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Figure 1: SDPose: OOD-robust pose via diffusion priors. On stylized paintings,
SDPose surpasses Sapiens and ViTPose++-H, matching SoOTA on COCO and setting new
records on HumanArt and COCO-OOD; yellow boxes show baseline failures.

ABSTRACT

Pre-trained diffusion models provide rich multi-scale latent features and
are emerging as powerful vision backbones. While recent works such as

Marigold (Ke et al.||2024]) and Lotus (He et al.||2024)) adapt diffusion priors

for dense prediction with strong cross-domain generalization, their poten-
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tial for structured outputs (e.g., human pose estimation) remains underex-
plored. In this paper, we propose SDPose, a fine-tuning framework built
upon Stable Diffusion to fully exploit pre-trained diffusion priors for human
pose estimation. First, rather than modifying cross-attention modules or
introducing learnable embeddings, we directly predict keypoint heatmaps
in the SD U-Net’s image latent space to preserve the original generative pri-
ors. Second, we map these latent features into keypoint heatmaps through a
lightweight convolutional pose head, which avoids disrupting the pre-trained
backbone. Finally, to prevent overfitting and enhance out-of-distribution
robustness, we incorporate an auxiliary RGB reconstruction branch that
preserves domain-transferable generative semantics. To evaluate robustness
under domain shift, we further construct COCO-OQOD, a style-transferred
variant of COCO with preserved annotations. With just one-fifth of the
training schedule used by Sapiens on COCO, SDPose attains parity with
Sapiens-1B/2B on the COCO validation set and establishes a new state
of the art on the cross-domain benchmarks HumanArt and COCO-OOD.
Extensive ablations highlight the importance of diffusion priors, RGB re-
construction, and multi-scale SD U-Net features for cross-domain general-
ization, and t-SNE analyses further explain SD’s domain-invariant latent
structure. We also show that SDPose serves as an effective zero-shot pose
annotator for controllable image and video generation.

1 INTRODUCTION

With the recent rise of embodied Al, video generation, and 3D asset rendering, the need for
cross-domain-robust human pose estimation has become critical in robotics as well as in film,
animation, and game production. Although recent advances on academic benchmarks such
as MS COCO (Lin et al) [2014) using models such as DWPose (Yang et all, [2023)), RTM-
Pose (Jiang et al., [2023) and OpenPose (Martinez, 2019)), as well as approaches leveraging
large pretrained backbones such as ViTPose (Xu et al., 2022 [2023)) and Sapiens
, have achieved strong in-domain accuracy, they often exhibit severe performance
degradation under domain shifts and require substantial fine-tuning efforts.

Recently, pre-trained diffusion models such as Stable Diffusion (Rombach et al., 2022) have
emerged as robust vision backbones. A growing body of work has shown that with fine-
tuning and adaptation, diffusion priors can be repurposed for 3D generation (Cheng et al.)
[2023} [Lin et all [2025} [Long et al., [2024), segmentation (Karmann & Urfalioglu, 2025), and
dense prediction tasks (Ke et al., [2024; He et all, 2024), while consistently demonstrating
strong cross-domain robustness and highlighting their potential for leveraging intra-visual
multimodality in generative priors. However, their potential for structured and semantically
aware outputs, particularly in human pose estimation, remains largely unexplored. Concur-
rent efforts like GenLoc (Wang et al.| [2025a) and Diff-Tracker (Zhang et al., 2024)) indicate
that generative priors can benefit keypoint localization and tracking by steering learnable
condition embeddings and adapting the diffusion model’s cross-attention. We instead ex-
amine a complementary axis: can one rely purely on SD U-Net latent features, without
attention read-outs or condition tokens, to produce reliable pose heatmaps?

To bridge this gap and investigate how SD’s rich latent representations can be effectively
leveraged for robust cross-domain pose estimation, our contributions are as follows:

(1) We propose SDPose, a fine-tuning framework with three key components: (i) Latent-
space preservation. We operate entirely in the SD U-Net’s image latent space without
modifying cross-attention modules or adding learnable embeddings, thus preserving pre-
trained visual semantics and feature geometry. (ii) Lightweight pose decoder head.
We introduce a minimal decoder that maps SD U-Net features to keypoint heatmaps with
only a shallow convolutional head, ensuring low overhead and minimal disturbance to the
pretrained latent representations. (iiil) RGB reconstruction regularization. We add
an auxiliary reconstruction branch that regularizes fine-tuning, helping to maintain domain-
transferable generative semantics and improve out-of-distribution robustness.
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Figure 2: Training Pipeline of SDPose. The input RGB image is first encoded into the
latent space by a pre-trained VAE. The U-Net is conditioned for multi-task learning via a
class embedding. When the class label is set to [0,1], the U-Net predicts the reconstructed
RGB latent; when set to [1,0], it produces features for heatmap prediction. The output layer
of the U-Net is task-specific: the original convolutional output layer is retained for RGB
latent reconstruction, while a lightweight heatmap decoder is used to process the U-Net’s
intermediate features for keypoint heatmap prediction.

(2) To systematically evaluate robustness under domain shift, we introduce COCO-OO0D,
a style-transferred extension of COCO that includes oil-painting, ukiyo-e, and color sketch
domains. This dataset fills an important gap in benchmarking generalization robustness.

(3) We conduct extensive ablation studies to understand how diffusion priors and our RGB
reconstruction branch contribute to cross-domain generalization in pose estimation. We fur-
ther compare multi-scale features from different upsampling blocks of the SD-UNet, iden-
tifying the feature level that yields the strongest robustness under artistic domain shifts.
Finally, through a latent-space comparison with Sapiens using t-SNE visualizations, we ob-
serve that SD’s pretrained latent features naturally capture domain-invariant structures,
which is highly beneficial for cross-domain perception tasks.

On COCO (Lin et all 2014) and COCO-WholeBody (Jin et al., [2020), SDPose delivers

in-domain performance on par with the current SoTA, Sapiens (Khirodkar et al. [2024).
Under domain shift (HumanArt 2023), COCO-OOD), it sets a new state of the
art while using only one-fifth of Sapiens’s fine-tuning epochs, highlighting the efficiency and
cross-domain robustness of generative priors. Beyond quantitative benchmarks, we further
demonstrate SDPose as a zero-shot pose annotator for downstream controllable generation
tasks, including ControlNet-based image synthesis and video generation, where it provides
reliable and qualitatively superior pose guidance.

2 RELATED WORKS

2.1 LATENT DIFFUSION MODELS

Latent diffusion models (LDMs), built on DDPM and further advanced by ODE and SDE
samplers (Ho et al [2020; [Song et al., [2020bfa} [Lu et al. [2022; Rombach et al., 2022)), have
gained traction over the past few years. Classic architectures, such as the UNet-based Stable
Diffusion and Diffusion Transformers (DiT) (Peebles & Xie| 2023} [Esser et all [2024), have
demonstrated strong performance across diverse conditional generation tasks (Zhang et al.|
2023). Pretrained on large-scale datasets such as LAION-5B (Schuhmann et al) [2022
generative models like Stable Diffusion provide rich visual priors that can be effectively
leveraged for a wide range of tasks. Recent advances in flow-matching (Lipman et al. 2022;
[Esser et al. 2024; Xie et al.| 2024) further show that latent diffusion models can achieve
high-quality synthesis with only a few sampling steps. These developments highlight the
power of latent generative priors as a strong visual foundation.

2.2 LEVERAGING DIFFUSION PRIORS FOR PREDICTION TASKS
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A growing body of work has explored repurpos- 1= 1000

ing pretrained latent diffusion priors for dense — mases - N
prediction tasks. Marigold (Ke et al., [2024) J&_, e L oo L e
adapts Stable Diffusion by fine-tuning only the d P o
denoising U-Net using synthetic data, delivering """
high-quality depth results. Later, subsequent
methods such as Lotus (He et al) [2024) and Figure 3: SDPose Inference Pipeline.
GenPercept (Xu et al.,2024) both adopt a deter-

ministic one-step fine-tuning strategy, removing

the multi-step stochastic diffusion process and directly predicting task annotations, which
significantly improves both accuracy and inference speed. In contrast, leveraging latent
diffusion priors for structured outputs (e.g., human pose) remains underexplored. Prior
works such as GenLoc (Wang et al.l 2025a)) and Diff-Tracker (Zhang et al.l [2024]) freeze
Stable Diffusion backbone and use learnable condition or prompt embeddings to read cross-
attention maps, rather than decoding from U-Net latent features, aiming at zero-/few-shot
and schema-flexible generalization. We instead remain in the image latent space, treat the
SD U-Net as a multi-scale backbone, and attach a minimal convolutional head to produce
keypoint heatmaps, retaining SD-native visual semantics and improves robustness under
domain shift.
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2.3 HuMAN POSE ESTIMATION

Human pose estimation is a classic and fundamental task in computer vision. Early ap-
proaches predominantly relied on CNN backbones such as HRNet (Sun et al., 2020) and
CSPNeXt (Chen et al.l [2024), coupled with heuristically designed decoding heads. Mod-
els like RTMPose (Jiang et al.l 2023) and DWPose (Yang et all 2023|) achieved strong
performance on academic benchmarks such as COCO and COCO WholeBody. However,
these models exhibit limited generalization when transferring from real human figures to
out-of-domain cases, such as anime characters. More recently, fine-tuned methods built
on extensive pre-trained vision backbones, such as ViTPose (Xu et all 2022; |2023) and
Sapiens (Khirodkar et al., |2024), have achieved SoTA results on standard benchmarks,
demonstrating the benefit of leveraging pre-trained foundation models for pose estimation.
Nevertheless, these methods incur high fine-tuning costs, as they require large task-specific
datasets and lengthy training schedules to achieve competitive performance. In this paper,
we demonstrate that fine-tuning the Stable Diffusion pipeline with minimal architectural
modifications can address both the generalization gap and the high fine-tuning cost.

3 PRELIMINARIES

3.1 HEATMAP REPRESENTATION AND UNBIASED DATA PROCESSING (UDP)

Let (x;,y;) denote the i-th ground-truth keypoint in an H x W image. The standard heatmap

representation encodes each keypoint as

(u—2:)* + (v — y:)?
202

Hifu,0) = xp( - ) i) = argmax A, o)

While widely adopted, this discrete pixel-space formulation suffers from quantization bias:
predicted coordinates become misaligned under flips, scales, or rotations since the argmax
operation only yields integer positions. To address this issue, we adopt the Unbiased Data
Processing (UDP) method (Huang et al., [2020), which removes quantization bias by es-
timating keypoints in a continuous domain. Following common practice, the heatmap is
generated at one-quarter resolution of the input image, which balances localization accu-
racy with computational efficiency.

3.2 PARAMETERIZATION FOR LATENT DIFFUSION MODEL

Traditional latent diffusion models (LDMs) (Ho et al. 2020) adopt the e-prediction pa-
rameterization, where the denoiser fp is trained to predict the Gaussian noise €; added at
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Figure 4: Qualitative results on real-world photographs. The yellow boxes highlight
regions where baselines fail to predict accurate poses.

timestep t:
g25 = fe(ztat)7
with z; denoting the noisy latent at step t. The clean latent x¢ can then be recovered by

P :zt—\/l—até
0 \/OTt )

where a; = Hizl(l — fBs) is the cumulative product of the noise schedule.

However, Lotus (He et al., 2024) shows that e-prediction injects unnecessary stochastic
variation, which accumulates across multiple denoising steps, degrading dense prediction

quality. Lotus therefore advocates a deterministic adaptation, directly predicting the
clean annotation latent xq in a single step:

T = go(27),

where T is a fixed timestep and gy is fine-tuned U-Net applied once. This formulation elimi-
nates the prediction variance introduced by multiple-step denoising, simplifies optimization,
and significantly accelerates inference. In our approach, we similarly avoid the diffusion
chain and adopt this xp-prediction design.

4 METHODOLOGY

4.1 LEVERAGING THE MULTI-SCALE LATENT FEATURES FOR POSE ESTIMATION

We directly leverage the multi-scale latent features of SD U-Net for the pose estimation task.
The input image is encoded by the frozen SD-VAE encoder and then fed into the SD U-
Net, from which we extract multi-scale features at the upsampling stage. These multi-scale
features provide rich and robust visual representations for downstream keypoint prediction.
The specific feature level used for each task configuration is discussed in Sec.

4.2 THE U-NET CONVOLUTIONAL OUTPUT LAYER FORMS AN INFORMATION
BOTTLENECK

Stable Diffusion’s U-Net outputs a 4-channel latent z € R**"*® for the VAE through
a single convolutional layer. In contrast, pose estimation requires K-channel heatmaps
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Table 1: Quantitative comparison across COCO, HumanArt, COCO-OO0D
Monet, and COCO-00D Ukiyo-e. All models are trained on COCO. Full quantitative
comparison across various models are in the supplementary.

COCO-00D | COCO-00D
~trai coco H Art :
Model Variant Model PBrzctl:lE:):zd Params umanAr Monet Ukiyo-e

AP AR | AP AR | AP AR AP AR

Sapiens-1B (Khirodkar et al.|2024] Sapiens ViT 1.169B 82.1 85.9 64.3 67.4 58.8 63.3 61.5 66.2

Bod Sapiens-2B (Khirodkar et al.|2024] Sapiens ViT 2.163B 82.2 86.0 | 69.6 72.2 59.6 64.0 62.3 66.8

Y GenLoc (Wang et al.|[2025a] Stable Diffusion-v1.5 | 0.95B | 77.6 80.7 | 67.0 70.8 | NJA N/A | NJA N/A
SDPose (Ours) Stable Diffusion-v2 0.95B 81.3 852 | 71.2 73.9 | 64.3 68.9 66.0 70.7

Sapiens-1B (Khirodkar et al.]2024] Sapiens ViT 1.169B 72.7 79.2 | N/JA N/A 38.7 46.8 40.5 49.4

‘Wholebody Sapiens-2B (Khirodkar et al.|2024] Sapiens ViT 2.163B 74.4 81.0 | NJA N/A 44.4 53.0 46.6 55.8
SDPose (Ours) Stable Diffusion-v2 0.95B 71.5 784 | NJA N/A | 46.6 54.8 47.7 56.4

H e REXH'>W' with K > 4, making the 4-channel latent a severe information bottle-
neck. To address this, we replace the original 4-channel head with a lightweight heatmap
decoder (Xiao et al.,[2018). The decoder consists of deconvolution layers for upsampling, fol-
lowed by convolutions that output K-channel heatmaps (Fig. . This modification removes
the bottleneck and shortens the supervision path to keypoints.

4.3 AUXILIARY RGB RECONSTRUCTION

To preserve the fine-detail representation capability of diffusion priors and to avoid overfit-
ting to the pose estimation domain, we adopt the Detail Preserver strategy from Lotus (He
et al., [2024)). Concretely, we introduce a class embedding C' € {Crap, Cpose } that controls
the behavior of the denoising U-Net fy. When Cgrgp is provided, the network is trained
to reconstruct the RGB latent zrgp; when Cpege is provided, it learns to reconstruct the
ground-truth heatmap Hpose. The overall objective is

L= HZRGB - f@(zinput7t7 C’RGB)HQ + HHPose - fﬁ(zinput; t, CPose)“Qa
where Zzinpus is the latent encoded from the input image by the SD-VAE, and ¢ is fixed to
t = 1000 in our experiments.

4.4 INFERENCE

As illustrated in Fig. [3] the input RGB image x is encoded by the SD-VAE into the latent
representation zrgp. The latent diffusion U-Net then performs a single-step regression with
the timestep fixed at ¢ = 1000, using the class label Cpyse to execute the pose estimation
task. The text condition is disabled by feeding an empty text embedding to the U-Net.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Implementation Details. We train SDPose based on Stable Diffusion V2 (Rombach et al.)
2022), with text conditioning disabled. During training, we fix the timestep ¢ = 1000. For
more details, please see the supplementary materials.

Training Datasets. We train two variants, SDPose Body (17-keypoints) and SDPose
Wholebody (133-keypoints), on MS COCO (Lin et all 2014) and COCO-WholeBody (Jin
et al.l |2020)), respectively. All images are processed using standard top-down augmenta-
tions, with the input resolution set to 1024 x 768. Further details are provided in the
supplementary materials.

Validation Datasets and Metrics. (1) For the Body variant, we evaluate SDPose on
MS COCO (Lin et al.| [2014) for real-world images, and on HumanArt (Ju et al.| |2023)) and
COCO-00D for cross-domain benchmarks. (2) For the Wholebody variant, we evaluate
SDPose on COCO-WholeBody (Jin et al., 2020) and the extended COCO-OOD. Further
details of the evaluation datasets and metrics are provided in the supplementary materials.

COCO-00D. To complement HumanArt and enable OOD evaluation with matched con-
tent and labels, we translate all COCO val images into three artistic domains: Monet-style
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paintings using the official StyTR2 framework (Deng et al.| [2022)), ukiyo-e style using the
official CycleGAN implementation (Zhu et al [2017)), and color-sketch style using Nano Ba-
nana (Nano Bananal). For all stylized images, we reuse the original COCO val annotations

(bounding boxes and keypoints). Please refer to the supplementary materials for details.

5.2  QUANTITATIVE AND QUALITATIVE COMPARISON ON REAL-WORLD SCENES

For the Body variant, SDPose achieves 81.3
AP / 85.2 AR on the COCO validation set
(Tablell]) with only 40 training epochs using
a 0.95B SD-v2 backbone. It matches the ac-
curacy of Sapiens (82.1-82.2 AP) despite re-
quiring 5x fewer epochs and a smaller back-
bone, and surpasses GenLoc (+3.7 AP, +4.5
AR) Figure further ﬂluStrateS I'ObllSt- Original Image Monet Oil Ukiyo-e Color Sketch
ness on real-world photos, where SDPose (COCO val) (SyTR2) (CycleGAN)  (Nano Banana)
rivals Sapiens and corrects its failure cases

(e.g., Sichuan opera eye keypoints). For the Figure 5: Illustration of the COCO-OOD
Wholebody variant, SDPose achieves com- dataset.

petitive performance with Sapiens-1B on

the COCO-WholeBody validation set. Further details are provided in the supplementary
materials.

5.3 SDPoOSE’S STRONG OOD ROBUSTNESS

In this section, we demonstrate the superior OOD robustness of SDPose using quantitative
evaluation on HumanArt and our COCO-OOD benchmark. As shown in Table [1, SDPose
achieves state-of-the-art results on HumanArt and COCO-OOD with fewer training epochs
and a smaller parameter budget. On COCO-OOD WholeBody, SDPose continues to demon-
strate strong out-of-domain robustness. As shown in Fig. [I} SDPose achieves more accurate
body pose estimation across diverse animation styles and humanoid robots compared with
baseline models. Additional qualitative results on whole-body pose estimation in stylized
paintings are provided in the supplementary materials.

5.4 WHY DIFFUSION PRIORS EXHIBIT STRONG OOD ROBUSTNESS?

In this subsection, we investigate why the diffusion-based prior (Stable Diffusion v2) (Rom-|
[bach et al| [2022)) exhibits stronger cross-domain generalization than the human-centric
Sapiens ViT backbone (Khirodkar et al} [2024). We compare latent feature distributions
from the pretrained Sapiens-1B ViT and Stable Diffusion v2 U-Net, as well as their pose-
finetuned counterparts, Sapiens-1B Pose and our SDPose model (finetuned on the last four
upsampling blocks). We sample 300 person instances from the COCO and COCO-OOD val-
idation sets. For each instance, we crop the person region using the ground-truth bounding
box and collect four stylistic variants: the original COCO image plus its ukiyo-e, Monet-oil,
and color-sketch versions from COCO-OOD, yielding 1200 crops in total. These images are
passed through the corresponding backbones to extract latent features, on which we run
t-SNE (Maaten & Hintonl 2008) and compute silhouette scores (Rousseeuw] [1987)).

Fig. @(afe) show the t-SNE visualizations of the pretrained priors, and Fig. @(ffj) show
the pose-finetuned models. In Fig. El(a), the pretrained Sapiens features form clear style-
driven clusters (silhouette by style = 0.3469) with a negative silhouette by person-instance
(—0.1608), indicating that its representation is dominated by artistic appearance rather than
instance structure. In contrast, Stable Diffusion U-Net features in Fig. @(bfe) exhibit much
weaker style separation and gradually stronger person-instance coherence; deeper upsam-
pling blocks yield increasingly person-consistent and style-invariant distributions, reflected
by rising person-instance silhouettes (up to & 0.22) and near-zero style silhouettes. After
pose finetuning, both Sapiens-Pose (Fig. @(f)) and SDPose (Fig. @(gfj)) produce visible
person-instance clusters, but SDPose features are noticeably tighter and more focused, with
the mid-level SDPose blocks achieving the highest person silhouettes (= 0.45-0.48) while
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Figure 6: t-SNE visualization of features from Sapiens ViT, Stable Diffusion
U-Net blocks, Sapiens Pose, and SDPose across four visual domains. Each point
corresponds to an image sample; colors represent person instances and marker shapes denote
artistic styles.

keeping style silhouettes close to zero. Overall, the SD U-Net (especially after SDPose fine-
tuning) provides more instance-coherent and style-disentangled representations than Sapi-
ens, which explains why SD-based features offer stronger cross-domain robustness under
artistic style shifts.

5.5 ABLATION STUDY

5.5.1 ABLATION ON AUXILIARY RECONSTRUCTION TASK AND DIFFUSION PRIORS

I3

We conduct ablations to validate our designs. For the “w/o diffusion priors” variant, we
train the U-Net from scratch (no pretrained priors). For the “w/o RGB recon.” variant, we
disable only the auxiliary RGB reconstruction branch; all other settings remain identical.
From Table [2| two trends emerge. First, removing the RGB branch yields a consistent
but modest AP/AR drop on COCO that becomes more pronounced on HumanArt and
COCO-00D, indicating that the auxiliary reconstruction acts as a useful regularizer and
improves robustness under domain shift. Second, removing diffusion priors causes a much
larger degradation, especially on the OOD benchmarks, highlighting that the pretrained
generative priors are the primary source of SDPose’s generalization.

5.5.2 ABLATION ON MULTI-SCALE FEATURES FROM THE SD U-NET

Prior work (Liu et al., [2023b; 2024; [2023a; [Wang et al., 2025b)) suggests that penultimate
features often transfer better than final ones. As shown in Table [2| we evaluate SD U-Net
upsampling features from the last four blocks. On COCO (17-keypoint), the last-block
(F1) and penultimate (F2) features perform very similarly, and F1 is slightly better on both
COCO and HumanArt, which contain a mixture of natural and artistic content. In contrast,
on COCO-O0OD Monet, where the domain shift is purely stylistic, F2 achieves the best
performance, suggesting that it captures style-invariant cues more effectively than F1. For
the 133-keypoint WholeBody setting, F2 consistently outperforms all other feature levels on
both COCO-WholeBody and COCO-OOD, indicating that it offers a better balance between
semantic robustness and spatial detail in this more fine-grained regime. Together with the
latent-space analysis in Section these results show that deeper SD features (F3 and
F4) encode even stronger instance-consistent, style-invariant semantics but operate at much

ls—I
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Table 2: Ablation studies on diffusion priors, RGB reconstruction, and U-Net
feature selection. All experiments are trained on COCO with 40 epochs (body-17 key-
points) or 42 epochs (wholebody-133 keypoints).

Model Variant | Ablation Setting coco | HumanArt | COCO-00D Monet
AP AR AP AR AP AR
Full Model (Last Block) 81.3 85.2 71.2 73.9 63.5 68.2
w/o RGB Reconstruction | 80.8 (-0.5) 84.9 (-0.3) | 69.8 (-1.4) 72.6 (-1.3) 62.5 (-1.0) 67.3 (-0.9)
w/o Diffusion Priors 74.9 (-6.4) 79.4 (-5.8) | 53.8 (-17.4) 58.0 (-15.9) | 52.7 (-10.8) 57.9 (-10.3)
SDPose-Body
Last Block (F1) 81.3 85.2 71.2 73.9 63.5 68.2
Second-to-last Block (F2) 81.1 85.0 70.4 73.3 64.3 68.9
Third-to-last Block (F3) 81.0 85.1 70.6 73.3 63.5 68.2
Fourth-to-last Block (F4) 79.2 83.4 65.0 68.1 58.1 62.8
Last Block (F1) 70.5 77.5 N/A N/A 447 53.0
SDPose-Wholebody Sec?nd»to—]ast Block (F2) 71.5 78.4 N/A N/A 46.6 54.8
Third-to-last Block (F3) 70.4 77.6 N/A N/A 45.5 53.8
Fourth-to-last Block (F4) 64.6 72.1 N/A N/A 37.1 45.4

coarser spatial resolutions (H/16 and H/32), which removes the geometric details needed for
accurate keypoint localization. In practice, we therefore use F1 as the default feature level for
the SDPose Body model (favoring slightly better in-domain and mixed-domain performance)
and F2 as the default feature level for the SDPose WholeBody model (favoring consistently
stronger performance under both in-domain and out-of-domain settings).

6 DOWNSTREAM APPLICATIONS

6.1 BETTER POSE-GUIDED IMAGE GENERATION

For human or humanoid character generation, an accurate skeleton is essential for transfer-
ring poses between characters. Traditional pose estimators often fail to precisely capture
the skeletons of art-based human or humanoid characters. Our method provides a general-
izable pose estimation approach that can benefit animation production. As shown in Fig.[7]
we compare ControlNet (Zhang et al., [2023) outputs using DWPose as the baseline pose
annotator. Notably, our SDPose yields more precise and detailed skeletons than DWPose,
enabling reliable pose transfer and high-quality image generation for artistic characters.

SDPose
(Ours)

SDPose

7]
)

DWPose
(Baseline)

DWPose
(Baseline)

v £

Figure 7: Visualization of pose-guided image generation results. The lower images
illustrate results from the baseline, which combines a pre-trained ControlNet with the DW-
Pose estimator. In comparison, the upper images show results obtained using our SDPose
as the pose annotator. Yellow boxes highlight baseline failures. Prompts, random seeds,
and other settings are kept identical for fairness.
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Driving Image 1 Driving Image 2

Source Image

Driven by DWPose
(Baseline)

Driven by SDPose
(Ours)

Figure 8: Qualitative comparison for pose-controlled video generation in the wild.
The first row shows the source image and frames from the driving video. The second row
shows output video frames generated from the pose sequence estimated by the baseline model
DWPose, while the third row shows the results guided by our SDPose. Red boxes highlight
failures in the generated video, and yellow boxes highlight errors in pose estimation.

6.2 POSE-GUIDED VIDEO GENERATION

Recent advances in controlled video generation have gained significant traction
|Guo et all [2023; [Kim et al. [2024). Despite the progress of video generation models in
producing higher-quality outputs, extracting reliable control conditions remains critical for
achieving high-quality results. As shown in Fig. [8] our SDPose provides more accurate
poses for the driving frames, enabling more reliable pose-sequence transfer from animations
to animations. Video frames are generated by Moore-Animated Anyondﬂ

7 CONCLUSION

In this paper, we present SDPose, an SD-native fine-tuning framework for human pose esti-
mation. SDPose preserves the original U-Net with only lightweight task-specific components
and adapts diffusion latent priors for keypoint prediction through an RGB reconstruction
branch and a heatmap decoder. We further introduce COCO-0OO0OD, a style-transferred
extension of COCO for evaluating robustness under domain shifts. With only one-fifth of
the fine-tuning cost of Sapiens and a smaller backbone, SDPose matches its in-domain accu-
racy on COCO and achieves state-of-the-art results on COCO-OOD and HumanArt. Our
ablations and latent-space analyses show that diffusion priors and multi-scale SD features
naturally encode domain-invariant structure, enabling strong generalization in both pose
estimation and zero-shot pose annotation for controllable generation.

"https://github.com/MooreThreads/Moore-AnimateAnyone
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ETHICS STATEMENT

This work builds upon publicly available datasets (COCO, COCO Wholebody), all of which
have established licenses and annotation protocols. No private or personally identifiable
information is used. Our method focuses on improving the robustness of pose estimation
under domain shifts, which can benefit applications such as animation and embodied Al

REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility. All datasets used are publicly available,
and we detail dataset splits, preprocessing steps, and evaluation protocols in Sec. [d] Our
training settings, hyperparameters, and model architectures are fully described in Sec. [4]
Sec. [p] and Appendix [A] Code and scripts to reproduce our experiments will be released
upon publication.
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SUPPLEMENTARY MATERIALS FOR SDPose: EXPLOITING DIFFUSION
PRIORS FOR OUT-OF-DOMAIN AND ROBUST POSE ESTIMATION

A EXPERIMENT SETTINGS

A.1 IMPLEMENTATION DETAILS

We train SDPose on the COCO-2017 person keypoints train2017 split only (no extra data),
with text prompts disabled. The diffusion timestep is fixed at ¢ = 1000. We use AdamW
with a learning rate of 3 x 107°. All experiments are run on 8 NVIDIA A100-NVLink
GPUs with a total batch size of 128, without gradient accumulation. Inputs are resized to
1024 x 768 with standard top-down augmentations. The 17-keypoint model is trained for 40
epochs (approximately 3 days), and the 133-keypoint model for 42 epochs (approximately
3 days and a half).

A.2 TRAINING DATASETS

COCO 2017 Keypoint Detection We train the 17-keypoint variant on the COCO-2017
person keypoint detection dataset (Lin et al., [2014). The full COCO release contains more
than 200,000 images and about 250,000 person instances. Person keypoint annotations
follow the 17-point format (nose, eyes, ears, shoulders, elbows, wrists, hips, knees, and
ankles).

COCO Wholebody To further evaluate large-scale whole-body keypoint estimation, we
adopt COCO-WholeBody (Jin et al.,|2020)), an extended benchmark built on top of COCO
images. COCO-WholeBody augments the original 17 body joints with fine-grained annota-
tions of foot (6 keypoints), face (68 keypoints), and hands (42 keypoints for hands), resulting
in a total of 133 keypoints per person. The dataset provides consistent whole-body anno-
tations across the same training and validation splits as COCO-2017, enabling both fair
comparison with standard pose estimation methods and comprehensive evaluation under
the whole-body setting.

A.3 AUGMENTATION DETAILS

The training pipeline first loads the input image and computes the bounding box center and
scale. It applies random horizontal flipping, half-body augmentation, and random bounding
box transformations. The image is then affine-transformed to the target input resolution
using UDP (Huang et al., |2020). Albumentations-based augmentations are then applied,
including Gaussian blur (p = 0.1), median blur (p = 0.1), and coarse dropout (p = 1.0, with
up to one hole of size 20%—40% of the image).

A.4 EVALUATION DATASETS AND METRICS

Evaluation Datasets

COCO 2017 Keypoint Detection. For in-domain evaluation, we use the
COCO-2017 validation set (Lin et al., [2014) annotated with 17 body keypoints,
bounding boxes, and visibility flags. Following the standard top-down evalua-
tion protocol, we generate person crops from the COCO-released detection results
(COC0_val2017_detections_AP H_70_person.json), and report COCO keypoint AP/AR
on this diverse in-the-wild dataset.

HumanArt. We use HumanArt (Ju et al [2023) as an cross domain benchmark: 50k
human-centric images across 20 scenarios (5 natural, 15 artistic—oil painting, sculpture,
cartoon, sketch, stained glass, Ukiyo-e, watercolor, etc.) with annotations for boxes and 2D
keypoints. We follow the official protocol and report keypoint AP/AR to assess robustness
under artistic domain shift.

COCO-WholeBody (133-keypoint whole-body). We train and evaluate a
133-keypoint variant on COCO-WholeBody (Jin et al.l [2020), which shares COCO’s
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train/val split. Each person has 133 keypoints (17 body, 6 foot, 68 face, 42 hand) plus boxes
for person/face/left /right hand. We follow the official protocol and report Whole-Body AP
and part-wise AP (body/foot/face/hand). This dataset spans diverse in-the-wild scenes and
stresses fine-grained articulation, complementing COCO for structured keypoint evaluation.

Metrics We follow the standard COCO keypoint evaluation protocol, which is based on
the Object Keypoint Similarity (OKS). For each keypoint 4, the similarity is defined as

d2
KS; = exp(—@) ,

where d; denotes the Euclidean distance between predicted and ground-truth keypoints, s
is the object scale (square root of the segmentation area), and k; is a per-keypoint constant
controlling falloff. The OKS for an instance is the average K S; over visible keypoints:
Zi KS; - (5(’1}1 > 0)

S0 >0)
where v; is the visibility flag. Using OKS as the matching criterion, COCO computes

Average Precision (AP) as the mean precision over OKS thresholds [0.50 : 0.05 : 0.95], and
Average Recall (AR) analogously as the mean recall across the same thresholds.

OKS =

A.5 DEeTAILS OF COCO-O0OD

Original Image Color Sketch

Figure 9: COCO-0OOD visualizations. We create an OOD split of the COCO validation
set by stylizing images with CycleGAN, StyTr2, and Nano-Banana into a Monet-like oil-
painting domain, enabling robustness evaluation under appearance shifts.

To complement HumanArt and enable out-of-distribution evaluation under matched content
and annotations, we construct COCO-OOD (Fig. E[) by applying artistic style transfer to the
original COCO images while preserving human bounding boxes and keypoints. We generate
three stylistic variants, each capturing different types of artistic domain shifts. Importantly,
for fair comparison and to avoid introducing priors from large-scale pretrained diffusion

models, we intentionally adopt the earlier CycleGAN (Zhu et all [2017) and StyTr2 (Deng
2022)) framework rather than more recent style transfer approaches.

For the Monet oil-painting variant, we employ the StyTr2 framework, which produces high-
fidelity oil-painting textures and color palettes while maintaining the overall scene geometry.
For the Ukiyo-e variant, we adopt the official CycleGAN implementation to translate natural
photographs into the Ukiyo-e domain. Finally, we also explore a Color Sketch variant gen-
erated using the Nano-Banana model (Nano Banana)). While Nano-Banana preserves global
shape in most cases, its stylization can occasionally introduce slight pixel-level misalign-
ment with respect to the source images. Because such spatial deviations may compromise
compatibility with COCOQO’s keypoint annotations, we use the Color Sketch variant only as
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a supplemental resource for latent-space t-SNE analysis and exclude it from quantitative
evaluation. By drawing from multiple style-transfer frameworks, COCO-OOD reduces the
bias introduced by any single model and produces stylistic shifts with diverse characteristics.
This diversity leads to a more balanced and comprehensive benchmark. Overall, COCO-
OOD maintains the geometric content of COCO while producing substantial appearance
shifts across distinct artistic domains, providing a controlled and annotation-preserving
testbed for assessing cross-domain robustness in pose estimation.

B DEgTAILS OF QUANTITATIVE COMPARISON AND ADDITIONAL
QUALITATIVE COMPARISON

B.1 FuLL QUANTITATIVE COMPARISON ON COCO

SDPose achieves 81.3 AP / 85.2 AR on the COCO validation set (Table [3) with only 40
training epochs using a 0.95B SD-v2 backbone. It matches the accuracy of Sapiens (82.1-
82.2 AP) despite requiring 5x fewer epochs and a smaller backbone, and surpasses GenLoc
(+3.7 AP, +4.5 AR). SDPose also outperforms ViTPose++ (+1.9 AP), which relies on
multiple auxiliary datasets, while being trained solely on COCO.

Table 3: Quantitative comparison on the COCO validation set.

Model Input Size AP AR
SimpleBaseline (Xiao et al.:2()18) 256x192 73.5  79.0
HRNet (Sun et all [2019) 384288 76.3 81.2
HRFormer (Yuan et al.l [2021) 256x192 77.2 820
ViTPose-S (Xu et al., [2022) 256x192 73.8 79.2
ViTPose-B (Xu et al.| 2022]) 256x192 75.8 81.1
ViTPose-L (Xu et al.l, [2022]) 256x192 78.3 83.5
ViTPose-H (Xu et al., [2022]) 256x192 79.1 84.1
ViTPose++-S (Xu et al., [2023) 256x192 75.8 81.0
ViTPose++-B (Xu et al., [2023) 256x192 77.0  82.6
ViTPose++-L (Xu et al 2023) 256x192 78.6 84.1
ViTPose++-H (Xu et al., [2023) 256x192 79.4 848

Sapiens-0.3B (Khirodkar et al.|[2024)  1024x768  79.6  83.6
Sapiens-0.6B (Khirodkar et all [2024)  1024x768  81.2 84.9
Sapiens-1B (Khirodkar et al., |2024)) 1024 <768 82.1 859
Sapiens-2B (Khirodkar et al., 2024) 1024 <768 82.2  86.0

SDPose (Ours) 1024x768  81.3 85.2

B.2 FuLL QUANTITATIVE COMPARISON ON HUMANART

On HumanArt (Table [d}), SDPose sets a new state of the art with 71.2 AP / 73.9 AR, sur-
passing large-scale foundation baselines under the same COCO-only training: +1.6 AP over
Sapiens-2B (69.6 AP) and +4.7 AP over ViTPose-H (66.5 AP), with consistent AR gains.
Compared with traditional baselines such as RTMPose (Jiang et al., 2023|) and HRNet (Sun
et al.l |2019)), SDPose further delivers substantial improvements in AP, exceeding them by
more than 14 points.

B.3 FuLL QUANTITATIVE COMPARISON ON COCO WHOLEBODY

As shown in Table |5, SDPose achieves 71.5 AP / 78.4 AR on the COCO-WholeBody vali-
dation set. This result is highly competitive with the large-scale Sapiens (Khirodkar et al.,
2024) models: while Sapiens-2B reaches 74.4 AP with over 2B parameters and long training
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Table 4: Quantitative Comparison on the HumanArt validation set. Models trained
on COCO, evaluated with GT bounding boxes. SDPose achieves new state-of-the-art per-
formance.

Model AP AP AP™ AR AR
RTMPose-T (Jiang et al.:2023) 444 725 45.3 488 75.0
RTMPose-S (Jiang et al.| [2023) 48.0  73.9 49.8 52.1  76.3
RTMPose-M (Jiang et al., [2023) 53.2  76.5 56.3  57.1  78.9
RTMPose-L (Jiang et all 2023) 56.4  78.9 60.2  59.9  80.8

ViTPose-S (Xu et al., |2022]) 50.7  75.8 53.1 55.1  78.0
ViTPose-B (Xu et al.| [2022) 55.5  78.2 59.0 59.9 80.9
ViTPose-L (Xu et al., 2022) 63.7  83.8 68.9 67.7 859
ViTPose-H (Xu et al., 2022]) 66.5  86.0 71.5  70.1  87.1

HRNet-W32 (Sun et al., 2019) 53.3 771 56.2 574  79.2
HRNet-W48 (Sun et al, 2019) 55.7 782 59.3 59.5 804
Sapiens-1B (Khirodkar et all|2024) 64.3  82.1 67.9 674  83.7
Sapiens-2B (Khirodkar et al., [2024) 69.6  85.3 73.3 722  86.8

SDPose (Ours) 71.2 873 76.3 739 88.6

Table 5: Quantitative comparison on the COCO-WholeBody validation set.

(a) Body, Feet, Face

Model Body AP Body AR Feet AP Feet AR Face AP Face AR
HRNet (Sun et al.:2019) 70.1 77.3 58.6 69.2 72.7 78.3
VitPose+-L (Xu et al., [2023) 75.3 - 77.1 - 63.0 -
VitPose+-H (Xu et al.} [2023) 75.9 - 77.9 - 63.6 -
RTMPose-x (Jiang et al. |2023) 71.4 78.4 69.2 81.0 88.8 92.2
DWPose-1 (Yang et al., [2023) 72.2 78.9 70.4 81.7 88.7 92.1
Sapiens-0.3B (Khirodkar et al., |2024)) 66.4 73.4 67.3 78.4 87.1 91.2
Sapiens-0.6B (Khirodkar et al., |2024)) 74.3 80.2 79.4 87.0 89.5 92.9
Sapiens-1B (Khirodkar et al., [2024) 7.4 82.9 83.0 89.8 90.7 93.6
Sapiens-2B (Khirodkar et al.} |2024) 79.2 84.6 84.1 90.9 91.2 93.8
SDPose (Ours) - 77.9 83.4 81.5 88.7 88.5 92.2

(b) Hands and Whole-body

Model Hand AP Hand AR Whole AP Whole AR
HRNet (Sun et al., |2019) 51.6 60.4 58.6 67.4
VitPose+-L (Xu et al.| [2023)) 54.2 - 60.6 -
VitPose+-H (Xu et al.| [2023) 54.7 - 61.2 -
RTMPose-x (Jiang et al., |2023) 59.0 68.5 65.3 73.3
DWPose-1 (Yang et al.| [2023) 62.1 71.0 66.5 74.3
Sapiens-0.3B (Khirodkar et al.| |2024)) 58.1 67.1 62.0 69.4
Sapiens-0.6B (Khirodkar et al.| |2024)) 65.4 74.0 69.5 76.3
Sapiens-1B (Khirodkar et al., |2024) 69.2 77.1 72.7 79.2
Sapiens-2B (Khirodkar et al.| [2024) 70.4 78.1 74.4 81.0
SDPose (Ours) B 65.2 74.0 71.5 78.4

schedules, SDPose attains comparable accuracy with a smaller 0.95B backbone trained for
only 42 epochs. In terms of sub-part analysis, our method closely matches Sapiens-2B on
body (77.9 vs. 79.2) and feet (81.5 vs. 84.1), while maintaining strong performance on face
(88.5 vs. 91.2). The largest gap appears on hand keypoints (65.2 vs. 70.4), reflecting the
intrinsic difficulty of fine-grained articulation. Nevertheless, compared with classical base-
lines such as HRNet (Sun et al., 2019), RTMPose (Jiang et al.l [2023), or DWPose (Yang
et al.l [2023)), SDPose shows substantial gains of +6-12 AP across whole-body evaluation.
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Table 6: Quantitative Comparison on the COCO-OOD-Monet Wholebody vali-
dation set.

(a) Body, Feet, Face

Model Body AP Body AR Feet AP Feet AR Face AP Face AR
Sapiens-1B 52.1 58.6 55.9 66.2 57.6 63.0
Sapiens-2B 59.9 65.8 63.8 72.4 58.4 64.2
SDPose (Ours) 60.0 66.1 62.5 72.0 64.2 69.9

(b) Hands and Whole-body

Model L-Hand AP L-Hand AR R-Hand AP R-Hand AR Whole AP Whole AR
Sapiens-1B 43.1 52.0 41.5 50.6 38.7 46.8
Sapiens-2B 48.2 56.8 46.8 55.3 44.4 53.0
SDPose (Ours) 46.3 55.2 44.9 54.4 46.6 54.8

B.4 FuLL QUANTITATIVE COMPARISON ON COCO-OOD WHOLEBODY

Detailed whole-body pose estimation results on COCO-OOD Monet are reported in Ta-
ble [} Breaking down by body part, SDPose matches or surpasses Sapiens on the most
stable regions: body (60.0 AP vs. 59.9) and feet (62.5 vs. 63.8), and delivers a notable
margin on face landmarks (+5.8 AP, 64.2 vs. 58.4), highlighting the reliability of SD-
native features under appearance shifts. For hands, which are the most challenging due to
fine-grained articulation and limited resolution, SDPose attains 46.3/44.9 AP on left/right
hands, respectively, remaining competitive but still slightly behind Sapiens-2B (48.2/46.8).
Nevertheless, the overall whole-body AP/AR of 46.6/54.8 establishes SDPose as the most
robust framework under OOD whole-body evaluation. Detailed whole-body pose estimation
results on COCO-OO0D Ukiyo-e are presented in Table[7] Breaking down by region, SDPose
remains competitive with Sapiens-2B on the more structurally stable parts: body (61.2 AP
vs. 62.2) and feet (64.7 vs. 67.3), and shows a clear advantage on face landmarks (+4.8 AP,
64.7 vs. 59.9), reflecting the stronger style-invariant geometry encoded by diffusion U-Net
features under artistic shifts. For hands—the most challenging subset due to fine-scale pose
variation—SDPose achieves 45.9/44.1 AP on left/right hands, remaining close to Sapiens-
2B (49.8/46.7) despite the latter’s larger model capacity. Importantly, SDPose attains the
highest whole-body AP/AR (47.7/56.4), demonstrating consistently stronger robustness
than both Sapiens-1B and Sapiens-2B when evaluated under Ukiyo-e style transformations.

Table 7: Quantitative Comparison on the COCO-OOD-Ukiyoe Wholebody vali-
dation set.

(a) Body, Feet, Face

Model Body AP Body AR Feet AP Feet AR Face AP Face AR
Sapiens-1B 54.0 60.9 57.9 69.9 58.7 65.3
Sapiens-2B 62.2 68.2 67.3 76.5 59.9 66.9
SDPose (Ours) 61.2 67.5 64.7 75.0 64.7 71.2

(b) Hands and Whole-body

Model L-Hand AP L-Hand AR R-Hand AP R-Hand AR Whole AP Whole AR
Sapiens-1B 43.7 52.8 40.9 50.6 40.5 49.4
Sapiens-2B 49.8 58.7 46.7 55.7 46.6 55.8
SDPose (Ours) 45.9 55.7 44.1 54.3 47.7 56.4
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B.5 QUALITATIVE COMPARISON FOR WHOLE-BODY POSE ESTIMATION

AN N 07 N
VL e — A
Input Image Sapiens-1B Sapiens-2B

Figure 10: Comparison on Stylized Paintings: Sapiens WholeBody vs. SDPose
WholeBody. All erroneous predictions are highlighted with yellow boxes. SDPose yields
fewer false positives and notably better facial keypoint localization.
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