
Butterfly Effects in Toolchains: A Comprehensive Analysis of Failed
Parameter Filling in LLM Tool-Agent Systems

Anonymous ACL submission

Abstract001

The emergence of the tool agent paradigm002
has broadened the capability boundaries of the003
Large Language Model (LLM), enabling it to004
complete more complex tasks. However, the005
effectiveness of this paradigm is limited due to006
the issue of parameter failure during its execu-007
tion. To explore this phenomenon and propose008
corresponding suggestions, we first construct a009
parameter failure taxonomy in this paper. We010
derive five failure categories from the invoca-011
tion chain of a mainstream tool agent. Then, we012
explore the correlation between three different013
input sources and failure categories by apply-014
ing 15 input perturbation methods to the input.015
Experimental results show that parameter name016
hallucination failure primarily stems from in-017
herent LLM limitations, while issues with in-018
put sources mainly cause other failure patterns.019
To improve the reliability and effectiveness of020
tool-agent interactions, we propose correspond-021
ing improvement suggestions, including stan-022
dardizing tool return formats, improving error023
feedback mechanisms, and ensuring parameter024
consistency.025

1 Introduction026

In recent years, LLMs have shown promising per-027

formance in many tasks, but for some professional028

tasks or tasks that require multi-step processing,029

relying on a single LLM may not be sufficient030

to meet the task requirements. To address these031

challenges, researchers have proposed the concept032

of tool agents, which integrate LLMs with vari-033

ous external tools to complete numerous complex034

tasks (Shen et al., 2023; Qin et al., 2023; Qu et al.,035

2024). This expands the capabilities of LLMs (Yao036

et al., 2023; Xi et al., 2023) and highlights their037

significant application potential.038

Figure 1 illustrates how a tool agent resolves a039

user query. As we can see, when a tool agent re-040

ceives a user query, it first retrieves the tool and041

plans the tool sequence. Then, by parsing the ex- 042

isting input (user query or output result of the pre- 043

vious tool), it forms a parameter list for the sub- 044

sequent tool invocation. Consequently, the proper 045

execution of tool agents is highly dependent on the 046

accuracy of parameter parsing, which is a critical 047

process. However, parameter errors or parameter 048

hallucinations often occur during the parameter 049

parsing process due to incomplete or ambiguous 050

user queries, low-quality tool document parame- 051

ter specifications, non-standard tool return results, 052

and limitations of LLM capabilities (Zhang et al., 053

2024a; Ye et al., 2024b). For example, in the erro- 054

neous invocation chain on the left side of Figure 1, 055

the tool does not call success because “Australia” 056

does not meet the abbreviation requirement for the 057

“region” parameter. It also includes deviations 058

from the intent of the user. On the right side of the 059

figure, setting the region to “US” does not match the 060

country “Australia” in the query. More failure 061

cases can be seen in the Appendix A.4. 062

As demonstrated in the example, parameter is- 063

sues often lead to failed tool invocations by the 064

agent and may even confuse the invocation chain, 065

thereby reducing the quality of task completion, 066

like the “Butterfly Effect” in the toolchains that af- 067

fects the normal tool agent execution. Moreover, 068

according to existing research (Zhang et al., 2024b), 069

parameter issues commonly exist in the execution 070

traces of tool agents. Data shows that about 44% 071

of simple user queries and 48% of complex user 072

queries have parameter issues, which greatly lim- 073

its the usability of tool agents, especially in some 074

critical domains (Cemri et al., 2025; Ruan et al., 075

2023). These concerning figures highlight the ur- 076

gency of addressing the parameter issues in tool 077

agent execution traces. 078

Many research works have been proposed to ex- 079

plore the above issues (Singh et al., 2024; Qin et al., 080

2023; Wang et al., 2024a; Li et al., 2023). However, 081

they either focus on specific tasks or emphasize the 082

1

Provide auto-complete suggestions related to 'Bonds' for Australia and provide detailed

information on the first suggestion.

User

LLM
get_autocomplete

 ("query":"Bonds","region":
"AU")

LLM
get_autocomplete

 ("q":"Bonds","region":
"AU")

LLM
get_detail_by_id

 ("id":"123")

get_autocomplete
List of correct suggestion

get_detail_by_id

Details of the first suggestion

Here are the suggestions...
along with the detailed

content of the first
suggestion...

Complete the task

The correct parameter name
is “q”, not “query”.

The “region” parameter
requires an abbreviation,
such as AU or US.

get_autocomplete
Call failed

LLM
get_autocomplete

("q":"Bonds","region":
"Australia")

get_autocomplete
Call failed

LLM
I'm sorry, but I was unable

to...

Fail to complete the task

Here are the suggestions...

LLM
get_autocomplete

 ("q":"Bonds","region": "US")

get_autocomplete
Task deviation return

“US” is not an
abbreviation for “Australia”

LLM
get_detail_by_id
 ("id":"id_456")

Quit to solve the task

Incorrect processing of
return results caused a

wrong “id” value
get_detail_by_id Call failed

{"id":
"id_123" ...
}...

{"id":
"id_456" ...
}...

LLM

Execution Process

Retrieval Relevant Tools

Invoke Tools

Plan Tool Sequence

Aggregate Tool Returns

Generate Final
Response

LLM

Receive User Query

Figure 1: The process by which a tool agent resolves a user query, as well as the parameter issues that may occur
during the invocation of the toolchain.

completion of overall tasks while neglecting the083

internal logic of tool effectiveness and the mech-084

anisms of parameter handling. In addition, few085

studies comprehensively consider the impact of dif-086

ferent input sources on the accuracy of parameter087

filling, including user queries, tool documents, and088

tool return results.089

To bridge this gap, we propose an empirical090

study that analyzes the parameter filling process091

in tool agents. We aim to construct a comprehen-092

sive parameter failure taxonomy, deeply analyze093

the impact of different input sources on parameter094

filling accuracy, and provide actionable insights095

to enhance the reliability of tool agents, alleviat-096

ing the parameter generation errors and hallucina-097

tion issues. Specifically, we used the current main-098

stream tool agent ToolLLaMa (Qin et al., 2023)099

as the investigated target and scientifically applied100

Grounded Theory (GT) (Glaser and Strauss, 1967)101

to develop a failure taxonomy through open coding102

and constant comparative analysis. By applying103

15 perturbation methods to input sources, we ana-104

lyzed the impact on agent parameter behavior on105

four advanced LLMs.106

The contributions of this paper are as follows.107

• We systematically identify parameter failure108

patterns and construct a failure taxonomy for109

API-type tool invocations.110

• We propose 15 input perturbation methods111

and conducted perturbation experiments on112

three types of input sources involved in the113

tool agent, revealing the impact of different 114

input sources on parameter failure issues. 115

• We provide practical advice to enhance the 116

effectiveness and reliability of tool agents. 117

• We release the code and dataset1 to facilitate 118

further research. 119

2 Related Work 120

Evaluation of LLMs Tool Use Evaluating LLMs’ 121

tool use abilities has drawn widespread atten- 122

tion. (Tang et al., 2023; Patil et al., 2023; Qin et al., 123

2023) focus on the model’s tool usage, and (Huang 124

et al., 2023) assess the understanding of tool usage 125

and tool selection . (Huang et al., 2024) covers a 126

wide range of dimensions and explicitly evaluates 127

the model planning part. (Li et al., 2023) demon- 128

strates the tool-calling capabilities of different mod- 129

els, including planning and retrieval . (Wang et al., 130

2024a) focuses on real-world multi-model context 131

inputs and (Ye et al., 2024b; Ruan et al., 2023) em- 132

phasize the necessity of improving the robustness 133

and security of LLMs in tool use. 134

The execution process within the tool agent is 135

shown in Figure 1. And it typically involves receiv- 136

ing user query tasks, retrieving relevant tools, plan- 137

ning the execution sequence of tools, and invoking 138

the selected tools. Finally, it parses and aggregates 139

the results returned by the tools and generates a 140

1https://anonymous.4open.science/r/toolagent-parameter-
failure-F064/

2

https://anonymous.4open.science/r/toolagent-parameter-failure-F064
https://anonymous.4open.science/r/toolagent-parameter-failure-F064

final response to the user. In this process, most cur-141

rent research focuses on how to better achieve tool142

retrieval and selection, paying attention to the final143

response (Ning et al., 2024; Wang et al., 2024b).144

However, it fails to delve deeply into the risk points145

when invoking the tools. Moreover, since existing146

research does not discuss and analyze the source of147

parameter information (Lu et al., 2024), the evalu-148

ation work is difficult to reflect the complex input149

scenarios in the real world. We have discovered150

that the quality of parameter filling significantly151

influences whether tools can effectively enhance152

LLM’s problem-solving capabilities. Therefore,153

our research focuses on the issue that LLMs pro-154

vide incorrect parameters during the tool invocation155

phase. Specifically, we performed a comprehensive156

analysis of LLM parameter-filling behaviors and157

constructed a data-driven taxonomy. In addition,158

to further simulate complex real-world scenarios,159

we strive to perturb the input source of parame-160

ter information. By analyzing the changes in the161

LLM’s parameter behavior, we can provide effec-162

tive suggestions for improving the reliability and163

effectiveness of the tool agent.164

3 Failure Taxonomy Construction165

The purpose of this study is to explore the impact166

of parameter failure issues on tool agents, identify167

the root causes of tool invocation failure involving168

parameters, and propose improvement suggestions.169

However, there is not yet a comprehensive param-170

eter failure taxonomy in place. Therefore, before171

conducting experiments, we first need to construct172

a parameter failure taxonomy. The construction173

process is shown in Figure 2.174

We first utilized benchmark datasets reported175

in (Ye et al., 2024a), and adopted ToolLLaMa as176

the foundational LLM to obtain the behavior tra-177

jectories of the LLM when resolving user queries.178

The selected dataset and LLM are widely used in179

the field of tool agent research, ensuring the rep-180

resentativeness of the results. After obtaining the181

behavior trajectories, they will be utilized for min-182

ing failure patterns. We followed the Grounded183

Theory Approach (GT) (Glaser and Strauss, 1967),184

which is a qualitative research method that directly185

constructs theories from empirical data, to identify186

failure patterns.187

Specifically, the annotators first understand the188

function of each available tool and clarify the rele-189

vant parameter requirements, then apply the Open190

Coding approach (Khandkar, 2009) to analyze the 191

agent parameter filling behavior in the environment 192

interaction trajectories that we collected. Open 193

coding is a data analysis method that involves de- 194

composing and conceptualizing data to generate 195

corresponding codes for identifying key patterns, 196

themes, or phenomena in the data. Then, using 197

constant comparative analysis, we systematically 198

compared the new codes created by the annotators 199

with the existing codes. This iterative process of 200

parameter failure pattern identification and open 201

coding continued until no new insights emerged 202

from additional data. Eventually, we obtained pre- 203

liminary patterns from ToolLLaMa’s behavioral 204

trajectories. 205

To refine the patterns, we conducted a group 206

agreement study to ensure that all three annotators 207

had a consistent understanding of the results and 208

gradually made iterative modifications to form the 209

consensus patterns. This process continues until 210

the Cohen’s Kappa score reaches above 0.9, which, 211

as suggested by (Landis and Koch, 1977), indicates 212

an almost perfect level of agreement among annota- 213

tors and high data quality. Finally, we constructed 214

a taxonomy that includes five distinct categories 215

of parameter failures that occur during tool agent 216

invocation as follows: 217

• Missing Information: This means that when 218

invoking tools, the LLM fails to fill in all the 219

parameters required to solve the task, resulting 220

in the tool obtaining less information than nec- 221

essary. This not only leads to imprecise results 222

returned by the tool, but also directly causes 223

the failed tool invocation when required pa- 224

rameter items are missing. 225

• Redundant Information: This means that 226

when invoking tools, the LLM sets some addi- 227

tional parameters within the range identifiable 228

by the tool that were not mentioned by the 229

user. For example, it may limit the number of 230

results that the tool returns. Although this case 231

usually does not cause the failed tool invoca- 232

tion, it restricts the range of returned results, 233

thereby affecting the final result. 234

• Hallucination Name: This means that when 235

invoking tools, the LLM has raised a param- 236

eter name hallucination error, generating pa- 237

rameter items that are not within the tool’s 238

recognition range, which prevents the tool 239

from being correctly invoked. This stops the 240

3

Behavior
Trajectories

...

Consistency
Among annotators

Initial
Taxonomy

• Missing Information
• Redundant Information
• Hallucination Name
• Task Deviation
• Specification Mismatch

Datasets

Obtain the Behavior Trajectory of the LLM Mine Failure Patterns

...

ToolLLaMa

T1(argt11,argt12,...)

T2(argt21,argt22,...)

Toolchain

...

ToolLLaMa

Ti(argti1,argti2,...)

Tj(argtj1,argtj2,...)

Toolchain
Final

Taxonomy

Incorrect Parameter Identification
Open Coding

Constant
Comparative Analysis

Cohen’s Kappa
Score>0.9

Figure 2: The process of systematically mining the failure patterns using the Grounded Theory Approach
(GT) (Glaser and Strauss, 1967) to obtain a scientific failure taxonomy.

tool from responding normally. In Figure 1,241

the “query” parameter set by the LLM for242

get_autocomplete is exactly an example of243

a parameter name hallucination failure.244

• Task Deviation: This means that the param-245

eter values deviate from the requirements of246

the target task. For example, inconsistencies247

in crucial task-related information, such as re-248

gions, times, and ID attributes, fall into this249

category of failure. In such cases, the tool250

appears to be invoked correctly from a macro-251

scopic perspective, but it actually misleads252

the LLM, causing it to generate incorrect final253

solutions to the user’s query.254

• Specification Mismatch: This means that the255

parameter values set do not match the speci-256

fications defined in the tool document. Mis-257

match in parameter types, value ranges, and258

formats will prevent the tool from processing259

the parameters as expected, thereby affecting260

the normal use of the tool and the quality of261

task completion.262

4 Methodology263

Based on the constructed taxonomy, we can con-264

duct a corresponding sensitivity analysis on the265

phenomenon of parameter failure. This process266

can draw on the ideas of defect detection in the267

field of software engineering, which leverage test268

oracle to evaluate the results of the test execution269

and determine if they meet expectations (Young,270

2001) Based on this concept, we treat the initial271

correct behavior trajectories as test oracles and per-272

turb them to generate the test samples. Considering273

that there are three input sources (i.e., Tool Doc-274

ument, User Query, Tool Return) of tool agent 275

that will have impact on the parameters, to conduct 276

comprehensive analysis, we design targeted pertur- 277

bation methods for each of the three input sources 278

to generate corresponding test samples, which will 279

be explained in detail as follows. 280

4.1 Tool Document Perturbation 281

For the tool document, there are 6 perturbation 282

methods, namely RD (Removed Description), RE 283

(Removed Example), WD (Wrong Description), 284

WT (Wrong Type), SD (Swapped Description), and 285

CO (Changed Order). These methods perturb the 286

parameter description documents from different as- 287

pects, and for comprehensive algorithmic descrip- 288

tions and implementation details of each perturba- 289

tion method, please refer to Appendix A.3.1. 290

• RD and RE test the behavior of LLM un- 291

der information-lack conditions. The RD 292

removes the description information of the 293

required parameters, while the RE erases all 294

the usage example information. They are in- 295

tended to investigate whether the model can 296

accurately comprehend and apply parameters 297

in the absence of crucial descriptions or exam- 298

ple guidance. 299

• WD and WT test LLM sensitivity to envi- 300

ronmental noise. WD substitutes the param- 301

eter descriptions in the document with those 302

of other irrelevant tools, and the WT algo- 303

rithm alters the data types of the parameters. 304

This enables us to understand the influence 305

of such incorrect information on the model’s 306

understanding of parameters and its correct 307

utilization of tools. 308

4

• SD and CO test LLM sensitivity to changes309

through information order and correspon-310

dence. SD swaps the usage description infor-311

mation of a specified pair of parameters, and312

CO rearranges the order of the parameter us-313

age descriptions. This helps to understand the314

model’s adaptability when faced with changes315

in the order of parameter descriptions or the316

correspondence between descriptions and pa-317

rameters.318

4.2 User Query Perturbation319

For user query, there are 4 perturbation methods,320

namely RPF (Remove First Parameter), RPL (Re-321

move Last Parameter), CP (Complicate Param-322

eter), and AN (Add Noise). These algorithms323

perturb the original user query Q from different324

dimensions, aiming to explore the performance of325

the model when faced with changes in this input326

source, and for comprehensive algorithmic descrip-327

tions and implementation details of each perturba-328

tion method, please refer to Appendix A.3.2.329

• RPF and RPL test the LLM’s dependence330

on the integrity of user query. RPF re-331

moves the first parameter information from332

the user query, while RPL removes the last333

parameter information. They are used to eval-334

uate whether the model can still execute tasks335

based on the remaining parameters when key336

parameters are missing in the user query.337

• CP and AN test the anti-interference abil-338

ity of the LLM when faced with complex339

or noisy queries. CP replace the parameters340

with complex descriptive phrases, while AN341

adds interfering information similar to the pa-342

rameters after the query. This is helpful for343

testing the adaptability and robustness of LLM344

in real and variable user query environments.345

4.3 Tool Return Perturbation346

For tool return, there are 5 perturbation methods,347

namely FK (Fuzz Key), AP (Apply Prefix), CK348

(Camel Case Key), UK (Underscore Notation Key)349

and CF (Corrupt JSON format). The purpose is to350

explore the specific impacts of different types of351

changes in tool return on the performance of LLM,352

and for comprehensive algorithmic descriptions353

and implementation details of each perturbation354

method, please refer to Appendix A.3.3.355

• FK and AP test LLM’s understanding and356

utilization of keys and values in the JSON357

format tool return. The FK algorithm re- 358

places the key names in the tool return with 359

“Object_i”, where i varies according to the 360

number of keys, eliminating the original se- 361

mantic information of the key names. Simu- 362

lates the situation where the semantic infor- 363

mation of key names may be ambiguous in 364

practical applications. AP, specifically target- 365

ing ID-type return (the most likely to be uti- 366

lized as parameters in tool chain scenarios), 367

adds the prefix “ID_” to them. By perturbing 368

the semantic information of key names and 369

adding prefixes to ID types of return, we can 370

observe the sensitivity and processing ability 371

when changing the tool’s return results. 372

• CK and UK test the LLM’s compatibility 373

and adaptability to these different naming 374

conventions. CK converts the key names in 375

the tool return into camel-case notation, while 376

the UK converts them into underscore nota- 377

tion. In actual data interactions, different tools 378

or systems may adopt different naming con- 379

ventions. By performing different conversions 380

on the key names, we can evaluate the flexi- 381

bility of the model when processing multiple 382

data formats and determine whether the model 383

can maintain stable performance when facing 384

different naming styles. 385

• CF tests the impact of malformed tool re- 386

turn format on the LLM’s judgment. CF 387

simulates the format errors of tool return data 388

during transmission or processing by corrupt- 389

ing the JSON format of the tool return. Test 390

the fault tolerance. When the model faces 391

the tool’s return with a corrupted format, we 392

observe whether it can make a reasonable re- 393

sponse, to understand the robustness and sta- 394

bility of the model when dealing with abnor- 395

mal data formats. 396

5 Experiment 397

5.1 Data Preprocessing 398

The process of data preprocessing for the evalua- 399

tion experiment is shown in Figure 3. To ensure the 400

representativeness and generalizability of the ex- 401

perimental results, we further introduced the Tool- 402

Bench dataset for testing, which contains a variety 403

of original user queries, including single-tool and 404

multi-tool commands. We excluded data with orig- 405

inally unsolvable queries to avoid interfering with 406

5

Original
Data

Failure

Yes

Filter

Base LLMs

Initial Data

Augmented
Data

Prompt to generate user
queries based on the

given tool list.

GPT-4

Test Agent
Behaviors

Toolchain1

...
...

Initial
Behaviors

TrajectoriesToolchain2

Toolchaini

Toolchainn

 Perturbation Methods

RPLRPF

ANCP

APFK UK

CK CF

RD

RE

WD WT

SD CO

Test Agent
Behaviors

Toolchain1

...
...

Toolchain2

Toolchaini

Toolchainm

No

Failure
Taxonomy

Sensitivity Analysis
Results

Initial
Behaviors

Trajectories

Figure 3: The process of data preprocessing in our experiment. Enhanced behavioral trajectories were obtained
through input sources perturbation to evaluate changes in LLMs’ parameter behaviors.

subsequent analysis of the impacts of parameter407

information sources. We also excluded scenarios408

where no parameters are required for any tools, as409

these do not contribute to understanding changes410

in parameter behaviors. Filtering the data helps in411

analyzing how various input sources impact param-412

eter behaviors, thus improving the reliability of the413

results. In addition to addressing the sample insuf-414

ficiency issue due to the filtering operations, we415

also generated some augmented data using GPT-4416

based on the original data as a supplement. Ulti-417

mately, for each investigated LLM, 600 behavior418

trajectories are obtained as initial data. For each419

600 LLM-specific initial data, we apply 15 pertur-420

bation methods based on the input sources, and a421

total of 9,000 enhanced behavioral trajectories will422

be used in a sensitivity analysis.423

5.2 Setting424

All experiments run on a NVIDIA GeForce RTX425

A6000 GPU and set maximum_observation_length426

as 1024. We evaluated 4 state-of-the-art open427

source and closed source LLMs that have outstand-428

ing tool utilization capabilities, including GPT-429

3.5-Turbo(OpenAI, 2022), GPT-4o-mini(OpenAI,430

2024), ToolLLaMA-v2 (Qin et al., 2023) and431

Qwen2.5-Plus(Yang et al., 2024).432

Evaluation Metrics. We define the Failure433

Rate to measure the frequency of failures during434

the testing process, and the formula is as follows435

FR = 1− Npass

Ntotal
(1)436

where Npass represents the number of test cases 437

that have passed, and Ntotal represents the total 438

number of test cases. We use oracles and the de- 439

rived failure taxonomy. The parameter filling be- 440

havior of the LLM is compared against the oracle. 441

If no failure patterns are detected, the test case is 442

considered passed, otherwise, it is marked as failed. 443

For Task Deviation and Specification Mismatch pat- 444

terns, we further used the Rouge-L (Lin, 2004), 445

setting the threshold at 0.8, and calculated the se- 446

mantic similarity of this failure manifestation to 447

the oracle based on this criterion. 448

6 Results 449

In this section, we analyze the sources of failure 450

and clarify their impact on task completion. Based 451

on these results, we propose further suggestions for 452

improvement in the tool agent design. The main 453

results are shown in Table 1. Overall, most of the 454

information about tool parameters is included in 455

the user query, while the internal operation mecha- 456

nism of the agent in actual use is usually invisible 457

to the user. There is a conflict between the informa- 458

tion gap between the two and the requirement for 459

information consistency. Additionally, the design 460

of the tool return results should not be overlooked, 461

they should have good organization and a unified 462

contextual style. Hallucination name failures oc- 463

cur mainly due to inherent issues with LLMs, and 464

external information problems usually do not exac- 465

erbate this issue. The experimental results of each 466

input source will be further explained below. Fur- 467

6

Table 1: Failure Rate (FR, %) of different base large language models under perturbation algorithms targeting tool
documents, user queries, and tool returns. Also shown are the proportions of Task Deviation and Specification
Mismatch exceeding the threshold of 0.8 (%) based on Rouge-L.

Base LLMs Failure Taxonomy
Perturbation Tool Document Perturbation User Query Perturbation Tool Return

RD
(%)

RE
(%)

WD
(%)

SD
(%)

CO
(%)

WT
(%)

RPF

(%)
RPL

(%)
CP
(%)

AN
(%)

FK
(%)

AP
(%)

CK
(%)

UK
(%)

CF
(%)

GPT-3.5-Turbo

Task Deviation 19.00 20.50 27.83 21.50 20.67 46.00 58.17 58.83 27.33 20.67 18.33 20.33 19.00 18.83 19.17
Specification Mismatch 2.17 2.00 3.00 3.00 2.83 23.17 2.83 2.00 5.17 3.00 1.83 2.17 3.33 2.50 1.67
Hallucination Name 1.17 1.17 1.17 1.00 1.17 0.33 0.67 1.00 0.67 1.33 0.83 0.67 0.50 1.33 0.50
Missing Information 9.67 6.50 11.17 9.33 8.67 10.50 7.83 10.17 7.17 8.33 6.17 8.50 6.67 7.17 8.67
Redundant Information 12.50 5.00 3.67 6.17 7.83 3.50 4.50 4.83 4.83 5.33 4.33 5.17 5.33 4.50 3.83

Rouge-L 16.22 15.71 14.05 17.59 15.71 31.03 7.14 5.92 16.14 14.08 13.97 17.95 17.80 16.23 15.59

ToolLLaMA-v2

Task Deviation 8.67 11.50 18.67 6.50 13.83 37.83 55.17 55.17 17.00 4.17 3.67 1.33 0.67 0.83 3.33
Specification Mismatch 0.83 1.67 2.33 0.50 2.00 21.50 1.33 0.83 3.17 0.67 0.17 0.00 0.00 0.00 0.17
Hallucination Name 0.17 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Missing Information 22.17 4.83 6.67 4.17 10.67 4.83 5.67 5.00 3.67 3.50 1.33 1.00 0.83 0.67 1.67
Redundant Information 5.00 3.00 5.33 4.33 9.17 6.00 5.83 4.17 1.67 2.83 1.50 0.17 0.67 0.50 1.33

Rouge-L 18.18 20.00 16.26 10.77 15.29 36.10 4.26 4.21 8.39 14.63 3.85 0.00 0.00 0.00 7.69

GPT-4o-mini

Task Deviation 15.83 18.50 26.00 19.00 19.00 49.00 51.33 50.50 28.17 19.50 19.33 18.33 20.17 19.33 13.50
Specification Mismatch 2.17 2.00 4.50 3.00 2.33 24.00 3.00 3.33 5.83 2.50 2.33 3.17 1.33 1.50 7.33
Hallucination Name 0.17 0.00 0.17 0.00 0.17 0.00 0.00 0.17 0.00 0.17 0.00 0.17 0.17 0.17 0.00
Missing Information 15.33 5.50 9.33 7.33 7.33 8.50 9.33 9.17 6.33 5.50 6.00 5.83 5.17 5.17 9.50
Redundant Information 5.33 2.83 4.33 5.00 5.33 4.33 4.67 3.83 4.17 3.00 4.00 4.50 3.83 4.00 2.83

Rouge-L 23.67 14.90 17.07 21.23 20.00 29.28 8.26 11.49 17.61 16.89 22.03 24.88 16.24 15.46 17.01

Qwen2.5-Plus

Task Deviation 7.83 17.83 11.67 8.17 9.83 14.17 41.67 44.33 17.00 11.67 9.33 7.83 6.83 9.00 5.83
Specification Mismatch 1.17 3.50 2.00 1.33 0.67 20.50 2.17 1.33 3.67 1.33 1.17 1.00 1.50 1.00 0.83
Hallucination Name 3.00 1.83 2.17 3.67 2.83 2.17 1.33 1.17 1.67 1.67 2.67 1.83 1.67 1.50 1.33
Missing Information 5.33 4.00 4.17 2.67 4.50 2.83 3.17 2.83 3.50 3.00 3.17 2.00 2.67 3.50 3.33
Redundant Information 2.83 1.67 3.50 2.33 1.83 2.33 1.83 1.50 1.50 1.67 2.17 1.50 0.83 1.17 1.50

Rouge-L 21.25 27.84 17.59 16.88 17.02 58.49 9.27 5.78 20.51 20.75 23.40 21.52 25.00 14.44 18.52

thermore, we also explored the transmission effects468

between failures and the causes of cases that did469

not result in failures, and provided relevant insights.470

For details, please refer to the Appendix A.1 and471

A.2.472

6.1 Result on Tool Document Perturbation473

As shown in Table 1, among several perturbation474

methods, WT perturbation can greatly lead to task475

deviation and specification mismatch, and this phe-476

nomenon exists in different LLMs, revealing the477

correlation between data types and these two types478

of failure patterns. Especially for the failure pattern479

of specification mismatch, the FR of WT is much480

higher than other methods, indicating that this per-481

turbation may be the key cause of this failure pat-482

tern. In addition, RD also exhibits a relatively high483

FR in the failure pattern of missing information.484

Although other methods may not be particularly485

prominent, they still have a certain FR for some486

types of failure patterns, so they cannot be ignored.487

The significant decrease in the Rouge-L score indi-488

cates a clear semantic difference in failure patterns.489

Even perturbation methods with a low error rate490

may threaten the accuracy of parameter filling by491

interfering with the structure or semantic informa- 492

tion of the input sources, and comprehensive con- 493

sideration is needed in the design of tool agents. 494

In summary, wrong parameter type descriptions in 495

tool documents mislead LLMs’ parameter setting, 496

causing excessive or insufficient information allo- 497

cation and degrading tool performance. Missing 498

required parameters may lead LLMs to conclude 499

tasks are unsolvable after repeated failed invoca- 500

tions, undermining agent usability. Inaccurate re- 501

turn results deprive LLMs of effective information 502

during aggregation, affecting task solutions. Mean- 503

while, tools for obtaining additional information 504

can increase the security risks of the agent. 505

We suggest that: In the design of tool agents, 506

it is necessary to ensure the completeness and ac- 507

curacy of the tool documentation information. A 508

parameter data-type verification mechanism can be 509

employed. Once an error is detected, it can provide 510

timely feedback and prevent further tool operations. 511

The role of using a small number of samples for 512

learning to enhance the LLM’s understanding of 513

parameter functions should not be underestimated. 514

Especially when the user query lacks information, 515

we observed in our experimental results that the 516

7

supplementary information in the examples can517

effectively mitigate failures. In addition, it is neces-518

sary to regularly evaluate the usage of tool parame-519

ters and promptly adjust the tool design to improve520

fault tolerance.521

6.2 Result on User Query Perturbation522

From Table 1, it can be seen that the two RP meth-523

ods have the greatest impact on task deviation, ex-524

ceeding 50% FR on almost all LLMs, indicating525

that parameter removal has a significant impact on526

task completion. In addition, parameter removal527

also has a certain impact on missing information528

and redundant information, but since other pertur-529

bation methods can also trigger these failures to530

some extent, parameter removal is not the main531

cause of these failure patterns. A lower Rouge-L532

score indicates that the task deviation caused by the533

absence of user query parameters is more severe,534

and it is also more likely to lead to task failure. In535

summary, after removing some parameter details536

from the user query, LLMs will utilize their text537

generation capabilities to construct parameters to538

invoke the tool. This characteristic causes the be-539

havior trajectory to deviate, making it difficult to540

ensure the quality of the final result. Inaccurate541

expression of user information will exacerbate the542

problem of parameters not conforming to the spec-543

ifications. The problem is more serious, especially544

when the parameters depend on user expressions545

or when the organizational structure of parameter546

information is inconsistent with the tool document.547

We suggest that: In the design of tool agents,548

it is crucial for users to understand the require-549

ments of the tools and to know what constitutes a550

correct expression. Completely invisible tool oper-551

ations are detrimental to the functionality of tool552

agents. Effective query templates and prompts can553

be provided to users. The key is to ensure the in-554

put specification of the information required by the555

tool and its protection during transmission. When556

using safety-related tools, more attention needs to557

be paid to the situation where the LLM constructs558

parameters that are not in line with the user’s intent.559

6.3 Result on Tool Return Perturbation560

For the tool return perturbation, FR is lower com-561

pared to the other two input sources, but it still has562

a triggering rate of over 5% for some failure pat-563

terns, especially for two closed-source large mod-564

els. As shown in Table 1, different perturbation565

methods can trigger the task deviation and miss-566

ing information to some extent. Among them, CF 567

has the highest failure rate on missing information, 568

which indicates the importance of tool return for- 569

mats. It can be seen that even if the overall Failure 570

Rate (FR) is not high, the deviation from the task 571

is still significant once a failure occurs from the 572

Rouge-L results. In summary, agent developers 573

should not overlook tool return specifications, as 574

ignoring parameter passing relationships can cause 575

downstream tools to misparse parameters, disrupt 576

toolchain invocation, and lead to task failure. Insuf- 577

ficient feedback from tool failures prevents LLMs 578

from making effective adjustments, necessitating 579

improved error message design to enhance post- 580

failure behavioral adaptation. 581

We suggest that: In the design of tool agents, it 582

is essential to clearly specify the format standards 583

for tool return results and require external tools 584

to return results following unified specifications. 585

The feedback content of the tool error messages 586

should be redesigned so that LLMs can effectively 587

correct failures. Additionally, ensuring the consis- 588

tency of parameter passing between different tools 589

is necessary, as coordinating the parameter passing 590

process is crucial for the smooth operation of the 591

toolchain. Furthermore, setting the return length to 592

avoid abrupt truncation of tool content is important, 593

as this can otherwise disrupt the complete format 594

standards. 595

7 Conclusion 596

The study delves into the complex parameter chal- 597

lenges faced by LLM tool agents during the execu- 598

tion of the toolchain, revealing five distinct failure 599

patterns that disrupt workflow integrity. Missing 600

required parameters will prevent the tool from fully 601

processing the task; redundant information affects 602

the accuracy of the tool’s return results; hallucina- 603

tion names and mismatch specifications fundamen- 604

tally prevent the tool from being invoked, and task 605

deviation affects the practical value of the result to 606

the user. Ambiguous user queries, defective tool 607

documents, or poorly written tool return results can 608

spread throughout the toolchain, causing parame- 609

ter failures and ultimately leading to task failure. 610

This paper provides a blueprint for designing ro- 611

bust tool agents by mapping failure patterns and 612

their interconnections, highlighting proactive input 613

structuring, adaptive error correction, and attention 614

to parameter propagation in the toolchain to ensure 615

reliable and traceable toolchain operations. 616

8

Limitations617

Our experiments focused mainly on data in English.618

There are significant differences in morphology,619

syntax, and semantics in different languages. This620

could influence how parameters are extracted and621

processed from the input information. Therefore,622

there may be differences in the failure taxonomy623

and the relationships between the observed fail-624

ure patterns. Future research should broaden its625

scope to include multilingual data, improving the626

generalizability of our findings. In addition, our627

research was limited to relatively controlled single-628

turn conversation scenarios. It lacked considera-629

tion of real-time and multi-turn conversation sce-630

narios and mainly revolved around API-type tool631

invocations. Errors in non-API-type tools, such632

as command-line tools and libraries used in spe-633

cific programming language environments, were634

not explored in this article. Future research should635

investigate parameter filling processes and failures636

across a broader range of tool types to develop637

more comprehensive strategies to improve the reli-638

ability of tool agents.639

Ethical Considerations640

The main ethical concern of this article is that the641

use of the tools may involve personal sensitive in-642

formation, posing a risk of privacy leakage. Ad-643

ditionally, for some behaviors related to the local644

operating system environment, a virtual environ-645

ment isolation mechanism should be set up. Ensure646

that tool interactions and executions occur within a647

sandbox environment to prevent the direct exposure648

of sensitive system details.649

References650

Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A.651
Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt652
Keutzer, Aditya Parameswaran, Dan Klein, Kannan653
Ramchandran, Matei Zaharia, Joseph E. Gonzalez,654
and Ion Stoica. 2025. Why do multi-agent llm sys-655
tems fail? ArXiv, abs/2503.13657.656

Barney G. Glaser and Anselm L. Strauss. 1967. The657
Discovery of Grounded Theory: Strategies for Quali-658
tative Research. Aldine Publishing Company.659

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Ji-660
ahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng,661
Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng662
Xu, and Qun Liu. 2024. Planning, creation, us-663
age: Benchmarking llms for comprehensive tool664
utilization in real-world complex scenarios. ArXiv,665
abs/2401.17167.666

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan 667
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan, 668
Neil Zhenqiang Gong, and Lichao Sun. 2023. Meta- 669
tool benchmark for large language models: Decid- 670
ing whether to use tools and which to use. ArXiv, 671
abs/2310.03128. 672

S. H. Khandkar. 2009. Open coding. (23). 673

J. Richard Landis and Gary G. Koch. 1977. The mea- 674
surement of observer agreement for categorical data. 675
Biometrics, 33(1):159–174. 676

Minghao Li, Feifan Song, Yu Bowen, Haiyang Yu, 677
Zhoujun Li, Fei Huang, and Yongbin Li. 2023. 678
Api-bank: A comprehensive benchmark for tool- 679
augmented llms. In Conference on Empirical Meth- 680
ods in Natural Language Processing. 681

Chin-Yew Lin. 2004. ROUGE: A package for auto- 682
matic evaluation of summaries. In Text Summariza- 683
tion Branches Out, pages 74–81, Barcelona, Spain. 684
Association for Computational Linguistics. 685

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Au- 686
mayer, Feng Nan, Felix Bai, Shuang Ma, Shen Ma, 687
Mengyu Li, Guoli Yin, Zirui Wang, and Ruoming 688
Pang. 2024. Toolsandbox: A stateful, conversational, 689
interactive evaluation benchmark for llm tool use 690
capabilities. ArXiv, abs/2408.04682. 691

Kangyun Ning, Yisong Su, Xueqiang Lv, Yuanzhe 692
Zhang, Jian Liu, Kang Liu, and Jinan Xu. 2024. 693
Wtu-eval: A whether-or-not tool usage evaluation 694
benchmark for large language models. ArXiv, 695
abs/2407.12823. 696

OpenAI. 2022. OpenAI: Introducing ChatGPT. https: 697
//openai.com/blog/chatgpt. 698

OpenAI. 2024. Hello gpt-4o. 699

Shishir G. Patil, Tianjun Zhang, Xin Wang, and 700
Joseph E. Gonzalez. 2023. Gorilla: Large lan- 701
guage model connected with massive apis. ArXiv, 702
abs/2305.15334. 703

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan, 704
Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru Tang, 705
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, 706
Jie Zhou, Marc H. Gerstein, Dahai Li, Zhiyuan Liu, 707
and Maosong Sun. 2023. Toolllm: Facilitating large 708
language models to master 16000+ real-world apis. 709
ArXiv, abs/2307.16789. 710

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, 711
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Jirong 712
Wen. 2024. Tool learning with large language mod- 713
els: A survey. ArXiv, abs/2405.17935. 714

Yangjun Ruan, Honghua Dong, Andrew Wang, Sil- 715
viu Pitis, Yongchao Zhou, Jimmy Ba, Yann Dubois, 716
Chris J. Maddison, and Tatsunori Hashimoto. 2023. 717
Identifying the risks of lm agents with an lm- 718
emulated sandbox. ArXiv, abs/2309.15817. 719

9

https://api.semanticscholar.org/CorpusID:277103715
https://api.semanticscholar.org/CorpusID:277103715
https://api.semanticscholar.org/CorpusID:277103715
https://api.semanticscholar.org/CorpusID:267320882
https://api.semanticscholar.org/CorpusID:267320882
https://api.semanticscholar.org/CorpusID:267320882
https://api.semanticscholar.org/CorpusID:267320882
https://api.semanticscholar.org/CorpusID:267320882
https://api.semanticscholar.org/CorpusID:263672025
https://api.semanticscholar.org/CorpusID:263672025
https://api.semanticscholar.org/CorpusID:263672025
https://api.semanticscholar.org/CorpusID:263672025
https://api.semanticscholar.org/CorpusID:263672025
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
https://api.semanticscholar.org/CorpusID:258179056
https://api.semanticscholar.org/CorpusID:258179056
https://api.semanticscholar.org/CorpusID:258179056
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://api.semanticscholar.org/CorpusID:271843446
https://api.semanticscholar.org/CorpusID:271843446
https://api.semanticscholar.org/CorpusID:271843446
https://api.semanticscholar.org/CorpusID:271843446
https://api.semanticscholar.org/CorpusID:271843446
https://api.semanticscholar.org/CorpusID:271270637
https://api.semanticscholar.org/CorpusID:271270637
https://api.semanticscholar.org/CorpusID:271270637
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/index/hello-gpt-4o/
https://api.semanticscholar.org/CorpusID:258865184
https://api.semanticscholar.org/CorpusID:258865184
https://api.semanticscholar.org/CorpusID:258865184
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:270067624
https://api.semanticscholar.org/CorpusID:270067624
https://api.semanticscholar.org/CorpusID:270067624
https://api.semanticscholar.org/CorpusID:262944419
https://api.semanticscholar.org/CorpusID:262944419
https://api.semanticscholar.org/CorpusID:262944419

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang,720
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,721
and Yue Ting Zhuang. 2023. Taskbench: Bench-722
marking large language models for task automation.723
ArXiv, abs/2311.18760.724

Simranjit Singh, Michael Fore, and Dimitrios Stamoulis.725
2024. Evaluating tool-augmented agents in remote726
sensing platforms. ArXiv, abs/2405.00709.727

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,728
Qiao Liang, Boxi Cao, and Le Sun. 2023. Toolalpaca:729
Generalized tool learning for language models with730
3000 simulated cases. ArXiv, abs/2306.05301.731

Jize Wang, Zerun Ma, Yining Li, Songyang Zhang,732
Cailian Chen, Kai Chen, and Xinyi Le. 2024a.733
Gta: A benchmark for general tool agents. ArXiv,734
abs/2407.08713.735

Pei Wang, Yanan Wu, Zekun Moore Wang, Jia-736
heng Liu, Xiaoshuai Song, Zhongyuan Peng, Ken737
Deng, Chenchen Zhang, Jiakai Wang, Junran Peng,738
Ge Zhang, Hangyu Guo, Zhaoxiang Zhang, Wenbo739
Su, and Boyuan Zheng. 2024b. Mtu-bench: A multi-740
granularity tool-use benchmark for large language741
models. ArXiv, abs/2410.11710.742

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen743
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,744
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao745
Wang, Limao Xiong, Qin Liu, Yuhao Zhou, Weiran746
Wang, Changhao Jiang, Yicheng Zou, and 11 others.747
2023. The rise and potential of large language model748
based agents: A survey. ArXiv, abs/2309.07864.749

Qwen An Yang, Baosong Yang, Beichen Zhang,750
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan751
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-752
ran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei753
Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Jun-754
yang Lin, and 25 others. 2024. Qwen2.5 technical755
report. ArXiv, abs/2412.15115.756

Jia-Yu Yao, Kun-Peng Ning, Zhen-Hui Liu, Munan757
Ning, and Li Yuan. 2023. Llm lies: Hallucinations758
are not bugs, but features as adversarial examples.759
ArXiv, abs/2310.01469.760

Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang,761
Yilong Wu, Sixian Li, Xiaoran Fan, Shihan Dou,762
Qi Zhang, Tao Gui, and Xuanjing Huang. 2024a.763
Tooleyes: Fine-grained evaluation for tool learning764
capabilities of large language models in real-world765
scenarios. ArXiv, abs/2401.00741.766

Junjie Ye, Sixian Li, Guanyu Li, Caishuang Huang,767
Songyang Gao, Yilong Wu, Qi Zhang, Tao Gui,768
and Xuanjing Huang. 2024b. Toolsword: Unveil-769
ing safety issues of large language models in tool770
learning across three stages. ArXiv, abs/2402.10753.771

Michal Young. 2001. Test oracles.772

Hanrong Zhang, Jingyuan Huang, Kai Mei, Yifei Yao, 773
Zhenting Wang, Chenlu Zhan, Hongwei Wang, and 774
Yongfeng Zhang. 2024a. Agent security bench (asb): 775
Formalizing and benchmarking attacks and defenses 776
in llm-based agents. ArXiv, abs/2410.02644. 777

Yuanhe Zhang, Zhenhong Zhou, Wei Zhang, Xinyue 778
Wang, Xiaojun Jia, Yang Liu, and Sen Su. 2024b. 779
Crabs: Consuming resource via auto-generation for 780
llm-dos attack under black-box settings. 781

A Appendix 782

A.1 Transfer Effect between Parameter 783

Failure 784

After further statistical analysis of the experimental 785

results, we found that more than half of the failed 786

data in all perturbation cases exhibited multiple 787

failure patterns. This indicates that these failure 788

patterns may not exist independently but are inter- 789

related and exhibit a transfer effect. 790

To illustrate this, we have created Figure 4, 791

which shows a heatmap of the failure correlations. 792

The transfer of these failure patterns shows asym- 793

metry. Except for the failure of parameter name 794

hallucination, other failures show a significant ten- 795

dency to cause the tool invocation to deviate from 796

the user’s intent. This is especially true for the 797

failure of redundant information. This means that 798

once there is a problem with the tool parameters of 799

this type of tool agent, it will largely affect the us- 800

ability of the agent’s results for users. Furthermore, 801

redundant information significantly alters the tool’s 802

results, leading to a subsequent incorrect chain of 803

thought. 804

A.2 Ineffective Perturbation Analysis 805

We also examined the cases where the perturbation 806

had no effect. We found that when the amount of 807

information was not affected after removing the pa- 808

rameters in the user query, the agent would not fail. 809

For example, in “Japanese language (ja)”, the 810

tool requires “ja” as a parameter. Even if “ja” is 811

lost in the query due to improper operation, the sen- 812

tence’s meaning remains intact. This emphasizes 813

the importance of securing key information in pa- 814

rameters. Secondly, when the LLM identifies tools 815

that can help retrieve missing information, it will 816

actively choose to invoke the tool to try to obtain 817

more complete information, ensuring task comple- 818

tion. This indicates the importance of having a 819

robust disaster-tolerance toolkit. 820

10

https://api.semanticscholar.org/CorpusID:265506220
https://api.semanticscholar.org/CorpusID:265506220
https://api.semanticscholar.org/CorpusID:265506220
https://api.semanticscholar.org/CorpusID:269502562
https://api.semanticscholar.org/CorpusID:269502562
https://api.semanticscholar.org/CorpusID:269502562
https://api.semanticscholar.org/CorpusID:259108190
https://api.semanticscholar.org/CorpusID:259108190
https://api.semanticscholar.org/CorpusID:259108190
https://api.semanticscholar.org/CorpusID:259108190
https://api.semanticscholar.org/CorpusID:259108190
https://api.semanticscholar.org/CorpusID:271097480
https://api.semanticscholar.org/CorpusID:273350927
https://api.semanticscholar.org/CorpusID:273350927
https://api.semanticscholar.org/CorpusID:273350927
https://api.semanticscholar.org/CorpusID:273350927
https://api.semanticscholar.org/CorpusID:273350927
https://api.semanticscholar.org/CorpusID:261817592
https://api.semanticscholar.org/CorpusID:261817592
https://api.semanticscholar.org/CorpusID:261817592
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:263608740
https://api.semanticscholar.org/CorpusID:263608740
https://api.semanticscholar.org/CorpusID:263608740
https://api.semanticscholar.org/CorpusID:266693212
https://api.semanticscholar.org/CorpusID:266693212
https://api.semanticscholar.org/CorpusID:266693212
https://api.semanticscholar.org/CorpusID:266693212
https://api.semanticscholar.org/CorpusID:266693212
https://api.semanticscholar.org/CorpusID:267740273
https://api.semanticscholar.org/CorpusID:267740273
https://api.semanticscholar.org/CorpusID:267740273
https://api.semanticscholar.org/CorpusID:267740273
https://api.semanticscholar.org/CorpusID:267740273
https://api.semanticscholar.org/CorpusID:10111645
https://api.semanticscholar.org/CorpusID:273098793
https://api.semanticscholar.org/CorpusID:273098793
https://api.semanticscholar.org/CorpusID:273098793
https://api.semanticscholar.org/CorpusID:273098793
https://api.semanticscholar.org/CorpusID:273098793
https://api.semanticscholar.org/CorpusID:274822339
https://api.semanticscholar.org/CorpusID:274822339
https://api.semanticscholar.org/CorpusID:274822339

Missing Redundant Deviation Specification Hallucination

M
iss

in
g

Re
du

nd
an

t
De

vi
at

io
n

Sp
ec

ifi
ca

tio
n

Ha
llu

cin
at

io
n

6.94% 28.55% 56.77% 5.81% 1.94%

6.97% 16.42% 72.14% 1.49% 2.99%

20.96% 9.17% 62.45% 5.24% 2.18%

9.64% 9.04% 53.61% 26.51% 1.20%

0.00% 0.00% 0.00% 0.00% 0.00% 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4: Heatmap of the correlation between the transi-
tivity among failure taxonomy

A.3 Perturbation Methods Details821

A.3.1 Details of Tool Document Perturbation822

Methods823

Details of the formulas used in the perturbation824

methods for tool documents applied in this article825

can be found in Table 2826

A.3.2 Details of User Query Perturbation827

Methods828

Details of the formulas used in the perturbation829

methods for user queries applied in this article can830

be found in Table 3831

A.3.3 Details of Tool Return Perturbation832

Methods833

Details of the formulas used in the perturbation834

methods for tool returns applied in this article can835

be found in Table 4836

A.4 Parameter Failure Cases837

11

Table 2: Details of six perturbation methods for tool document

Method
Name

Formula Description

RD D′ = RD(D) = {(p, d) ∈ D|p /∈ R} ∪ {(p,∅)|p ∈
R}

D′ is the new tool document ob-
tained by removing the descrip-
tion information of required pa-
rameters from D.

RE D′ = RE(D) = {(x,∅)|(x, y) ∈ D}
D′ is the new tool document ob-
tained by removing all parame-
ter usage example information
from D.

WD D′ = WD(D) = {(p,W (d))|(p, d) ∈ D}

D′ is the new tool document ob-
tained by replacing the parame-
ter descriptions in the tool docu-
ment D with the descriptions of
other irrelevant tools.

WT D′ = WT (D) = {(p,W (t))|(p, t) ∈ D}
D′ is the new tool document
obtained by changing the data
types of parameters in D to
other types.

SD D′ = SD(D) =

 (pi, dj) if k = i
(pj , di) if k = j
(pk, dk) otherwise

where (pk, dk) ∈ D

D′ is the new tool document ob-
tained by swapping the usage de-
scriptions of a specified pair of
parameters in D.

CO D′ = CO(D) = {(pπ(i), dπ(i))|(pi, di) ∈ D}

π be a permutation of the set
{1, 2, · · · , n}, which defines a
new order for the usage descrip-
tions of the parameters. Then
the new tool document D′ ob-
tained by changing the order of
the usage descriptions in D

12

Table 3: Details of four perturbation methods for user query

Method
Name

Formula Description

RPF Q′ = RPF (Q) = {infoi|i = 2, · · · , n}
Q′ is the new user query ob-
tained by removing the first pa-
rameter information from Q.

RPL Q′ = RPL(Q) = {infoi|i = 1, · · · , n− 1}
Q′ is the new user query ob-
tained by removing the last pa-
rameter information from Q.

CP Q′ = CP (Q) = {C(infoi)|i = 1, · · · , n}
Q′ is the new user query ob-
tained by complicating the pa-
rameter description for each pa-
rameter information in Q.

AN

Q′ = AN(Q)

= Q⊕ J

= (info1, info2, · · · , infon)⊕ (j1, j2, · · · , jn)
jk = f(infok), k = 1, 2, · · · , n

I ′ is obtained by adding interfer-
ing information whose meaning
is similar to that of the parame-
ters to the user query.

Table 4: Details of five perturbation methods for tool return

Method
Name

Formula Description

FK O′ = FK(O) = {F (k1) : v1, F (k2) : v2,

· · · , F (kn) : vn}

O′ is the new tool return ob-
tained by fuzzing the key names
in O.

AP O′ =
{oij : P (vij)|j = 1, · · · ,m}∪
{ok : vk|k /∈ {i1, i2, · · · , im}}

Then O′ is the new result ob-
tained by applying prefix to the
ID-type return values in O.

CK
O′ = CK(O)

= {C(ki) : vi|
(ki, vi) ∈ O, i = 1, · · · , n}

O′ is the new result obtained by
converting key names to camel
case notation in O.

UK
O′ = UK(O)

= {U(ki) : vi|
(ki, vi) ∈ O, i = 1, · · · , n}

O′ is the new result obtained by
converting key names to under-
score notation in O.

CF O′ = CF (O) = s(O)[0 : −1]⊕ ” . . . ”
O′ is obtained by corrupting the
JSON format of O.

13

Specification Mismatch Failure

User Query: Can you provide the top five related queries for "Bitcoin"
worldwide?

LLM: I am calling the "google_trends_search" function with the arguments:
query="Bitcoin" and region="world". This API call is made to retrieve
the top five related queries for "Bitcoin" worldwide. By analyzing the
current state, I can see that the user wants to know the popular queries
related to Bitcoin. Calling this function will provide the desired
information and help me generate a comprehensive answer for the user.

Tool Invoke: google_trends_search{"query": "Bitcoin", "region": "world"}

Tool Return: Unsupported `world` region parameter.

LLM: Since the previous API call with
the "world" region parameter failed, I am now trying a different region
parameter to retrieve the top five related queries for "Bitcoin". By
analyzing the current state, I can see that the user wants to know the
popular queries related to Bitcoin. Calling this function with the new
region parameter will provide the desired information and help me
generate a comprehensive answer for the user.

Tool Invoke: google_trends_search {"query": "Bitcoin", "region": "COUNTRY"}
Tool Return: Please change the `data_type` parameter to the one that supports

the `region` parameter.

LLM: I am calling the "google_trends_search" function with the arguments:
query="Bitcoin" and region="COUNTRY". Since the previous API call with
the "world" region parameter failed, I am now trying a different region
parameter to retrieve the top five related queries for "Bitcoin". By
analyzing the current state, I can see that the user wants to know the
popular queries related to Bitcoin. Calling this function with the new
region parameter will provide the desired information and help me
generate a comprehensive answer for the user.

Tool Invoke: google_trends_search {"query": "Bitcoin", "region": "US"}

Tool Return: Unsupported `US` region parameter.

LLM: I'm sorry, but I couldn't retrieve the top five related queries for
'Bitcoin' worldwide at the moment.

14

Missing Information Failure

User Query: We are trying to determine the gender of someone named Alex from
the United States, can you help?

LLM: Based on the user's request to determine the gender of someone named
Alex from the United States, I will call the "predict_gender" function
with the argument "{"names": "Alex"}". This function will provide the
best guess for the gender based on the given name. By using this function,
I can help the user determine the gender of Alex accurately.

Tool Invoke: predict_gender{"names": "Alex"}

Tool Return: [{"count": 1665200, "name": "Alex", "gender": "male",
"probability": 0.95}]

LLM: The gender prediction for Alex is male with a probability of 0.95.

Redundant Information Failure

User Query: I have experience as a project manager and am looking to
transition into the tech industry. Can you provide some job
options that might be suitable for me?

LLM: Based on the user's query, they are looking for job options in the tech
industry. To provide suitable job options, I will use the "

google_jobs_search" function to search for tech-related job opportunities.
By specifying the query as "tech industry" and the country as "us", I
can retrieve relevant job listings. This will help the user explore
different job options and find a suitable position in the tech industry.

Tool Invoke: google_jobs_search{"query": "tech industry", "gl": "us"}
Tool Return: [{"title": "Technology Director",......}]

LLM: Here are some job options suitable for you in the tech industry:
1. Technology Director at Bullhorn....

15

Hallucination Name Failure

User Query: Can I get a summarized list of all threads on the 'mu' board from
page number 5?

LLM: I am calling the "get_threads" function with the arguments {"board":
"mu", "page_size": "5"} to retrieve a summarized list of all threads on
the 'mu' board from page number 5. This will help me gather the
necessary information for further analysis and decision-making.

Tool Invoke: get_threads{"board": "mu", "page_size": "5"}
Tool Return: get_threads() got an unexpected keyword argument 'page_size'

LLM: I am calling the "get_boards" function with the arguments {"page": "5"}
to retrieve the boards from the 'mu' board. By specifying the page
number as 5, I can gather the necessary information for further analysis
and decision-making.

Tool Invoke: get_boards{"page": "5"}
Tool Return: [{"board": "hm", "title": ...}]

LLM: I am calling the "get_catalog" function with the arguments {"board":
"mu"} to retrieve the catalog of the 'mu' board. By accessing the
catalog, I can gather information about the available boards and their
attributes. This will help me understand the current state and proceed

with the task effectively.

Tool Invoke: get_catalog{"board": "mu"}
Tool Return: [{"no": 124243642, "sticky": 1, ...}]

LLM: The summarized list of all threads on the 'mu' board from page number 5
is not available at the moment.

16

Task Deviation Failure

User Query: Explore arXiv articles related to astrophysics with an emphasis
on dark matter. Provide the first 3 results.

LLM: I am calling the "arxiv_query" function with the arguments: search_query
= "astrophysics dark matter", id_list = "0,1,2,3". This API call is made
to retrieve the first 3 articles related to astrophysics with an
emphasis on dark matter. By providing the search query and specifying
the desired ID list, I can obtain the relevant articles and fulfill the
user's request.

Tool Invoke: arxiv_query{"search_query": "astrophysics dark matter",

"id_list": "0,1,2,3"}
Tool Return: incorrect ID format

LLM: I am calling the "arxiv_query" function again with the arguments:
search_query = "astrophysics dark matter", id_list = "0,1,2,3". Since
the previous call returned an error due to an incorrect ID format for 0,
I am modifying the ID list to include only valid IDs. By doing this, I
hope to retrieve the first 3 articles related to astrophysics with an
emphasis on dark matter and fulfill the user's request successfully.

Tool Invoke: arxiv_query{"search_query": "astrophysics dark matter",
"id_list": "0,1,2,3"}

Tool Return: incorrect ID format

LLM: I'm sorry, but I couldn't retrieve the arXiv articles related to
astrophysics with an emphasis on dark matter.

17

	Introduction
	Related Work
	Failure Taxonomy Construction
	Methodology
	Tool Document Perturbation
	User Query Perturbation
	Tool Return Perturbation

	Experiment
	Data Preprocessing
	Setting

	Results
	Result on Tool Document Perturbation
	Result on User Query Perturbation
	Result on Tool Return Perturbation

	Conclusion
	Appendix
	Transfer Effect between Parameter Failure
	Ineffective Perturbation Analysis
	Perturbation Methods Details
	Details of Tool Document Perturbation Methods
	Details of User Query Perturbation Methods
	Details of Tool Return Perturbation Methods

	Parameter Failure Cases

