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Sapiens-1B SDPose (Ours)ViTPose++-HInput Image

Figure 1: SDPose: OOD-robust pose via diffusion priors. On stylized paintings,
SDPose surpasses Sapiens and ViTPose++-H, matching SoTA on COCO and setting new
records on HumanArt and COCO-OOD; yellow boxes show baseline failures.

Abstract

Pre-trained diffusion models provide rich multi-scale latent features and
are emerging as powerful vision backbones. While recent works such as
Marigold (Ke et al., 2024) and Lotus (He et al., 2024) adapt diffusion priors
for dense prediction with strong cross-domain generalization, their poten-
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tial for structured outputs (e.g., human pose estimation) remains under-
explored. In this paper, we propose SDPose, a fine-tuning framework
built upon Stable Diffusion to fully exploit pre-trained diffusion priors
for human pose estimation. First, rather than modifying cross-attention
modules or introducing learnable embeddings, we directly predict keypoint
heatmaps in the SD U-Net’s image latent space to preserve the original gen-
erative priors. Second, we map these latent features into keypoint heatmaps
through a lightweight convolutional pose head, which avoids disrupting the
pre-trained backbone. Finally, to prevent overfitting and enhance out-of-
distribution robustness, we incorporate an auxiliary RGB reconstruction
branch that preserves domain-transferable generative semantics. To evalu-
ate robustness under domain shift, we further construct COCO-OOD, a
style-transferred variant of COCO with preserved annotations. With just
one-fifth of the training schedule used by Sapiens on COCO, SDPose attains
parity with Sapiens-1B/2B on the COCO validation set and establishes
a new state of the art on the cross-domain benchmarks HumanArt and
COCO-OOD. Furthermore, we showcase SDPose as a zero-shot pose anno-
tator for downstream controllable generation tasks, including ControlNet-
based image synthesis and video generation, where it delivers qualitatively
superior pose guidance.

1 Introduction

With the recent rise of embodied AI, video generation, and 3D asset rendering, the need for
cross-domain-robust human pose estimation has become critical in robotics as well as in film,
animation, and game production. Although recent advances on academic benchmarks such
as MS COCO (Lin et al., 2014) using models such as DWPose (Yang et al., 2023), RTM-
Pose (Jiang et al., 2023) and OpenPose (Martınez, 2019), as well as approaches leveraging
large pretrained backbones such as ViTPose (Xu et al., 2022; 2023) and Sapiens (Khirodkar
et al., 2024), have achieved strong in-domain accuracy, they often exhibit severe performance
degradation under domain shifts and require substantial fine-tuning efforts.

Recently, pre-trained diffusion models such as Stable Diffusion (Rombach et al., 2022) have
emerged as robust vision backbones. A growing body of work has shown that with fine-
tuning and adaptation, diffusion priors can be repurposed for 3D generation (Cheng et al.,
2023; Lin et al., 2025; Long et al., 2024), segmentation (Karmann & Urfalioglu, 2025), and
dense prediction tasks (Ke et al., 2024; He et al., 2024), while consistently demonstrating
strong cross-domain robustness and highlighting their potential for leveraging intra-visual
multimodality in generative priors. However, their potential for structured and semantically
aware outputs, particularly in human pose estimation, remains largely unexplored. Concur-
rent efforts like GenLoc (Wang et al., 2025a) and Diff-Tracker (Zhang et al., 2024) indicate
that generative priors can benefit keypoint localization and tracking by steering learnable
condition embeddings and adapting the diffusion model’s cross-attention. We instead ex-
amine a complementary axis: can one rely purely on SD U-Net latent features, without
attention read-outs or condition tokens, to produce reliable pose heatmaps?

To bridge this gap and systematically study how to leverage the rich latent features for ro-
bust, cross-domain pose estimation, we propose SDPose, a fine-tuning framework with three
key components: (i) Latent-space preservation. We operate entirely in the SD U-Net’s
image latent space without modifying cross-attention modules or adding learnable embed-
dings, thus preserving pretrained visual semantics and feature geometry. (ii) Lightweight
pose decoder head. We employ one deconvolution layer (kernel size 4) followed by two
1 × 1 convolutions to map intermediate U-Net features directly into keypoint heatmaps,
minimizing disruption to the pretrained backbone. (iii) RGB reconstruction regular-
ization. We add an auxiliary reconstruction branch that regularizes fine-tuning, helping to
maintain domain-transferable generative semantics and improve out-of-distribution robust-
ness. Furthermore, to systematically evaluate robustness under domain shift, we introduce
COCO-OOD, a style-transferred extension of COCO annotations featuring oil painting
domains, which bridges the gap in benchmarking for generalization robustness evaluation.
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On COCO (Lin et al., 2014) and COCO-WholeBody (Jin et al., 2020), SDPose delivers
in-domain performance on par with the current SoTA, Sapiens (Khirodkar et al., 2024).
Under domain shift (HumanArt (Ju et al., 2023), COCO-OOD), it sets a new state of the
art while using only one-fifth of Sapiens’s fine-tuning epochs, highlighting the efficiency and
cross-domain robustness of generative priors. Beyond quantitative benchmarks, we further
demonstrate SDPose as a zero-shot pose annotator for downstream controllable generation
tasks, including ControlNet-based image synthesis and video generation, where it provides
reliable and qualitatively superior pose guidance.

2 Related Works

2.1 Latent Diffusion Models

Latent diffusion models (LDMs), built on DDPM and further advanced by ODE and SDE
samplers (Ho et al., 2020; Song et al., 2020b;a; Lu et al., 2022; Rombach et al., 2022), have
gained traction over the past few years. Classic architectures, such as the UNet-based Stable
Diffusion and Diffusion Transformers (DiT) (Peebles & Xie, 2023; Esser et al., 2024), have
demonstrated strong performance across diverse conditional generation tasks (Zhang et al.,
2023). Pretrained on large-scale datasets such as LAION-5B (Schuhmann et al., 2022),
generative models like Stable Diffusion provide rich visual priors that can be effectively
leveraged for a wide range of tasks. Recent advances in flow-matching (Lipman et al., 2022;
Esser et al., 2024; Xie et al., 2024) further show that latent diffusion models can achieve
high-quality synthesis with only a few sampling steps. These developments highlight the
power of latent generative priors as a strong visual foundation.

2.2 Leveraging Diffusion Priors for Prediction Tasks

A growing body of work has explored repurposing pretrained latent diffusion priors for
dense prediction tasks. Marigold (Ke et al., 2024) adapts Stable Diffusion by fine-tuning
only the denoising U-Net using synthetic data, delivering high-quality depth results. Later,
subsequent methods such as Lotus (He et al., 2024) and GenPercept (Xu et al., 2024) both
adopt a deterministic one-step fine-tuning strategy, removing the multi-step stochastic dif-
fusion process and directly predicting task annotations, which significantly improves both
accuracy and inference speed. In contrast, leveraging latent diffusion priors for structured
outputs (e.g., human pose) remains underexplored. Prior works such as GenLoc (Wang
et al., 2025a) and Diff-Tracker (Zhang et al., 2024) freeze Stable Diffusion backbone and use
learnable condition or prompt embeddings to read cross-attention maps, rather than decod-
ing from U-Net latent features, aiming at zero-/few-shot and schema-flexible generalization.
We instead remain in the image latent space, treat the SD U-Net as a multi-scale back-
bone, and attach a minimal convolutional head to produce keypoint heatmaps, retaining
SD-native visual semantics and improves robustness under domain shift.

2.3 Human Pose Estimation

Human pose estimation is a classic and fundamental task in computer vision. Early ap-
proaches predominantly relied on CNN backbones such as HRNet (Sun et al., 2020) and
CSPNeXt (Chen et al., 2024), coupled with heuristically designed decoding heads. Mod-
els like RTMPose (Jiang et al., 2023) and DWPose (Yang et al., 2023) achieved strong
performance on academic benchmarks such as COCO and COCO WholeBody. However,
these models exhibit limited generalization when transferring from real human figures to
out-of-domain cases, such as anime characters. More recently, fine-tuned methods built
on extensive pre-trained vision backbones, such as ViTPose (Xu et al., 2022; 2023) and
Sapiens (Khirodkar et al., 2024), have achieved SoTA results on standard benchmarks,
demonstrating the benefit of leveraging pre-trained foundation models for pose estimation.
Nevertheless, these methods incur high fine-tuning costs, as they require large task-specific
datasets and lengthy training schedules to achieve competitive performance. In this paper,
we demonstrate that fine-tuning the Stable Diffusion pipeline with minimal architectural
modifications can address both the generalization gap and the high fine-tuning cost.
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3 Preliminaries

3.1 Heatmap Representation and Unbiased Data Processing (UDP)

Let (xi, yi) denote the i-th ground-truth keypoint in anH×W image. The standard heatmap
representation encodes each keypoint as

Hi(u, v) = exp

(
− (u− xi)

2 + (v − yi)
2

2σ2

)
, (x̂i, ŷi) = argmax

u,v
Hi(u, v).

While widely adopted, this discrete pixel-space formulation suffers from quantization bias:
predicted coordinates become misaligned under flips, scales, or rotations since the argmax
operation only yields integer positions. To address this issue, we adopt the Unbiased Data
Processing (UDP) method (Huang et al., 2020), which removes quantization bias by es-
timating keypoints in a continuous domain. Following common practice, the heatmap is
generated at one-quarter resolution of the input image, which balances localization accu-
racy with computational efficiency.

3.2 Parameterization for Latent Diffusion Model

Traditional latent diffusion models (LDMs) (Ho et al., 2020) adopt the ϵ-prediction pa-
rameterization, where the denoiser fθ is trained to predict the Gaussian noise ϵt added at
timestep t:

ϵ̂t = fθ(zt, t),

with zt denoting the noisy latent at step t. The clean latent x0 can then be recovered by

x̂0 =
zt −

√
1− αt ϵ̂t√
αt

,

where αt =
∏t

s=1(1− βs) is the cumulative product of the noise schedule.

However, Lotus (He et al., 2024) shows that ϵ-prediction injects unnecessary stochastic
variation, which accumulates across multiple denoising steps, degrading dense prediction
quality. Lotus therefore advocates a deterministic adaptation, directly predicting the
clean annotation latent x0 in a single step:

x̂0 = gθ(zT ),

where T is a fixed timestep and gθ is fine-tuned U-Net applied once. This formulation elimi-
nates the prediction variance introduced by multiple-step denoising, simplifies optimization,
and significantly accelerates inference. In our approach, we similarly avoid the diffusion
chain and adopt this x0-prediction design.

4 Methodology

4.1 Leveraging the Multi-scale Latent Features for Pose Estimation

In this paper, we directly leverage the multi-scale latent features of SD U-Net for the pose
estimation task. The input image is encoded by the frozen SD-VAE encoder and then fed
into the SD U-Net, from which we extract multi-scale features at the upsampling stage.
These features serve as robust representations for downstream applications. The choice of
feature map depends on the keypoint granularity: for the 17-keypoint setting, we use the
last-layer upsampling features, while for the 133-keypoint whole-body setting, we use the
second-to-last upsampling features, as validated in Sec. 5.4.2.

4.2 The U-Net Convolutional Output Layer Forms an Information
Bottleneck

Stable Diffusion’s U-Net outputs a 4-channel latent z ∈ R4×h×w for the VAE through
a single convolutional layer. In contrast, pose estimation requires K-channel heatmaps

4
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Figure 2: Training Pipeline of SDPose. The input RGB image is first encoded into the
latent space by a pre-trained VAE. The U-Net is conditioned for multi-task learning via a
class embedding. When the class label is set to [0,1], the U-Net predicts the reconstructed
RGB latent; when set to [1,0], it produces features for heatmap prediction. The output layer
of the U-Net is task-specific: the original convolutional output layer is retained for RGB
latent reconstruction, while a lightweight heatmap decoder is used to process the U-Net’s
intermediate features for keypoint heatmap prediction.

H ∈ RK×H′×W ′
with K ≫ 4, making the 4-channel latent a severe information bottle-

neck. To address this, we replace the original 4-channel head with a lightweight heatmap
decoder (Xiao et al., 2018). The decoder consists of a deconvolution layer for upsampling,
followed by two 1× 1 convolutions that output K-channel heatmaps (Fig. 2). This modifi-
cation removes the bottleneck and shortens the supervision path to keypoints.

4.3 Auxiliary RGB Reconstruction

To preserve the fine-detail representation capability of diffusion priors and to avoid overfit-
ting to the pose estimation domain, we adopt the Detail Preserver strategy from Lotus (He
et al., 2024). Concretely, we introduce a class embedding C ∈ {CRGB, CPose} that controls
the behavior of the denoising U-Net fθ. When CRGB is provided, the network is trained
to reconstruct the RGB latent zRGB; when CPose is provided, it learns to reconstruct the
ground-truth heatmap HPose. The overall objective is

L = ∥zRGB − fθ(zinput, t, CRGB)∥2 + ∥HPose − fθ(zinput, t, CPose)∥2,

where zinput is the latent encoded from the input image by the SD-VAE, and t is fixed to
t = 1000 in our experiments.

4.4 Inference

Image x

SD-VAE
Encoder

[B, 3, H, W]

ZRGB

[B, 4, H/8, W/8]

Latent Diffusion
U-Net fθ

t = 1000
Prompt = “ ” (Disabled)

CPose = [1,0]

HP
Pose

[B, K, H/4, W/4][B, F, H/8, W/8]

Heatmap Head

4 x 4
DeConv
Layer

1 x 1
Conv
Layer

1 x 1
Conv
Layer

Figure 3: SDPose Inference Pipeline.

As illustrated in Fig. 3, the input RGB image x
is encoded by the SD-VAE into the latent rep-
resentation zRGB. The latent diffusion U-Net
then performs a single-step regression with the
timestep fixed at t = 1000, using the class label
CPose to execute the pose estimation task. The
text condition is disabled by feeding an empty
text embedding to the U-Net.

5 Experiments

5.1 Experiment Settings

Implementation Details. We train SDPose based on Stable Diffusion V2 (Rombach et al.,
2022), with text conditioning disabled. During training, we fix the timestep t = 1000. For
more details, please see the supplementary materials.

Training Datasets. We train two variants, SDPose 17-keypoints and SDPose 133-
keypoints, on MS COCO (Lin et al., 2014) and COCO-WholeBody (Jin et al., 2020), respec-
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Sapiens-1B SDPoseViTPose++Input Image

Figure 5: Qualitative results on real-world photographs. The yellow boxes highlight
regions where baselines fail to predict accurate poses.

tively. All images are processed using standard top-down augmentations, with the input
resolution set to 1024 × 768. Further details are provided in the supplementary materials.

Validation Datasets and Metrics. (1) For the 17-keypoint variant, we evaluate SDPose
on MS COCO (Lin et al., 2014) for real-world images, and on HumanArt (Ju et al., 2023) and
COCO-OOD for cross-domain benchmarks. (2) For the 133-keypoint variant, we evaluate
SDPose on COCO-WholeBody (Jin et al., 2020) and the extended COCO-OOD. Further
details of the evaluation datasets and metrics are provided in the supplementary materials.

CycleGAN
Style Transfer

Adaption

❄️

Figure 4: COCO-OOD visualiza-
tion. COCO images are stylized into
a Monet-like oil painting domain.

COCO-OOD (style-transferred COCO). To
complement HumanArt and enable OOD evalua-
tion with matched content/labels, we translate all
COCO val images into Monet-style paintings using
the official CycleGAN framework (Zhu et al., 2017)
(monet2photo), preserving the original human an-
notations (boxes, keypoints). This yields an OOD
split with unchanged scene geometry but shifted tex-
ture, color, and brush patterns. The domain shift
is further quantified by a Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017) of 46.23 between
COCO-OOD and the original COCO validation im-
ages, which is notably larger than the 32.59 FID mea-
sured between COCO validation and HumanArt.

Please refer to the supplementary materials for additional details.

5.2 Quantitative and Qualitative Comparison on Real-World Scenes

For the 17-keypoints variant, SDPose achieves 81.3 AP / 85.2 AR on the COCO validation
set (Table 1) with only 40 training epochs using a 0.95B SD-v2 backbone. It matches the
accuracy of Sapiens (82.1–82.2 AP) despite requiring 5× fewer epochs and a smaller back-
bone, and surpasses GenLoc (+3.7 AP, +4.5 AR). SDPose also outperforms ViTPose++
(+1.9 AP), which relies on multiple auxiliary datasets, while being trained solely on COCO.
Figure 5 further illustrates robustness on real-world photos, where SDPose rivals Sapiens
and corrects its failure cases (e.g., Sichuan opera eye keypoints). For the 133-keypoints vari-
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Table 1: Quantitative comparison on the COCO validation set. We compare meth-
ods with parameter sizes comparable to the SDPose pipeline.

Model
Pre-trained
Backbone

Parameters Input size
Train
dataset

Train
epochs

AP AR

Sapiens-1B (Khirodkar et al., 2024) Sapiens ViT 1.169B 1024 × 768 COCO 210 82.1 85.9

Sapiens–2B (Khirodkar et al., 2024) Sapiens ViT 2.163B 1024 × 768 COCO 210 82.2 86.0

GenLoc (Wang et al., 2025a) Stable Diffusion-v1.5 0.95B N/A COCO 14 77.6 80.7

ViTPose ++-H (Xu et al., 2023) ViTAE 0.63B 256 × 192 Mixture* 210 79.4 N/A

SDPose (Ours) Stable Diffusion-v1.5 0.95B 1024 × 768 COCO 40 81.2 85.3

SDPose (Ours) Stable Diffusion-v2 0.95B 1024 × 768 COCO 40 81.3 85.2
* Mixture includes COCO, AIC, MPII, AP10K, APT36K, and WholeBody datasets.

ant, SDPose achieves competitive performance with Sapiens-1B on the COCO-WholeBody
validation set. Further details are provided in the supplementary materials.

5.3 SDPose’s Strong OOD Robustness

Table 2: Quantitative comparison on OOD benchmarks HumanArt and COCO-
OOD. Here, we report the methods with parameter sizes comparable to the SDPose pipeline.
All models are trained on COCO with an input size of 1024 × 768; full HumanArt results
for other methods are in the supplementary.

Model
Pre-trained
Backbone

Parameters
Train
epochs

HumanArt COCO-OOD

AP AR AP AR

Sapiens-1B (Khirodkar et al., 2024) Sapiens ViT 1.169B 210 64.3 67.4 58.8 63.3

Sapiens-2B (Khirodkar et al., 2024) Sapiens ViT 2.163B 210 69.6 72.2 59.6 64.0

GenLoc (Wang et al., 2025a) Stable Diffusion-v1.5 0.95B 14 67.0 70.8 N/A N/A

SDPose (Ours) Stable Diffusion-v2 0.95B 40 71.2 73.9 63.5 68.2

In this section, we demonstrate the superior OOD robustness of SDPose using quantitative
evaluation on HumanArt and our COCO-OOD benchmark. As shown in Table 2, SDPose
achieves state-of-the-art results on HumanArt and COCO-OOD with fewer training epochs
and a smaller parameter budget. On COCO-OOD WholeBody (Table 3), SDPose continues
to demonstrate strong out-of-domain robustness. As shown in Fig. 1, SDPose achieves more
accurate body pose estimation across diverse animation styles and humanoid robots com-
pared with baseline models. Additional qualitative results on whole-body pose estimation
in stylized paintings are provided in the supplementary materials.

Table 3: Quantitative comparison on the COCO-OOD Wholebody validation set.
In this section, we report only the whole-body AP and AR; please refer to the supplementary
materials for detailed results on individual body parts.

Model
Pre-trained
Backbone

Parameters Input size
Train
dataset

Train
epochs

Whole AP Whole AR

Sapiens-1B (Khirodkar et al., 2024) Sapiens ViT 1.169B 1024 × 768 COCO 210 38.7 46.8

Sapiens-2B (Khirodkar et al., 2024) Sapiens ViT 2.163B 1024 × 768 COCO 210 44.4 53.0

SDPose (Ours) Stable Diffusion-v2 0.95B 1024 × 768 COCO 42 46.6 54.8

5.4 Ablation Study

5.4.1 Ablation on Auxiliary Reconstruction Task and Diffusion Priors

We conduct ablations to validate our designs. For the “w/o diffusion priors” variant, we
train the U-Net from scratch (no pretrained priors). For the “w/o RGB recon.” variant, we
disable only the auxiliary RGB reconstruction branch; all other settings remain identical.
From Table 4, two trends emerge. First, removing the RGB branch yields a consistent
but modest AP/AR drop on COCO that becomes more pronounced on HumanArt and
COCO-OOD, indicating that the auxiliary reconstruction acts as a useful regularizer and
improves robustness under domain shift. Second, removing diffusion priors causes a much
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larger degradation, especially on the OOD benchmarks, highlighting that the pretrained
generative priors are the primary source of SDPose’s generalization.

Table 4: Ablation studies on the diffusion priors and RGB reconstruction branch.
All experiments are trained on COCO 17-keypoints with input 1024×768 for 40 epochs.

Method
COCO HumanArt COCO-OOD

AP AR AP AR AP AR

SDPose 81.3 85.2 71.2 73.9 63.5 68.2

SDPose w/o RGB Recon. 80.8 (-0.5) 84.9 (-0.3) 69.8 (-1.4) 72.6 (-1.3) 62.5 (-1.0) 67.3 (-0.9)

SDPose w/o Diffusion Priors 74.9 (-6.4) 79.4 (-5.8) 53.8 (-17.4) 58.0 (-15.9) 52.7 (-10.8) 57.9 (-10.3)

5.4.2 Ablation on Multi-scale Features from the SD U-Net

Table 5: Ablation on U-Net feature se-
lection for the pose head. All models are
trained on COCO (40 epochs for 17-keypoints,
42 epochs for 133-keypoints).

Feature
SDPose-17 SDPose-133

AP AR AP AR

Last layer 81.3 85.2 70.5 77.5

Second-to-last layer 81.1 85.0 71.5 78.4

Prior work (Liu et al., 2023b; 2024; 2023a;
Wang et al., 2025b) suggests that penulti-
mate features often transfer better than fi-
nal ones. As shown in Table 5, SDPose-17
favors the last-layer feature, while SDPose-
133 benefits from the second-to-last. This
indicates that the optimal feature choice de-
pends on keypoint granularity: coarse 17-
keypoint settings are well served by the fi-
nal representation, whereas whole-body lo-
calization gains from the richer semantics in
the penultimate layer.

6 Zero-shot Downstream Applications

6.1 Better Pose-guided Image Generation

For human or humanoid character generation, an accurate skeleton is essential for transfer-
ring poses between characters. Traditional pose estimators often fail to precisely capture
the skeletons of art-based human or humanoid characters. Our method provides a general-
izable pose estimation approach that can benefit animation production. As shown in Fig. 6,
we compare ControlNet (Zhang et al., 2023) outputs using DWPose as the baseline pose

SDPose
(Ours)

DWPose
(Baseline)

SDPose
(Ours)

DWPose
(Baseline)

Figure 6: Visualization of pose-guided image generation results. The lower images
illustrate results from the baseline, which combines a pre-trained ControlNet with the DW-
Pose estimator. In comparison, the upper images show results obtained using our SDPose
as the pose annotator. Yellow boxes highlight baseline failures. Prompts, random seeds,
and other settings are kept identical for fairness.
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Driving Video

Driven by DWPose
(Baseline)

Driven by SDPose
(Ours)

Source Image Driving Image 1 Driving Image 2 Driving Image 3 Driving Image 4

Figure 7: Qualitative comparison for pose-controlled video generation in the wild.
The first row shows the source image and frames from the driving video. The second row
shows output video frames generated from the pose sequence estimated by the baseline model
DWPose, while the third row shows the results guided by our SDPose. Red boxes highlight
failures in the generated video, and yellow boxes highlight errors in pose estimation.

annotator. Notably, our SDPose yields more precise and detailed skeletons than DWPose,
enabling reliable pose transfer and high-quality image generation for artistic characters.

6.2 Pose-guided Video Generation

Recent advances in controlled video generation have gained significant traction (Hu, 2024;
Guo et al., 2023; Kim et al., 2024). Despite the progress of video generation models in
producing higher-quality outputs, extracting reliable control conditions remains critical for
achieving high-quality results. As shown in Fig. 7, our SDPose provides more accurate
poses for the driving frames, enabling more reliable pose-sequence transfer from animations
to animations. Video frames are generated by Moore-Animated Anyone1.

7 Conclusion

In this paper, we present SDPose, an SD-native fine-tuning strategy for human pose es-
timation. SDPose preserves the original U-Net with only lightweight task-specific compo-
nents, adapting generative latent priors for keypoint prediction through an auxiliary RGB
reconstruction branch and a heatmap decoder. We further introduce COCO-OOD, a style-
transferred extension of COCO for evaluating robustness under domain shifts. With only
1/5 of Sapiens’ fine-tuning cost and a smaller backbone, SDPose matches its accuracy on
COCO and achieves state-of-the-art results on COCO-OOD and HumanArt, demonstrating
strong generalization for pose estimation.

1https://github.com/MooreThreads/Moore-AnimateAnyone
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Ethics Statement

This work builds upon publicly available datasets (COCO, COCO Wholebody), all of which
have established licenses and annotation protocols. No private or personally identifiable
information is used. Our method focuses on improving the robustness of pose estimation
under domain shifts, which can benefit applications such as animation and embodied AI.

Reprodicibility Statement

We have made every effort to ensure reproducibility. All datasets used are publicly available,
and we detail dataset splits, preprocessing steps, and evaluation protocols in Sec. 4. Our
training settings, hyperparameters, and model architectures are fully described in Sec. 4,
Sec. 5 and Appendix A. Code and scripts to reproduce our experiments will be released
upon publication.
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Supplementary Materials for SDPose: Exploiting Diffusion
Priors for Out-of-Domain and Robust Pose Estimation

A Experiment Settings

A.1 Implementation Details

We train SDPose on the COCO-2017 person keypoints train2017 split only (no extra data),
with text prompts disabled. The diffusion timestep is fixed at t = 1000. We use AdamW
with a learning rate of 3 × 10−5. All experiments are run on 8 NVIDIA A100-NVLink
GPUs with a total batch size of 128, without gradient accumulation. Inputs are resized to
1024×768 with standard top-down augmentations. The 17-keypoint model is trained for 40
epochs (approximately 3 days), and the 133-keypoint model for 42 epochs (approximately
3 days and a half).

A.2 Training Datasets

COCO 2017 Keypoint Detection We train the 17-keypoint variant on the COCO-2017
person keypoint detection dataset (Lin et al., 2014). The full COCO release contains more
than 200,000 images and about 250,000 person instances. Person keypoint annotations
follow the 17-point format (nose, eyes, ears, shoulders, elbows, wrists, hips, knees, and
ankles).

COCO Wholebody To further evaluate large-scale whole-body keypoint estimation, we
adopt COCO-WholeBody (Jin et al., 2020), an extended benchmark built on top of COCO
images. COCO-WholeBody augments the original 17 body joints with fine-grained annota-
tions of foot (6 keypoints), face (68 keypoints), and hands (42 keypoints for hands), resulting
in a total of 133 keypoints per person. The dataset provides consistent whole-body anno-
tations across the same training and validation splits as COCO-2017, enabling both fair
comparison with standard pose estimation methods and comprehensive evaluation under
the whole-body setting.

A.3 Augmentation Details

The training pipeline first loads the input image and computes the bounding box center and
scale. It applies random horizontal flipping, half-body augmentation, and random bounding
box transformations. The image is then affine-transformed to the target input resolution
using UDP (Huang et al., 2020). Albumentations-based augmentations are then applied,
including Gaussian blur (p = 0.1), median blur (p = 0.1), and coarse dropout (p = 1.0, with
up to one hole of size 20%–40% of the image).

A.4 Evaluation Datasets and Metrics

Evaluation Datasets

COCO 2017 Keypoint Detection. For in-domain evaluation, we use the
COCO-2017 validation set (Lin et al., 2014) annotated with 17 body keypoints,
bounding boxes, and visibility flags. Following the standard top-down evalua-
tion protocol, we generate person crops from the COCO-released detection results
(COCO val2017 detections AP H 70 person.json), and report COCO keypoint AP/AR
on this diverse in-the-wild dataset.

HumanArt. We use HumanArt (Ju et al., 2023) as an cross domain benchmark: 50k
human-centric images across 20 scenarios (5 natural, 15 artistic—oil painting, sculpture,
cartoon, sketch, stained glass, Ukiyo-e, watercolor, etc.) with annotations for boxes and 2D
keypoints. We follow the official protocol and report keypoint AP/AR to assess robustness
under artistic domain shift.

COCO-WholeBody (133-keypoint whole-body). We train and evaluate a
133-keypoint variant on COCO-WholeBody (Jin et al., 2020), which shares COCO’s
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train/val split. Each person has 133 keypoints (17 body, 6 foot, 68 face, 42 hand) plus boxes
for person/face/left/right hand. We follow the official protocol and report Whole-Body AP
and part-wise AP (body/foot/face/hand). This dataset spans diverse in-the-wild scenes and
stresses fine-grained articulation, complementing COCO for structured keypoint evaluation.

Metrics We follow the standard COCO keypoint evaluation protocol, which is based on
the Object Keypoint Similarity (OKS). For each keypoint i, the similarity is defined as

KSi = exp

(
− d2i
2s2k2i

)
,

where di denotes the Euclidean distance between predicted and ground-truth keypoints, s
is the object scale (square root of the segmentation area), and ki is a per-keypoint constant
controlling falloff. The OKS for an instance is the average KSi over visible keypoints:

OKS =

∑
i KSi · δ(vi > 0)∑

i δ(vi > 0)
,

where vi is the visibility flag. Using OKS as the matching criterion, COCO computes
Average Precision (AP) as the mean precision over OKS thresholds [0.50 : 0.05 : 0.95], and
Average Recall (AR) analogously as the mean recall across the same thresholds.

A.5 Details of COCO-OOD

CycleGAN
Style Transfer

Adaption

❄️

CycleGAN
Style Transfer

Adaption

❄️

CycleGAN
Style Transfer

Adaption

❄️

Figure 8: COCO-OOD visualizations with Monet-style oil painting. We use Cy-
cleGAN to stylize COCO validation images into a Monet-like oil painting domain, creating
an OOD split to evaluate pose estimation robustness under appearance shift.

To complement the HumanArt dataset and enable OOD evaluation under matched con-
tent and labels, we construct COCO-OOD by applying artistic style transfer to the original
COCO images. We adopt the official CycleGAN framework (Zhu et al., 2017) to perform
unpaired image-to-image translation from the COCO domain (natural photographs) to the
target domain of Monet-style paintings. We use the monet2photo model provided in the
CycleGAN repository, which is trained in an unsupervised manner to learn the mapping be-
tween Monet paintings and real-world photos. During conversion, all training and validation
images in COCO are processed to produce style-transferred counterparts, while preserving
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their original human annotations (bounding boxes, keypoints). This yields an OOD vari-
ant of COCO in which the underlying scene structure is unchanged, but the texture, color
palette, and brushstroke patterns are consistent with Monet’s artistic style. Importantly, for
fair comparison and to avoid introducing priors from large-scale pretrained diffusion mod-
els, we intentionally adopt the earlier CycleGAN framework rather than more recent style
transfer methods. Such stylization introduces a significant appearance shift while keeping
pose-related geometric information intact, making it suitable for robust pose estimation
evaluation.

B Details of Quantitative Comparison and Additional
Qualitative Comparison

B.1 Full Quantitative Comparison on COCO

Table 6: Quantitative comparison on the COCO validation set.

Model Input Size AP AR

SimpleBaseline (Xiao et al., 2018) 256×192 73.5 79.0

HRNet (Sun et al., 2019) 384×288 76.3 81.2

HRFormer (Yuan et al., 2021) 256×192 77.2 82.0

ViTPose-S (Xu et al., 2022) 256×192 73.8 79.2

ViTPose-B (Xu et al., 2022) 256×192 75.8 81.1

ViTPose-L (Xu et al., 2022) 256×192 78.3 83.5

ViTPose-H (Xu et al., 2022) 256×192 79.1 84.1

ViTPose++-S (Xu et al., 2023) 256×192 75.8 81.0

ViTPose++-B (Xu et al., 2023) 256×192 77.0 82.6

ViTPose++-L (Xu et al., 2023) 256×192 78.6 84.1

ViTPose++-H (Xu et al., 2023) 256×192 79.4 84.8

Sapiens-0.3B (Khirodkar et al., 2024) 1024×768 79.6 83.6

Sapiens-0.6B (Khirodkar et al., 2024) 1024×768 81.2 84.9

Sapiens-1B (Khirodkar et al., 2024) 1024×768 82.1 85.9

Sapiens-2B (Khirodkar et al., 2024) 1024×768 82.2 86.0

SDPose (Ours) 1024×768 81.3 85.2

B.2 Full Quantitative Comparison on HumanArt

On HumanArt (Table 7), SDPose sets a new state of the art with 71.2 AP / 73.9 AR, sur-
passing large-scale foundation baselines under the same COCO-only training: +1.6 AP over
Sapiens-2B (69.6 AP) and +4.7 AP over ViTPose-H (66.5 AP), with consistent AR gains.
Compared with traditional baselines such as RTMPose (Jiang et al., 2023) and HRNet (Sun
et al., 2019), SDPose further delivers substantial improvements in AP, exceeding them by
more than 14 points.

B.3 Full Quantitative Comparison on COCO Wholebody

As shown in Table 8, SDPose achieves 71.5 AP / 78.4 AR on the COCO-WholeBody vali-
dation set. This result is highly competitive with the large-scale Sapiens (Khirodkar et al.,
2024) models: while Sapiens-2B reaches 74.4 AP with over 2B parameters and long training
schedules, SDPose attains comparable accuracy with a smaller 0.95B backbone trained for
only 42 epochs. In terms of sub-part analysis, our method closely matches Sapiens-2B on
body (77.9 vs. 79.2) and feet (81.5 vs. 84.1), while maintaining strong performance on face
(88.5 vs. 91.2). The largest gap appears on hand keypoints (65.2 vs. 70.4), reflecting the
intrinsic difficulty of fine-grained articulation. Nevertheless, compared with classical base-
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Table 7: Quantitative Comparison on the HumanArt validation set. Models trained
on COCO, evaluated with GT bounding boxes. SDPose achieves new state-of-the-art per-
formance.

Model AP AP50 AP75 AR AR50

RTMPose-T (Jiang et al., 2023) 44.4 72.5 45.3 48.8 75.0

RTMPose-S (Jiang et al., 2023) 48.0 73.9 49.8 52.1 76.3

RTMPose-M (Jiang et al., 2023) 53.2 76.5 56.3 57.1 78.9

RTMPose-L (Jiang et al., 2023) 56.4 78.9 60.2 59.9 80.8

ViTPose-S (Xu et al., 2022) 50.7 75.8 53.1 55.1 78.0

ViTPose-B (Xu et al., 2022) 55.5 78.2 59.0 59.9 80.9

ViTPose-L (Xu et al., 2022) 63.7 83.8 68.9 67.7 85.9

ViTPose-H (Xu et al., 2022) 66.5 86.0 71.5 70.1 87.1

HRNet-W32 (Sun et al., 2019) 53.3 77.1 56.2 57.4 79.2

HRNet-W48 (Sun et al., 2019) 55.7 78.2 59.3 59.5 80.4

Sapiens-1B (Khirodkar et al., 2024) 64.3 82.1 67.9 67.4 83.7

Sapiens-2B (Khirodkar et al., 2024) 69.6 85.3 73.3 72.2 86.8

SDPose (Ours) 71.2 87.3 76.3 73.9 88.6

Table 8: Quantitative comparison on the COCO-WholeBody validation set.
[Body, Feet, Face]

Model Body AP Body AR Feet AP Feet AR Face AP Face AR

HRNet (Sun et al., 2019) 70.1 77.3 58.6 69.2 72.7 78.3

VitPose+-L (Xu et al., 2023) 75.3 - 77.1 - 63.0 -

VitPose+-H (Xu et al., 2023) 75.9 - 77.9 - 63.6 -

RTMPose-x (Jiang et al., 2023) 71.4 78.4 69.2 81.0 88.8 92.2

DWPose-l (Yang et al., 2023) 72.2 78.9 70.4 81.7 88.7 92.1

Sapiens-0.3B (Khirodkar et al., 2024) 66.4 73.4 67.3 78.4 87.1 91.2

Sapiens-0.6B (Khirodkar et al., 2024) 74.3 80.2 79.4 87.0 89.5 92.9

Sapiens-1B (Khirodkar et al., 2024) 77.4 82.9 83.0 89.8 90.7 93.6

Sapiens-2B (Khirodkar et al., 2024) 79.2 84.6 84.1 90.9 91.2 93.8

SDPose (Ours) 77.9 83.4 81.5 88.7 88.5 92.2

[Hands and Whole-body]

Model Hand AP Hand AR Whole AP Whole AR

HRNet (Sun et al., 2019) 51.6 60.4 58.6 67.4

VitPose+-L (Xu et al., 2023) 54.2 - 60.6 -

VitPose+-H (Xu et al., 2023) 54.7 - 61.2 -

RTMPose-x (Jiang et al., 2023) 59.0 68.5 65.3 73.3

DWPose-l (Yang et al., 2023) 62.1 71.0 66.5 74.3

Sapiens-0.3B (Khirodkar et al., 2024) 58.1 67.1 62.0 69.4

Sapiens-0.6B (Khirodkar et al., 2024) 65.4 74.0 69.5 76.3

Sapiens-1B (Khirodkar et al., 2024) 69.2 77.1 72.7 79.2

Sapiens-2B (Khirodkar et al., 2024) 70.4 78.1 74.4 81.0

SDPose (Ours) 65.2 74.0 71.5 78.4

lines such as HRNet (Sun et al., 2019), RTMPose (Jiang et al., 2023), or DWPose (Yang
et al., 2023), SDPose shows substantial gains of +6–12 AP across whole-body evaluation.

B.4 Full Quantitative Comparison on COCO-OOD Wholebody

Detailed whole-body pose estimation results on COCO-OOD are reported in Table 9. Break-
ing down by body part, SDPose matches or surpasses Sapiens on the most stable regions:
body (60.0 AP vs. 59.9) and feet (62.5 vs. 63.8), and delivers a notable margin on face
landmarks (+5.8 AP, 64.2 vs. 58.4), highlighting the reliability of SD-native features under
appearance shifts. For hands, which are the most challenging due to fine-grained articula-
tion and limited resolution, SDPose attains 46.3/44.9 AP on left/right hands, respectively,
remaining competitive but still slightly behind Sapiens-2B (48.2/46.8). Nevertheless, the
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Table 9: Quantitative Comparison on the COCO-OOD Wholebody validation
set.

[Body, Feet, Face]

Model Body AP Body AR Feet AP Feet AR Face AP Face AR

Sapiens-1B 52.1 58.6 55.9 66.2 57.6 63.0

Sapiens-2B 59.9 65.8 63.8 72.4 58.4 64.2

SDPose (Ours) 60.0 66.1 62.5 72.0 64.2 69.9

[Hands and Whole-body]

Model L-Hand AP L-Hand AR R-Hand AP R-Hand AR Whole AP Whole AR

Sapiens-1B 43.1 52.0 41.5 50.6 38.7 46.8

Sapiens-2B 48.2 56.8 46.8 55.3 44.4 53.0

SDPose (Ours) 46.3 55.2 44.9 54.4 46.6 54.8

overall whole-body AP/AR of 46.6/54.8 establishes SDPose as the most robust framework
under OOD whole-body evaluation.

B.5 Qualitative Comparison for Whole-Body Pose Estimation

Sapiens-1B SDPoseInput Image Sapiens-2B

Figure 9: Comparison on Stylized Paintings: Sapiens WholeBody vs. SDPose
WholeBody. All erroneous predictions are highlighted with yellow boxes. SDPose yields
fewer false positives and notably better facial keypoint localization.
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