce computational complexity while maintaining
effectiveness.”

16

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

• Generation 10: Adaptive Learning. Prompts such as Variation5 and Variation6 incorporate stochastic adjustments
and adaptive learning to overcome local optima:

– Example Prompt: ”Enhance diversity by introducing stochastic elements to refine exploration strategies.”

These prompts enable the generation of heuristics that combine exploration and exploitation effectively.

• Generation 18: Pruning Underperforming Strategies. Underperforming prompt strategies are pruned based on their
fitness scores, ensuring that only the most effective prompts are retained. This step streamlines the search process and
focuses computational resources on high-performing strategies.

B.2.3. SYNERGY BETWEEN LAYERS

The synergy between the Inner and Outer Layers is evident in the performance improvements across generations, as shown
in Figure 4. Each major improvement corresponds to a refinement of both heuristic strategies and prompt strategies:

• Between Generations 1 and 5, randomness introduced by Variation2 enables broader exploration, significantly
boosting fitness from 0.9595 to 0.9916.

• Between Generations 5 and 8, hybrid optimization techniques (e.g., genetic algorithms) guided by Cross3 prompts
enable heuristics to escape local optima, achieving a fitness of 0.9934.

• Between Generations 8 and 12, swarm intelligence combined with stochastic adjustments (guided by Variation4)
further enhances diversity, pushing the fitness to 0.9942.

Overall, the Outer Layer’s refinement of prompt strategies drives the Inner Layer’s ability to generate increasingly sophisti-
cated heuristics, demonstrating the power of the dual-layer evolution process.

B.3. Population Management Strategy

To ensure the effectiveness and diversity of strategies within the LLM-LNS framework, we employ a population management
strategy that balances exploration and exploitation during each generation. This strategy governs the selection of parent
strategies for evolutionary operations (e.g., crossover and mutation) and the replacement of poorly performing strategies to
maintain a high-quality population.

B.3.1. SELECTION OF EVOLUTIONARY STRATEGIES

At each generation, the framework uses a probabilistic sampling mechanism to select m parent strategies from the population
for crossover and mutation. The probability of selecting a strategy is determined by its fitness value, which reflects its
performance in achieving the optimization objective. Specifically, let the population contain n strategies with fitness values
ranked in descending order as f1, f2, . . . , fn. The probability of selecting the i-th strategy is given by:

Pi =
1

i+ 1 + n
, i = 1, 2, . . . , n, (9)

where i represents the rank of the strategy (starting from 0), and n is the population size. This ranking-based probability
distribution ensures that higher-fitness strategies are more likely to be selected while preserving some randomness to allow
lower-fitness strategies to participate. Such randomness enhances exploration by preventing premature convergence to local
optima.

Using this probability distribution, we sample m parent strategies for evolutionary operations. These operations generate
new candidate strategies, which are evaluated and integrated into the population based on their fitness values.

B.3.2. MANAGEMENT OF POORLY PERFORMING STRATEGIES

After each generation, the population is updated to maintain a fixed size while ensuring diversity and quality. Let the
current population be P = {s1, s2, . . . , sn}, where each strategy si has a fitness value f(si). The goal is to construct a new
population P ′ such that:

17

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Algorithm 2 Adaptive Large Neighborhood Search (ALNS)
Require: Initial solution x0, initial neighborhood size k, time limit T , threshold ϵ, iteration limit p, minimum and maximum neighborhood

sizes kmin, kmax, decision variable count n, adjustment rate u% (percentage)
1: Initialize solution x← x0, set time t← 0
2: while t < T do
3: Compute variable scores si using the LLM agent
4: Select top-k variables to form neighborhoodN
5: Solve subproblem withinN using a solver
6: Update solution x if an improvement is found
7: if time spent in neighborhood exceeds predefined limit then
8: k ← max(kmin, k − ⌈u% · n⌉) ▷ Reduce neighborhood size by u% of n
9: else if improvement in objective value < ϵ for p consecutive iterations then

10: k ← min(kmax, k + ⌈u% · n⌉) ▷ Expand neighborhood size by u% of n
11: end if
12: Update time t
13: end while
14: return x

• P ′ contains at most size strategies, where size is a predefined parameter,

• Strategies with duplicate fitness values are removed,

• The highest-fitness strategies are retained.

The population update process is as follows: 1. Remove strategies with invalid or undefined fitness values. 2. Eliminate
duplicate strategies by retaining only one instance of strategies with the same fitness value. 3. Rank the remaining strategies
by fitness value in descending order and select the top size strategies to form the new population P ′.

This management process ensures that the population remains diverse while focusing on high-quality strategies, avoiding
redundancy and inefficiency. By preserving the highest-fitness strategies and introducing new candidates through evolutionary
operations, the framework achieves a balance between exploration and exploitation.

B.3.3. FITNESS EVALUATION

The fitness value of a strategy is determined by its optimization performance on a set of small-scale training problems.
Specifically, the fitness value f(si) for a strategy si is calculated as the average objective value achieved across multiple
problem instances:

f(si) =
1

|I|
∑
j∈I

Obj(si, Ij), (10)

where I is the set of training problem instances, and Obj(si, Ij) represents the objective value achieved by strategy si on
instance Ij . This evaluation method ensures that strategies are assessed based on consistent and robust performance metrics.

B.3.4. SUMMARY

The population management strategy in the LLM-LNS framework combines fitness-based selection, diversity preservation,
and rigorous fitness evaluation. By maintaining a high-quality and diverse population, the framework progressively improves
the quality of strategies across generations. This strategy, together with the LLM’s ability to generalize and optimize, enables
the LLM-LNS framework to efficiently navigate large and complex search spaces, balancing exploration and exploitation to
achieve superior optimization performance.

B.4. ALNS Pseudocode

This subsection presents the pseudocode for the Adaptive Large Neighborhood Search (ALNS) algorithm, which dynamically
adjusts the neighborhood size and leverages the Dual-layer Self-evolutionary LLM Agent to efficiently solve large-scale
MILP problems.

Explanation of the ALNS Algorithm. The Adaptive Large Neighborhood Search (ALNS) algorithm is designed to
iteratively improve solutions for large-scale MILP problems by dynamically adjusting the search space based on feedback

18

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

from the optimization process. The key steps of the algorithm are as follows:

• Initialization: The algorithm begins with an initial solution x0 and an initial neighborhood size k. A time limit T and
other parameters, such as threshold ϵ, iteration limit p, and neighborhood size bounds kmin and kmax, are predefined.

• Variable Scoring and Neighborhood Selection: At each iteration, the Dual-layer Self-evolutionary LLM Agent
computes scores si for the problem’s decision variables xi, indicating their potential to improve the objective value.
The top-k variables are then selected to form the neighborhood N :

N = {xi | rank(si) ≤ k}. (11)

• Subproblem Solving: Within the selected neighborhood N , a subproblem is solved using a solver. If the solution x
improves the objective value, the solution is updated.

• Dynamic Adjustment of Neighborhood Size:

– Reduction: If the time spent solving subproblems within the neighborhood exceeds a predefined limit, the
neighborhood size k is reduced to focus on a smaller subset of variables:

k ← max(kmin, k − ⌈u% · n⌉), (12)

where u% is the adjustment rate and n is the total number of decision variables.
– Expansion: If the improvement in the objective value is less than ϵ for p consecutive iterations, the neighborhood

size is expanded to explore a broader search space:

k ← min(kmax, k + ⌈u% · n⌉). (13)

• Termination: The process continues until the time limit T is reached, at which point the best solution x is returned.

The ALNS algorithm’s dynamic adjustment of neighborhood size ensures efficient exploration and exploitation of the
solution space. By leveraging the LLM agent to score variables, the algorithm generalizes variable selection strategies
learned from small-scale MILP problems, enabling its application to larger, more complex problems. The combination of
intelligent variable scoring and adaptive neighborhood adjustment allows ALNS to efficiently navigate the vast search space,
improving solution quality while maintaining computational efficiency.

C. Experimental Settings
In this section, we detail the parameter settings used in our experiments for both the Dual-layer Self-evolutionary LLM
Agent and the Adaptive Large Neighborhood Search (ALNS). We also provide an overview of the standard MILP problem
instances used in this study. Furthermore, we will describe the specific function signature that our self-evolutionary LLM
agent is designed to evolve.

C.1. Dual-layer Self-evolutionary LLM Agent Parameters

The following key parameters were used for the evolutionary process of the LLM agent:

• h: Represents the number of top-performing heuristic strategies used to evaluate each prompt strategy. For each prompt
strategy, the top-h heuristics it generates are tracked, and their average fitness score is used as the fitness score for the
prompt strategy. In our experiments, h is set to half of the population size. Specifically:

– For Bin Packing (BP) and Traveling Salesman Problem (TSP), the population sizes are 20 and 10, respectively,
so h is set to 10 and 5.

– For the four MILP problems—Maximum Vertex Covering (MVC), Set Covering (SC), Independent Set (IS),
and Mixed Integer Knapsack Set (MIKS)—the population size is 4, so h is set to 2.

• l: Denotes the number of top individuals in the heuristic population that are monitored for stagnation. If the top-l
individuals remain unchanged for t generations, we infer that the evolution has potentially converged to a local optimum,
triggering the introduction of new prompt strategies. In all our experiments, l is set to 4.

• t: The number of consecutive generations during which the top-l individuals must remain unchanged before stagnation
is detected. In all our experiments, t is set to 3.

19

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

C.2. Adaptive Large Neighborhood Search (ALNS) Parameters

For ALNS, we use the following parameters:

• Neighborhood size k: Set to half of the decision variable count n. This represents the number of decision variables
selected to form the search neighborhood in each iteration.

• Time limit T : To ensure robustness and avoid excessive computation, we impose a maximum time limit per LNS
iteration: 100 seconds for problems with approximately 100K variables and 200 seconds for problems with around
1M variables. This time limit is applied uniformly across all LNS-based baselines to prevent slow subproblem solves,
ensuring efficiency and fair comparison in our experiments.

• Threshold ϵ: Represents the minimum improvement in the objective function to continue exploring the current
neighborhood. We set ϵ = 1e-3.

• Iteration limit p: The number of consecutive iterations with improvements below the threshold ϵ before expanding the
neighborhood size. We set p = 3.

• Minimum and maximum neighborhood sizes kmin, kmax: These are set to kmin = 0 and kmax = n (the total number
of decision variables in the problem).

• Adjustment rate u%: Specifies the percentage of decision variables n by which the neighborhood size is adjusted
during expansion or reduction. In our experiments, we set u% = 10.

C.3. Datasets for Heuristic Evolution

To ensure a fair comparison with state-of-the-art methods such as EOH, we adopted the same dataset configurations as those
used in EOH for heuristic evolution. For example, in the online bin packing problem, the evaluation dataset consists of five
sets of instances, each containing 5,000 items generated from a Weibull distribution. These instances cover a wide range of
item counts and container capacities, ensuring the diversity and representativeness of the problem settings. Similarly, for
the traveling salesman problem (TSP), we utilized 64 randomly selected instances from TSP100, which were also used in
EOH’s experiments. These instances provide a well-established basis for evaluating heuristic performance in combinatorial
optimization tasks.

For MILP problems, we followed a similar design approach to that used in the online bin packing problem. Specifically, we
employed five small-scale MILP problems, each involving tens of thousands of decision variables and linear constraints.
These smaller-scale problems serve as a foundation for heuristic evolution, allowing the method to generalize effectively
to larger-scale MILP problems with hundreds of thousands or even millions of decision variables. This demonstrates the
scalability and practical applicability of our approach when addressing large-scale optimization challenges.

C.4. Experimental Settings for Algorithm Design

Our proposed dual-layer agent framework is designed to evolve heuristics for solving combinatorial optimization problems,
specifically targeting Online Bin Packing (BP) and the Travelling Salesman Problem (TSP). The dual-layer architecture is
responsible for learning and refining heuristic strategies for these problems, enabling efficient and scalable solutions. Below,
we provide detailed descriptions of the experimental settings for each problem.

For Online Bin Packing, we adopt the settings described in (Romera-Paredes et al., 2024) and (Liu et al., 2024) to design
heuristics for determining suitable bin allocations for incoming items (Angelopoulos, 2023). The task of the dual-layer
agent is to design a scoring function that assigns items to bins. The inputs to the agent include the size of the item and the
remaining capacities of the bins, while the output is a set of scores for the bins. The item is then assigned to the bin with the
highest score. This process is iterated for each incoming item, allowing the agent to dynamically adapt its scoring strategy
based on the evolving state of the bins.

For the Travelling Salesman Problem (TSP), we use the dual-layer agent to design heuristics for Guided Local Search
(GLS) (Voudouris et al., 2010). GLS introduces perturbations and dynamically adjusts the objective landscape to help escape
local optima, enabling broader exploration of the solution space. A critical task in GLS is updating the distance matrix
to guide the local search towards more promising regions. In this context, the dual-layer agent is tasked with producing

20

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Table 6. The size of one real-world case study in the internet domain and four widely used NP-hard benchmark MILPs.

Problem Scale Number of
Variables

Number of
Constraints

SC
(Minimize)

SC1 200000 200000
SC2 2000000 2000000

MVC
(Minimize)

MVC1 100000 300000
MVC2 1000000 3000000

MIS
(Maximize)

MIS1 100000 300000
MIS2 1000000 3000000

MIKS
(Maximize)

MIKS1 200000 200000
MIKS2 2000000 2000000

heuristics for updating the distance matrix. The inputs include the current distance matrix, the current route, and the number
of edges, while the output is an updated distance matrix. GLS then applies local search operators iteratively on the updated
landscape to refine the solution. In our experiments, we utilize two common local search operators: the relocate operator
and the 2-opt operator, which are widely recognized for their effectiveness in TSP optimization (Arnold & Sörensen, 2019).

These settings are aligned with those used in EOH to ensure fair comparisons and reproducibility. Detailed descriptions
of the inputs, outputs, and operators are provided in the appendix of the manuscript to further clarify our experimental
configurations.

We also emphasize that no seed heuristics, expert-written code, or prior knowledge were manually introduced during the
experiments. All heuristic strategies were initialized automatically by the large language model (LLM), ensuring fairness in
the comparisons.

C.5. MILP Problem Overview

We use a set of standard problem instances based on four canonical MILP problems: Maximum Independent Set (MIS),
Minimum Vertex Covering (MVC), Set Covering (SC), and Mixed Integer Knapsack Set (MIKS). Below are the formal
definitions of these problems.

To ensure the robustness and fairness of our evaluation, the generation and selection of these instances follow a rigorous
procedure. The instances are not arbitrarily selected but are systematically generated based on standard formulations of
these canonical MILP problems. For each problem class and size category, a substantial set of instances is initially generated
by randomly sampling parameters from a consistent underlying distribution specific to that problem class. Subsequently,
these generated instances are randomly partitioned into training and testing sets, preventing selection bias and ensures a
more reliable assessment of our framework’s generalization capabilities across different problem types and scales.

To evaluate the scalability and generalization ability of our framework, we design experiments on both small-scale training
instances and large-scale testing instances. Specifically:

• The small-scale training instances are designed with sizes corresponding to 1% of the decision variables and
constraints of the large-scale testing instances. These small-scale problems are used to train and evolve heuristic and
prompt strategies.

• The large-scale testing instances are significantly larger, featuring up to 106 decision variables and 3× 106 constraints
(as shown in Table 6). These instances are used to evaluate the generalization ability of the strategies evolved during
training.

Our experimental results demonstrate that the proposed framework achieves strong generalization, effectively solving
large-scale MILP problems even when trained solely on small-scale instances. This highlights the ability of the framework
to transfer knowledge learned from small-scale problems to much larger, real-world problems.

Maximum Independent Set problem (MIS): The Maximum Independent Set problem has applications in network design,
where one might need to select the largest subset of mutually non-interacting entities, such as devices in a wireless network
to avoid interference. Another common application is in social network analysis, where independent sets can represent
groups of users who do not have direct connections, useful for targeting non-overlapping communities.

21

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Consider an undirected graph G = (V, E), where a subset of nodes S ⊆ V is called an independent set if no edge e ∈ E
exists between any pair of nodes in S. The MIS problem seeks to find an independent set of maximum cardinality. The
binary decision variable xv indicates whether node v ∈ V is part of the independent set (xv = 1) or not (xv = 0). The
problem can be formulated as:

max
∑
v∈V

xv

s.t. xu + xv ≤ 1, ∀(u, v) ∈ E ,
xv ∈ {0, 1}, ∀v ∈ V.

(14)

Minimum Vertex Covering problem (MVC): The Minimum Vertex Covering problem is widely used in resource
allocation, where one needs to ensure that every interaction (edge) between pairs of objects (nodes) is covered by a resource.
For example, in network security, this problem can be used to efficiently place security agents or sensors such that all
communication links are monitored.

Given an undirected graph G = (V, E), a subset of nodes S ⊆ V is called a covering set if for any edge e ∈ E , at least one of
its endpoints is included in S . The MVC problem aims to find a covering set of minimum cardinality. The binary decision
variable xv indicates whether node v ∈ V is part of the covering set (xv = 1) or not (xv = 0). The problem is formulated as:

min
∑
v∈V

xv

s.t. xu + xv ≥ 1, ∀(u, v) ∈ E ,
xv ∈ {0, 1}, ∀v ∈ V.

(15)

Set Covering problem (SC): The Set Covering problem is fundamental in facility location, where one must select the
minimum number of locations (subsets) to serve all customers (elements of the universal set). It is also used in airline crew
scheduling, where the goal is to assign the minimum number of crews to cover all flights.

Given a finite universal set U = {1, 2, . . . , n} and a collection of m subsets S1, . . . , Sm of U , each subset Si is associated
with a cost ci. The SC problem involves selecting a combination of these subsets such that every element in U is covered by
at least one of the selected subsets, while minimizing the total cost. The binary decision variable xi indicates whether subset
Si is selected (xi = 1) or not (xi = 0). The problem is formulated as:

min

m∑
i=1

cixi

s.t.
m∑
i=1

xi · 1{j∈Si} ≥ 1, ∀j ∈ U ,

xi ∈ {0, 1}, ∀i ∈ {1, . . . ,m}.

(16)

Mixed Integer Knapsack Set problem (MIKS): The Mixed Integer Knapsack Set problem arises in various applications
such as logistics, resource allocation, and portfolio optimization. It captures scenarios where some items can be selected
fractionally, while others must be either fully selected or excluded. For instance, in supply chain management, certain goods
can be split and shipped in parts, whereas others must be shipped as complete units.

The MIKS problem extends the classical knapsack formulation by incorporating both continuous and binary decision
variables, along with multiple capacity constraints. Given N items and M resource dimensions, each item consumes
capacity in one or more dimensions, and the total usage in each dimension must not exceed the available capacity. The
objective is to maximize the total value of selected items. Let xi denote the selection variable for item i, where xi = 1
indicates full selection, and 0 ≤ xi ≤ 1 allows partial selection. The problem is formulated as:

22

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

max

N∑
i=1

cixi

s.t.
∑

i:j∈Si

xi ≤ 1, ∀j ∈ {1, 2, . . . ,M},

0 ≤ xi ≤ 1, ∀i ∈ {1, 2, . . . , N},
xi ∈ {0, 1} or [0, 1], ∀i ∈ {1, 2, . . . , N}.

(17)

C.6. MILP Problem Generation Process

The generation of MILP problems follows a structured approach to ensure consistency and diversity across problem instances.
The process is broken down into several steps, as outlined below.

Step 1: Random Graph and Set Generation

For the generation of the problems, we first define the underlying structure of the problem using random graphs or sets,
depending on the problem type. Specifically, we:

• For the Maximum Independent Set (MIS) and Minimum Vertex Covering (MVC) problems, we randomly generate an
undirected graph G = (V, E), where V is a set of vertices and E is a set of edges. The number of vertices and edges is
chosen based on the desired problem scale.

• For the Set Covering (SC) problem, we generate a collection of sets S covering elements from a universal set U . Each
subset is randomly selected, and the number of sets is based on the problem size.

• For the Mixed Integer Knapsack Set (MIKS) problem, we generate a list of items with associated weights, profits, and
capacities. The items are randomly selected, with some variables being continuous and others integer-based.

Step 2: Define Objective Function and Constraints

Once the underlying graph or sets are generated, the objective function and constraints are formulated based on the problem
type:

• In the MIS and MVC problems, the objective function is formulated to either maximize the number of nodes in the
independent set (MIS) or minimize the number of nodes in the vertex cover (MVC). Constraints are added to enforce
the independence or covering conditions.

• For SC, the goal is to minimize the total cost of selected subsets while ensuring all elements in U are covered.
Constraints are added to ensure that each element is covered by at least one subset.

• In MIKS, we define a profit-weight relationship for each item, where we aim to maximize the profit while ensuring the
total weight does not exceed a given capacity.

Step 3: Randomization and Scaling

The parameters such as the number of nodes, edges, sets, and constraints are randomly scaled to generate problem instances
of varying sizes. The scaling process ensures that problem instances span a broad range of complexities and sizes:

• For each problem class, the number of nodes (or sets) and edges (or item types) are randomly sampled from a predefined
distribution, such as uniform or Gaussian, to create diverse instances.

• The size of the instances is controlled to generate both small-scale and large-scale problem instances, where small-scale
instances are used for training and large-scale instances are used for testing.

Step 4: Validation and Evaluation

23

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Finally, the generated problem instances are validated to ensure they adhere to the correct problem formulations. This includes
checking if the constraints are satisfied and whether the generated instances match the intended problem characteristics.
The performance of the model is then evaluated on the testing instances, assessing both solution quality and computational
efficiency.

This systematic process ensures that the generated MILP instances cover a wide range of problem types and sizes, providing
a reliable basis for evaluating optimization algorithms and models.

C.7. Evolved Heuristic Function Signature

To evaluate the effectiveness of our proposed dual-layer self-evolutionary LLM agent, we tested its ability to design heuristic
functions across three distinct classes of optimization problems: Online Bin Packing (bp online), Traveling Salesman
Problem (TSP), and general Mixed Integer Linear Programming (MILP) instances. Below, we detail the specific input and
output signature of the function that our agent evolved for each problem type.

C.7.1. ONLINE BIN PACKING (BP ONLINE)

For the Online Bin Packing problem, the self-evolutionary agent was tasked with designing a heuristic scoring function
with the signature def score(item, bins):.

The fundamental goal of this function is to evaluate a set of available bins and assign a score to each, indicating its suitability
for the current item that needs to be packed. In each step of the packing process, the item is placed into the bin that
receives the highest score among feasible options. According to the problem specification, bins whose remaining capacity
equals the overall maximum bin capacity are not considered for placing the current item, effectively prioritizing the use of
already partially filled bins. The overarching objective is to minimize the total number of bins ultimately utilized.

• Inputs:

– item (int): The size of the current item to be placed.
– bins (NumPy array): An array representing the remaining capacities of all feasible bins. These are bins that

have sufficient space to accommodate the current item.

• Output:

– scores (NumPy array): An array of the same dimension as bins, where each element is the calculated score
for the corresponding bin.

The agent was encouraged to develop a scoring logic of sufficient complexity to potentially outperform simpler heuristics
and to ensure the internal consistency of the evolved function.

C.7.2. TRAVELING SALESMAN PROBLEM (TSP)

For the Traveling Salesman Problem, the agent’s task was to devise a heuristic strategy for dynamically updating the
edge distance matrix. The evolved function has the signature def update edge distance(edge distance,
local opt tour, edge n used):.

The primary objective of this function is to modify the perceived distances between nodes based on the characteristics of a
recently found local optimal tour and historical edge usage. By altering the edge distance matrix, the heuristic aims to
help the search process escape local optima and explore different regions of the solution space, ultimately facilitating the
discovery of a tour with a minimized total distance. The function is expected to return the modified distance matrix.

• Inputs:

– edge distance (NumPy array): The current matrix representing the distances between nodes.
– local opt tour (NumPy array): An array of node IDs constituting the local optimal tour found in a previous

iteration.
– edge n used (NumPy array): A matrix detailing the frequency with which each edge has been included in

explored solutions or permutations.

24

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

• Output:

– updated edge distance (NumPy array): The new edge distance matrix, adjusted by the evolved heuristic.

All input and output arrays are NumPy arrays. This dynamic adjustment is crucial for guiding the neighborhood search
effectively.

C.7.3. MIXED INTEGER LINEAR PROGRAMMING (MILP)

For Mixed Integer Linear Programming (MILP) problems, the self-evolutionary agent was tasked with designing a
heuristic to guide the neighborhood selection process within a Large Neighborhood Search (LNS) framework. The objective
is to intelligently score decision variables to determine which ones should be relaxed and re-optimized to improve the
current solution. The signature of the evolved function is:
def select neighborhood(n, m, k, site, value, constraint, initial solution,
current solution, objective coefficient):.

The primary goal of this function is to analyze the current state of the MILP problem—including its structure, con-
straints, objective function, and current solution—and assign a numerical score to each decision variable. These scores
(neighbor score) subsequently inform the LNS mechanism on which variables to include in the neighborhood (i.e., to
“free” for re-optimization). The agent was encouraged to develop strategies that could consider variable correlations (e.g., by
assigning similar scores to variables involved in the same constraint) or incorporate randomness to escape local optima,
aiming to iteratively enhance the current solution.

• Inputs:

– n (int): The total number of decision variables in the MILP instance.
– m (int): The total number of constraints in the MILP instance.
– k (NumPy array): An array of length m, where k[i] denotes the number of decision variables participating in the
i-th constraint.

– site (list of NumPy arrays): A list of m NumPy arrays. For the i-th constraint, site[i][j] indicates the
index (ID) of the j-th decision variable involved in that constraint.

– value (list of NumPy arrays): A list of m NumPy arrays. For the i-th constraint, value[i][j] specifies the
coefficient of the j-th decision variable (as identified by site[i][j]) in that constraint.

– constraint (NumPy array): An array of length m, where constraint[i] is the right-hand side (RHS)
value for the i-th constraint.

– initial solution (NumPy array): An array of length n, holding the values of the decision variables from
an initial feasible solution.

– current solution (NumPy array): An array of length n, representing the values of the decision variables in
the current incumbent solution that LNS aims to improve.

– objective coefficient (NumPy array): An array of length n, where objective coefficient[i]
is the coefficient of the i-th decision variable in the objective function.

• Output:

– neighbor score (NumPy array): An array of length n, generated by the evolved function. Each element
neighbor score[i] corresponds to the calculated score for the i-th decision variable, influencing its likeli-
hood of being selected for the LNS neighborhood.

All inputs are provided as NumPy arrays, except for n and m (integers), and site and value (lists of NumPy arrays). The
evolved function is responsible for creating and populating the neighbor score NumPy array.

C.8. Training Setup and Generalization in TSP and Bin Packing

To ensure fair comparisons and demonstrate the generalization ability of our approach, we closely followed the experimental
setups used in prior work such as EOH and FunSearch.

25

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

For the TSP experiments, we used the same five TSPLib instances—d198, eil76, rat99, rl1889, and u1060—as the training
set for evolving our policies. None of the other TSPLib instances used in evaluation were included in training. This
separation guarantees that performance improvements are not due to overfitting specific instances. We will update Table 17
to clearly mark the training instances. For the Bin Packing task, we adopted the Weibull 5k test dataset as the training data,
consistent with the setup in EOH and FunSearch. This ensures a comparable training environment across methods while
allowing us to test the ability of our LLM agent to generalize to different instance distributions and sizes.

D. Evolutionary Process of LLM-LNS
D.1. Evolutionary Process Overview

In this appendix, we provide a detailed breakdown of the experimental results and the evolution of heuristic strategies
generated by our proposed Dual-layer Self-Evolutionary LLM Agent. The following sections offer a comprehensive
analysis of how the inner and outer layers of the LLM agent collaborate to generate and refine heuristic strategies across
various combinatorial optimization problems, including Online Bin Packing (bp online), the Traveling Salesman Problem
(TSP), and large-scale MILP instances such as Maximum Vertex Covering (MVC), Set Covering (SC), Independent Set
(IS), and Mixed Integer Knapsack Set (MIKS).

• Inner and Outer Layer Prompt Initialization and Evolution: As shown in Sec. D.2, our approach leverages a
dual-layer architecture, where the inner layer evolves heuristic strategies by modifying solution components, while the
outer layer evolves the prompt structure guiding the inner layer, balancing exploration and exploitation. The inner
layer prompts iteratively generate heuristics by scoring decision variables based on their contributions to the objective
function and constraints, with randomness included to avoid local optima. This enables the LLM to reason about the
problem structure and generate high-quality strategies, even without extensive domain expertise. The outer layer
maintains diversity by evolving prompt structures to prevent premature convergence on suboptimal solutions. Both
layers adapt based on past performance, allowing the LLM to refine its strategy generation over time.

• Heuristic Improvement Through Dual-layer Self-evolutionary LLM Agent: As shown in Sec. D.3, we demonstrates
the progression of heuristic strategies, starting from initial random strategies and gradually evolving into more effective
ones through the dual-layer self-evolutionary process. The initial strategies are simple and focus on ranking decision
variables based on their contributions to the objective function and constraints. Over time, the LLM agent introduces
additional complexity, such as incorporating randomness and penalizing larger deviations from the current solution,
improving the robustness of the generated heuristics. The progression of the population is guided by the outer layer,
which adjusts the structure and focus of prompts to encourage exploration and avoid premature convergence. The inner
layer then refines specific solution components in response to the prompts, iteratively improving the performance of the
heuristic strategies. As seen from the evolution of objective scores, the dual-layer system enables the generation of
increasingly effective heuristics, balancing exploration with exploitation to achieve superior results in various problem
instances.

• Heuristic Strategies for Bin Packing Online: EoH vs. Dual-Layer Self-Evolution LLM Agent: As shown in Sec.
D.4, both the Evolution of Heuristic (EoH) method and our Dual-layer Self-Evolution LLM Agent utilize LLM-based
evolutionary processes to generate heuristic strategies for the Bin Packing Online problem. The strategy generated
by EoH approach, while leveraging LLM to evolve heuristics, focuses primarily on a hybrid scoring system that
combines utilization ratios, dynamic adjustments, and an exponentially decaying factor. This method is effective
but tends to rely on a more static set of features and parameters, which limits its adaptability across diverse problem
instances. In contrast, our Dual-layer Self-Evolution LLM Agent incorporates a more dynamic and adaptive strategy.
By combining nonlinear capacity scaling, relative size assessment, and historical penalties for overutilized bins, our
approach allows for greater flexibility and adaptability. Specifically, the generated heuristics dynamically adjust based
on remaining capacity, item size, and previous bin usage, thereby balancing local search with global optimization.
This adaptability enables our agent to discover and refine more efficient strategies that minimize the number of bins
used. The results clearly demonstrate that while both methods use LLM-based evolution, our dual-layer approach
consistently outperforms the EoH method in terms of solution quality and computational efficiency. The dual-layer
system’s ability to evolve both the heuristic strategies and the prompt structures ensures that it can fine-tune solutions
more effectively, leading to superior bin utilization and fewer bins required overall. This highlights the strength of our
approach in generating more robust and context-aware heuristics.

26

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

• Heuristic Strategies for Traveling Salesman Problem (TSP): EoH vs. Dual-Layer Self-Evolution LLM Agent:
Similar to the Bin Packing Online problem, both the Evolution of Heuristic (EoH) method and our Dual-layer Self-
Evolution LLM Agent use LLM-based evolutionary processes to generate heuristic strategies for the Traveling Salesman
Problem (TSP). As shown in Sec. D.5, the strategy generated by EoH method employs a randomized approach that
adjusts the edge distance matrix by increasing the distances of a random proportion of edges, while rewarding a smaller
subset of unused edges. This method encourages exploration but tends to apply uniform adjustments without fully
accounting for the global structure of the solution. In contrast, strategy generated by our Dual-layer Self-Evolution
LLM Agent introduces a more sophisticated edge distance adjustment mechanism. It dynamically explores alternative
routes by incorporating an inverse frequency factor, which penalizes frequently used edges and rewards less frequently
used ones. This adaptive mechanism gradually resets excessively amplified distances, promoting diversification and
improving the exploration of the solution space. Furthermore, it balances exploitation by focusing on refining the
most promising routes based on past tours, leading to faster convergence towards a global optimum. The results
clearly demonstrate that while both methods are effective in exploring new routes, the dual-layer approach consistently
outperforms the EoH method in terms of solution quality and convergence speed. By incorporating a more nuanced
edge adjustment process and dynamically adapting to the problem context, the Dual-layer Self-Evolution LLM Agent
achieves superior results in minimizing the total distance, making it a more robust and efficient solution for the TSP.

• Evolutionary Path of the Dual-Layer Self-Evolution LLM Agent: As illustrated in Sec. D.6, we trace the
evolutionary process of the LLM agent in solving Maximum Vertex Cover (MVC) problem, detailing how heuristic
strategies evolve step by step through the inner and outer layers, gradually converging to optimized solutions. Initially,
the agent generates simple heuristics that focus on ranking decision variables based on their impact on the objective
function and constraint violation, incorporating randomness to encourage exploration. These early strategies serve as a
foundation for further refinement. As the process evolves, the outer layer refines the prompt instructions, guiding the
inner layer to develop more sophisticated heuristics. The LLM begins to incorporate additional factors, such as the
absolute difference from the initial solution and a more nuanced treatment of constraints. This results in improved
exploration of the solution space, as well as better handling of both the objective function and constraints. In the later
stages, the agent integrates more advanced techniques, such as hybrid methods combining genetic algorithms with local
search, to enhance convergence speed and solution quality. The final heuristics represent a co-evolutionary approach
that balances exploration and exploitation, leading to significantly optimized solutions. The evolution of prompts, from
the initial simplistic forms to highly specialized instructions, demonstrates the power of the dual-layer architecture in
improving both the heuristic strategies and the problem-solving process itself.

• Evolutionary Result of the Dual-Layer Self-Evolution LLM Agent: Finally, we present the results achieved by the
LLM agent after the completion of the entire evolutionary process across three challenging combinatorial optimization
problems: Set Covering (SC), Maximum Independent Set (MIS), and Mixed Integer Knapsack Set (MIKS). As
detailed in Sec. D.7, the final heuristics generated by the Dual-layer Self-Evolution LLM Agent are compared with
those produced by traditional methods and state-of-the-art approaches, demonstrating significant improvements in
solution quality and computational efficiency. For the Set Covering problem (SC), the LLM agent’s final heuristic
achieves a superior balance between minimizing the number of selected sets and satisfying the constraints. By
dynamically adjusting penalties and incorporating random exploration, the agent efficiently navigates the solution
space, outperforming traditional methods in both the objective score and constraint satisfaction. In the Maximum
Independent Set (MIS) problem, the LLM agent leverages simulated annealing principles combined with adaptive
scoring of decision variables. This approach not only ensures thorough exploration but also accelerates convergence
towards high-quality solutions. The agent’s ability to balance objective contributions with constraint violations leads
to a considerable reduction in the total error, as reflected in the final objective score. Lastly, for the Mixed Integer
Knapsack Set (MIKS) problem, the LLM agent adopts a hybrid strategy that integrates genetic algorithms and simulated
annealing. This allows for a more diversified search process, strategically selecting decision variables based on their
contributions to the objective function and constraint interactions. The agent’s solution demonstrates a significant
improvement over existing methods, particularly in how it dynamically adapts to varying problem constraints while
maintaining computational efficiency.

In summary, the proposed Dual-layer Self-Evolutionary LLM Agent effectively generates and refines heuristic strategies
for diverse combinatorial optimization problems. Leveraging the complementary roles of its inner and outer layers, it
balances exploration and exploitation to discover high-quality, context-aware strategies. Its adaptability in evolving both
problem-solving heuristics and guiding prompts ensures superior solution quality and computational efficiency. From online

27

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

bin packing to large-scale MILP problems, the agent consistently outperforms traditional and state-of-the-art methods,
demonstrating robustness, scalability, and evolutionary refinement.

D.2. Inner and Outer Layer Prompt Initialization and Evolution

Prompt for Generating Initial Heuristic Strategies
Given an initial feasible solution and a current solution to a Mixed-Integer Linear Programming (MILP) problem, with vari-
ables’ lower bound, upper bound and coefficient in objective function. We want to improve the current solution using Large
Neighborhood Search (LNS).

The task can be solved step-by-step by starting from the current solution and iteratively selecting a subset of decision variables
to relax and re-optimize. In each step, most decision variables are fixed to their values in the current solution, and only a small
subset is allowed to change. You need to score all the decision variables based on the information I give you, and I will choose
the decision variables with high scores as neighborhood selection. To avoid getting stuck in local optima, the choice of the
subset can incorporate a degree of randomness.

First, describe your new algorithm and main steps in one sentence. The description must be inside a brace. Next, imple-
ment it in Python as a function named select neighborhood. This function should accept 5 input(s): ’initial solution’, ’cur-
rent solution’, ’lower bound’, ’upper bound’, ’objective coefficient’. The function should return 1 output(s): ’neighbor score’.
’initial solution’, ’current solution’, ’lower bound’, ’upper bound’ and ’objective coefficient’ are numpy arrays. ’neighbor score’
is also a numpy array that you need to create manually. The i-th element of the arrays corresponds to the i-th decision variable.
All are Numpy arrays. I don’t give you ’neighbor score’ so that you need to create it manually. The length of the ’neigh-
bor score’ array is the same as the length of the other arrays.

Do not give additional explanations.

(Cross) Initial Prompt for Heuristic Strategies Evolution
Given an initial feasible solution and a current solution to a Mixed-
Integer Linear Programming (MILP) problem, with variables’
lower bound, upper bound and coefficient in objective function. We
want to improve the current solution using Large Neighborhood
Search (LNS).

The task can be solved step-by-step by starting from the current so-
lution and iteratively selecting a subset of decision variables to relax
and re-optimize. In each step, most decision variables are fixed to
their values in the current solution, and only a small subset is al-
lowed to change. You need to score all the decision variables based
on the information I give you, and I will choose the decision vari-
ables with high scores as neighborhood selection. To avoid getting
stuck in local optima, the choice of the subset can incorporate a de-
gree of randomness.

I have 5 existing algorithm’s thought, objective function value with
their codes as follows: No.1 algorithm’s thought, objective function
value, and the corresponding code are: ...
No.2 algorithm’s thought, objective function value, and the corre-
sponding code are: ...
...
No.5 algorithm’s thought, objective function value, and the corre-
sponding code are: ...

Please help me create a new algorithm that has a totally different
form from the given ones.

First, describe your new algorithm and main steps in one sen-
tence. The description must be inside a brace. Next, implement
it in Python as a function named select neighborhood. This func-
tion should accept 5 input(s): ’initial solution’, ’current solution’,
’lower bound’, ’upper bound’, ’objective coefficient’. The func-
tion should return 1 output(s): ’neighbor score’. ’initial solution’,
’current solution’, ’lower bound’, ’upper bound’ and ’objec-
tive coefficient’ are numpy arrays. ’neighbor score’ is also a numpy
array that you need to create manually. The i-th element of the ar-
rays corresponds to the i-th decision variable. All are Numpy arrays.
I don’t give you ’neighbor score’ so that you need to create it man-
ually. The length of the ’neighbor score’ array is the same as the
length of the other arrays.

Do not give additional explanations.

(Cross) Initial Prompt Strategies
1. Please help me create a new algorithm that

has a totally different form from the given
ones.

2. Please help me create a new algorithm that
has a totally different form from the given
ones but can be motivated from them.

(Cross) Prompt for Prompt Strategies Evolu-
tion
We are working on solving a minimization
problem. Our objective is to leverage the capa-
bilities of the Language Model (LLM) to gen-
erate heuristic algorithms that can efficiently
tackle this problem. We have already devel-
oped a set of initial prompts and observed the
corresponding outputs. However, to improve
the effectiveness of these algorithms, we need
your assistance in carefully analyzing the ex-
isting prompts and their results. Based on this
analysis, we ask you to generate new prompts
that will help us achieve better outcomes in
solving the minimization problem.

I have 5 existing prompts with objective func-
tion value as follows:
No.1 prompt’s tasks assigned to LLM, and
objective function value are: ...
No.2 prompt’s tasks assigned to LLM, and
objective function value are: ...
...
No.5 prompt’s tasks assigned to LLM, and
objective function value are: ...

Please help me create a new prompt that has a
totally different form from the given ones but
can be motivated from them.

Please describe your new prompt and main
steps in one sentence. Do not give additional
explanations.

28

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

D.3. Heuristic Improvement Through Dual-layer Self-evolutionary LLM Agent

Heuristic 1 (Obj Score: 5375.52145)
Rank decision variables based on their penalty contribution and the differ-
ence from current solution, incorporating randomness in scoring.

import numpy as np
def select_neighborhood(n, m, k, site, value,

constraint, initial_solution,
current_solution, objective_coefficient):

neighbor_score = np.zeros(n)
variable_difference = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[
site[i][j]] for j in range(k[i]))

penalty = max(0, lhs - constraint[i])
for j in range(k[i]):

var_index = site[i][j]
difference = current_solution[

var_index] - initial_solution[
var_index]

neighbor_score[var_index] += penalty *
difference

neighbor_score += objective_coefficient * np.
random.rand(n)

return neighbor_score

Heuristic 2 (Obj Score: 5383.05876)
Rank decision variables based on their objective contribution and impact
on current solution deviation, with randomness included in the scoring
process.

import numpy as np
def select_neighborhood(n, m, k, site, value,

constraint, initial_solution,
current_solution, objective_coefficient):

neighbor_score = np.zeros(n)
variable_contribution = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[
site[i][j]] for j in range(k[i]))

deviation = lhs - constraint[i]
for j in range(k[i]):

var_index = site[i][j]
contribution = value[i][j] * (

initial_solution[var_index] -
current_solution[var_index])

neighbor_score[var_index] +=
contribution

neighbor_score += objective_coefficient + np.
random.rand(n)

return neighbor_score

Heuristic 3 (Obj Score: 5384.8486)
This modified algorithm ranks decision variables based on their contri-
bution to the total current solution’s objective function value and their
degree of constraint satisfaction.

import numpy as np
def select_neighborhood(n, m, k, site, value,

constraint, initial_solution,
current_solution, objective_coefficient):

neighbor_score = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[
site[i][j]] for j in range(k[i]))

for j in range(k[i]):
if lhs > constraint[i]:

neighbor_score[site[i][j]] +=
objective_coefficient[site[i
][j]] * (lhs - constraint[i])

else:
neighbor_score[site[i][j]] +=

objective_coefficient[site[i
][j]] * (constraint[i] - lhs)

neighbor_score += np.random.rand(n) * 0.1
return neighbor_score

Heuristic 4 (Obj Score: 5384.95417)
Rank decision variables by their contribution to the objective function
and difference from initial values, while also weighing their frequency of
use in the constraints.

import numpy as np
def select_neighborhood(n, m, k, site, value,

constraint, initial_solution,
current_solution, objective_coefficient):

score = np.zeros(n)
frequency = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[
site[i][j]] for j in range(k[i]))

deviation = lhs - constraint[i]
for j in range(k[i]):

var_index = site[i][j]
contribution = value[i][j] * np.abs(

initial_solution[var_index] -
current_solution[var_index])

score[var_index] += contribution
frequency[var_index] += 1

neighbor_score = score / (frequency + 1e-5) +
objective_coefficient + np.random.rand(n)

return neighbor_score

Prompt Designed by LLM
Develop an algorithm that combines the strengths of existing heuristics
while introducing random perturbations to enhance exploration and mini-
mize the objective function more effectively.

Heuristic (Obj Score: 5374.19865)
Rank decision variables based on their contribution to the objective function and incorporate the absolute difference from the initial solution while
adding a degree of randomness to the scores.

import numpy as np

def select_neighborhood(n, m, k, site, value, constraint, initial_solution, current_solution,
objective_coefficient):

neighbor_score = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[site[i][j]] for j in range(k[i]))
for j in range(k[i]):

var_index = site[i][j]
difference = np.abs(current_solution[var_index] - initial_solution[var_index])
neighbor_score[var_index] += (constraint[i] - lhs) * difference

neighbor_score += objective_coefficient * np.random.rand(n)
return neighbor_score

29

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

D.4. Heuristic Strategies for Bin Packing Online: EoH vs. Dual-Layer Self-Evolution LLM Agent

Heuristic Designed by EoH

Description
The heuristic incorporates a weighted average of the utilization ratio, dynamic adjustment, and an
exponentially decaying factor, with different parameter settings to minimize the number of used bins.

Code

import numpy as np
def heuristic(item, bins):

diff = bins-item # remaining capacity
exp = np.exp(diff) # exponent term
sqrt = np.sqrt(diff) # square root term
ulti = 1-diff/bins # utilization term
comb = ulti * sqrt # combination of utilization and square root
adjust = np.where(diff > (item * 3), comb + 0.8, comb + 0.3)

hybrid adjustment term to penalize large bins
hybrid_exp = bins / ((exp + 0.7) *exp)

hybrid score based on exponent term
scores = hybrid_exp + adjust

sum of hybrid score and adjustment
return scores

Heuristic Designed by Dual-layer Self-evolution LLM Agent

Description
The new algorithm employs a hybrid optimization strategy that combines nonlinear penalties for histori-
cal usage, adaptive capacity scaling, and a relative size assessment, facilitating a balance between local
and global search for optimal bin assignment.

Code

import numpy as np
def score(item, bins):

feasible_bins = bins[bins > item]
scores = np.zeros_like(bins)
if len(feasible_bins) == 0:

return scores
Nonlinear capacity scaling that enhances the desire for larger

spaces
remaining_capacity = feasible_bins - item
capacity_scaling = np.log1p(remaining_capacity) * (

remaining_capacity / np.max(remaining_capacity))
Relative size assessment: quadratic term comparing item size with

bin capacities
relative_size_effect = (item ** 2 / feasible_bins) * 50 # Scale to

moderate impact
Nonlinear penalty based on historical usage counts to deter

overutilization
historical_count = np.arange(len(feasible_bins)) + 1 # Simulating

historical usage
penalty_factor = np.power(1.5, historical_count) # Exponential

penalty for higher usage
Combining scores: enhanced capacity scaling, moderated size

assessment, and historical penalties
scores[bins > item] = capacity_scaling - relative_size_effect -

penalty_factor
return scores

30

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

D.5. Heuristic Strategies for Traveling Salesman Problem: EoH vs. Dual-Layer Self-Evolution LLM Agent

Heuristic Designed by EoH

Description
This algorithm uses a randomized approach to update the edge distance matrix by randomly selecting
a proportion of edges to increase their distances while uniformly rewarding a smaller proportion of
unused edges to encourage exploration.

Code
import numpy as np
def update_edge_distance(edge_distance, local_opt_tour, edge_n_used):

N = edge_distance.shape[0]
updated_edge_distance = edge_distance.copy()
Parameters for randomization
increase_factor = 2.0
decrease_factor = 0.9
random_selection_ratio = 0.3 # percentage of edges to randomly adjust
Identify all edges used in the local optimal tour
used_edges = set()
for i in range(len(local_opt_tour)):

start = local_opt_tour[i]
end = local_opt_tour[(i + 1) % len(local_opt_tour)]
used_edges.add((min(start, end), max(start, end)))

Randomly select a proportion of edges to increase distance
all_edges = [(i, j) for i in range(N) for j in range(N) if i != j]
np.random.shuffle(all_edges)
num_edges_to_increase = int(len(all_edges) * random_selection_ratio)
for edge in all_edges[:num_edges_to_increase]:

start, end = edge
If the edge is used in the local optimal tour, apply a higher increase
if (min(start, end), max(start, end)) in used_edges:

updated_edge_distance[start, end] *= increase_factor
updated_edge_distance[end, start] *= increase_factor

else:
updated_edge_distance[start, end] *= decrease_factor
updated_edge_distance[end, start] *= decrease_factor

return updated_edge_distance

Heuristic Designed by Dual-layer Self-evolution LLM Agent

Description
The new algorithm refines the edge distance adjustment mechanism by incorporating an acceptance
heuristic that dynamically explores alternative routes while gradually resetting excessively amplified
distances, thus promoting diversification and improved convergence towards a global optimum.

Code
import numpy as np
def update_edge_distance(edge_distance, local_opt_tour, edge_n_used):

Create a copy of the edge distance matrix for updates
updated_edge_distance = np.copy(edge_distance)
Extract the number of nodes
num_nodes = edge_distance.shape[0]
Calculate the inverse frequency factor for each edge
inverse_frequency_factor = np.max(edge_n_used) - edge_n_used + 1
Update the edge distance based on the local optimal tour
for i in range(len(local_opt_tour)):

Get the current and next node in the local optimal tour
current_node = local_opt_tour[i]
next_node = local_opt_tour[(i + 1) % len(local_opt_tour)]
Apply the inverse frequency factor to decrease the edge weight
updated_edge_distance[current_node, next_node] *= inverse_frequency_factor[

current_node, next_node]
updated_edge_distance[next_node, current_node] *= inverse_frequency_factor[

next_node, current_node]
return updated_edge_distance

31

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

D.6. Evolutionary Path of the Dual-Layer Self-Evolution LLM Agent

Heuristic (Obj Score: 5400.48176)
The algorithm ranks decision variables based on their impact on the objective function and how
they relate to the violated constraints, incorporating a degree of randomness.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint,

initial_solution, current_solution, objective_coefficient):
neighbor_score = np.zeros(n)
violated_constraints = 0
for i in range(m):

lhs = sum(value[i][j] * current_solution[site[i][j]] for
j in range(k[i]))

if lhs > constraint[i]:
violated_constraints += 1
for j in range(k[i]):

neighbor_score[site[i][j]] +=
objective_coefficient[site[i][j]]

if violated_constraints > 0:
neighbor_score /= violated_constraints

randomness = np.random.rand(n) * 0.1
neighbor_score += randomness
return neighbor_score

Initial Prompts
• (Cross) Please help me create a new algorithm

that has a totally different form from the given
ones.

• (Cross) Please help me create a new algorithm
that has a totally different form from the given
ones but can be motivated from them.

• (Variation) Please assist me in creating a new
algorithm that has a different form but can be a
modified version of the algorithm provided.

• (Variation) Please identify the main algorithm
parameters and assist me in creating a new
algorithm that has a different parameter settings
of the score function provided.

Heuristic (Obj Score: 5374.19865)
Rank decision variables based on their contribution to the objective function and incorporate
the absolute difference from the initial solution while adding a degree of randomness to the
scores.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint,

initial_solution, current_solution, objective_coefficient):
neighbor_score = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[site[i][j]] for
j in range(k[i]))

for j in range(k[i]):
var_index = site[i][j]
difference = np.abs(current_solution[var_index] -

initial_solution[var_index])
neighbor_score[var_index] += (constraint[i] - lhs) *

difference
neighbor_score += objective_coefficient * np.random.rand(n)
return neighbor_score

Current Prompts

• (Cross) Develop a modified heuristic algorithm
that utilizes a hybrid approach, combining
elements of simulated annealing and genetic
algorithms, to optimize the given minimization
problem.

• (Cross) Design a modified heuristic algorithm
for the minimization problem by incorporating
elements of simulated annealing with a unique
cooling schedule.

• (Variation) Please identify the main algorithm
parameters and assist me in creating a new
algorithm that has a different parameter settings
of the score function provided.

• (Variation) Develop an algorithm that combines
the strengths of existing heuristics while
introducing random perturbations to enhance
exploration and minimize the objective function
more effectively.

Heuristic (Obj Score: 5373.34904)
Develop a co-evolutionary heuristic approach that integrates genetic algorithms with local
search techniques to enhance convergence speed and minimize the objective function for the
specified problem.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint,

initial_solution, current_solution, objective_coefficient):
neighbor_score = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[site[i][j]] for
j in range(k[i]))

for j in range(k[i]):
var_index = site[i][j]
difference = np.abs(current_solution[var_index] -

initial_solution[var_index])
neighbor_score[var_index] += (constraint[i] - lhs) *

difference
random_adjustment = np.random.rand(n)
adaptive_mutation_rate = np.clip(np.abs(objective_coefficient

), 0.1, 1.0)
neighbor_score += adaptive_mutation_rate * random_adjustment
return neighbor_score

Final Prompts

• (Cross) Develop a hybrid heuristic algorithm for
the minimization problem that combines genetic
algorithms with tabu search to enhance local
search capabilities while maintaining diversity in
the solution population.

• (Cross) Develop a co-evolutionary heuristic
approach that integrates genetic algorithms with
local search techniques to enhance convergence
speed and minimize the objective function for
the specified problem.

• (Variation) Design a novel optimization strategy
that integrates genetic algorithms with dynamic
programming principles to enhance the search
for optimal solutions, focusing on adaptive
mutation rates to effectively minimize the
objective function value.

• (Variation) Design a novel optimization
framework that integrates particle swarm
optimization with genetic algorithms, focusing
on adaptive mutation strategies to enhance
convergence speed and minimize the objective
function value.

32

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

D.7. Evolutionary Result of the Dual-Layer Self-Evolution LLM Agent

D.7.1. EVOLUTIONARY RESULT OF SET COVERING PROBLEM

Heuristic (Obj Score: 3339.39339)
This algorithm computes scores based on the penalty incurred by each variable when deviating from the current solution and evaluates the impact on constraint satisfaction.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint, initial_solution, current_solution, objective_coefficient):

neighbor_score = np.zeros(n)
for i in range(m):

lhs_value = sum(value[i][j] * current_solution[site[i][j]] for j in range(k[i]))
for j in range(k[i]):

variable_index = site[i][j]
if lhs_value >= constraint[i]:

penalty = lhs_value - constraint[i]
contribution = penalty * value[i][j]
neighbor_score[variable_index] += contribution

else:
contribution = value[i][j]
neighbor_score[variable_index] -= contribution

costs = np.abs(current_solution - initial_solution) * (objective_coefficient + 1e-5)
with np.errstate(divide=’ignore’, invalid=’ignore’):

neighbor_score = np.divide(neighbor_score, costs, where=costs != 0)
neighbor_score -= np.min(neighbor_score)
neighbor_score /= np.max(neighbor_score) if np.max(neighbor_score) != 0 else 1
rand_factor = np.random.rand(n) * 0.1
neighbor_score += rand_factor
return neighbor_score

Final Prompts
• (Cross) Please help me create a new algorithm that has a totally different form from the given ones.

• (Cross) Please help me create a new algorithm that has a totally different form from the given ones but can be motivated from them.

• (Variation) Please assist me in creating a new algorithm that has a different form but can be a modified version of the algorithm provided.

• (Variation) Please identify the main algorithm parameters and assist me in creating a new algorithm that has a different parameter settings of the score function provided.

D.7.2. EVOLUTIONARY RESULT OF MAXIMUM INDEPENDENT SET PROBLEM

Heuristic (Obj Score: -4634.0636)
This new heuristic approach combines the principles of simulated annealing with the adaptive scoring of decision variables based on their contributions to violated constraints while incorpo-
rating randomness to enhance exploration of the solution space.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint, initial_solution, current_solution, objective_coefficient):

neighbor_score = np.zeros(n)
current_objective_value = np.dot(current_solution, objective_coefficient)
variable_contributions = np.zeros(n)
for i in range(m):

lhs_value = sum(value[i][j] * current_solution[site[i][j]] for j in range(k[i]))
if lhs_value > constraint[i]:

for j in range(k[i]):
var_index = site[i][j]
variable_contributions[var_index] += (value[i][j] * (current_solution[var_index] == 1))

for index in range(n):
improvement = objective_coefficient[index] - variable_contributions[index]
neighbor_score[index] = improvement + (current_solution[index] * 0.5)

temperature = np.random.uniform(0.1, 1.0)
randomness = np.random.uniform(-temperature, temperature, size=n)
neighbor_score += randomness
return neighbor_score

Final Prompts
• (Cross) Develop a novel hybrid algorithm that combines local search and simulated annealing techniques to explore the solution space and minimize the objective function more

effectively.

• (Cross) Design a novel optimization algorithm inspired by the existing methods, focusing on adaptive parameter tuning to enhance convergence toward better solutions.

• (Variation) Design a novel heuristic approach inspired by the principles of simulated annealing to optimize the following problem parameters.

• (Variation) Please identify the main algorithm parameters and assist me in creating a new algorithm that has a different parameter settings of the score function provided.

33

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

D.7.3. EVOLUTIONARY RESULT OF MIXED INTEGER KNAPSACK SET PROBLEM

Heuristic (Obj Score: -3612.99096)
This novel algorithm enhances diversity in the solution search process by strategically selecting decision variables based on both their objective contributions and constraint interactions,
while incorporating a degree of random exploration.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint, initial_solution, current_solution, objective_coefficient):

neighbor_score = np.zeros(n)
contribution_scores = objective_coefficient * current_solution
neighbor_score += contribution_scores
for i in range(m):

lhs_value = sum(value[i][j] * current_solution[site[i][j]] for j in range(k[i]))
if lhs_value > constraint[i]:

for j in range(k[i]):
var_index = site[i][j]
penalty = (lhs_value - constraint[i]) / max(1, np.sum(value[i]))
neighbor_score[var_index] -= penalty * value[i][j] * np.random.uniform(0.8, 1.2)

local_search_factor = (initial_solution - current_solution) ** 2
neighbor_score += local_search_factor
randomness = np.random.rand(n) * 0.1
neighbor_score += randomness
if np.max(neighbor_score) > 0:

neighbor_score /= np.max(neighbor_score)
return neighbor_score

Final Prompts
• (Cross) Design a hybrid heuristic algorithm that combines elements of genetic algorithms and simulated annealing to explore the solution space efficiently.

• (Cross) Develop a multi-phase heuristic optimization strategy that integrates particle swarm optimization with tabu search to dynamically adapt search parameters and enhance
convergence rates.

• (Variation) Develop an algorithm that incorporates a novel optimization strategy, diverging from previous approaches, to enhance the objective function’s outcome by exploring alternative
parameter tuning techniques.

• (Variation) Please identify the main algorithm parameters and assist me in creating a new algorithm that has a different parameter settings of the score function provided.

E. Convergence Analysis of LLM-LNS
E.1. Evolutionary Progress in Combinatorial Optimisation Problem

Across both two combinatorial optimization problems Online Bin Packing and Traveling Salesman Problem, LLM-LNS
consistently shows superior convergence and final solution quality compared to EOH.

In the Online Bin Packing problem shown in Figure 5, LLM-LNS shows better convergence behavior from the early stages.
As the generations progress, LLM-LNS steadily improves and consistently outperforms EOH. The reduced variance in later
generations highlights the stability of the LLM-LNS approach, which efficiently balances exploration and exploitation. Its
dual-layer structure allows it to thoroughly explore the solution space, avoiding premature convergence and reaching a higher
overall objective score. In contrast, EOH exhibits larger fluctuations and fails to achieve the same level of performance,
indicating its limitations in maintaining robust progress during the evolutionary process.

In the Traveling Salesman Problem shown in Figure 6, although LLM-LNS starts with a less favorable initial population
compared to EOH, it quickly demonstrates its advantage. Initially, EOH performs better, but it stagnates after the first 8
generations, showing little improvement afterward. Meanwhile, LLM-LNS continues to refine its solutions and steadily
decreases the objective score. This indicates that the dual-layer structure of LLM-LNS effectively prevents it from getting
trapped in local optima, maintaining a high level of exploration even in later generations. By the end of the evolutionary
process, LLM-LNS surpasses EOH, achieving better overall results.

In both problems, LLM-LNS’s ability to maintain diversity early in the process, combined with its strong convergence
in later stages, gives it a clear advantage over EOH. The dual-layer evolutionary strategy ensures that LLM-LNS avoids
stagnation, allowing for continuous improvement and ultimately leading to superior performance in solving combinatorial
optimization problems.

E.2. Convergence Analysis of Generations

In the Online Bin Packing Problem, we conducted 100 generations of iterative training using the proposed dual-layer strategy.
Figure 7 shows the convergence trends for both the training and testing scores over these 100 generations. The results

34

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of generations

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

Pe
rfo

rm
an

ce
 (o

bj
ec

tiv
e)

EOH
LLM-LNS

Figure 5. Evolutionary Progress of Heuristic Strategies in Online
Bin Packing

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of generations

310

311

312

313

314

315

316

317

Pe
rfo

rm
an

ce
 (o

bj
ec

tiv
e)

EOH
LLM-LNS

Figure 6. Evolutionary Progress of Heuristic Strategies in Travel-
ing Salesman Problem

0 20 40 60 80 100
Number of generations

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

Pe
rfo

rm
an

ce
 (o

bj
ec

tiv
e)

Train score
Test score

Figure 7. Convergence of Training and Testing Scores in 100-Generation of Online Bin Packing Problem.

provide interesting insights into the behavior of our model during the evolutionary process, particularly in terms of how the
training and testing losses evolve differently.

The training loss demonstrates a clear and consistent downward trend throughout the generations. Initially, the training
score starts relatively high, but quickly drops within the first few generations. This rapid initial improvement indicates that
the evolutionary algorithm is highly effective at optimizing the objective function within the training set. As the generations
progress, the training score continues to decrease, eventually converging to a very low value. This steady decline suggests
that the model is successfully adapting to the problem, continually refining its population and reducing the training objective.
The absence of significant fluctuations in later generations implies that the model has reached a stable state, effectively
minimizing the training loss with little variance.

On the other hand, the testing loss follows a somewhat different pattern. Initially, we observe a sharp decline in the testing
score, which mirrors the behavior of the training score. However, after this initial drop, the testing score does not continue to
improve as steadily as the training score. Instead, it stabilizes around a certain value and begins to exhibit small fluctuations.

35

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Table 7. Comparison of objective values on large-scale MILP instances across different methods using SCIP as optimizer. For each
instance, the best-performing objective value is highlighted in bold. The - symbol indicates that the method was unable to generate
samples for any instance within 30,000 seconds, while * indicates that the GNN&GBDT framework could not solve the MILP problem.

SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 16164.2 171655.6 27049.6 277255.3 22892.9 222076.8 691.7 6870.1
ACP 17743.4 192791.2 27432.9 281862.4 23058.0 216008.8 29879.2 7913.5

CL-LNS - - 31285.0 - 15000.0 - - -
Gurobi 17934.5 320240.4 28151.3 283555.8 21789.0 216591.3 32960.0 329642.4
SCIP 25191.2 385708.4 31275.4 491042.9 18649.9 9104.3 29974.7 168289.9

GNN&GBDT 16728.8 261174.0 27107.9 271777.2 22795.7 227006.4 * *
Light-MILPOPT 16147.2 166756.0 26956.8 269771.3 22963.6 230278.1 36125.5 357483.8
LLM-LNS(Ours) 15950.2 161732.8 26763.4 268825.5 23137.19 230682.8 36147.7 350468.7

This behavior suggests that while the model is able to generalize to a degree, it encounters more variability in the testing
data compared to the training data. These fluctuations could be attributed to the inherent complexity or diversity of the
unseen test instances, which the model has not been directly optimized for.

This phenomenon is reminiscent of the behavior observed during neural network training, where the training loss continues
to decrease as the model becomes more specialized in fitting the training data, while the testing loss reaches a plateau and
may exhibit some fluctuations. In this case, the testing loss reflects the model’s ability to generalize beyond the training set.
The fact that the testing score does not continue to decrease beyond a certain point suggests that the model may have reached
its limit in terms of generalization, possibly due to overfitting to the training data. However, the steady fluctuations in the
testing score indicate that the model remains adaptable and does not suffer from severe overfitting, as there is no significant
increase in the testing loss.

Overall, the divergence between the training and testing scores in later generations highlights the trade-off between
optimization and generalization. While the dual-layer evolutionary strategy is highly effective at optimizing the training set,
it must also balance the need for generalization to unseen data. The oscillation of the testing score around a stable value
suggests that the model is reasonably robust but may benefit from additional techniques to further enhance its generalization
performance, such as regularization or early stopping strategies in future iterations.

In summary, the convergence analysis of the 100-generation experiment reveals that while the training loss continues to
decrease, the testing loss stabilizes with slight fluctuations. This behavior is indicative of a model that has successfully
optimized for the training data while maintaining a reasonable level of generalization, akin to patterns observed in neural
network training processes.

F. Supplementary Experiments for LLM-LNS on Large-Scale MILP Problems
F.1. Performance of LLM-LNS Using SCIP as the Subsolver

In this supplementary set of experiments, we further evaluate the performance of LLM-LNS by incorporating SCIP as the
subsolver for large-scale MILP problems. The results, summarized in Table 7, provide a comprehensive comparison across
various methods using SCIP, offering deeper insights into the robustness and adaptability of LLM-LNS when faced with
different solver strategies.

As seen in the results, LLM-LNS continues to demonstrate superior performance across most instances, consistently
outperforming traditional LNS-based methods, learning-based frameworks such as GNN&GBDT, and even advanced solvers
like Gurobi and SCIP. The highlighted bold values indicate that LLM-LNS achieves the best objective values in the majority
of cases, reinforcing its scalability and effectiveness in large-scale MILP problems.

However, an interesting observation arises in the MIKS instances, where Light-MILPopt outperforms LLM-LNS. This can
be attributed to the unique challenges posed by MIKS in large-scale settings. Specifically, MIKS requires significantly
more resources for neighborhood searches as the problem size increases, compared to smaller-scale instances. SCIP, as an
optimizer, employs a different strategy for solving MIKS, which likely influences the performance of LLM-LNS when scaling
to larger instances. In smaller-scale problems, LLM-LNS may have learned more aggressive strategies that are effective
in those scenarios, but these strategies may lead to timeout issues in larger instances due to the increased computational
complexity and extended iteration times required for SCIP. As a result, the overall improvement in performance is limited in
these larger MIKS problems.

36

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Table 8. Comparison of standard deviation values on large-scale MILP instances across different methods using Gurobi as optimizer.
SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 37.5 258.1 88.4 243.0 72.1 243.0 98.2 584.0
ACP 38.4 1039.3 71.6 403.5 60.3 928.8 118.2 649.2

CL-LNS - - 617.7 - 277.5 - - -
Gurobi 28.8 143.4 77.2 287.3 48.8 147.5 69.0 225.7
SCIP 13823.6 298211.7 107.3 262.0 57.5 85.8 73.2 242313.7

GNN&GBDT 360.1 3800.4 93.8 950.4 119.3 4738.8 * *
Light-MILPOPT 1.0 145.7 79.4 209.4 52.1 133.1 41.7 272.5
LLM-LNS(Ours) 17.7 144.2 79.7 198.1 55.2 147.6 70.2 170.4

Table 9. Comparison of standard deviation values on large-scale MILP instances across different methods using SCIP as optimizer.
SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 18.8 250.3 79.0 234.8 72.1 401.7 18.1 36.2
ACP 30.8 6338.3 77.2 217.6 60.3 946.4 1829.7 943.8

CL-LNS - - 617.7 - 277.5 - - -
Gurobi 28.8 143.4 77.2 287.3 48.8 147.5 69.0 225.7
SCIP 13823.6 298211.7 107.3 262.0 57.5 85.8 73.2 242313.7

GNN&GBDT 51.4 5587.6 91.4 474.0 80.0 660.4 * *
Light-MILPOPT 37.7 693.4 77.3 216.9 51.6 151.7 80.0 1045.8
LLM-LNS(Ours) 20.4 169.5 82.6 188.7 54.3 75.9 68.7 1197.5

Despite these challenges, LLM-LNS still exhibits competitive performance in MIKS, managing to outperform many other
methods, including Gurobi and traditional LNS strategies. The occasional time-out or reduced efficiency in MIKS does
not overshadow the fact that LLM-LNS remains a robust and scalable solution across a wide range of large-scale MILP
problems.

In conclusion, these supplementary experiments highlight the adaptability and robustness of LLM-LNS when using
different subsolvers, including SCIP. Although challenges remain in specific problem instances like MIKS, LLM-LNS
consistently delivers superior performance across most problem types, demonstrating its ability to generalize across solvers
and problem scales. The results reinforce the notion that LLM-LNS effectively bridges the gap between traditional solvers
and learning-based methods, offering a scalable solution for large-scale combinatorial optimization problems.

F.2. Comparison of Standard Deviation Values

The comparison of standard deviation (SD) values across different methods using both Gurobi and SCIP as sub-optimizers
reveals several key insights into the stability of various approaches when solving large-scale MILP problems. Standard
deviation reflects the consistency of the solutions; lower values indicate that the method is more stable and produces less
variation in different runs.

As shown in Table 8, for the experiments using Gurobi, LLM-LNS consistently demonstrates low standard deviation
values across most instances, indicating that it not only achieves superior objective values but does so with high stability.
For example, in SC1, MVC2, and MIKS2, LLM-LNS has SD values of 17.7, 198.1, and 170.4, respectively, which are
comparable to or lower than other methods. Light-MILPopt also shows excellent stability in SC1 and MIKS1, with SD
values of 1.0 and 41.7, respectively, although its performance fluctuates more in other instances. In contrast, Random-LNS
and ACP exhibit higher variability, especially in SC2 and MIKS2, where ACP’s SD reaches as high as 1039.3 and 649.2,
respectively, suggesting a lack of robustness in these instances. Gurobi itself also shows moderate consistency, while
methods like CL-LNS fail to generate results for certain instances, indicating poor scalability for large problems.

As shown in Table 9, when SCIP is used as the optimizer, the trends remain somewhat similar. LLM-LNS continues to
show stable performance, particularly in SC1 and MVC2, with SD values of 20.4 and 188.7, respectively. However, SCIP
itself exhibits extremely high variability in some instances, particularly in SC2 and MIKS2, with SD values exceeding
298,000 and 242,000, respectively, which suggests that SCIP struggles with certain large-scale MILPs. This instability in
SCIP could be due to its aggressive strategies or solver configurations being less suited to these specific problem instances.
Light-MILPopt again demonstrates relatively stable performance in most instances, although its SD increases significantly
in some cases, such as MIKS2. GNN&GBDT and ACP also show considerable fluctuations, with ACP having an SD of
6338.3 in SC2, further highlighting its instability in large-scale settings.

In summary, LLM-LNS not only consistently outperforms other methods in terms of objective values but also maintains
strong stability across a wide range of instances, particularly when compared to methods like Random-LNS, ACP, and SCIP.

37

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Table 10. Comparison of error bar on large-scale MILP instances across different methods using Gurobi as optimizer.
SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 65.4 318.3 142.1 350.8 104.4 333.6 158.9 808.8
ACP 56.8 1787.2 120.6 574.8 83.6 1233.0 173.7 742.7

CL-LNS - - 892.6 - 406.3 - - -
Gurobi 39.7 252.7 119.6 349.0 64.7 183.1 103.8 319.7
SCIP 25238.2 533457.2 165.2 402.1 96.9 103.6 94.6 433463.8

GNN&GBDT 511.3 5504.8 148.7 1522.6 160.1 7887.9 * *
Light-MILPOPT 1.4 206.4 121.6 289.8 78.8 216.6 63.3 420.1
LLM-LNS(Ours) 27.9 187.9 125.4 289.8 82.2 199.3 111.7 259.2

Table 11. Comparison of error bar on large-scale MILP instances across different methods using SCIP as optimizer.
SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 33.2 362.1 123.3 368.2 104.4 531.3 26.1 51.5
ACP 46.1 10845.3 106.0 324.1 83.6 1371.4 3253.2 1055.6

CL-LNS - - 892.6 - 406.3 - - -
Gurobi 39.7 252.7 119.6 349.0 64.7 183.1 103.8 319.7
SCIP 25238.2 533457.2 165.2 402.1 96.9 103.6 94.6 433463.8

GNN&GBDT 72.6 7349.2 147.2 678.8 100.4 1076.6 * *
Light-MILPOPT 66.6 1223.3 118.5 305.6 79.1 239.4 124.2 1473.9
LLM-LNS(Ours) 31.7 231.2 131.9 266.7 68.9 94.7 105.9 1868.3

This robustness makes LLM-LNS a strong candidate for solving large-scale MILP problems effectively and consistently.

F.3. Comparison of Error Bar

The error bar comparison across different methods using Gurobi and SCIP as optimizers provides insights into the variability
and confidence in solutions across large-scale MILP instances. Error bars quantify the uncertainty or inconsistency in the
results, with smaller values indicating more reliable and consistent performance.

As shown in Table 10, for methods using Gurobi, LLM-LNS again demonstrates strong reliability with relatively small error
bars across most instances. For example, in SC1, MVC2, and MIKS2, LLM-LNS has error bars of 27.9, 289.8, and 259.2,
respectively. These values are noticeably smaller than those for methods like Random-LNS and ACP, which exhibit much
larger error bars, reflecting greater instability. Light-MILPopt also shows excellent performance with particularly low error
bars in SC1 (1.4) and MIKS1 (63.3), but its error increases significantly in some other instances. Notably, SCIP exhibits
extremely large error bars in several instances, such as SC2 and MIKS2, where the error bars exceed 533,000 and 433,000,
respectively, indicating significant inconsistency in its performance on these large-scale problems. GNN&GBDT also shows
high error bars, suggesting that its performance is less reliable across different runs.

As shown in Table 11, when using SCIP as the optimizer, LLM-LNS continues to demonstrate relatively low error bars,
particularly in SC1, MVC2, and MIKS1, where the values are 31.7, 266.7, and 105.9, respectively. These results are
significantly more stable compared to methods like ACP and GNN&GBDT, which show very high error bars in instances
like SC2 (error bar of 10845.3 for ACP) and MIKS2. SCIP itself again shows extremely high error bars for instances such as
SC2 and MIKS2, further highlighting its instability in handling large-scale problems. Light-MILPopt performs well in some
instances but also shows considerable variation in others, with error bars as high as 1473.9 in MIKS2.

Overall, LLM-LNS consistently demonstrates lower error bars across both optimizers, Gurobi and SCIP, indicating that
it provides more reliable and consistent solutions for large-scale MILP problems. This makes it a strong candidate for
scenarios where both solution quality and stability are critical.

F.4. Convergence Analysis

In this section, we analyze the convergence performance of our proposed approach, our proposed LLM-LNS, in comparison
to several baseline methods for solving large-scale MILP problems, including Random-LNS, ACP, Gurobi, GNN&GBDT,
and Light-MILPOPT. The experimental results are shown in Figures 8 through 11, which include instances of four different
problem types: Set Covering (SC), Maximum Vertex Covering (MVC), Independent Set (IS), and Mixed Integer Knapsack
Set (MIKS). We evaluate both medium-scale and large-scale instances using two solvers as sub-optimizer, Gurobi and SCIP.

The analysis of the convergence curves reveals several important observations:

38

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

0 500 1000 1500 2000

Time

105

2 × 104

3 × 104

4 × 104

6 × 104

Ob
je

ct
iv

e
Random-LNS
ACP
Gurobi
GNN&GBDT
Light-MILPOPT
LLM-LNS(Ours)

0 500 1000 1500 2000

Time

3 × 104

4 × 104

5 × 104

Ob
je

ct
iv

e

Random-LNS
ACP
CL-LNS
Gurobi
GNN&GBDT
Light-MILPOPT
LLM-LNS(Ours)

0 500 1000 1500 2000

Time

1.2 × 104

1.4 × 104

1.6 × 104

1.8 × 104

2 × 104

2.2 × 104

Ob
je

ct
iv

e

Random-LNS
ACP
CL-LNS
Gurobi
GNN&GBDT
Light-MILPOPT
LLM-LNS(Ours)

0 250 500 750 1000 1250 1500 1750 2000

Time

2 × 104

3 × 104

Ob
je

ct
iv

e

Random-LNS
ACP
Gurobi
Light-MILPOPT
LLM-LNS(Ours)

Figure 8. Time-objective value graphs of medium-scale problems using Gurobi: SC1, MVC1, IS1, and MIKS1.

0 1000 2000 3000 4000 5000 6000 7000 8000

Time

106

2 × 105

3 × 105

4 × 105

6 × 105

Ob
je

ct
iv

e

Random-LNS
ACP
Gurobi
GNN&GBDT
Light-MILPOPT
LLM-LNS(Ours)

0 2000 4000 6000 8000

Time

3 × 105

4 × 105

5 × 105

Ob
je

ct
iv

e

Random-LNS
ACP
Gurobi
GNN&GBDT
Light-MILPOPT
LLM-LNS(Ours)

0 2000 4000 6000 8000

Time

105

2 × 105

Ob
je

ct
iv

e

Random-LNS
ACP
Gurobi
GNN&GBDT
Light-MILPOPT
LLM-LNS(Ours)

0 2000 4000 6000 8000 10000 12000

Time

2 × 105

3 × 105

Ob
je

ct
iv

e

Random-LNS
ACP
Gurobi
Light-MILPOPT
LLM-LNS(Ours)

Figure 9. Time-objective value graphs of large-scale problems using Gurobi: SC2, MVC2, IS2, and MIKS2.

0 250 500 750 1000 1250 1500 1750 2000

Time

105

2 × 104

3 × 104

4 × 104

6 × 104

Ob
je

ct
iv

e

Random-LNS
ACP
SCIP
GNN&GBDT
Light-MILPOPT
LLM-LNS(Ours)

0 500 1000 1500 2000

Time

3 × 104

4 × 104

5 × 104

Ob
je

ct
iv

e

Random-LNS
ACP
CL-LNS
SCIP
GNN&GBDT
Light-MILPOPT
LLM-LNS(Ours)

0 500 1000 1500 2000

Time

102

103

104

Ob
je

ct
iv

e

Random-LNS
ACP
CL-LNS
SCIP
GNN&GBDT
Light-MILPOPT
LLM-LNS(Ours)

0 250 500 750 1000 1250 1500 1750 2000

Time

103

104

Ob
je

ct
iv

e Random-LNS
ACP
SCIP
Light-MILPOPT
LLM-LNS(Ours)

Figure 10. Time-objective value graphs of medium-scale problems using SCIP: SC1, MVC1, IS1, and MIKS1.

0 1000 2000 3000 4000 5000 6000 7000 8000

Time

106

2 × 105

3 × 105

4 × 105

6 × 105

Ob
je

ct
iv

e Random-LNS
ACP
SCIP
GNN&GBDT
Light-MILPOPT
LLM-LNS(Ours)

0 1000 2000 3000 4000 5000 6000 7000 8000

Time

3 × 105

4 × 105

5 × 105

Ob
je

ct
iv

e Random-LNS
ACP
SCIP
GNN&GBDT
Light-MILPOPT
LLM-LNS(Ours)

0 1000 2000 3000 4000 5000 6000 7000 8000

Time

103

104

105

Ob
je

ct
iv

e

Random-LNS
ACP
SCIP
GNN&GBDT
Light-MILPOPT
LLM-LNS(Ours)

0 2000 4000 6000 8000 10000 12000

Time

104

105

Ob
je

ct
iv

e

Random-LNS
ACP
SCIP
Light-MILPOPT
LLM-LNS(Ours)

Figure 11. Time-objective value graphs of large-scale problems using SCIP: SC2, MVC2, IS2, and MIKS2.

• Faster Initial Convergence: For nearly all problem instances, the LLM-LNS approach demonstrates a significantly
faster initial convergence compared to the baseline methods. The objective value drops sharply within the first few time
steps, indicating that our method can quickly identify high-quality solutions. In contrast, methods like Random-LNS
and ACP exhibit slower initial convergence, requiring more time to achieve similar reductions in the objective value.

• Superior Final Objective Value: Across both medium- and large-scale problem instances, our proposed LLM-LNS
consistently achieves lower final objective values compared to the other methods. This is particularly evident in
the large-scale instances (e.g., SC2, MVC2, IS2, and MIKS2), where the superiority of our method becomes more
pronounced. While methods such as Random-LNS and ACP plateau early, often with suboptimal solutions, our
proposed LLM-LNS continues to improve the solution even after other methods have stagnated.

• Stable Convergence Behavior: The convergence curves of our proposed LLM-LNS exhibit smooth and gradual
decreases in the objective value, indicating stable optimization behavior. In contrast, some of the baseline methods,

39

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Table 12. Performance comparison of LLM-LNS with additional LNS methods on MILP tasks. Results are reported as objective values
(lower is better).

Method SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 16140.6 169417.5 27031.4 276467.5 22892.9 223748.6 36011.0 351964.2
ACP 17672.1 182359.4 26877.2 274013.3 23058.0 226498.2 34190.8 332235.6
Least-Integral 22825.3 228188.0 29818.0 306567.1 20106.9 195782.2 27196.9 241663.4
Most-Integral 50818.2 519685.5 35340.5 327742.4 14584.4 157686.5 31235.3 314621.6
RINS 26116.2 261176.3 26851.3 306215.6 23069.7 201178.1 30049.1 299953.4
LLM-LNS (Ours) 15802.7 158878.9 26725.3 268033.7 23169.3 231636.9 36479.8 363749.5

especially Random-LNS and GNN&GBDT, show more erratic convergence patterns, characterized by large and sudden
jumps in the objective value. This suggests that our method is more robust and avoids the instability that can arise in
heuristic-based search strategies.

• Scalability: The performance gap between our proposed LLM-LNS and the baseline methods becomes even more
pronounced in large-scale problem instances. For example, in the large-scale MIKS2 and SC2 instances, our proposed
LLM-LNS outperforms all other methods by a significant margin, converging to a much lower objective value within a
shorter time frame. This demonstrates the scalability of our method, as it remains effective even as the problem size
increases, whereas the performance of other methods, such as Light-MILPOPT and ACP, degrades considerably.

• Comparison with Exact Solvers: When compared to the exact solver Gurobi, our proposed LLM-LNS shows
comparable or even superior performance, particularly in terms of convergence speed. While Gurobi tends to find
solutions that improve gradually over time, our proposed LLM-LNS reaches competitive solutions much faster, which
is crucial in time-constrained scenarios. This highlights the practical advantage of our method in scenarios where
computational resources or time are limited.

In summary, the experimental results demonstrate that LLM-LNS has clear advantages in terms of convergence speed,
final solution quality, and robustness compared to both heuristic-based and exact optimization methods. Our approach
is particularly well-suited for large-scale MILP problems, where it consistently outperforms the baseline methods by a
significant margin.

F.5. Baseline Comparisons with Additional LNS Methods

To evaluate the effectiveness of the proposed LLM-LNS framework, we conducted comprehensive comparisons with several
LNS methods that utilize different heuristic scoring functions. Specifically, we incorporated Least-Integral (Nair et al.,
2020), Most-Integral (Berthold, 2006), and RINS (Danna et al., 2005), which are classical scoring functions commonly
used in LNS frameworks, alongside the state-of-the-art methods ACP (Ye et al., 2023a) and classic method Random-LNS
(Song et al., 2020).

The results, summarized in Table 12, demonstrate that our proposed LLM-LNS consistently outperforms all baseline methods
across a variety of MILP tasks, including Set Covering (SC), Maximum Vertex Cover (MVC), Maximum Independent Set
(MIS), and Mixed Integer Knapsack Set (MIKS). This advantage highlights the superior ability of LLM-LNS to balance
exploration diversity and solution convergence.

From the results in Table 12, several key observations can be made. Among the classical LNS methods, RINS generally
achieves better results compared to Least-Integral and Most-Integral, as it leverages neighborhood-based improvements
combined with partial solutions. However, these methods still fall significantly behind ACP, Random-LNS, and our proposed
LLM-LNS, particularly on larger problem instances such as SC2, MVC2, and MIKS2. For example, on the SC2 problem,
RINS achieves an objective value of 261176.3, compared to 158878.9 for LLM-LNS, highlighting the limitations of
traditional scoring functions in handling large-scale MILP problems.

ACP and Random-LNS perform much better than the classical scoring-based methods due to their adaptiveness and ability
to leverage heuristic diversity. However, even these state-of-the-art baselines are consistently outperformed by LLM-LNS
across all tasks. For instance:

• On the SC1 problem, LLM-LNS achieves an objective value of 15802.7, compared to 16140.6 for Random-LNS and
17672.1 for ACP.

40

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

• On the MIS2 problem, LLM-LNS achieves 231636.9, compared to 223748.6 for Random-LNS and 226498.2 for ACP.

The clear performance advantage of LLM-LNS can be attributed to its dual-layer architecture, which combines prompt
evolution and heuristic strategy optimization to balance search diversity and convergence. The outer layer generates diverse
prompts that broaden the search space, avoiding premature convergence to suboptimal solutions. Meanwhile, the inner layer
refines heuristic strategies and accelerates convergence by leveraging the evolved prompts. This interaction ensures that
LLM-LNS adapts effectively to different problem scales and complexities.

Moreover, the results highlight the scalability of LLM-LNS. While ACP and Random-LNS demonstrate reasonable
performance on smaller tasks, their effectiveness diminishes as the problem size increases. In contrast, LLM-LNS maintains
its performance advantage across both small-scale (e.g., SC1) and large-scale (e.g., SC2) tasks, showcasing its robustness and
adaptability. This scalability is directly enabled by the dynamic feedback loop between the two layers, ensuring continuous
refinement of both the search space (via prompt evolution) and the solution strategies (via heuristic evolution).

In summary, the experimental results validate the effectiveness of LLM-LNS over both classical and state-of-the-art LNS
baselines. Its dual-layer mechanism provides superior generalization and adaptability, making it a powerful framework for
solving diverse and large-scale MILP problems.

G. Ablation Study of the Dual-Layer Self-evolutionary LLM Agent
This section presents the results of the ablation study conducted to analyze the contributions of the dual-layer framework
components: Prompt Evolution (outer layer) and Directional Evolution (inner layer). The study evaluates the effects of
removing or isolating each component on the overall performance of the framework. Specifically, we compare the following
variations:

• Base (EOH): The baseline Evolution of Heuristic (EOH) method without any modifications.

• Base + Dual Layer: The EOH method with the dual-layer structure (Prompt Evolution in the outer layer).

• Base + Differential: The EOH method with the Directional Evolution mechanism (inner layer).

• Ours: The complete dual-layer framework incorporating both Prompt Evolution and Directional Evolution.

We evaluate these variations on datasets of different scales to observe their impact on both small-scale and large-scale prob-
lems. The datasets include 1k C100, 5k C100, 10k C100, 1k C500, 5k C500, and 10k C500, representing combinatorial
optimization instances of varying sizes. The results are summarized in Table 13.

Key Observations:

• Impact of Prompt Evolution: Adding the dual-layer structure (Base + Dual Layer) significantly improves performance
on large-scale problems, as the outer layer enhances the diversity of the search process through prompt optimization.
This is particularly evident in the 10k C500 dataset, where the error rate decreases from 0.97% (Base) to 0.39%.

• Impact of Directional Evolution: Incorporating the differential evolution mechanism (Base + Differential) improves
performance on small-scale problems by accelerating convergence through more effective crossover and mutation
strategies. For example, on the 1k C100 dataset, the error rate decreases from 4.48% (Base) to 2.64%.

• Synergy of Both Components: The complete dual-layer framework (Ours) achieves the most balanced improvements
across datasets, particularly for larger-scale problems. However, on small-scale datasets like 1k C100, the additional
exploration introduced by Prompt Evolution can slightly increase the error rate compared to Base + Differential (from
2.64% to 3.58%).

These results validate the complementary roles of Prompt Evolution and Directional Evolution in enhancing both diversity
and convergence, demonstrating the effectiveness of the dual-layer framework for solving combinatorial optimization
problems of varying scales.

41

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Table 13. Ablation study results on various datasets. The table compares the baseline (EOH), the addition of the dual-layer structure
(Prompt Evolution, outer layer), the addition of the differential evolution mechanism (Directional Evolution, inner layer), and the complete
method (Ours). The best results for each dataset are highlighted in bold.

1k C100 5k C100 10k C100 1k C500 5k C500 10k C500
Base (EOH) 4.48% 0.88% 0.83% 4.32% 1.06% 0.97%
Base + Dual Layer 3.78% 0.93% 0.40% 3.91% 0.92% 0.39%
Base + Differential 2.64% 0.94% 0.69% 2.54% 0.94% 0.70%
Ours 3.58% 0.85% 0.41% 3.67% 0.82% 0.42%

Table 14. Stability evaluation of multiple runs on Bin Packing tasks. Results are reported as error rates (%).
Method 1k C100 5k C100 10k C100 1k C500 5k C500 10k C500 Avg
EOH Run 1 4.48% 0.88% 0.83% 4.32% 1.06% 0.97% 2.09%
EOH Run 2 7.56% 3.33% 2.62% 7.22% 3.19% 2.50% 4.07%
EOH Run 3 4.18% 3.24% 3.35% 3.79% 3.12% 3.21% 3.48%
EOH Avg 5.41% 2.48% 2.27% 5.11% 2.46% 2.23% 3.33%
Ours Run 1 3.58% 0.85% 0.41% 3.67% 0.82% 0.42% 1.63%
Ours Run 2 2.69% 0.86% 0.54% 2.54% 0.87% 0.52% 1.34%
Ours Run 3 2.64% 0.94% 0.69% 2.54% 0.94% 0.70% 1.41%
Ours Avg 2.97%↑ 0.88%↑ 0.55%↑ 2.92%↑ 0.88%↑ 0.55%↑ 1.46%↑

Table 15. Impact of population size on Bin Packing tasks. Results are reported as error rates (%).
Method 1k C100 5k C100 10k C100 1k C500 5k C500 10k C500 Avg
EOH (20) 4.48% 0.88% 0.83% 4.32% 1.06% 0.97% 2.09%
Ours (4) 3.23% 0.80% 0.43% 3.96% 1.27% 0.89% 1.76%↑
Ours (20) 3.58% 0.85% 0.41% 3.67% 0.82% 0.42% 1.63%↑

H. Additional Validation Experiments
H.1. Stability Evaluation of Multiple Runs

To evaluate the stability and consistency of our proposed method, we conducted repeated experiments on the Bin Packing
task. Specifically, we ran three independent trials for both EoH and our method, and the results are summarized in Table 14.

In our proposed method, the seed heuristic strategies are not hand-crafted. Instead, they are automatically generated by the
large language model , which introduces some degree of randomness between runs. Despite this randomness, our method
consistently outperforms EoH in both effectiveness and stability. For example, on the 1k C100, 10k C100, and 10k C500
test sets, the variance in our results is small, and the average performance is consistently better than EoH.

These results demonstrate that our dual-layer framework, combined with the differential evolution mechanism, effectively
enhances both consistency and generalization. Moreover, the smaller variance in our method’s results highlights its
robustness against the randomness introduced by the seed generation process.

H.2. Impact of Population Size on Experimental Outcomes

To further analyze the impact of population size on experimental outcomes, we conducted additional experiments on the Bin
Packing task, testing our method with a reduced population size of 4. The results are summarized in Table 15.

As shown in the table, although the average performance slightly decreases with a smaller population size, our method still
outperforms EoH (population size 20). For example, the average error of our method with a population size of 4 is 1.76%,
which is better than EoH’s 2.09%. This demonstrates that our dual-layer framework and differential evolution mechanism
exhibit significant robustness and effectiveness, maintaining superior performance even with smaller populations.

H.3. Performance Comparison with EoH on LNS Tasks

In this subsection, we present a comparison between the proposed LLM-LNS framework and existing method EoH, on
large-scale combinatorial optimization tasks. While EoH focus on discovering strategies for combinatorial optimization
problems, our LLM-LNS framework is specifically designed to address the challenges of large-scale MILP problems through
its dual-layer self-evolutionary mechanism.

We evaluated the methods on the Set Covering (SC) problem, a minimization task, using two large-scale datasets:

42

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Table 16. Performance comparison on the SC1 dataset (200,000 variables and constraints). Results are reported as objective values (lower
is better).

Method Instance1 Instance2 Instance3 Instance4 Avg
EOH-LNS 16114.27 16073.72 16046.83 16074.26 16070.15
LLM-LNS (Ours) 15830.61↑ 15801.19↑ 15800.17↑ 15800.17↑ 15802.68↑

Table 17. Performance comparison on the SC2 dataset (2,000,000 variables and constraints). Results are reported as objective values
(lower is better).

Method Instance1 Instance2 Instance3 Instance4 Avg
EOH-LNS 175358.59 174339.78 174782.76 174026.33 174978.20
LLM-LNS (Ours) 158901.57↑ 158953.57↑ 158712.64↑ 158759.90↑ 158831.42↑

• SC1: Instances with 200,000 decision variables and constraints.

• SC2: Instances with 2,000,000 decision variables and constraints.

EOH-LNS was selected as the primary baseline for comparison because it generally outperforms FunSearch on combinatorial
optimization tasks, as reported in prior literature. This ensures a fair and representative evaluation of our framework. The
experimental results are summarized in Tables 16 and 17, where LLM-LNS consistently outperforms EOH-LNS across all
test instances. Specifically:

• On the SC1 dataset (200,000 variables and constraints), LLM-LNS achieves an average improvement of 1.67% over
EOH-LNS.

• On the SC2 dataset (2,000,000 variables and constraints), the improvement is more pronounced, reaching 9.20% on
average.

These results demonstrate the superior capability of LLM-LNS in solving large-scale optimization tasks, particularly in
terms of solution quality. The improvements can be attributed to the dual-layer architecture, which effectively balances
search diversity and solution convergence.

The results demonstrate that LLM-LNS consistently outperforms EOH-LNS, particularly on large-scale instances. This
improvement is enabled by the dual-layer self-evolutionary mechanism, which dynamically balances exploration and
exploitation:

• The outer layer generates diverse prompts to broaden search space coverage, preventing premature convergence to
suboptimal solutions.

• The inner layer refines heuristic strategies and accelerates convergence by leveraging the evolved prompts, ensuring
high-quality solutions.

This collaborative interaction between the two layers forms a dynamic feedback loop, enabling continuous learning and
adaptation. While EOH-LNS demonstrates strong performance on small-scale combinatorial optimization tasks, its inability
to balance exploration and convergence limits its scalability to larger and more complex problems, as evidenced by the
significant performance gap on SC2.

H.4. Comprehensive Evaluation on TSPLib Instances

We evaluated our method on all 87 instances from the TSPLib benchmark to comprehensively assess its performance. As
shown in Table 18, our method achieves better results than the EOH baseline on 43 instances, matches EOH on 39 instances,
and performs slightly worse on only 5 instances. This demonstrates that our method is not only robust but also generalizes
effectively across diverse TSP instances of varying sizes and complexities. On average, the gap from the best-known
solutions is reduced from 6.93% for EOH to 6.25% for our method, representing an overall improvement of approximately
10%. These results highlight the superiority of our approach in minimizing the gap to optimality across a wide range of
benchmark instances.

43

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Table 18. Performance comparison between EOH and our method on TSPLib instances. Results are reported as the gap from the
best-known solutions (%). Bold values indicate the better performance, with red for EOH and blue for ours. Green indicates identical
performance.

Instance EOH Gap Ours Gap Instance EOH Gap Ours Gap Instance EOH Gap Ours Gap
pr439 2.80% 1.97% pla7397 4.28% 4.28% gr96 0.00% 0.00%
rd100 0.01% 0.01% rl5934 4.25% 4.25% pcb442 1.15% 0.96%
u2319 2.34% 2.34% gil262 0.59% 0.48% pcb3038 4.13% 4.13%
lin105 0.03% 0.03% fl417 0.80% 0.77% tsp225 1.39% 0.00%
fl1400 7.66% 2.28% nrw1379 3.82% 2.99% d2103 1.88% 1.88%
kroA150 0.00% 0.00% pcb1173 5.07% 2.91% d198 0.40% 0.29%
fl1577 5.03% 5.03% gr666 2.17% 0.00% ch130 0.01% 0.70%
kroB100 0.00% 0.00% u1060 4.04% 1.54% berlin52 0.03% 0.03%
eil51 0.67% 0.67% rl1304 6.52% 2.40% u2152 4.60% 4.60%
ulysses16 0.00% 0.00% u724 2.85% 1.13% kroD100 0.00% 0.00%
linhp318 3.22% 2.77% pr299 0.61% 0.11% rd400 2.23% 0.82%
gr202 0.54% 0.00% vm1084 3.64% 1.74% rat575 3.11% 1.88%
d1655 5.79% 5.79% ch150 0.37% 0.04% pr107 0.00% 0.00%
kroB200 0.23% 0.44% a280 2.06% 0.34% d1291 6.53% 2.54%
gr229 1.15% 0.00% pr264 0.00% 0.00% pr76 0.00% 0.00%
d493 2.82% 1.27% dsj1000 4.28% 1.06% pr136 0.09% 0.00%
rat195 0.99% 1.37% att532 220.07% 215.43% kroA100 0.02% 0.02%
ali535 0.67% 0.00% ulysses22 0.00% 0.00% kroB150 0.08% 0.01%
bier127 0.26% 0.01% kroC100 0.01% 0.01% eil76 1.53% 1.18%
pr124 0.00% 0.00% rl1323 4.35% 1.93% p654 0.75% 0.05%
gr431 1.93% 0.00% rl1889 4.08% 4.08% d657 2.85% 1.02%
eil101 2.59% 2.08% fnl4461 4.63% 4.63% pr2392 4.19% 4.19%
rat783 4.48% 2.18% ts225 0.00% 0.00% u1432 4.84% 3.02%
u1817 4.62% 4.62% lin318 1.46% 1.09% rl5915 3.96% 3.96%
att48 215.43% 215.43% st70 0.31% 0.31% rat99 0.68% 0.68%
fl3795 4.38% 4.38% burma14 0.00% 0.00% u159 0.00% 0.00%
kroA200 0.25% 0.62% u574 2.85% 1.38% pr1002 3.27% 1.16%
pr152 0.00% 0.19% gr137 0.11% 0.00% pr226 0.10% 0.06%
vm1748 4.33% 4.33% pr144 0.00% 0.00% kroE100 0.00% 0.00%

The improvements are particularly evident on larger and more challenging instances. For example, on fl1400, our method
reduces the gap from 7.66% (EOH) to 2.28%, showcasing its scalability and effectiveness in handling complex optimization
problems. Similarly, on the pcb1173 instance, the gap decreases from 5.07% (EOH) to 2.91%, validating the ability of
our method to outperform EOH on instances with higher complexity. Even on medium-sized instances such as pr439, our
method demonstrates significant improvements, reducing the gap from 2.80

In addition to these improvements, we also observe instances where both methods achieve comparable performance. For
example, on smaller problems such as eil51, ulysses16, and kroD100, both EOH and our method report identical gaps,
demonstrating that our method maintains competitive performance even on instances where EOH performs optimally.
Furthermore, the results highlight the consistency of our approach across various instance scales, from small to large.

There are only a few exceptions where EOH slightly outperforms our method. For example, on ch130, EOH achieves a gap
of 0.01%, whereas our method reports 0.70%. However, these cases are rare, occurring in only 5 instances out of 87, and do
not substantially impact the overall trend of improvement demonstrated by our method.

Overall, our method exhibits strong generalization across the TSPLib benchmark and consistently achieves lower average
gaps compared to EOH. The significant improvements on larger and more complex instances further underscore the scalability
and effectiveness of our dual-layer architecture. By balancing exploration and exploitation, our method demonstrates its
capability to address the challenges posed by diverse and large-scale optimization problems, making it a reliable alternative
to state-of-the-art methods such as EOH.

H.5. Impact of the Backbone Algorithm on Performance

This section addresses whether the proposed method is sensitive to the choice of the backbone algorithm. Our study focuses
on solving large-scale MILP problems, where heuristic methods play a critical role due to the complexity of the problem
space. Among these methods, LNS has demonstrated significant advantages in scalability and efficiency, especially for
large-scale problems. In this context, we selected ALNS (Adaptive Large Neighborhood Search) as the backbone of our
framework. ALNS, as a variant of LNS, dynamically adjusts neighborhood sizes to balance exploration and exploitation,
making it more effective than non-adaptive LNS methods, which often struggle with local optima in large-scale problems.

To validate this choice, we conducted experiments replacing ALNS with non-adaptive LNS in our framework. The results,

44

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Table 19. Comparison of ALNS (adaptive) and non-adaptive LNS as the backbone algorithm in our framework. Results are reported as
objective values (lower is better).

Method SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Without Adaptive 15957.0 160510.8 26850.3 269701.8 23073.2 230497.4 36330.8 362496.3
LLM-LNS (Ours) 15802.7 158878.9 26725.3 268033.7 23169.3 231636.9 36479.8 363749.5

Table 20. Performance comparison of LLM-LNS using different LLMs on the 10k C500 dataset. Results are reported as the gap from the
best-known solutions (%). Lower values indicate better performance.

LLM Model Run1 Run2 Run3 Avg.
gpt-4o-mini 0.42% 0.52% 0.70% 0.55%
gpt-4o 0.33% 0.58% 0.39% 0.43%
deepseek 0.83% 0.52% 0.38% 0.58%
gemini-1.5-pro 0.63% 1.91% 0.53% 1.02%
llama-3.1-70B 2.87% 3.98% 0.88% 2.58%

summarized in Table 19, show that ALNS consistently outperforms non-adaptive LNS across all tested MILP instances. For
example, on the SC1 problem, the objective value achieved by ALNS is 15802.7, compared to 15957.0 for non-adaptive
LNS. Similarly, on the MVC2 problem, ALNS achieves an objective value of 268033.7, whereas non-adaptive LNS reports
269701.8. These results highlight the critical role of adaptive mechanisms in ALNS for leveraging the full potential of our
framework.

H.6. Robustness of LLM-LNS with Different LLMs

We conducted experiments to evaluate the robustness of the LLM-LNS framework across various large language models,
including GPT-4o, GPT-4o-mini, DeepSeek, Gemini-1.5-Pro, and Llama-3.1-70B. These experiments were performed on
the 10k C500 dataset, and the results are summarized in Table 20.

The results demonstrate that the dual-layer structure of LLM-LNS adapts effectively to different LLMs, achieving reasonable
performance across all tested models. GPT-4o consistently achieved the best results, showing the lowest average gap of
0.43%, followed by GPT-4o-mini (0.55%) and DeepSeek (0.58%). Gemini-1.5-Pro and Llama-3.1-70B exhibited relatively
weaker performance, with average gaps of 1.02% and 2.58%, respectively. These variations are likely due to differences in
model architecture and pretraining quality. Nonetheless, the framework demonstrated strong general robustness, with all
models performing adequately within the LLM-LNS structure.

These findings underscore the necessity of combining LLMs with a structured optimization framework to fully leverage
their potential.

H.7. Comparison with ReEvo

We conducted additional experiments to compare our proposed method with ReEvo (Ye et al., 2024), a contemporary
hyper-heuristic framework that combines reflection mechanisms and evolutionary search. Both methods were evaluated on
the Bin Packing problem using the lightweight language model GPT-4o-mini, with the number of iterations fixed at 20 and
the population size set to 20.

In the experiments, ReEvo exhibited poor stability when using GPT-4o-mini. Out of 138 attempts, only 3 runs successfully
completed all 20 iterations, while the remaining runs were prematurely terminated due to invalid offspring generated during
certain generations. Upon analysis, we identified severe hallucination issues in ReEvo. Although its reflection mechanism
was effective in capturing evolutionary directions through pairwise comparisons of parent strategies stored in short-term
memory, any errors in reflection led to a rapid decline in the quality of subsequent offspring. For example, ReEvo frequently
attempted to call nonexistent libraries or use invalid function parameters, resulting in invalid heuristic algorithms and the
termination of the evolutionary process.

In contrast, our method adopts a differential memory mechanism that generalizes beyond pairwise comparisons. Rather than
relying on two parent strategies, our approach analyzes differences across multiple parent solutions and their corresponding
objective values. This richer context enables the language model to conduct contrastive learning, allowing it to internalize
more robust and directional evolutionary signals. In addition, differential memory is embedded within a dual-layer agent
architecture, where the upper-layer agent optimizes prompt structures while the lower-layer agent generates new strategies.
This coordinated design facilitates deeper interaction between memory-guided learning and heuristic generation, significantly

45

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

improving both performance and stability.

To ensure a fair comparison, we selected the 3 successful ReEvo runs and compared their performance with our method.
Under the default setting, ReEvo utilized an expert seed algorithm to initialize its population. However, after 20 iterations,
the best-performing algorithm in ReEvo remained its initial expert seed algorithm, failing to generate superior heuristic
strategies. Furthermore, when the expert seed algorithm was removed, ReEvo’s solution quality deteriorated further, with its
average performance on the Bin Packing problem falling significantly behind our method.

The experimental results are shown in Table 21. Our method demonstrates substantial advantages under the same settings.
In terms of solution quality, our approach consistently outperformed ReEvo across all test instances of the Bin Packing
problem, with even greater advantages in scenarios without expert seed algorithms. Additionally, our method exhibited
significant stability advantages, consistently completing 20 iterations and generating high-quality heuristic strategies without
being affected by the hallucination issues observed in ReEvo. The collaborative optimization between the agents in our
dual-layer architecture effectively balances search diversity and efficiency, delivering superior performance and higher
robustness.

Table 21. Performance comparison between ReEvo and our proposed method on the Bin Packing problem. Average percentages represent
the error rates.

1k C100 5k C100 10k C100 1k C500 5k C500 10k C500 Avg

ReEvo Run1 3.78% 0.80% 0.33% 6.75% 1.47% 0.74% 2.31%
ReEvo Run2 3.78% 0.80% 0.33% 6.75% 1.47% 0.74% 2.31%
ReEvo Run3 3.78% 0.80% 0.33% 6.75% 1.47% 0.74% 2.31%
ReEvo Avg 3.78% 0.80% 0.33% 6.75% 1.47% 0.74% 2.31%
ReEvo-no-expert Run 1 4.87% 4.08% 4.09% 4.50% 3.91% 3.95% 4.23%
ReEvo-no-expert Run 2 4.87% 4.08% 4.11% 4.50% 3.90% 3.97% 4.24%
ReEvo-no-expert Run 3 4.87% 4.08% 4.09% 4.50% 3.91% 3.95% 4.23%
ReEvo-no-expert Avg 4.87% 4.08% 4.10% 4.50% 3.91% 3.96% 4.24%
Ours Run1 3.58% 0.85% 0.41% 3.67% 0.82% 0.42% 1.63%
Ours Run2 2.69% 0.86% 0.54% 2.54% 0.87% 0.52% 1.34%
Ours Run3 2.64% 0.94% 0.69% 2.54% 0.94% 0.70% 1.41%
Ours Avg 2.97%↑ 0.88%↑ 0.55%↑ 2.92%↑ 0.88%↑ 0.55%↑ 1.46%↑

In conclusion, our method not only outperforms ReEvo in terms of experimental results but also demonstrates significant
advantages in stability and robustness. By integrating differential memory into a dual-agent framework, our approach goes
beyond short-term comparisons and enables deeper, contrastive learning across diverse search trajectories. This innovation
opens up a new avenue for applying LNS to large-scale optimization problems, surpassing existing state-of-the-art solutions
in both quality and reliability.

H.8. Performance Comparison with EoH Using Different LLMs

To evaluate the adaptability and effectiveness of our proposed method across different language models, we conducted
experiments comparing our framework with EoH on the 10k C500 dataset using three LLMs: GPT-4o-mini, GPT-4o, and
DeepSeek. EoH was chosen as the baseline based on existing literature, which suggests it generally outperforms FunSearch
on combinatorial optimization tasks.

The results of the experiments are summarized in Table 22. Our method consistently outperformed EoH across all tested
LLMs. Notably, our approach demonstrated significant advantages when using GPT-4o-mini and DeepSeek. For instance,
with GPT-4o-mini, our framework achieved an average performance of 0.55%, which is approximately four times better
than EoH’s 2.23%. Similarly, under DeepSeek, our method achieved an average performance of 0.58%, significantly
outperforming EoH’s 1.77%.

One particularly interesting observation is the poor convergence of EoH under DeepSeek. In both Run2 and Run3,
EoH’s fitness function values during evolution were much lower than those achieved by our framework. This highlights
the limitations of EoH’s framework in adapting to certain LLMs, where errors in evolution can significantly impact its
performance. In contrast, our dual-layer architecture, combined with differential evolution, demonstrates robust and stable
performance across all tested LLMs.

These findings underscore the superiority of our approach in leveraging the capabilities of different LLMs for combinatorial
optimization tasks. The dual-layer structure not only enhances adaptability but also ensures consistent performance,
addressing the convergence and stability issues observed in EoH. We believe these results further validate the effectiveness

46

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Table 22. Performance comparison between EoH and our proposed method on the 10k C500 dataset using different LLMs. Average
percentages represent the error rates.

10k C500 Run1 Run2 Run3 Avg.

gpt-4o-mini (EOH) 0.97% 2.50% 3.21% 2.23%
gpt-4o-mini (Ours) 0.42% 0.52% 0.70% 0.55%↑
gpt-4o (EOH) 0.50% 0.41% 0.58% 0.50%
gpt-4o (Ours) 0.33% 0.58% 0.39% 0.43%↑
deepseek (EOH) 0.32% 3.06% 1.92% 1.77%
deepseek (Ours) 0.83% 0.52% 0.38% 0.58%↑

Table 23. Performance comparison between standalone LLMs and our proposed framework on the Bin Packing problem. Average
percentages represent the error rates.

1k C100 5k C100 10k C100 1k C500 5k C500 10k C500 Avg

Sample Run1 5.32% 4.40% 4.44% 4.97% 4.27% 4.28% 4.61%
Sample Run2 7.51% 2.30% 1.74% 9.47% 4.58% 3.99% 4.93%
Sample Run3 5.32% 4.40% 4.44% 4.97% 4.27% 4.28% 4.61%
Sample Avg 6.05% 3.70% 3.54% 6.47% 4.37% 4.18% 4.72%
Ours Run1 3.58% 0.85% 0.41% 3.67% 0.82% 0.42% 1.63%
Ours Run2 2.69% 0.86% 0.54% 2.54% 0.87% 0.52% 1.34%
Ours Run3 2.64% 0.94% 0.69% 2.54% 0.94% 0.70% 1.41%
Ours Avg 2.97%↑ 0.88%↑ 0.55%↑ 2.92%↑ 0.88%↑ 0.55%↑ 1.46%↑

and scalability of our method across diverse settings.

H.9. Comparison with Standalone LLMs

To further validate the effectiveness of our framework, we conducted a comparative experiment against standalone LLMs.
Specifically, we replaced all crossover and mutation operations in our framework with instances where the problem
information was directly input into a standalone GPT-4o-mini model, which independently generated new strategies and
evaluated them. Both approaches were tested on the Bin Packing problem across 20 iterations, with the same total number
of strategies generated in each case.

The results, summarized in Table 23, demonstrate that our framework significantly outperforms the standalone LLM
approach across all test instances. On average, our framework achieves an error rate of 1.46%, which is approximately
69% lower than the standalone LLM’s average error rate of 4.72%. This improvement is primarily due to the dynamic
interaction between the outer and inner layers in our framework, which balances exploration and exploitation, ensuring the
generation of diverse and high-quality strategies. In contrast, the standalone LLM approach frequently generated redundant
or identical strategies, thereby limiting its ability to effectively explore the solution space.

Additionally, we observed that the standalone LLM approach struggled to maintain diversity as the number of iterations
increased, resulting in many duplicate strategies and a subsequent decline in optimization performance. In contrast, our
framework, through evolutionary operations such as crossover and mutation, maintains diversity within the population,
enabling it to achieve superior optimization outcomes with the same number of generated strategies.

These findings confirm that our framework not only improves decision-variable ranking and optimization compared
to standalone LLMs but also addresses key limitations such as diversity and redundancy. By integrating evolutionary
mechanisms into the LLM-based framework, our approach ensures more efficient use of computational resources and
delivers superior performance across various problem instances.

H.10. Efficiency Comparison of Evolution Time

To complement our performance evaluation, we conducted a detailed comparison of the evolution time between our method
and a representative baseline, EOH. Both methods were run over 20 generations on the Bin Packing and Traveling Salesman
Problem (TSP) tasks. Evolution time is measured as the total wall-clock time spent on generating and evaluating new prompt
strategies during each generation. As our method operates in a learning-based paradigm, all evolutionary computations
occur in the training stage and do not affect inference-time efficiency.

The results are summarized in Tables 24 and 25. Overall, our method achieves comparable or lower evolution time than EOH

47

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Table 24. Evolution time (in minutes) comparison on the Bin Packing task over 20 generations.
Method 1 2 3 4 5 6 7 8 9 10

Ours 9.9 10.5 11.1 11.7 12.3 12.9 49.3 51.1 51.7 53.8
EOH 17.9 38.5 46.8 47.4 69.5 78.2 88.1 88.7 108.7 109.3

Method 11 12 13 14 15 16 17 18 19 20

Ours 56.4 57.1 59.5 61.5 62.3 80.0 83.6 136.9 137.7 144.7
EOH 110.0 110.5 111.3 111.9 117.2 117.8 118.4 137.4 138.1 138.7

Table 25. Evolution time (in minutes) comparison on the TSP task over 20 generations.
Method 1 2 3 4 5 6 7 8 9 10

Ours 3.8 9.3 11.6 14.2 16.6 23.1 35.5 37.2 38.9 40.6
EOH 6.0 9.8 12.3 16.0 18.4 20.9 23.5 26.0 28.4 30.6

Method 11 12 13 14 15 16 17 18 19 20

Ours 42.2 44.2 46.0 47.8 49.6 51.6 53.3 58.5 65.5 67.3
EOH 33.1 35.4 39.1 43.2 45.6 48.1 50.4 52.9 55.7 59.6

Table 26. Comparison of objective values on real-world datasets from MIPLIB 2017 under a 3000s time limit. Lower is better. “–”
indicates no feasible solution was found. “*” indicates the method failed due to architectural incompatibility.

Instance Random-LNS ACP CL-LNS Gurobi GNN&GBDT Light-MILPOpt LLM-LNS (Ours)

dws (min.) 189028.6 186625.3 – 146411.0 * 147417.7 143630.5
ivu (min.) 14261.3 9998.6 – 27488.0 * – 3575.9

across most generations. Notably, in the Bin Packing task, our approach achieves faster evolution in the earlier generations
and maintains efficiency in later ones, while EOH exhibits significant runtime increases as generations progress.

We observe that EOH tends to exhibit higher evolution time in many generations, particularly in the Bin Packing task.
This is largely due to the nature of the algorithms it evolves: EOH often produces solutions with O(n2) computational
complexity, such as pairwise comparison-based packing or route construction procedures. These strategies, while potentially
effective, impose significant overhead during evaluation. In contrast, our framework encourages the emergence of simpler,
efficient strategies with linearO(n) complexity. By guiding evolution through performance-based feedback and maintaining
diversity through controlled variation, our method reduces redundant exploration of expensive algorithms and ensures faster
convergence. This advantage becomes especially clear in later generations, where EOH’s runtime escalates, while our
approach remains computationally manageable.

These findings confirm that our method not only outperforms in solution quality, but also sustains competitive or superior
efficiency in the evolutionary process, making it a practical and scalable choice for large-scale combinatorial optimization.

H.11. Evaluation on Realistic Industrial Benchmarks

To assess the practical value of our proposed LLM-LNS framework, we extend our evaluation beyond academic benchmarks
to include two real-world problem classes from the MIPLIB 2017 dataset: dws and ivu. These classes are representative
of large-scale industrial applications, each consisting of multiple instances with consistent structure and domain semantics.

Unlike many other MIPLIB instances that are either too heterogeneous or too small for learning-based heuristics to generalize
meaningfully, the dws and ivu classes provide a favorable setting for systematic experimentation. We use the largest
instance in each class as the test case, while the remaining instances are used for training when applicable. All methods are
evaluated with a time budget of 3000 seconds.

The results are summarized in Table 26. LLM-LNS consistently achieves superior performance, producing better solutions
than classical LNS variants, strong commercial solvers such as Gurobi, and recent learning-based approaches. Notably, it is
the only method that finds high-quality solutions for both benchmarks, including the challenging ivu instance where Gurobi
and other baselines fall short. These results highlight the ability of LLM-LNS to generalize to realistic and large-scale MILP
problems.

48

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Table 27. Comparison of objective values on large-scale MILP instances across different methods. For each instance, the best-
performing objective value is highlighted in bold. The “–” symbol indicates that the method was unable to generate samples for any
instance within 30,000 seconds, while “*” indicates that the framework could not solve the MILP problem.

Method SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 16140.6 169417.5 27031.4 276467.5 22892.9 223748.6 36011.0 351964.2
ACP 17672.1 182359.4 26877.2 274013.3 23058.0 226498.2 34190.8 332235.6
CL-LNS – – 31285.0 – 15000.0 – – –
CP-SAT (LNS only) 16053.5 177565.1 26765.8 268773.4 23159.1 231091.3 * *

Gurobi 17934.5 320240.4 28151.3 283555.8 21789.0 216591.3 32960.0 329642.4
SCIP 25191.2 385708.4 31275.4 491042.9 18649.9 9104.3 29974.7 168289.9
CP-SAT (Full Solver) 16036.8 177413.5 26771.8 269741.6 23152.4 230711.3 * *

GNN&GBDT 16728.8 252797.2 27107.9 271777.2 22795.7 227006.4 * *
Light-MILPOpt 16108.1 160015.5 26950.7 269571.5 22966.5 230432.9 36125.5 362265.1
LLM-LNS (Ours) 15802.7 158878.9 26725.3 268033.7 23169.3 231636.9 36479.8 363749.5

H.12. Comparison with Advanced LNS in CP-SAT

To strengthen the comprehensiveness of our baseline comparisons, we additionally include the LNS capabilities of CP-SAT,
a well-known solver developed by Google OR-Tools. CP-SAT contains a highly engineered portfolio of neighborhood search
strategies, including random, sequential, and adaptive mechanisms, and has been recognized as a strong non-learning-based
LNS system. This makes it a relevant point of reference for evaluating the effectiveness of LLM-LNS.

We evaluate two configurations of CP-SAT: the default full solver and a version with use lns only=True, both executed
with 16 threads to activate its full range of neighborhood heuristics. These settings allow us to assess CP-SAT both as a
general MILP solver and as a dedicated LNS system. Results are presented in Table 27, using the same time limit as other
baselines.

CP-SAT demonstrates competitive performance on easier problems such as Maximum Independent Set (MIS) and Minimum
Vertex Cover (MVC), achieving results that are comparable to or better than traditional heuristics. However, on structurally
complex and large-scale MILP tasks like Set Covering (SC), its performance noticeably lags behind learning-based
approaches. Additionally, due to architectural constraints, CP-SAT does not support general mixed-integer problems, and
thus fails to provide results for the MIKS task.

Despite the strong engineering behind CP-SAT, our proposed LLM-LNS consistently outperforms all baselines across
problem types. These findings reinforce the effectiveness and generalization ability of LLM-guided local search, particularly
when facing high-dimensional combinatorial structures and diverse constraints.

I. Limitations and Future Directions
While the proposed dual-layer self-evolutionary framework has demonstrated strong performance in solving large-scale
MILP problems, we acknowledge several limitations that warrant further exploration and improvement. Below, we discuss
these limitations in detail and outline potential future directions.

First, although the framework exhibits good generalization ability on MILP and certain combinatorial optimization problems,
it is currently tailored to specific optimization scenarios. The design primarily focuses on MILP and does not directly extend
to other types of optimization tasks, such as nonlinear optimization or dynamic optimization problems. Developing a more
general agent structure that can adapt to a wider range of optimization algorithms and tasks remains an open challenge.
Future work could explore more modular and flexible designs to enhance the adaptability of the framework for solving
diverse and complex optimization problems.

Second, the current method leverages the generative capabilities of large language models (LLMs) and evolutionary
mechanisms for heuristic strategy design. However, it does not fully incorporate domain knowledge or classical optimization
expertise into the framework. In practical optimization tasks, domain-specific knowledge and traditional optimization
techniques (e.g., heuristic rules or mathematical programming methods) often play a critical role. A key direction for
future research is to explore how to effectively integrate the generalization capabilities of LLMs with optimization domain
knowledge to create more efficient and robust algorithms. Such integration could not only improve computational efficiency
but also reduce the resource overhead for solving ultra-large-scale problems.

49

Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems

Third, the fitness function currently employed for evaluating heuristic strategies relies on a simple unnormalized averaging
of objective values. While this approach has proven effective for the random instances studied in this paper, where objective
values likely possess similar orders of magnitude, it may introduce bias when dealing with more heterogeneous sets of
problems. In such scenarios, instances with larger objective values could disproportionately influence the evolutionary
process, potentially causing the heuristic to overfit to them. A pertinent direction for future work involves exploring
more sophisticated fitness evaluation mechanisms. This could include the development of multi-metric fitness functions,
incorporating measures such as the gap estimation integral or k-step improvement rates, to ensure a more balanced and
comprehensive assessment of heuristic performance across diverse instance characteristics.

Finally, computational resource constraints remain a practical challenge for solving large-scale problems. While the proposed
framework demonstrates good scalability, solving ultra-large-scale instances still requires significant computational time
and hardware resources, which may limit its applicability in resource-constrained environments. Future research could focus
on optimizing the computational complexity of the algorithm or designing more efficient resource allocation strategies to
address these challenges.

50

