

SDPose: EXPLOITING DIFFUSION PRIORS FOR OUT-OF-DOMAIN AND ROBUST POSE ESTIMATION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
SDPose: EXPLOITING DIFFUSION PRIORS FOR
OUT-OF-DOMAIN AND ROBUST POSE ESTIMATION

Figure 1: **SDPose: OOD-robust pose via diffusion priors.** On stylized paintings, SDOurs surpasses Sapiens and ViTPose++-H, matching SoTA on COCO and setting new records on HumanArt and COCO-OOD; yellow boxes show baseline failures.

ABSTRACT

Pre-trained diffusion models provide rich multi-scale latent features and are emerging as powerful vision backbones. While recent works such as Marigold (Ke et al., 2024) and Lotus (He et al., 2024) adapt diffusion priors for dense prediction with strong cross-domain generalization, their poten-

054 tial for structured outputs (e.g., human pose estimation) remains underex-
 055 plored. In this paper, we propose **SDPose**, a fine-tuning framework built
 056 upon Stable Diffusion to fully exploit pre-trained diffusion priors for human
 057 pose estimation. First, rather than modifying cross-attention modules or
 058 introducing learnable embeddings, we directly predict keypoint heatmaps
 059 in the SD U-Net’s image latent space to preserve the original generative pri-
 060 ors. Second, we map these latent features into keypoint heatmaps through a
 061 lightweight convolutional pose head, which avoids disrupting the pre-trained
 062 backbone. Finally, to prevent overfitting and enhance out-of-distribution
 063 robustness, we incorporate an auxiliary RGB reconstruction branch that
 064 preserves domain-transferable generative semantics. To evaluate robustness
 065 under domain shift, we further construct **COCO-OOD**, a style-transferred
 066 variant of COCO with preserved annotations. With just one-fifth of the
 067 training schedule used by Sapiens on COCO, SDPose attains parity with
 068 Sapiens-1B/2B on the COCO validation set and establishes a new state
 069 of the art on the cross-domain benchmarks HumanArt and COCO-OOD.
 070 **Extensive ablations highlight the importance of diffusion priors, RGB re-**
 071 **construction, and multi-scale SD U-Net features for cross-domain general-**
 072 **ization, and t-SNE analyses further explain SD’s domain-invariant latent**
 073 **structure. We also show that SDPose serves as an effective zero-shot pose**
 074 **annotator for controllable image and video generation.**

1 INTRODUCTION

078 With the recent rise of embodied AI, video generation, and 3D asset rendering, the need for
 079 cross-domain-robust human pose estimation has become critical in robotics as well as in film,
 080 animation, and game production. Although recent advances on academic benchmarks such
 081 as MS COCO (Lin et al., 2014) using models such as DWPose (Yang et al., 2023), RTM-
 082 Pose (Jiang et al., 2023) and OpenPose (Martinez, 2019), as well as approaches leveraging
 083 large pretrained backbones such as ViTPose (Xu et al., 2022; 2023) and Sapiens (Khirodkar
 084 et al., 2024), have achieved strong in-domain accuracy, they often exhibit severe performance
 085 degradation under domain shifts and require substantial fine-tuning efforts.

086 Recently, pre-trained diffusion models such as Stable Diffusion (Rombach et al., 2022) have
 087 emerged as robust vision backbones. A growing body of work has shown that with fine-
 088 tuning and adaptation, diffusion priors can be repurposed for 3D generation (Cheng et al.,
 089 2023; Lin et al., 2025; Long et al., 2024), segmentation (Karmann & Urfalioglu, 2025), and
 090 dense prediction tasks (Ke et al., 2024; He et al., 2024), while consistently demonstrating
 091 strong cross-domain robustness and highlighting their potential for leveraging intra-visual
 092 multimodality in generative priors. However, their potential for structured and semantically
 093 aware outputs, particularly in human pose estimation, remains largely unexplored. Concur-
 094 rent efforts like GenLoc (Wang et al., 2025a) and Diff-Tracker (Zhang et al., 2024) indicate
 095 that generative priors can benefit keypoint localization and tracking by steering learnable
 096 condition embeddings and adapting the diffusion model’s cross-attention. We instead ex-
 097 amine a complementary axis: can one rely purely on SD U-Net latent features, without
 098 attention read-outs or condition tokens, to produce reliable pose heatmaps?

099 **To bridge this gap and investigate how SD’s rich latent representations can be effectively**
 100 **leveraged for robust cross-domain pose estimation, our contributions are as follows:**

101 (1) We propose **SDPose**, a fine-tuning framework with three key components: **(i) Latent-**
 102 **space preservation.** We operate entirely in the SD U-Net’s image latent space without
 103 modifying cross-attention modules or adding learnable embeddings, thus preserving pre-
 104 trained visual semantics and feature geometry. **(ii) Lightweight pose decoder head.**
 105 We introduce a minimal decoder that maps SD U-Net features to keypoint heatmaps with
 106 only a shallow convolutional head, ensuring low overhead and minimal disturbance to the
 107 pretrained latent representations. **(iii) RGB reconstruction regularization.** We add
 108 an auxiliary reconstruction branch that regularizes fine-tuning, helping to maintain domain-
 109 transferable generative semantics and improve out-of-distribution robustness.

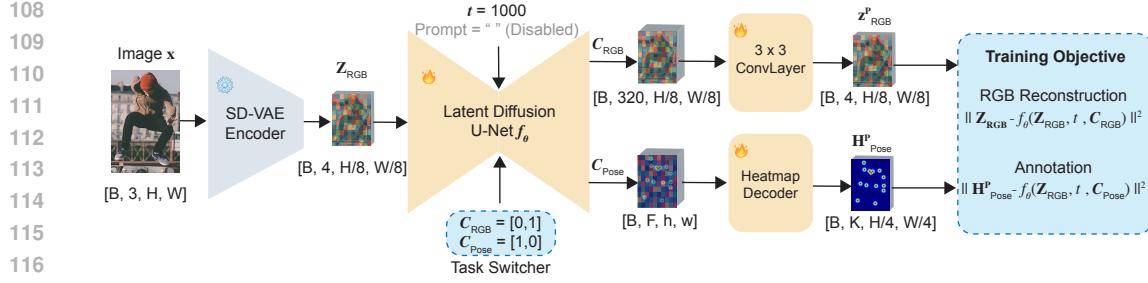


Figure 2: **Training Pipeline of SDPose.** The input RGB image is first encoded into the latent space by a pre-trained VAE. The U-Net is conditioned for multi-task learning via a class embedding. When the class label is set to $[0,1]$, the U-Net predicts the reconstructed RGB latent; when set to $[1,0]$, it produces features for heatmap prediction. The output layer of the U-Net is task-specific: the original convolutional output layer is retained for RGB latent reconstruction, while a lightweight heatmap decoder is used to process the U-Net’s intermediate features for keypoint heatmap prediction.

(2) To systematically evaluate robustness under domain shift, we introduce **COCO-OOD**, a style-transferred extension of COCO that includes oil-painting, ukiyo-e, and color sketch domains. This dataset fills an important gap in benchmarking generalization robustness.

(3) We conduct extensive ablation studies to understand how diffusion priors and our RGB reconstruction branch contribute to cross-domain generalization in pose estimation. We further compare multi-scale features from different upsampling blocks of the SD-UUnet, identifying the feature level that yields the strongest robustness under artistic domain shifts. Finally, through a latent-space comparison with Sapiens using t-SNE visualizations, we observe that SD’s pretrained latent features naturally capture domain-invariant structures, which is highly beneficial for cross-domain perception tasks.

On COCO (Lin et al., 2014) and COCO-WholeBody (Jin et al., 2020), SDPose delivers in-domain performance on par with the current SoTA, Sapiens (Khirodkar et al., 2024). Under domain shift (HumanArt (Ju et al., 2023), COCO-OOD), it sets a new state of the art while using only one-fifth of Sapiens’s fine-tuning epochs, highlighting the efficiency and cross-domain robustness of generative priors. Beyond quantitative benchmarks, we further demonstrate SDPose as a zero-shot pose annotator for downstream controllable generation tasks, including ControlNet-based image synthesis and video generation, where it provides reliable and qualitatively superior pose guidance.

2 RELATED WORKS

2.1 LATENT DIFFUSION MODELS

Latent diffusion models (LDMs), built on DDPM and further advanced by ODE and SDE samplers (Ho et al., 2020; Song et al., 2020b;a; Lu et al., 2022; Rombach et al., 2022), have gained traction over the past few years. Classic architectures, such as the UNet-based Stable Diffusion and Diffusion Transformers (DiT) (Peebles & Xie, 2023; Esser et al., 2024), have demonstrated strong performance across diverse conditional generation tasks (Zhang et al., 2023). Pretrained on large-scale datasets such as LAION-5B (Schuhmann et al., 2022), generative models like Stable Diffusion provide rich visual priors that can be effectively leveraged for a wide range of tasks. Recent advances in flow-matching (Lipman et al., 2022; Esser et al., 2024; Xie et al., 2024) further show that latent diffusion models can achieve high-quality synthesis with only a few sampling steps. These developments highlight the power of latent generative priors as a strong visual foundation.

2.2 LEVERAGING DIFFUSION PRIORS FOR PREDICTION TASKS

162 A growing body of work has explored repurposing
 163 pretrained latent diffusion priors for dense
 164 prediction tasks. Marigold (Ke et al., 2024)
 165 adapts Stable Diffusion by fine-tuning only the
 166 denoising U-Net using synthetic data, delivering
 167 high-quality depth results. Later, subsequent
 168 methods such as Lotus (He et al., 2024) and
 169 GenPercept (Xu et al., 2024) both adopt a deter-
 170 ministic one-step fine-tuning strategy, removing

171 the multi-step stochastic diffusion process and directly predicting task annotations, which
 172 significantly improves both accuracy and inference speed. In contrast, leveraging latent
 173 diffusion priors for structured outputs (e.g., human pose) remains underexplored. Prior
 174 works such as GenLoc (Wang et al., 2025a) and Diff-Tracker (Zhang et al., 2024) freeze
 175 Stable Diffusion backbone and use learnable condition or prompt embeddings to read cross-
 176 attention maps, rather than decoding from U-Net latent features, aiming at zero-/few-shot
 177 and schema-flexible generalization. We instead remain in the image latent space, treat the
 178 SD U-Net as a multi-scale backbone, and attach a minimal convolutional head to produce
 179 keypoint heatmaps, retaining SD-native visual semantics and improves robustness under
 domain shift.

180 2.3 HUMAN POSE ESTIMATION

181 Human pose estimation is a classic and fundamental task in computer vision. Early ap-
 182 proaches predominantly relied on CNN backbones such as HRNet (Sun et al., 2020) and
 183 CSPNeXt (Chen et al., 2024), coupled with heuristically designed decoding heads. Mod-
 184 els like RTMPose (Jiang et al., 2023) and DWPose (Yang et al., 2023) achieved strong
 185 performance on academic benchmarks such as COCO and COCO WholeBody. However,
 186 these models exhibit limited generalization when transferring from real human figures to
 187 out-of-domain cases, such as anime characters. More recently, fine-tuned methods built
 188 on extensive pre-trained vision backbones, such as ViTPose (Xu et al., 2022; 2023) and
 189 Sapiens (Khirodkar et al., 2024), have achieved SoTA results on standard benchmarks,
 190 demonstrating the benefit of leveraging pre-trained foundation models for pose estimation.
 191 Nevertheless, these methods incur high fine-tuning costs, as they require large task-specific
 192 datasets and lengthy training schedules to achieve competitive performance. In this paper,
 193 we demonstrate that fine-tuning the Stable Diffusion pipeline with minimal architectural
 194 modifications can address both the generalization gap and the high fine-tuning cost.

196 3 PRELIMINARIES

197 3.1 HEATMAP REPRESENTATION AND UNBIASED DATA PROCESSING (UDP)

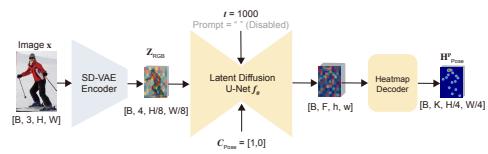
198 Let (x_i, y_i) denote the i -th ground-truth keypoint in an $H \times W$ image. The standard heatmap
 199 representation encodes each keypoint as

$$200 H_i(u, v) = \exp\left(-\frac{(u - x_i)^2 + (v - y_i)^2}{2\sigma^2}\right), \quad (\hat{x}_i, \hat{y}_i) = \arg \max_{u, v} H_i(u, v).$$

201 While widely adopted, this discrete pixel-space formulation suffers from quantization bias:
 202 predicted coordinates become misaligned under flips, scales, or rotations since the argmax
 203 operation only yields integer positions. To address this issue, we adopt the Unbiased Data
 204 Processing (UDP) method (Huang et al., 2020), which removes quantization bias by es-
 205 timating keypoints in a continuous domain. Following common practice, the heatmap is
 206 generated at one-quarter resolution of the input image, which balances localization accu-
 207 racy with computational efficiency.

208 3.2 PARAMETERIZATION FOR LATENT DIFFUSION MODEL

209 Traditional latent diffusion models (LDMs) (Ho et al., 2020) adopt the ϵ -prediction pa-
 210 rameterization, where the denoiser f_θ is trained to predict the Gaussian noise ϵ_t added at



211 Figure 3: **SDPose Inference Pipeline**.

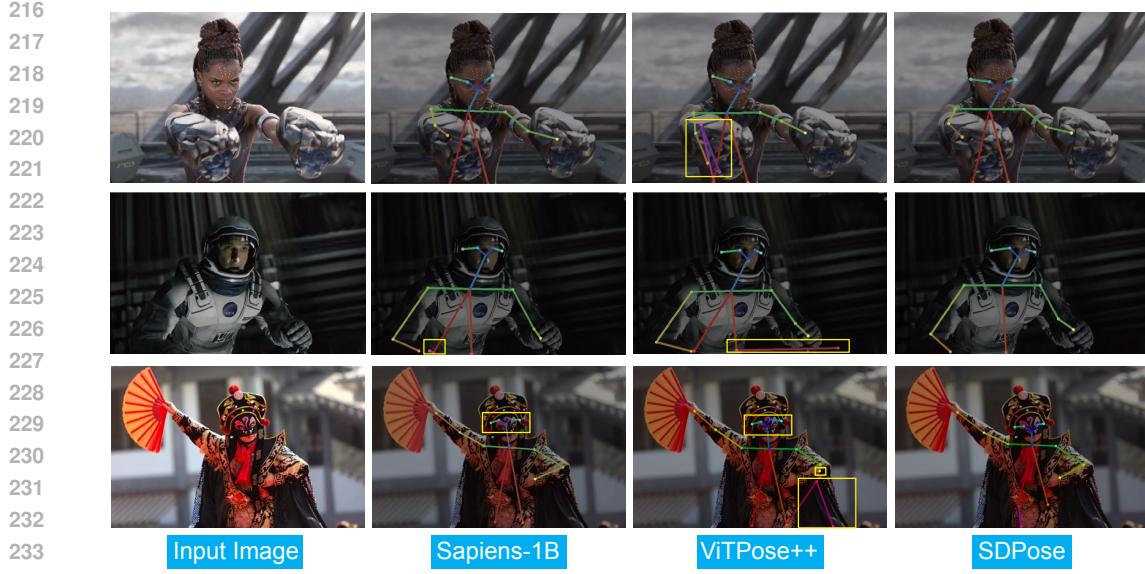


Figure 4: **Qualitative results on real-world photographs.** The yellow boxes highlight regions where baselines fail to predict accurate poses.

timestep t :

$$\hat{\epsilon}_t = f_\theta(z_t, t),$$

with z_t denoting the noisy latent at step t . The clean latent x_0 can then be recovered by

$$\hat{x}_0 = \frac{z_t - \sqrt{1 - \alpha_t} \hat{\epsilon}_t}{\sqrt{\alpha_t}},$$

where $\alpha_t = \prod_{s=1}^t (1 - \beta_s)$ is the cumulative product of the noise schedule.

However, Lotus (He et al., 2024) shows that ϵ -prediction injects unnecessary stochastic variation, which accumulates across multiple denoising steps, degrading dense prediction quality. Lotus therefore advocates a **deterministic** adaptation, directly predicting the clean annotation latent x_0 in a single step:

$$\hat{x}_0 = g_\theta(z_T),$$

where T is a fixed timestep and g_θ is fine-tuned U-Net applied once. This formulation eliminates the prediction variance introduced by multiple-step denoising, simplifies optimization, and significantly accelerates inference. In our approach, we similarly avoid the diffusion chain and adopt this x_0 -prediction design.

4 METHODOLOGY

4.1 LEVERAGING THE MULTI-SCALE LATENT FEATURES FOR POSE ESTIMATION

We directly leverage the multi-scale latent features of SD U-Net for the pose estimation task. The input image is encoded by the frozen SD-VAE encoder and then fed into the SD U-Net, from which we extract multi-scale features at the upsampling stage. **These multi-scale features provide rich and robust visual representations for downstream keypoint prediction.** The specific feature level used for each task configuration is discussed in Sec. 5.5.2.

4.2 THE U-NET CONVOLUTIONAL OUTPUT LAYER FORMS AN INFORMATION BOTTLENECK

Stable Diffusion’s U-Net outputs a 4-channel latent $z \in \mathbb{R}^{4 \times h \times w}$ for the VAE through a single convolutional layer. In contrast, pose estimation requires K -channel heatmaps

Table 1: **Quantitative comparison across COCO, HumanArt, COCO-OOD Monet, and COCO-OOD Ukiyo-e.** All models are trained on COCO. Full quantitative comparison across various models are in the supplementary.

Model Variant	Model	Pre-trained Backbone	Params	COCO		HumanArt		COCO-OOD		COCO-OOD	
				AP	AR	AP	AR	Monet	AR	Ukiyo-e	AR
Body	Sapiens-1B (Khirodkar et al., 2024)	Sapiens ViT	1.169B	82.1	85.9	64.3	67.4	58.8	63.3	61.5	66.2
	Sapiens-2B (Khirodkar et al., 2024)	Sapiens ViT	2.163B	82.2	86.0	69.6	72.2	59.6	64.0	62.3	66.8
	GenLoc (Wang et al., 2025a)	Stable Diffusion-v1.5	0.95B	77.6	80.7	67.0	70.8	N/A	N/A	N/A	N/A
	SDPose (Ours)	Stable Diffusion-v2	0.95B	81.3	85.2	71.2	73.9	64.3	68.9	66.0	70.7
Wholebody	Sapiens-1B (Khirodkar et al., 2024)	Sapiens ViT	1.169B	72.7	79.2	N/A	N/A	38.7	46.8	40.5	49.4
	Sapiens-2B (Khirodkar et al., 2024)	Sapiens ViT	2.163B	74.4	81.0	N/A	N/A	44.4	55.5	46.6	55.5
	SDPose (Ours)	Stable Diffusion-v2	0.95B	71.5	78.4	N/A	N/A	46.6	54.8	47.7	56.4

$H \in \mathbb{R}^{K \times H' \times W'}$ with $K \gg 4$, making the 4-channel latent a severe information bottleneck. To address this, we replace the original 4-channel head with a lightweight heatmap decoder (Xiao et al., 2018). The decoder consists of deconvolution layers for upsampling, followed by convolutions that output K -channel heatmaps (Fig. 2). This modification removes the bottleneck and shortens the supervision path to keypoints.

4.3 AUXILIARY RGB RECONSTRUCTION

To preserve the fine-detail representation capability of diffusion priors and to avoid overfitting to the pose estimation domain, we adopt the *Detail Preserver* strategy from Lotus (He et al., 2024). Concretely, we introduce a class embedding $C \in \{C_{\text{RGB}}, C_{\text{Pose}}\}$ that controls the behavior of the denoising U-Net f_θ . When C_{RGB} is provided, the network is trained to reconstruct the RGB latent z_{RGB} ; when C_{Pose} is provided, it learns to reconstruct the ground-truth heatmap H_{Pose} . The overall objective is

$$L = \|z_{\text{RGB}} - f_{\theta}(z_{\text{input}}, t, C_{\text{RGB}})\|^2 + \|H_{\text{Pose}} - f_{\theta}(z_{\text{input}}, t, C_{\text{Pose}})\|^2,$$

where z_{input} is the latent encoded from the input image by the SD-VAE, and t is fixed to $t = 1000$ in our experiments.

4.4 INFERENCE

As illustrated in Fig. 3, the input RGB image x is encoded by the SD-VAE into the latent representation z_{RGB} . The latent diffusion U-Net then performs a single-step regression with the timestep fixed at $t = 1000$, using the class label C_{Pose} to execute the pose estimation task. The text condition is disabled by feeding an empty text embedding to the U-Net.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Implementation Details. We train SDPose based on Stable Diffusion V2 (Rombach et al., 2022), with text conditioning disabled. During training, we fix the timestep $t = 1000$. For more details, please see the supplementary materials.

Training Datasets. We train two variants, SDPose Body (17-keypoints) and SDPose Wholebody (133-keypoints), on MS COCO (Lin et al., 2014) and COCO-WholeBody (Jin et al., 2020), respectively. All images are processed using standard top-down augmentations, with the input resolution set to 1024×768 . Further details are provided in the supplementary materials.

Validation Datasets and Metrics. (1) For the Body variant, we evaluate SDPose on MS COCO (Lin et al., 2014) for real-world images, and on HumanArt (Ju et al., 2023) and COCO-OOD for cross-domain benchmarks. (2) For the Wholebody variant, we evaluate SDPose on COCO-WholeBody (Jin et al., 2020) and the extended COCO-OOD. Further details of the evaluation datasets and metrics are provided in the supplementary materials.

COCO-OOD. To complement HumanArt and enable OOD evaluation with matched content and labels, we translate all COCO val images into three artistic domains: Monet-style

paintings using the official StyTR2 framework (Deng et al., 2022), ukiyo-e style using the official CycleGAN implementation (Zhu et al., 2017), and color-sketch style using Nano Banana (Nano Banana). For all stylized images, we reuse the original COCO val annotations (bounding boxes and keypoints). Please refer to the supplementary materials for details.

5.2 QUANTITATIVE AND QUALITATIVE COMPARISON ON REAL-WORLD SCENES

For the Body variant, SDPose achieves 81.3 AP / 85.2 AR on the COCO validation set (Table 1) with only 40 training epochs using a 0.95B SD-v2 backbone. It matches the accuracy of Sapiens (82.1–82.2 AP) despite requiring 5× fewer epochs and a smaller backbone, and surpasses GenLoc (+3.7 AP, +4.5 AR). Figure 4 further illustrates robustness on real-world photos, where SDPose rivals Sapiens and corrects its failure cases (e.g., Sichuan opera eye keypoints). For the Wholebody variant, SDPose achieves competitive performance with Sapiens-1B on the COCO-WholeBody validation set. Further details are provided in the supplementary materials.

Figure 5: **Illustration of the COCO-OOD dataset.**

5.3 SDPOSE’S STRONG OOD ROBUSTNESS

In this section, we demonstrate the superior OOD robustness of SDPose using quantitative evaluation on HumanArt and our COCO-OOD benchmark. As shown in Table 1, SDPose achieves state-of-the-art results on HumanArt and COCO-OOD with fewer training epochs and a smaller parameter budget. On COCO-OOD WholeBody, SDPose continues to demonstrate strong out-of-domain robustness. As shown in Fig. 1, SDPose achieves more accurate body pose estimation across diverse animation styles and humanoid robots compared with baseline models. Additional qualitative results on whole-body pose estimation in stylized paintings are provided in the supplementary materials.

5.4 WHY DIFFUSION PRIORS EXHIBIT STRONG OOD ROBUSTNESS?

In this subsection, we investigate why the diffusion-based prior (Stable Diffusion v2) (Rombach et al., 2022) exhibits stronger cross-domain generalization than the human-centric Sapiens ViT backbone (Khirodkar et al., 2024). We compare latent feature distributions from the pretrained Sapiens-1B ViT and Stable Diffusion v2 U-Net, as well as their pose-finetuned counterparts, Sapiens-1B Pose and our SDPose model (finetuned on the last four upsampling blocks). We sample 300 person instances from the COCO and COCO-OOD validation sets. For each instance, we crop the person region using the ground-truth bounding box and collect four stylistic variants: the original COCO image plus its ukiyo-e, Monet-oil, and color-sketch versions from COCO-OOD, yielding 1200 crops in total. These images are passed through the corresponding backbones to extract latent features, on which we run t-SNE (Maaten & Hinton, 2008) and compute silhouette scores (Rousseeuw, 1987).

Fig. 6(a–e) show the t-SNE visualizations of the *pretrained* priors, and Fig. 6(f–j) show the *pose-finetuned* models. In Fig. 6(a), the pretrained Sapiens features form clear style-driven clusters (silhouette by style = 0.3469) with a negative silhouette by person-instance (-0.1608), indicating that its representation is dominated by artistic appearance rather than instance structure. In contrast, Stable Diffusion U-Net features in Fig. 6(b–e) exhibit much weaker style separation and gradually stronger person-instance coherence; deeper upsampling blocks yield increasingly person-consistent and style-invariant distributions, reflected by rising person-instance silhouettes (up to ≈ 0.22) and near-zero style silhouettes. After pose finetuning, both Sapiens-Pose (Fig. 6(f)) and SDPose (Fig. 6(g–j)) produce visible person-instance clusters, but SDPose features are noticeably tighter and more focused, with the mid-level SDPose blocks achieving the highest person silhouettes (≈ 0.45 –0.48) while

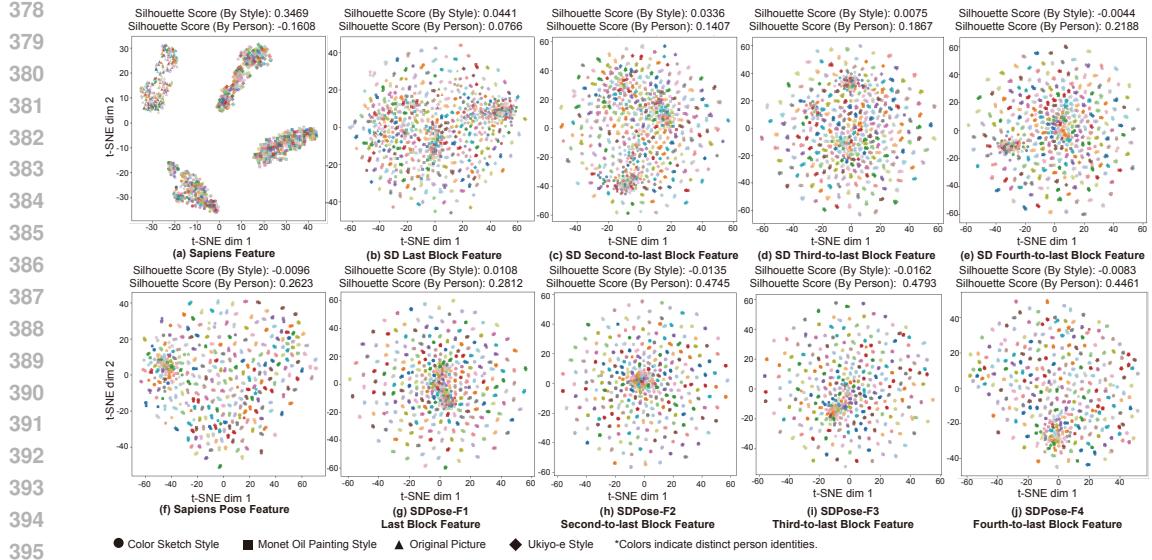


Figure 6: **t-SNE visualization of features from Sapiens ViT, Stable Diffusion U-Net blocks, Sapiens Pose, and SDPose across four visual domains.** Each point corresponds to an image sample; colors represent person instances and marker shapes denote artistic styles.

keeping style silhouettes close to zero. Overall, the SD U-Net (especially after SDPose fine-tuning) provides more instance-coherent and style-disentangled representations than Sapiens, which explains why SD-based features offer stronger cross-domain robustness under artistic style shifts.

5.5 ABLATION STUDY

5.5.1 ABLATION ON AUXILIARY RECONSTRUCTION TASK AND DIFFUSION PRIORS

We conduct ablations to validate our designs. For the “w/o diffusion priors” variant, we train the U-Net from scratch (no pretrained priors). For the “w/o RGB recon.” variant, we disable only the auxiliary RGB reconstruction branch; all other settings remain identical. From Table 2, two trends emerge. First, removing the RGB branch yields a consistent but modest AP/AR drop on COCO that becomes more pronounced on HumanArt and COCO-OOD, indicating that the auxiliary reconstruction acts as a useful regularizer and improves robustness under domain shift. Second, removing diffusion priors causes a much larger degradation, especially on the OOD benchmarks, highlighting that the pretrained generative priors are the primary source of SDPose’s generalization.

5.5.2 ABLATION ON MULTI-SCALE FEATURES FROM THE SD U-NET

Prior work (Liu et al., 2023b; 2024; 2023a; Wang et al., 2025b) suggests that penultimate features often transfer better than final ones. As shown in Table 2, we evaluate SD U-Net upsampling features from the last four blocks. On COCO (17-keypoint), the last-block (F1) and penultimate (F2) features perform very similarly, and F1 is slightly better on both COCO and HumanArt, which contain a mixture of natural and artistic content. In contrast, on COCO-OOD Monet, where the domain shift is purely stylistic, F2 achieves the best performance, suggesting that it captures style-invariant cues more effectively than F1. For the 133-keypoint WholeBody setting, F2 consistently outperforms all other feature levels on both COCO-WholeBody and COCO-OOD, indicating that it offers a better balance between semantic robustness and spatial detail in this more fine-grained regime. Together with the latent-space analysis in Section 5.4, these results show that deeper SD features (F3 and F4) encode even stronger instance-consistent, style-invariant semantics but operate at much

432

433
434
435
Table 2: **Ablation studies on diffusion priors, RGB reconstruction, and U-Net
feature selection.** All experiments are trained on COCO with 40 epochs (body-17 key-
points) or 42 epochs (wholebody-133 keypoints).

Model Variant	Ablation Setting	COCO		HumanArt		COCO-OOD Monet	
		AP	AR	AP	AR	AP	AR
SDPose-Body	Full Model (Last Block)	81.3	85.2	71.2	73.9	63.5	68.2
	w/o RGB Reconstruction	80.8 (-0.5)	84.9 (-0.3)	69.8 (-1.4)	72.6 (-1.3)	62.5 (-1.0)	67.3 (-0.9)
	w/o Diffusion Priors	74.9 (-6.4)	79.4 (-5.8)	53.8 (-17.4)	58.0 (-15.9)	52.7 (-10.8)	57.9 (-10.3)
	Last Block (F1)	81.3	85.2	71.2	73.9	63.5	68.2
SDPose-Wholebody	Second-to-last Block (F2)	81.1	85.0	70.4	73.3	64.3	68.9
	Third-to-last Block (F3)	81.0	85.1	70.6	73.3	63.5	68.2
	Fourth-to-last Block (F4)	79.2	83.4	65.0	68.1	58.1	62.8
	Last Block (F1)	70.5	77.5	N/A	N/A	44.7	53.0
	Second-to-last Block (F2)	71.5	78.4	N/A	N/A	46.6	54.8
	Third-to-last Block (F3)	70.4	77.6	N/A	N/A	45.5	53.8
	Fourth-to-last Block (F4)	64.6	72.1	N/A	N/A	37.1	45.4

446

447

448
449
450
451
452
coarser spatial resolutions (H/16 and H/32), which removes the geometric details needed for
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2019
2020
2021
2022
2023
2024
2025
2026<br

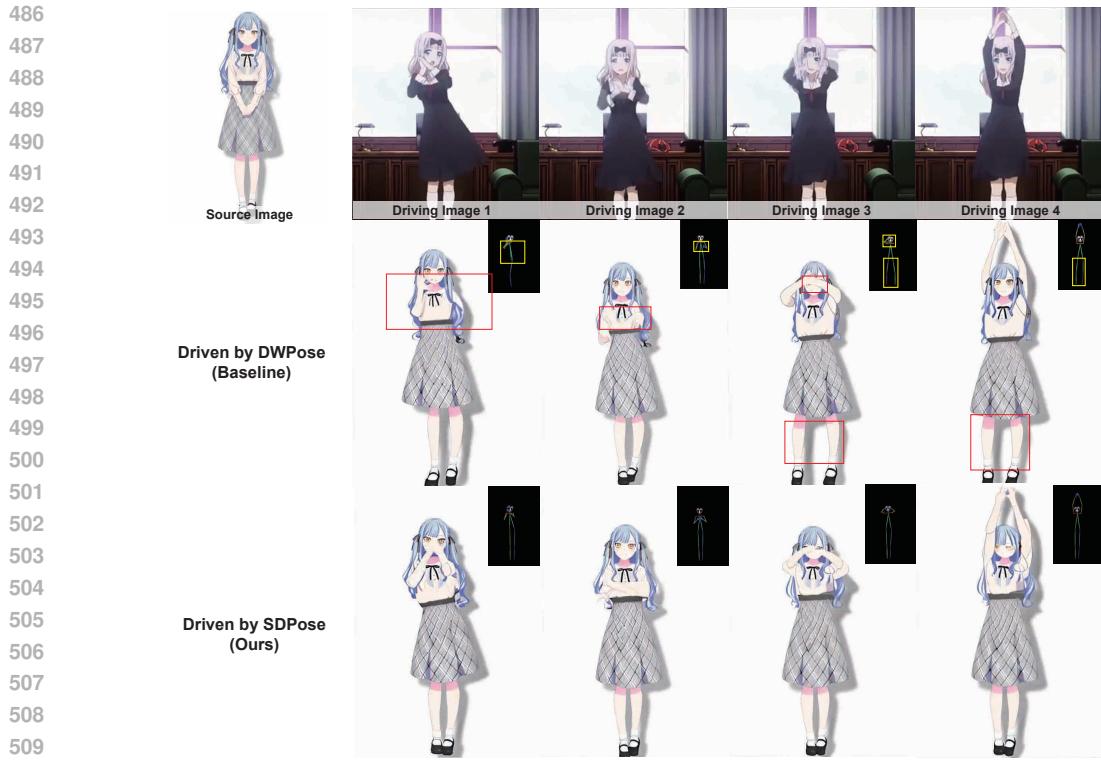


Figure 8: **Qualitative comparison for pose-controlled video generation in the wild.** The first row shows the source image and frames from the driving video. The second row shows output video frames generated from the pose sequence estimated by the baseline model DWPose, while the third row shows the results guided by our SDPose. Red boxes highlight failures in the generated video, and yellow boxes highlight errors in pose estimation.

6.2 POSE-GUIDED VIDEO GENERATION

Recent advances in controlled video generation have gained significant traction (Hu, 2024; Guo et al., 2023; Kim et al., 2024). Despite the progress of video generation models in producing higher-quality outputs, extracting reliable control conditions remains critical for achieving high-quality results. As shown in Fig. 8, our SDPose provides more accurate poses for the driving frames, enabling more reliable pose-sequence transfer from animations to animations. Video frames are generated by Moore-Animated Anyone¹.

7 CONCLUSION

In this paper, we present **SDPose**, an SD-native fine-tuning framework for human pose estimation. SDPose preserves the original U-Net with only lightweight task-specific components and adapts diffusion latent priors for keypoint prediction through an RGB reconstruction branch and a heatmap decoder. We further introduce **COCO-OOD**, a style-transferred extension of COCO for evaluating robustness under domain shifts. With only one-fifth of the fine-tuning cost of Sapiens and a smaller backbone, SDPose matches its in-domain accuracy on COCO and achieves state-of-the-art results on COCO-OOD and HumanArt. Our ablations and latent-space analyses show that diffusion priors and multi-scale SD features naturally encode domain-invariant structure, enabling strong generalization in both pose estimation and zero-shot pose annotation for controllable generation.

¹<https://github.com/MooreThreads/Moore-AnimateAnyone>

540
541 ETHICS STATEMENT

542 This work builds upon publicly available datasets (COCO, COCO Wholebody), all of which
 543 have established licenses and annotation protocols. No private or personally identifiable
 544 information is used. Our method focuses on improving the robustness of pose estimation
 545 under domain shifts, which can benefit applications such as animation and embodied AI.

546
547 REPRODUCIBILITY STATEMENT

548 We have made every effort to ensure reproducibility. All datasets used are publicly available,
 549 and we detail dataset splits, preprocessing steps, and evaluation protocols in Sec. 4. Our
 550 training settings, hyperparameters, and model architectures are fully described in Sec. 4,
 551 Sec. 5 and Appendix A. Code and scripts to reproduce our experiments will be released
 552 upon publication.

553
554 REFERENCES

555 Xiangqi Chen, Chengzhan Yang, Jiashuaizi Mo, Yaxin Sun, Hicham Karmouni, Yunliang
 556 Jiang, and Zhonglong Zheng. Cspnext: A new efficient token hybrid backbone. *Engineering
 557 Applications of Artificial Intelligence*, 132:107886, 2024.

558 Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander G Schwing, and Liang-Yan
 559 Gui. Sdfusion: Multimodal 3d shape completion, reconstruction, and generation. In
 560 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 561 4456–4465, 2023.

562 Yingying Deng, Fan Tang, Weiming Dong, Chongyang Ma, Xingjia Pan, Lei Wang, and
 563 Changsheng Xu. Stytr2: Image style transfer with transformers. In *IEEE Conference on
 564 Computer Vision and Pattern Recognition (CVPR)*, 2022.

565 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry
 566 Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow
 567 transformers for high-resolution image synthesis. In *Forty-first international conference
 568 on machine learning*, 2024.

569 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
 570 Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image
 571 diffusion models without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.

572 Jing He, Haodong Li, Wei Yin, Yixun Liang, Leheng Li, Kaiqiang Zhou, Hongbo Liu,
 573 Bingbing Liu, and Ying-Cong Chen. Lotus: Diffusion-based visual foundation model for
 574 high-quality dense prediction. *arXiv preprint arXiv:2409.18124*, 2024.

575 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Ad-
 576 vances in neural information processing systems*, 33:6840–6851, 2020.

577 Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character
 578 animation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 579 Recognition*, pp. 8153–8163, 2024.

580 Junjie Huang, Zheng Zhu, Feng Guo, and Guan Huang. The devil is in the details: Delving
 581 into unbiased data processing for human pose estimation. In *Proceedings of the IEEE/CVF
 582 conference on computer vision and pattern recognition*, pp. 5700–5709, 2020.

583 Tao Jiang, Peng Lu, Li Zhang, Ningsheng Ma, Rui Han, Chengqi Lyu, Yining Li, and
 584 Kai Chen. Rtmpose: Real-time multi-person pose estimation based on mmpose. *arXiv
 585 preprint arXiv:2303.07399*, 2023.

586 Sheng Jin, Lumin Xu, Jin Xu, Can Wang, Wentao Liu, Chen Qian, Wanli Ouyang, and Ping
 587 Luo. Whole-body human pose estimation in the wild. In *Proceedings of the European
 588 Conference on Computer Vision (ECCV)*, 2020.

594 Xuan Ju, Ailing Zeng, Jianan Wang, Qiang Xu, and Lei Zhang. Human-art: A versa-
 595 tile human-centric dataset bridging natural and artificial scenes. In *Proceedings of the*
 596 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2023.

597

598 Markus Karmann and Onay Urfalioglu. Repurposing stable diffusion attention for training-
 599 free unsupervised interactive segmentation. In *Proceedings of the Computer Vision and*
 600 *Pattern Recognition Conference*, pp. 24518–24528, 2025.

601 Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and
 602 Konrad Schindler. Repurposing diffusion-based image generators for monocular depth
 603 estimation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 604 *recognition*, pp. 9492–9502, 2024.

605

606 Rawal Khirodkar, Timur Bagautdinov, Julieta Martinez, Su Zhaoen, Austin James, Peter
 607 Selednik, Stuart Anderson, and Shunsuke Saito. Sapiens: Foundation for human vision
 608 models. In *European Conference on Computer Vision*, pp. 206–228. Springer, 2024.

609 Jeongho Kim, Min-Jung Kim, Junsoo Lee, and Jaegul Choo. Tcan: Animating human
 610 images with temporally consistent pose guidance using diffusion models. In *European*
 611 *Conference on Computer Vision*, pp. 326–342. Springer, 2024.

612 Jiantao Lin, Xin Yang, Meixi Chen, Yingjie Xu, Dongyu Yan, Leyi Wu, Xinli Xu, Lie Xu,
 613 Shunsi Zhang, and Ying-Cong Chen. Kiss3dgen: Repurposing image diffusion models
 614 for 3d asset generation. In *Proceedings of the Computer Vision and Pattern Recognition*
 615 *Conference*, pp. 5870–5880, 2025.

616

617 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
 618 Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
 619 *European conference on computer vision*, pp. 740–755. Springer, 2014.

620 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
 621 matching for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

622

623 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual
 624 instruction tuning, 2023a.

625 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning,
 626 2023b.

627

628 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae
 629 Lee. Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL
 630 <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.

631 Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie Liu, Yuexin
 632 Ma, Song-Hai Zhang, Marc Habermann, Christian Theobalt, et al. Wonder3d: Single
 633 image to 3d using cross-domain diffusion. In *Proceedings of the IEEE/CVF conference on*
 634 *computer vision and pattern recognition*, pp. 9970–9980, 2024.

635

636 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver:
 637 A fast ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances*
 638 *in neural information processing systems*, 35:5775–5787, 2022.

639 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of*
 640 *machine learning research*, 9(Nov):2579–2605, 2008.

641

642 Ginés Hidalgo Martinez. *Openpose: Whole-body pose estimation*. PhD thesis, Carnegie
 643 Mellon University Pittsburgh, PA, USA, 2019.

644 Nano Banana. Nano banana: Ai image editor and style-transfer tool. <https://nanobanana.ai>. Accessed: 2025-11-12.

645

646 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings*
 647 *of the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

648 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-
 649 mer. High-resolution image synthesis with latent diffusion models. In *Proceedings of*
 650 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695,
 651 2022.

652 Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
 653 cluster analysis. *Journal of computational and applied mathematics*, 20:53–65, 1987.

654 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
 655 Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al.
 656 Laion-5b: An open large-scale dataset for training next generation image-text models.
 657 *Advances in neural information processing systems*, 35:25278–25294, 2022.

658 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models.
 659 *arXiv preprint arXiv:2010.02502*, 2020a.

660 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon,
 661 and Ben Poole. Score-based generative modeling through stochastic differential equations.
 662 *arXiv preprint arXiv:2011.13456*, 2020b.

663 Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution representation
 664 learning for human pose estimation. In *Proceedings of the IEEE/CVF conference on*
 665 *computer vision and pattern recognition*, pp. 5693–5703, 2019.

666 Ke Sun, Zigang Geng, Depu Meng, Bin Xiao, Dong Liu, Zhaoxiang Zhang, and Jingdong
 667 Wang. Bottom-up human pose estimation by ranking heatmap-guided adaptive keypoint
 668 estimates. *arXiv preprint arXiv:2006.15480*, 2020.

669 Dongkai Wang, Jiang Duan, Liangjian Wen, Shiyu Xuan, Hao Chen, and Shiliang Zhang.
 670 Generalizable object keypoint localization from generative priors. In *Proceedings of the*
 671 *Computer Vision and Pattern Recognition Conference*, pp. 20265–20274, 2025a.

672 Zeqing Wang, Qingyang Ma, Wentao Wan, Haojie Li, Keze Wang, and Yonghong Tian.
 673 Is this generated person existed in real-world? fine-grained detecting and calibrating
 674 abnormal human-body. In *Proceedings of the Computer Vision and Pattern Recognition*
 675 *Conference*, pp. 21226–21237, 2025b.

676 Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation and
 677 tracking. In *Proceedings of the European conference on computer vision (ECCV)*, pp.
 678 466–481, 2018.

679 Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang,
 680 Muyang Li, Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution image synthesis
 681 with linear diffusion transformers. *arXiv preprint arXiv:2410.10629*, 2024.

682 Guangkai Xu, Yongtao Ge, Mingyu Liu, Chengxiang Fan, Kangyang Xie, Zhiyue Zhao, Hao
 683 Chen, and Chunhua Shen. What matters when repurposing diffusion models for general
 684 dense perception tasks? *arXiv preprint arXiv:2403.06090*, 2024.

685 Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao. Vitpose: Simple vision transformer
 686 baselines for human pose estimation. *Advances in neural information processing systems*,
 687 35:38571–38584, 2022.

688 Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao. Vitpose++: Vision transformer
 689 for generic body pose estimation. *IEEE Transactions on Pattern Analysis and Machine*
 690 *Intelligence*, 46(2):1212–1230, 2023.

691 Zhendong Yang, Ailing Zeng, Chun Yuan, and Yu Li. Effective whole-body pose estimation
 692 with two-stages distillation. In *Proceedings of the IEEE/CVF International Conference*
 693 *on Computer Vision*, pp. 4210–4220, 2023.

694 Yuhui Yuan, Rao Fu, Lang Huang, Weihong Lin, Chao Zhang, Xilin Chen, and Jingdong
 695 Wang. Hrformer: High-resolution transformer for dense prediction. *NeurIPS*, 2021.

702 Lvmi Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-
703 image diffusion models. In *Proceedings of the IEEE/CVF International Conference on*
704 *Computer Vision*, pp. 3836–3847, 2023.

705

706 Zhengbo Zhang, Li Xu, Duo Peng, Hossein Rahmani, and Jun Liu. Diff-tracker: text-to-
707 image diffusion models are unsupervised trackers. In *European Conference on Computer*
708 *Vision*, pp. 319–337. Springer, 2024.

709

710 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
711 translation using cycle-consistent adversarial networkss. In *Computer Vision (ICCV),*
712 *2017 IEEE International Conference on*, 2017.

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 SUPPLEMENTARY MATERIALS FOR **SDPose**: EXPLOITING DIFFUSION
 757 PRIORS FOR OUT-OF-DOMAIN AND ROBUST POSE ESTIMATION
 758

759 **A EXPERIMENT SETTINGS**

760 **A.1 IMPLEMENTATION DETAILS**

763 We train SDPose on the COCO-2017 person keypoints *train2017* split only (no extra data),
 764 with text prompts disabled. The diffusion timestep is fixed at $t = 1000$. We use AdamW
 765 with a learning rate of 3×10^{-5} . All experiments are run on 8 NVIDIA A100-NVLink
 766 GPUs with a total batch size of 128, without gradient accumulation. Inputs are resized to
 767 1024×768 with standard top-down augmentations. The 17-keypoint model is trained for 40
 768 epochs (approximately 3 days), and the 133-keypoint model for 42 epochs (approximately
 769 3 days and a half).

770 **A.2 TRAINING DATASETS**

773 **COCO 2017 Keypoint Detection** We train the 17-keypoint variant on the COCO-2017
 774 person keypoint detection dataset (Lin et al., 2014). The full COCO release contains more
 775 than 200,000 images and about 250,000 person instances. Person keypoint annotations
 776 follow the 17-point format (nose, eyes, ears, shoulders, elbows, wrists, hips, knees, and
 777 ankles).

778 **COCO Wholebody** To further evaluate large-scale whole-body keypoint estimation, we
 779 adopt COCO-WholeBody (Jin et al., 2020), an extended benchmark built on top of COCO
 780 images. COCO-WholeBody augments the original 17 body joints with fine-grained annota-
 781 tions of foot (6 keypoints), face (68 keypoints), and hands (42 keypoints for hands), resulting
 782 in a total of 133 keypoints per person. The dataset provides consistent whole-body annota-
 783 tions across the same training and validation splits as COCO-2017, enabling both fair
 784 comparison with standard pose estimation methods and comprehensive evaluation under
 785 the whole-body setting.

786 **A.3 AUGMENTATION DETAILS**

788 The training pipeline first loads the input image and computes the bounding box center and
 789 scale. It applies random horizontal flipping, half-body augmentation, and random bounding
 790 box transformations. The image is then affine-transformed to the target input resolution
 791 using UDP (Huang et al., 2020). Albumentations-based augmentations are then applied,
 792 including Gaussian blur ($p = 0.1$), median blur ($p = 0.1$), and coarse dropout ($p = 1.0$, with
 793 up to one hole of size 20%–40% of the image).

794 **A.4 EVALUATION DATASETS AND METRICS**

796 **Evaluation Datasets**

798 **COCO 2017 Keypoint Detection.** For in-domain evaluation, we use the
 799 COCO-2017 validation set (Lin et al., 2014) annotated with 17 body keypoints,
 800 bounding boxes, and visibility flags. Following the standard top-down evalua-
 801 tion protocol, we generate person crops from the COCO-released detection results
 802 (`COCO_val2017_detections_AP_H_70_person.json`), and report COCO keypoint AP/AR
 803 on this diverse in-the-wild dataset.

804 **HumanArt.** We use HumanArt (Ju et al., 2023) as an cross domain benchmark: 50k
 805 human-centric images across 20 scenarios (5 natural, 15 artistic—oil painting, sculpture,
 806 cartoon, sketch, stained glass, Ukiyo-e, watercolor, etc.) with annotations for boxes and 2D
 807 keypoints. We follow the official protocol and report keypoint AP/AR to assess robustness
 808 under artistic domain shift.

809 **COCO-WholeBody (133-keypoint whole-body).** We train and evaluate a
 133-keypoint variant on COCO-WholeBody (Jin et al., 2020), which shares COCO’s

train/val split. Each person has 133 keypoints (17 body, 6 foot, 68 face, 42 hand) plus boxes for person/face/left/right hand. We follow the official protocol and report Whole-Body AP and part-wise AP (body/foot/face/hand). This dataset spans diverse in-the-wild scenes and stresses fine-grained articulation, complementing COCO for structured keypoint evaluation.

Metrics We follow the standard COCO keypoint evaluation protocol, which is based on the Object Keypoint Similarity (OKS). For each keypoint i , the similarity is defined as

$$KS_i = \exp\left(-\frac{d_i^2}{2s^2k_i^2}\right),$$

where d_i denotes the Euclidean distance between predicted and ground-truth keypoints, s is the object scale (square root of the segmentation area), and k_i is a per-keypoint constant controlling falloff. The OKS for an instance is the average KS_i over visible keypoints:

$$OKS = \frac{\sum_i KS_i \cdot \delta(v_i > 0)}{\sum_i \delta(v_i > 0)},$$

where v_i is the visibility flag. Using OKS as the matching criterion, COCO computes Average Precision (AP) as the mean precision over OKS thresholds $[0.50 : 0.05 : 0.95]$, and Average Recall (AR) analogously as the mean recall across the same thresholds.

A.5 DETAILS OF COCO-OOD

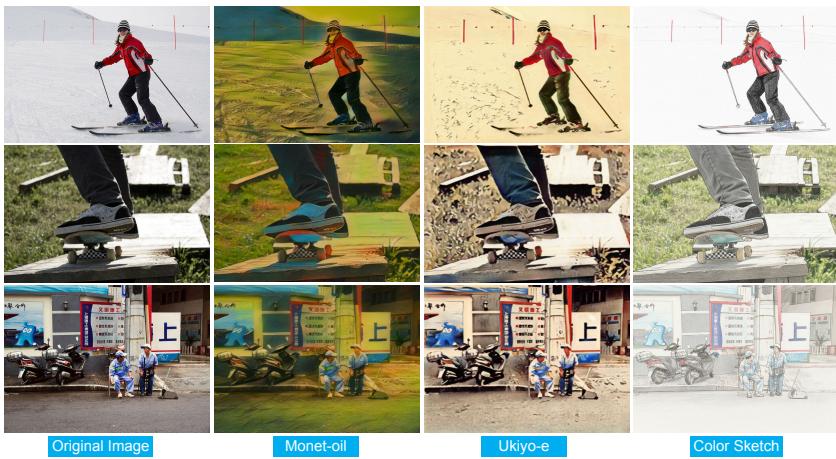


Figure 9: **COCO-OOD visualizations.** We create an OOD split of the COCO validation set by stylizing images with CycleGAN, StyTr2, and Nano-Banana into a Monet-like oil-painting domain, enabling robustness evaluation under appearance shifts.

To complement HumanArt and enable out-of-distribution evaluation under matched content and annotations, we construct COCO-OOD (Fig. 9) by applying artistic style transfer to the original COCO images while preserving human bounding boxes and keypoints. We generate three stylistic variants, each capturing different types of artistic domain shifts. Importantly, for fair comparison and to avoid introducing priors from large-scale pretrained diffusion models, we intentionally adopt the earlier CycleGAN (Zhu et al., 2017) and StyTr2 (Deng et al., 2022) framework rather than more recent style transfer approaches.

For the Monet oil-painting variant, we employ the StyTr2 framework, which produces high-fidelity oil-painting textures and color palettes while maintaining the overall scene geometry. For the Ukiyo-e variant, we adopt the official CycleGAN implementation to translate natural photographs into the Ukiyo-e domain. Finally, we also explore a Color Sketch variant generated using the Nano-Banana model (Nano Banana). While Nano-Banana preserves global shape in most cases, its stylization can occasionally introduce slight pixel-level misalignment with respect to the source images. Because such spatial deviations may compromise compatibility with COCO’s keypoint annotations, we use the Color Sketch variant only as

a supplemental resource for latent-space t-SNE analysis and exclude it from quantitative evaluation. By drawing from multiple style-transfer frameworks, COCO-OOD reduces the bias introduced by any single model and produces stylistic shifts with diverse characteristics. This diversity leads to a more balanced and comprehensive benchmark. Overall, COCO-OOD maintains the geometric content of COCO while producing substantial appearance shifts across distinct artistic domains, providing a controlled and annotation-preserving testbed for assessing cross-domain robustness in pose estimation.

B DETAILS OF QUANTITATIVE COMPARISON AND ADDITIONAL QUALITATIVE COMPARISON

B.1 FULL QUANTITATIVE COMPARISON ON COCO

SDPose achieves 81.3 AP / 85.2 AR on the COCO validation set (Table 3) with only 40 training epochs using a 0.95B SD-v2 backbone. It matches the accuracy of Sapiens (82.1–82.2 AP) despite requiring 5× fewer epochs and a smaller backbone, and surpasses GenLoc (+3.7 AP, +4.5 AR). SDPose also outperforms ViTPose++ (+1.9 AP), which relies on multiple auxiliary datasets, while being trained solely on COCO.

Table 3: Quantitative comparison on the COCO validation set.

Model	Input Size	AP	AR
SimpleBaseline (Xiao et al., 2018)	256×192	73.5	79.0
HRNet (Sun et al., 2019)	384×288	76.3	81.2
HRFormer (Yuan et al., 2021)	256×192	77.2	82.0
ViTPose-S (Xu et al., 2022)	256×192	73.8	79.2
ViTPose-B (Xu et al., 2022)	256×192	75.8	81.1
ViTPose-L (Xu et al., 2022)	256×192	78.3	83.5
ViTPose-H (Xu et al., 2022)	256×192	79.1	84.1
ViTPose++-S (Xu et al., 2023)	256×192	75.8	81.0
ViTPose++-B (Xu et al., 2023)	256×192	77.0	82.6
ViTPose++-L (Xu et al., 2023)	256×192	78.6	84.1
ViTPose++-H (Xu et al., 2023)	256×192	79.4	84.8
Sapiens-0.3B (Khirodkar et al., 2024)	1024×768	79.6	83.6
Sapiens-0.6B (Khirodkar et al., 2024)	1024×768	81.2	84.9
Sapiens-1B (Khirodkar et al., 2024)	1024×768	82.1	85.9
Sapiens-2B (Khirodkar et al., 2024)	1024×768	82.2	86.0
SDPose (Ours)	1024×768	81.3	85.2

B.2 FULL QUANTITATIVE COMPARISON ON HUMANART

On HumanArt (Table 4), SDPose sets a new state of the art with 71.2 AP / 73.9 AR, surpassing large-scale foundation baselines under the same COCO-only training: +1.6 AP over Sapiens-2B (69.6 AP) and +4.7 AP over ViTPose-H (66.5 AP), with consistent AR gains. Compared with traditional baselines such as RTMPose (Jiang et al., 2023) and HRNet (Sun et al., 2019), SDPose further delivers substantial improvements in AP, exceeding them by more than 14 points.

B.3 FULL QUANTITATIVE COMPARISON ON COCO WHOLEBODY

As shown in Table 5, SDPose achieves 71.5 AP / 78.4 AR on the COCO-WholeBody validation set. This result is highly competitive with the large-scale Sapiens (Khirodkar et al., 2024) models: while Sapiens-2B reaches 74.4 AP with over 2B parameters and long training

918
 919 Table 4: **Quantitative Comparison on the HumanArt validation set.** Models trained
 920 on COCO, evaluated with GT bounding boxes. SDPose achieves new state-of-the-art per-
 921 formance.

Model	AP	AP ⁵⁰	AP ⁷⁵	AR	AR ⁵⁰
RTMPose-T (Jiang et al., 2023)	44.4	72.5	45.3	48.8	75.0
RTMPose-S (Jiang et al., 2023)	48.0	73.9	49.8	52.1	76.3
RTMPose-M (Jiang et al., 2023)	53.2	76.5	56.3	57.1	78.9
RTMPose-L (Jiang et al., 2023)	56.4	78.9	60.2	59.9	80.8
ViTPose-S (Xu et al., 2022)	50.7	75.8	53.1	55.1	78.0
ViTPose-B (Xu et al., 2022)	55.5	78.2	59.0	59.9	80.9
ViTPose-L (Xu et al., 2022)	63.7	83.8	68.9	67.7	85.9
ViTPose-H (Xu et al., 2022)	66.5	86.0	71.5	70.1	87.1
HRNet-W32 (Sun et al., 2019)	53.3	77.1	56.2	57.4	79.2
HRNet-W48 (Sun et al., 2019)	55.7	78.2	59.3	59.5	80.4
Sapiens-1B (Khirodkar et al., 2024)	64.3	82.1	67.9	67.4	83.7
Sapiens-2B (Khirodkar et al., 2024)	69.6	85.3	73.3	72.2	86.8
SDPose (Ours)	71.2	87.3	76.3	73.9	88.6

937
 938
 939
 940 Table 5: **Quantitative comparison on the COCO-WholeBody validation set.**
 941

942 (a) Body, Feet, Face

Model	Body AP	Body AR	Feet AP	Feet AR	Face AP	Face AR
HRNet (Sun et al., 2019)	70.1	77.3	58.6	69.2	72.7	78.3
VitPose+-L (Xu et al., 2023)	75.3	-	77.1	-	63.0	-
VitPose+-H (Xu et al., 2023)	75.9	-	77.9	-	63.6	-
RTMPose-x (Jiang et al., 2023)	71.4	78.4	69.2	81.0	88.8	92.2
DWPose-l (Yang et al., 2023)	72.2	78.9	70.4	81.7	88.7	92.1
Sapiens-0.3B (Khirodkar et al., 2024)	66.4	73.4	67.3	78.4	87.1	91.2
Sapiens-0.6B (Khirodkar et al., 2024)	74.3	80.2	79.4	87.0	89.5	92.9
Sapiens-1B (Khirodkar et al., 2024)	77.4	82.9	83.0	89.8	90.7	93.6
Sapiens-2B (Khirodkar et al., 2024)	79.2	84.6	84.1	90.9	91.2	93.8
SDPose (Ours)	77.9	83.4	81.5	88.7	88.5	92.2

952
 953 (b) Hands and Whole-body

Model	Hand AP	Hand AR	Whole AP	Whole AR
HRNet (Sun et al., 2019)	51.6	60.4	58.6	67.4
VitPose+-L (Xu et al., 2023)	54.2	-	60.6	-
VitPose+-H (Xu et al., 2023)	54.7	-	61.2	-
RTMPose-x (Jiang et al., 2023)	59.0	68.5	65.3	73.3
DWPose-l (Yang et al., 2023)	62.1	71.0	66.5	74.3
Sapiens-0.3B (Khirodkar et al., 2024)	58.1	67.1	62.0	69.4
Sapiens-0.6B (Khirodkar et al., 2024)	65.4	74.0	69.5	76.3
Sapiens-1B (Khirodkar et al., 2024)	69.2	77.1	72.7	79.2
Sapiens-2B (Khirodkar et al., 2024)	70.4	78.1	74.4	81.0
SDPose (Ours)	65.2	74.0	71.5	78.4

966 schedules, SDPose attains comparable accuracy with a smaller 0.95B backbone trained for
 967 only 42 epochs. In terms of sub-part analysis, our method closely matches Sapiens-2B on
 968 body (77.9 vs. 79.2) and feet (81.5 vs. 84.1), while maintaining strong performance on face
 969 (88.5 vs. 91.2). The largest gap appears on hand keypoints (65.2 vs. 70.4), reflecting the
 970 intrinsic difficulty of fine-grained articulation. Nevertheless, compared with classical base-
 971 lines such as HRNet (Sun et al., 2019), RTMPose (Jiang et al., 2023), or DWPose (Yang
 et al., 2023), SDPose shows substantial gains of +6–12 AP across whole-body evaluation.

972
 973 **Table 6: Quantitative Comparison on the COCO-OOD-Monet Wholebody vali-**
 974 **dation set.**

975
 976 (a) **Body, Feet, Face**
 977

Model	Body AP	Body AR	Feet AP	Feet AR	Face AP	Face AR
Sapiens-1B	52.1	58.6	55.9	66.2	57.6	63.0
Sapiens-2B	59.9	65.8	63.8	72.4	58.4	64.2
SDPose (Ours)	60.0	66.1	62.5	72.0	64.2	69.9

 981 (b) **Hands and Whole-body**
 982

Model	L-Hand AP	L-Hand AR	R-Hand AP	R-Hand AR	Whole AP	Whole AR
Sapiens-1B	43.1	52.0	41.5	50.6	38.7	46.8
Sapiens-2B	48.2	56.8	46.8	55.3	44.4	53.0
SDPose (Ours)	46.3	55.2	44.9	54.4	46.6	54.8

983
 984 **B.4 FULL QUANTITATIVE COMPARISON ON COCO-OOD WHOLEBODY**

985 Detailed whole-body pose estimation results on COCO-OOD Monet are reported in Ta-
 986 ble 6. Breaking down by body part, SDPose matches or surpasses Sapiens on the most
 987 stable regions: body (60.0 AP vs. 59.9) and feet (62.5 vs. 63.8), and delivers a notable
 988 margin on face landmarks (+5.8 AP, 64.2 vs. 58.4), highlighting the reliability of SD-
 989 Pose’s features under appearance shifts. For hands, which are the most challenging due to
 990 fine-grained articulation and limited resolution, SDPose attains 46.3/44.9 AP on left/right
 991 hands, respectively, remaining competitive but still slightly behind Sapiens-2B (48.2/46.8).
 992 Nevertheless, the overall whole-body AP/AR of 46.6/54.8 establishes SDPose as the most
 993 robust framework under OOD whole-body evaluation. Detailed whole-body pose estimation
 994 results on COCO-OOD Ukiyo-e are presented in Table 7. Breaking down by region, SDPose
 995 remains competitive with Sapiens-2B on the more structurally stable parts: body (61.2 AP
 996 vs. 62.2) and feet (64.7 vs. 67.3), and shows a clear advantage on face landmarks (+4.8 AP,
 997 64.7 vs. 59.9), reflecting the stronger style-invariant geometry encoded by diffusion U-Net
 998 features under artistic shifts. For hands—the most challenging subset due to fine-scale pose
 999 variation—SDPose achieves 45.9/44.1 AP on left/right hands, remaining close to Sapiens-
 1000 2B (49.8/46.7) despite the latter’s larger model capacity. Importantly, SDPose attains the
 1001 highest whole-body AP/AR (47.7/56.4), demonstrating consistently stronger robustness
 1002 than both Sapiens-1B and Sapiens-2B when evaluated under Ukiyo-e style transformations.

1003 **Table 7: Quantitative Comparison on the COCO-OOD-Ukiyoe Wholebody vali-**
 1004 **dation set.**

1005
 1006 (a) **Body, Feet, Face**
 1007

Model	Body AP	Body AR	Feet AP	Feet AR	Face AP	Face AR
Sapiens-1B	54.0	60.9	57.9	69.9	58.7	65.3
Sapiens-2B	62.2	68.2	67.3	76.5	59.9	66.9
SDPose (Ours)	61.2	67.5	64.7	75.0	64.7	71.2

 1016 (b) **Hands and Whole-body**
 1017

Model	L-Hand AP	L-Hand AR	R-Hand AP	R-Hand AR	Whole AP	Whole AR
Sapiens-1B	43.7	52.8	40.9	50.6	40.5	49.4
Sapiens-2B	49.8	58.7	46.7	55.7	46.6	55.8
SDPose (Ours)	45.9	55.7	44.1	54.3	47.7	56.4

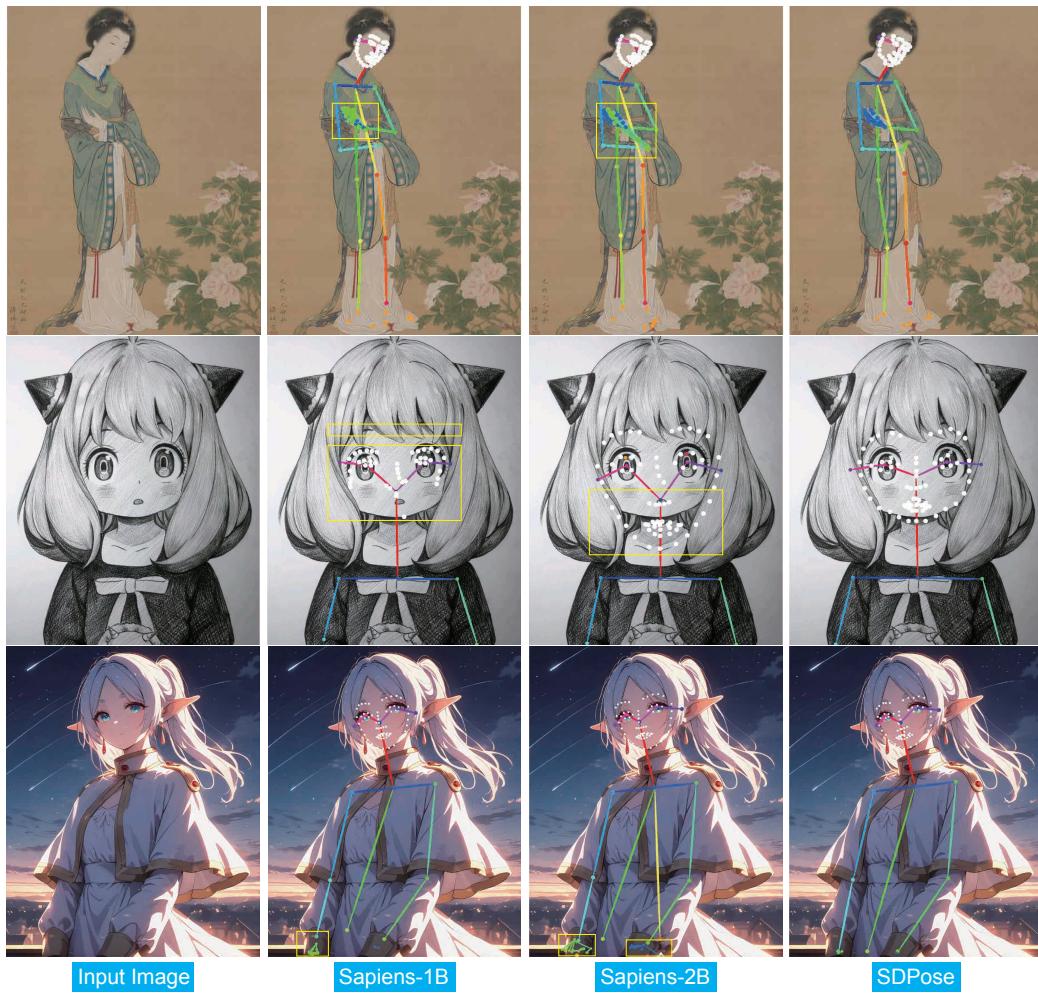
1026
1027 B.5 QUALITATIVE COMPARISON FOR WHOLE-BODY POSE ESTIMATION
1028

Figure 10: **Comparison on Stylized Paintings: Sapiens WholeBody vs. SDPose WholeBody.** All erroneous predictions are highlighted with yellow boxes. SDPose yields fewer false positives and notably better facial keypoint localization.