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Abstract

Knowledge in modern neural networks is often entangled and structurally opaque,
making current transfer methods—typically based on reusing entire parameter
sets—inefficient and inflexible. Efforts to improve flexibility by reusing partial
parameters frequently depend on handcrafted heuristics or rigid structural assump-
tions, which constrain generalization. In contrast, biological evolution enables
efficient knowledge transfer by encoding only essential information into genes
through iterative refinement under environmental pressure. Inspired by this princi-
ple, we propose ECO, a framework that Evolves COre knowledge into modular,
reusable neural components—termed /earngenes—through similar evolutionary
dynamics. To this end, we redefine learngenes as neural circuits and introduce
Genetic Transfer Learning (GTL), a biologically inspired paradigm that estab-
lishes a genetic mechanism within neural networks in the context of supervised
learning. GTL simulates evolutionary processes by generating diverse network pop-
ulations, selecting high-performing individuals, and transferring their learngenes
to subsequent generations. Through iterative refinement, GTL enables learngenes
to accumulate transferable common knowledge. Extensive experiments show
that ECO achieves efficient initialization and strong generalization across diverse
models and tasks, while significantly reducing computational and memory costs
compared to conventional methods.

1 Introduction

Despite the remarkable progress of modern neural networks across a wide range of tasks [1} 161} [13],
the internal organization of knowledge within these models remains largely opaque and poorly
structured. As a result, conventional transfer learning approaches—such as full fine-tuning or
parameter-efficient techniques like LoRA [22, [17]—primarily rely on reusing entire parameter sets
from large-scale pre-trained models [6, 35]]. Although effective in reducing task-specific training
overhead [5}87], these methods implicitly assume that knowledge is globally entangled and uniformly
distributed, with little consideration for its internal structure or modular organization. Consequently,
they often suffer from limited adaptability across models of varying sizes and architectures [12,
79,771, and are highly susceptible to domain shifts, frequently resulting in biased [49, 31]] or even
detrimental transfer [50, (73} 132], as shown in Figure .

Biological systems, in contrast, offer a compelling model for efficient and generalizable knowledge
transfer. Rather than replicating entire structural configurations, they encode essential knowledge
into compact and inheritable units known as genes, which capture core functionality and support
adaptation across generations and environments. These genes act as reusable blueprints [82, 13, 165]],
guiding the development of neural circuits that are both robust and efficient, as illustrated in Figure [Tp.
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Figure 1: (a) Transferring excessive knowledge may introduce bias and lead to negative transfer.
(b) In contrast, biological genes transfer only survival-essential knowledge to initialize certain innate
neural circuits. Inspired by this, we propose encoding core transferable knowledge into modular
neural circuits (termed learngenes, see Figure[2) to enable efficient knowledge transfer.

Motivated by this principle, recent work has explored biologically inspired approaches to knowledge
transfer, most notably through the Learngene framework [11}70]. Unlike conventional parameter
reuse, learngenes aim to support structured and composable transfer by encapsulating common
knowledge into modular neural fragments, enabling flexible initialization across tasks and models
of diverse scales. Early methods such as Heur-LG [68] and Auto-LG [70] identify transferable
components using gradient-based heuristics or meta-learning strategies. More recent approaches,
including TLEG [[75]] and WAVE [12], incorporate structural priors—such as linear constraints or
Kronecker decompositions—to enhance the modular organization of learned representations. Despite
their improved flexibility and efficiency, they often depend on handcrafted heuristics or rigid structural
assumptions, limiting their adaptability and generalization across diverse tasks and architectures.

In contrast, essential knowledge encoded in biological genes is not organized by predefined rules, but
emerges through iterative refinement under environmental pressures such as mutation, selection, and
inheritance. This perspective motivates a shift toward understanding how transferable knowledge can
be modularly organized within neural networks through similar evolutionary dynamics, rather than
imposed through handcrafted heuristics or rigid structural assumptions (e.g., linear constraints). To
this end, we propose ECO, a biologically inspired framework that explores whether neural networks
can autonomously condense transferable core knowledge and encapsulate it into compact, reusable
modules through population-based adaptation and feedback-driven refinement.

At the core of ECO is a redefinition of the learngene structure as continuous neural circuits, such
as interconnected kernel sets in CNNs, which mirror the structure of innate pathways shaped by
genetic encoding in biological systems (see Figure[Ip). To automatically identify and encapsulate
highly transferable core knowledge within neural circuits, we extend the evolutionary paradigm
introduced in GRL [11] and propose Genetic Transfer Learning (GTL), an evolutionary framework
that simulates genetic inheritance in neural networks in the context of supervised learning. GTL
maintains a population of models, each trained on randomly sampled tasks. High-performing
individuals are selected via tournament evaluation, and their learngenes are inherited and refined
across generations, with mutation introduced to maintain diversity and promote exploration. This
Lamarckian process progressively condenses core knowledge into learngenes, enabling efficient,
scalable, and generalizable transfer across models and tasks.

We evolve learngenes for 250 generations in VGG11 and ResNet12 on CIFAR-FS and minilmageNet,
and for 100 generations in ResNet50 and MobileNetV3-Large on ImageNet. Extensive experiments
demonstrate that ECO consistently outperforms existing methods across a wide range of downstream
architectures and tasks. Compared to full fine-tuning, ECO achieves a 14.5x reduction in storage,
highlighting its efficiency in knowledge transfer. Additionally, ECO supports O(1) initialization
across models of varying scales, enabling fast deployment without additional costs. Notably, ECO
exhibits strong data efficiency, maintaining robust performance even in low-resource regimes.

Our main contributions are as follows: 1) We propose ECO, a novel knowledge transfer method
that adaptively identifies core transferable knowledge across architectures and tasks, without relying
on handcrafted heuristics or structural constraints. 2) We introduce Genetic Transfer Learning
(GTL), a biologically inspired evolutionary paradigm for supervised learning that encapsulates core
transferable knowledge into modular neural circuits (i.e., learngenes) through large-scale population-
based training and inheritance. 3) We validate the scalability and generality of ECO across diverse
tasks, model sizes, and architectures, achieving state-of-the-art performance in both accuracy and
resource efficiency.



2 Related Work

Efficient Knowledge Transfer Transfer learning enhances performance on target domains by lever-
aging knowledge from source domains [[86} 23]]. Traditional methods, such as fine-tuning [[18} |87],
are constrained by the fixed architecture and size of pre-trained models. Knowledge distilla-
tion [57, 167, 16] offers structural flexibility but remains computationally intensive. Recent methods
aim to enhance efficiency by transferring compact and reusable knowledge representations (see
Appendix[A.T). Learngene-based approaches, including Heur-LG [68]] and Auto-LG [70], identify
transferable components via heuristic strategies. Others, such as TLEG [75]], WAVE [112], and related
studies [37,169, 78], integrate pre-trained knowledge via structural priors like low-rank decomposi-
tions. Alternative paradigms explore hypernetwork-based parameter generation [29,|30]] or rule-based
parameter reuse [80} 33| [83]. In contrast, ECO extends the population-based learning paradigm
of GRL [L1] to CNNs in the context of supervised learning, adaptively evolving core transferable
knowledge through mutation-driven and survival-based selection. This process mitigates manual bias
and enhances generalization across architectures and domains.

Evolutionary Learning Evolutionary Learning (EL) solves optimization problems through stochas-
tic search inspired by biological evolution [60]. Related algorithms [56 |55} 143} 53] 44] typically
encode candidate solutions—such as network parameters or architectures—into gene-like representa-
tions (e.g., binary strings) [40} 63 145} 19, [84]], evolving them to maximize task-specific performance.
While inspired by evolutionary principles, ECO diverges from traditional evolutionary learning
by prioritizing knowledge inheritance over solution optimization. Notably, instead of searching
for task-specific solutions, ECO establishes a genetic transfer mechanism that accumulates core
knowledge transferable across diverse models and tasks. In this paradigm, learngenes function not as
solution encodings, but as compact carriers of core knowledge condensed from diverse tasks. This
shift enables scalable generalization without reliance on problem-specific heuristics.

3 Methods

We reformulate CNNSs in terms of kernel units and define the core operations of learngenes, in-
cluding their representation, mutation, and inheritance. We then introduce the Genetic Transfer
Learning (GTL) for extracting learngenes through evolutionary processes.

3.1 Preliminary

. . . [QIENO) .
Consider a CNN A with N, convolutional layers. The I-th layer L; € RNr XNk X5X% comprises
N 1(le ) filters I ¢, where each filter contains N I({l) kernels K ¢, € R"*". These kernels capture spatial
features at various levels of abstraction, enabling hierarchical representation learning. Accordingly,
the trainable parameters of the entire network can be represented as a unified set of kernels:

N ={K sill € [Nz, f € [LND] ke 1, NO]} (1

Given an input feature map I; € RP*H>W to Jayer L;, the convolution produces an output I;;; €

® . . . .
RNF XHXW ‘\which serves as input to layer L; ;. To ensure valid feature propagation, CNNs enforce

channel-wise consistency by matching the number of kernels in L;,; with the number of filters in L;:

NI = O )

3.2 Basic Operations for Learngenes

3.2.1 Form of Learngenes in CNNs

In biological neural systems, innate neural circuits are established at birth under the guidance of genes,
providing newborns with strong inherent learning abilities [[74} 42, [82]. Motivated by this biological
foundation, we interpret neural circuits in convolutional neural networks (CNNs) as structured
subnetworks [59], each composed of a set of interconnected kernels that collectively implement a
continuous input-output transformation. These subnetworks serve as functional units responsible for
localized computation and information flow within the network.
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Figure 2: Learngenes in ECO are abstracted as complete neural circuits composed of selected kernels
within filters. B € G represents the learngene kernel, while I is normal kernel that is random
initialized. — denotes the continuous feature mapping path extracted from learngenes.

Building upon this abstraction, we define learngenes as modular neural circuits within CNNs that
encapsulate transferable and reusable knowledge. Formally, a learngene is defined as:

G={Kisrll € [1,NL], f € Fi,k € K1} (3)
where F; and K; denote the selected indices of filters and kernels in the [-th layer, respectively.

To preserve the interconnection among kernels and ensure uninterrupted continuity in feature transfor-
mation, learngenes follow the structural alignment principle inherent to CNNs (Eq. (Z)). Specifically,
we enforce the constraint:

Kit1=F 4

This condition preserves channel-wise consistency, enabling layer-wise modification through JF; while
K, is automatically inferred via Eq. (@), ensuring coherent inter-layer connectivity of learngenes.

3.2.2 Mutation of Learngenes

In biological systems, evolution is driven by structural mutations that progressively refine genetic
traits [27, 24]. Analogously, learngene mutation also operates at the structural level by modifying the
arrangement of filters and kernels, to enhance adaptability for encoding core knowledge.

Given the structural alignment in Eq. (), mutations are applied primarily to the filter sets F; at each
layer, with corresponding kernel indices XC; 1 updated automatically to maintain connectivity. For
each learngene, structural mutation is performed independently at each layer with probability p,,.
The probabilities of adding (p™) or removing (p~) filters in the /-th layer of learngenes are given by:

1Al
Ny —|A|

where « is a balancing coefficient and | - | denotes set cardinality. Mutations proceed layer-wise and
may involve multiple filters per layer. The complete mutation procedure is detailed in Algorithm [I]

P, =« pf =1-pf Q)

3.2.3 Inheritance of Learngenes

Learngene inheritance facilitates the transfer of core knowledge from a source model to target models
with varying depths, widths, or architectures. To accommodate architectural differences during
transfer, ECO employs the following strategies:

» Zero-padding Incomplete Filters. Since learngenes may include only a subset of kernels within
each filter, direct insertion into wider filters can introduce noisy, randomly initialized parameters.
To avoid disrupting the encoded knowledge, missing kernels are initialized as zeros, preserving
functionality while enabling later adaptation (see Appendix Figure ).

e Index Reordering for Narrower Networks. When transferring to narrower networks, mismatches
in filter and kernel indices may arise. ECO resolves this by reordering indices according to
their relative positions (see Appendix Figure[J), maintaining structural consistency and ensuring
compliance with the alignment constraint in Eq. (@).

Additional inheritance strategies, including the proposed partial identity mapping for depth expansion,
are detailed in Appendix [B-4]
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Figure 3: The Genetic Transfer Learning (GTL) framework. GTL iteratively condenses knowledge by
training populations (¢) on randomly sampled tasks (a, b) and selecting transferable core knowledge
through mutation (d) and tournaments (f). The Gene Pool (h) and Gene Tree (g) store superior
learngenes and track their kinship for inheritance (i, j), respectively.

3.3 Evolution for Learngene Extraction

Genetic Transfer Learning (GTL) is an evolutionary framework derived from GRL [[11]] that iteratively
optimizes learngenes by transferring them across generations of neural networks. Through this
inheritance mechanism, GTL progressively condenses and refines core knowledge into compact,
reusable learngenes that generalize across diverse models and tasks, as illustrated in Figure 3] and
formalized in Algorithm [2]

Briefly, each generation begins with a population of n,, neural networks, each inheriting learngenes
from the previous generation and trained on a randomly assigned task. After training, learngenes
are extracted and undergo structural mutations to introduce diversity. A tournament-based selection
mechanism is then employed to identify high-performing learngenes, which are retained in the Gene
Pool to guide inheritance in the next generation. This iterative process of inheritance, mutation, and
selection continues across generations, progressively refining the quality of learngenes. The core
components of GTL are detailed below.

(1) Training the Population of Neural Networks. Let D = Dy.in + Dya be the dataset with n;
training classes and n,, validation classes. In each generation, a population P = {N1,Na, ..., N}, } is
created. Each network A; randomly samples k classes from Dy, to form a k-way classification task
7T;, encouraging diverse learning environments (Figure [Bp—). As evolution progresses, k increases to
simulate growing task complexity, emulating evolutionary pressure[4 1} 26].

(2) Selecting Superior Learngenes. After training, each neural network A; has updated its in-
herited learngene G; by encoding task-specific experience, thereby refining the core knowledge. To
promote adaptability and structural diversity, each G; then undergoes structural mutation (Figure 3{d
and Section [3.2.2)), introducing controlled variations that further shape its knowledge representation.

Each mutated learngene G; is evaluated by initializing a critic network C;, which is trained on the vali-
dation set Dy, and the resulting accuracy defines the score s; for G; (Figure[3g). To select high-quality
yet diverse learngenes, tournament selection is employed: in each round, € learngenes are randomly
sampled, and the one with the highest score is added to the winner set G* = {G{,G3,...,G }

(Figure , where n,, = f"—:] denotes the number of tournaments per generation.

(3) Storing Superior Learngenes and Tracking Kinship. Following tournament selection, the
winner set G* is incorporated into the Gene Pool (GP), which retains high-quality learngenes for
inheritance in future generations (Figure Bh). Initialized with the top-performing learngenes from
the first generation, the GP maintains up to p entries, denoted as GP = {G?,G3,...,G7}. In each
generation, a subset of € learngenes from G* is admitted into the GP, replacing the lowest-performing
entries to ensure both knowledge retention and evolutionary adaptability.



To trace inheritance across generations, GTL constructs a Gene Tree (GT) that records the evolutionary
lineage of selected learngenes (Figure [3lg). Each node in GT represents a superior learngene, with
root nodes originating from the initial generation. New entries in GP are appended as leaf nodes, and
the path length between nodes encodes their degree of kinship.

(4) Updating Learngene Scores. To preserve ancestral excellence and guide future evolution, the
scores of learngenes in the GP are updated after each generation. For every selected learngene G/
with score s7, its kinship is traced back from its corresponding leaf node to the root according to GT.
Each ancestral learngene G, along this path receives a score update:

Sanc < Sanc + 777—5; (6)

where 1) is the decay coefficient and 7 is the path length. See Algorithm [3|for more details.

(5) Generating the Next Generation of Learngenes. After refreshing the GP and updating
learngene scores, the next generation of learngenes is sampled from the GP according to a score-
proportional probability:
57
Pi= s ™)
l A

where p; is the probability of selecting G; as a parent based on its score s (Figurd3j).

The selected learngenes are then inherited by a new population of networks P (see Figure [3j and
Section [3.2.3)), initiating the next cycle of evolution.

4 Experiments

Datasets. We conduct evolutionary experiments on three datasets of increasing scale. CIFAR-FS [2]]
and minilmageNet [64] each contain 100 classes, split into 64 for training (Dyin), 16 for validation
(Dyal), and 20 for novel evaluation. ImageNet-1K [10] contains 1,000 classes, divided into 640, 160,
and 200 for the same purposes. We further evaluate the extracted learngenes on four downstream
datasets: Oxford Flowers [46]], CUB-200-2011 [66], Stanford Cars [15], and Food-101 [4].

Network Architectures. We evaluate four representative convolutional architectures: VGG11 [52],
ResNet12 [20], ResNet50 [20], and MobileNetV3-Large [21]. To assess the scalability and adaptabil-
ity of learngenes in initializing models of varying capacity, we additionally evaluate width-adjusted
variants of ResNet50 and MobileNetV3-Large, with widths scaled from 0.5W to 0.9W, where W
denotes the original width.

Training Details. Evolutionary training is conducted independently across networks to support
parallelism. For VGG11 and ResNet12, learngenes evolve over 250 generations, each comprising 20
networks trained for 15 epochs. For MobileNetV3-Large and ResNet50, evolution proceeds for 100
generations, with 6 networks per generation trained for 5 epochs. All experiments are executed on
NVIDIA GeForce RTX 4090 GPUs, with total computational cost comparable to training a typical
medium-scale model. Full hyperparameter configurations are detailed in Appendix [C.1]

VG611, CIFAR-FS i ResNet12, miniImageNet | MobileNetV3-L, ImageNeti ResNet50, ImageNet
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Figure 4: Accuracy (red curves) of networks on validation classes and parameter (red bars) of
corresponding learngenes during evolution. Blue stars and bars represent performance and parameter
transfer via direct fine-tuning. Notably, models inheriting learngenes achieve comparable or superior
results, especially in smaller networks, with a significant reduction in transferred parameters.



5 Results

5.1 Evolutionary Performance of Learngenes Extracted by ECO

In biological evolution, beneficial mutations ac-
cumulate through natural selection, leading to
the progressive refinement of genes [24, [28]].
Similarly, ECO evolves learngenes by gradually
refining core knowledge across generations.

Table 1: Performance of networks inheriting learn-
genes on validation and novelty classes across var-
ious datasets. Para.(M) represents the number of
transferred parameters. N/A denotes that the crite-
rion is not applicable to the respective method.

As shown in Figure (4] learngenes accumulate

. . . VGG, 28.18M | ResNetl2, 12.44M
dominant mutations, reflected in the steady —

: Dataset CIFAR FS | minilmageNet
growth of their parameter counts. Consequently, 3 :
networks initialized with evolved learngenes Methods Para. Valid Novel | Para. Valid Novel
demonstrate consistently improved performance ge'g}it‘“[% N(/)A gg%g gggg N(/)A g;;g gggg

. . . radlnit . . . .
;’Ver “me'd I\IIOttab_ly’ g?o S‘gmﬁtc‘i‘lmlyh(?“tl?er‘ ECO-10th ~ 0.83 6544 67.75| 1.17 73.31 72.80
Orms Models trainec oM SCrateh, achIeVING (g5 no1 N/A 59.63 62.10 | N/A 68.56 66.05
performance comparable to pre-trained models  GHN-3 [30] N/A 57.56 61.45| N/A 77.56 77.55
while transferring significantly fewer parameters  ECO-50th 1.08 69.94 71.70 | 1.47 77.25 77.45
(14.5x reduction in VGG11). ECO-100th 1.30 71.56 73.25| 1.71 77.88 78.15

. L. . Heur-LG [68] 7.09 6525 68.35] 9.43 70.75 69.45
Table [I] provides a quantitative comparison  Auto-LG [70] 9.19 68.00 71.15| 9.51 7525 75.55
across generations against baseline methods. ECO-150th  1.51 72.19 74.50 | 1.96 79.00 78.90
Taking ResNetl2 on minilmageNet as an il- KEy, [59] N/A 69.81 74.10‘ N/A 75.94 77.60
lustrative example, early-generation learngenes ~ECO-200th 1.81 73.69 76.30| 2.09 80.94 80.20
already outperform direct initialization ap- Wt Seéectl[ISOJ 28.(119 %31 35.72 122;141 72.81 7;.75
proaches (e.g., GradInit [85]) and hypernetwork- LR I 4l pisy] ey GPELD LoD
based methods (e.g., GHN-3 [30]), benefit- Mobile-L, 4.37M | ResNet50, 23.66M
ing from inherited transferable knowledge. At Dataset ImageNet \ ImageNet
mid-generation, ECO surpasses advanced trans- Methods Para. Valid Novel | Para. Valid Novel
fer methods such ag Heur-LG [68] and Auto- He-Init [10] 0 3854 38701 O 51.85 53.48
LG [10], transferring 4.8x fewer parame- Gradnit[85] N/A 41.86 41.13| N/A 52.06 51.94
ters—highlighting its advantage in preserving ECO-10th 0.74 48.66 49.21 | 2.22 59.70 60.05
convolutional feature hierarchies. GHN-2 [29]  N/A 31.93 30.72 | N/A 47.30 46.27
GHN-3 [30] N/A 37.28 37.18 | N/A 54.13 52.89
In later stages, ECO achieves a 2.6 performance ~ ECO-30th 0.82 56.41 55.28 | 2.47 64.54 64.99
gain over re-initialization methods like KE [59], Heur-LG [68] 1.76 43.52 43.07 | 14.99 52.89 54.54
; ; s ; Auto-LG [70] 1.77 50.76 50.13 |15.21 55.10 55.60
while reducing training time by 3. Compared 57500, ™ ('g6 50181 5860 | 263 66.29 66.32
to pre-training-based approaches (e.g., Weight KE~ 0] NA 5458 5452 NA 6593 67.00

. N . . . .
?elecu"f; [830])’ EEO fiduces Pafameterftgagg' ECO70th 092 6339 62.08 | 2.82 68.35 67.92
er over 5.0, with performance gains of 5.85, - yq oo [80] 2.94 56.03 55.84|23.45 69.91 69.29
demonstrating both efficiency and the superior  gco-100th ~ 0.98 66.50 65.22| 3.13 70.73 69.91

transferability of its core knowledge.

5.2 Performance of ECO in Initializing Models of Variable Sizes

Neural networks deployed in diverse hardware environments often require models of varying sizes
due to differing computational and storage constraints, but pre-trained models are typically fixed in
size, making it impractical to have one for every possible configuration.

ECO addresses this challenge through scalable and size-agnostic learngenes, enabling efficient
initialization of networks with variable sizes. As shown in Table [2], ECO consistently achieves
superior accuracy across variable-sized models, significantly outperforming existing transfer methods.

Compared to direct pre-training (i.e., Direct PT), ECO reduces training time by at least 2x, while
transferring up to 2.5x and 3.7x fewer parameters than Weight Selection [80], highlighting its
transfer efficiency. Moreover, ECO achieves a 3x reduction in FLOPs relative to STKD [57].
Unlike distillation-based approaches whose computational cost scales linearly with the number of
target models (O(n)), ECO directly initializes each model independently with no additional training
overhead, enabling scalable deployment across diverse resource constraints.



Table 2: Performance of ECO and other methods for variable-sized model initialization. “Com.” refers
to the complexity of initializing n models, while “Time”, “Para.(M)”, and “FLOPs(G)” represent
training time, transferred parameters, and computational overhead, respectively. N/A denotes that the
criterion is not applicable to the respective method.
MobileNetV3-Large, 5.04M, ImageNet, Train
0.70W 0.75W 0.80W 0.85W 0.90W
Methods Com. Time Para. FLOPs Acc. |Para. FLOPs Acc. [Para. FLOPs Acc. |Para. FLOPs Acc. | Para. FLOPs Acc.

He-Init [19] O(1) 1.0x 0 0.75 3271 0 0.87 3448 0 092 3454 0 1.04 36.13] 0 1.15 37.07
Gradlnit [85] O(n) 1.0x N/A 0.75 37.07|N/A 0.87 38.26|N/A 0.92 35.68/N/A 1.04 40.01 N/A 1.15 40.58
Direct PT O(n) 20x 0 075 4235 0 0.87 4461 0 092 4452 0 1.04 4654 0 1.15 47.97
Wt Select [80] O(1) 1.0x 1.48 0.75 42.87|1.70 0.87 44.83/1.90 0.92 4530(2.16 1.04 46.88|2.41 1.15 47.85
STKD [57] O(n) 1.0x N/A 2.14 46.03|N/A 240 46.78|N/A 2.51 45.13|N/A 278 47.66| N/A 3.02 48.08

ECO O(1) 1.0x 0.98 0.75 46.07/0.98 0.87 48.09/0.98 0092 48.15/0.98 1.04 48.73/0.98 1.15 49.13
ResNet50, 24.87M, ImageNet, Train
0.50W 0.55W 0.60W 0.65W 0.70W
Methods Com. Time Para. FLOPs Acc. |[Para. FLOPs Acc. |Para. FLOPs Acc. |Para. FLOPs Acc. |Para. FLOPs Acc.

He-Init [19] O(1) 1.0x 0 6.82 39.26] 0 8.00 41.32] 0 933 4268 0 10.84 4431 0 12.40 45.68
Gradlnit [85] O(n) 1.0x N/A  6.82 3728 N/A 8.00 39.28{ N/A 9.33 41.09|N/A 10.84 42.68| N/A 12.40 43.97
Direct PT O(n) 20x 0 682 4985/ 0 8.00 51.66| 0 933 53.59| 0 10.84 5454 0 12.40 55.89
Wt Select [80] O(1) 1.0x 5.88 6.82 49.97|7.06 8.00 51.21/8.41 9.33 52.86/9.87 10.84 54.23/11.46 12.40 55.89
STKD [57] O(n) 1.0x N/A 23.16 51.86|N/A 25.78 53.00|N/A 28.76 52.91|N/A 32.09 52.99| N/A 35.58 54.39
ECO O(1) 1.0x 3.13 6.82 52.23|3.13 8.00 53.12|3.13 9.33 53.79|3.13 10.84 54.88| 3.13 12.40 55.93

s

Table 3: Performance of ECO and other methods when transferring to downstream datasets. “Para.’
refers to the transferred parameters, with total parameters and FLOPs recorded for various architec-
tures. N/A denotes that the criterion is not applicable to the respective method.

Methods Para. Flower CUB Cars Food Aver. | Para. Flower CUB Cars Food Aver
VGG11, FLOPs=45.14G, Para=28.72M ResNet12, FLOPs=154.04G, Para=12.52M
He-Init [19] 0 3422 4981 60.94 78.67 55.91 0 50.74  46.89 61.27 81.10 60.00

Gradlnit [85] N/A 3638 4936 6686 78.07 57.67 N/A 5092 5561 7245 81.39 65.09
GHN-2 [29] N/A 4632 4905 68.18 67.57  57.78 N/A 5492 4936 5921 74.10 59.40
GHN-3 [30] N/A  44.09 5055 6939 6649  57.63 N/A 6133 56.06 7130 7528 65.99
Heur-LG [68] 7.09  38.84 55.54 71.67 78.65 61.18 943 5469 5568 7637 8193 67.17
Auto-LG [70]  9.19  50.64 58.54 7493 78.60  65.68 951 6190 5899 81.68 8215 71.18
Wt Select [80] 28.09 62.87 60.08 7621 7826  69.36 12.41 5526 5792 7774 81.68 68.15

ECO 1.94 6442 6020 78.12 7947 70.55 247 8148 64.14 84.28 8241 78.08
MobileNetV3-Large, FLOPs=1.33G, Para=4.39M ResNet50, FLOPs=24.62G, Para=23.81M
He-Init 8] 0 51.05 56.08 74.88 74.81 64.21 0 27.53 4634 46.96 73.66 48.62

Gradlnit [85] N/A 5638 5633 71.67 5449  59.72 N/A  46.09 48.15 53.84 7548 55.89
GHN-2 [29] N/A  46.07 4753 5696 6635  54.23 N/A  61.68 5566 6691 66.79 062.76
GHN-3 [30] N/A 4275 4506 54.40 5854  50.19 N/A  49.18 52.69 7158 7126 61.18
Heur-LG [68] 1.76 ~ 56.12 58.23 75.43 74.31 66.02 1499 53778 5495 67.08 7283 62.16
Auto-LG [70] 1.77  56.77 59.15 7798 74.69  67.15 1521 5542 57.11 71.14 7328 64.24
Wt Select [80] 294 6181 61.56 79.17 7477  69.33 2345 57.16 5242 6258 7554 61.93
ECO 098 6445 62.17 7990 75.04 70.39 313 77.02 65.12 82.61 76.13 7522

5.3 Performance of ECO on Downstream Tasks

The core knowledge encapsulated in learngenes exhibits strong generalizability, enabling effective
transfer across a wide range of downstream tasks. As shown in Table[3] ECO consistently outperforms
baseline methods, confirming its robust adaptability and transfer efficiency.

Hypernetwork-based approaches (e.g., GHN-2 [29], GHN-3 [30]) achieve competitive results on
small datasets but often underperform on larger ones due to their coarse architecture-level parameter
modeling. Methods like Heur-LG [68] and Auto-LG [70]] transfer pre-trained knowledge layer-wise,
but this localized mapping can disrupt global feature hierarchies, especially in compact architectures.
Notably, Auto-LG lags behind ECO by 4.87 on average with VGG11, despite transferring 4.7 x more
parameters, reflecting inefficiencies in knowledge utilization.

Pre-trained model-based approaches offer extensive knowledge transfer, but their reliance on task-
agnostic optimization can lead to suboptimal adaptation. On Food-101 with VGG11, Weight Selection
achieves 78.26, in contrast to ECO’s 79.47, highlighting the need for more targeted transfer mecha-
nisms. These results underscore ECO’s ability to retain and apply transferable core knowledge more
efficiently, offering a scalable and task-adaptive solution for downstream model initialization.



Table 4: Accuracy of few-shot classification. “-N” indicates narrower networks than normal ones.

CIFAR-FS, VGGI11 \ minilmagenet, ResNet12
Methods 5-shot 10-shot 20-shot | 5-shot 10-shot 20-shot
MAML[14] 63.44+0.86  68.2+0.74  70.5+0.77 | 61.1£0.78  66.4+0.68  68.4+0.62

RelationNet[58]  64.24+0.79  68.9+£0.71  72.9+0.71 | 65.4£0.69  70.3+£0.66  72.940.63
MatchingNet[64] 59.9+0.78  63.8£0.78  69.3£0.81 | 66.3£0.66  70.9+£0.63  74.7+0.59

ProtoNet[54] 65.9+0.85 69.3+£0.79  73.1£0.69 | 66.5+£0.71  72.4+0.60  74.94+0.59
Baseline++[7] 64.9+0.78  71.3£0.73  75.3£0.67 | 67.5£0.67 74.0+£0.60  78.24+0.51
ECO 69.9+0.78*  75.5£0.69* 78.5+0.63* | 69.4+£0.71* 75.4%+0.61* 80.24+0.52*
ECO.x 70.5+:0.73  76.6+0.65  80.5+£0.58 | 71.3+0.70  76.8+0.59  81.7+0.53

Table 5: Ablation study results across various architectures.

VGGl11 | ResNetl2 | MobileNetV3-L | ResNet50
Methods Valid Novel | Valid Novel | Valid Novel | Valid Novel
He Init [19] 63.13 66.05 | 67.19 65.55 |38.54 38.70 |51.85 53.48
Direct Select 70.06 72.30 | 77.50 76.85 | 5246 52.14 | 60.63 61.23
w/o Tournament & GP 72.31 74.55 | 80.94 80.25 | 62.06 60.79 |65.79 65.97
w/o Mutation 7225 73.25|80.88 79.80 | 63.08 62.11 |69.00 68.72
ECO 75.00 76.95 | 82.00 81.60 | 66.50 65.22 | 70.73 69.91

5.4 Improved Data Efficiency of ECO

Models initialized with learngenes demonstrate strong data efficiency, particularly in few-shot learning
scenarios. As shown in Table @ ECO consistently outperforms conventional few-shot learning
methods, including those built upon fully pre-trained models such as Baseline++ [7]], underscoring
the effectiveness of core knowledge encapsulated in learngenes under limited data conditions.

Notably, a narrower variant (“-N”), initialized with the same learngenes, achieves even higher
accuracy. This can be attributed to reduced parameter redundancy and stochasticity, indicating that
learngenes in ECO not only encapsulate transferable representations but also enable more stable and
efficient adaptation under both architectural and data constraints, thereby reinforcing its practicality
and robustness in real-world, resource-constrained scenarios.

5.5 Ablation and Analysis
5.5.1 Effects of Mutation

Mutations are essential to the selection and refinement of core knowledge, as they dynamically
reshape the structure and semantics of learngenes. By introducing controlled variations, mutations
promote population diversity and enhance the effectiveness of tournament-based selection.

As illustrated in Figure[5] learngenes within ResNet12 undergo continual structural evolution, pro-
gressively condensing transferable knowledge while eliminating redundant components, facilitating
the emergence of more generalizable representations. Thus, the absence of mutation leads to static
learngene structures, which constrain learngene diversity and hinder knowledge accumulation, as
demonstrated in Table
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t 1 LIl IL mm 1 111 n ! 101 W W 111 e
gII III.IIIIIIII 1 IIIIIIIIIIIIII g| IIIIIIIII | 1 IIII 1 IIIIII
34IIIIIIIIIII w1l 84IIIIIIII [ LT TSI R N (L S TR
LZ IIIII.IIIIIII IIIIIIIIIIIIIIIHIIIIIIIIIIIIIII I| IIIIIIIIIIIII IIII IIIIII Mutation LZ IIIIIIIII III IIIIIIIIIIHIIIIIIIIII | IIIIIIII III IIII II"II
i
N T T A AR T AT TN > 4 S NN O 0 o W
=5 il 0 ol AR =3 5 A i R B e
O A W RO b o T TR A ME e TR TR |
O AT RO A AV T 11 0O AN A
12 WU AR TFAREL UMD YT IO MO A i 22 RULVETAOA O AR RERRTYOMMEE O G A ORI Tl
Initial Learngene Final Learngene

Figure 5: Visualization of learngenes in ResNet12 pre- and post-evolution. M is the filter of the
initial learngenes. i is the filter that becomes a new part of learngene through mutation. M indicates
redundant filters removed during the evolution.
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Figure 6: Visualization of core knowledge in learngenes. Networks have not undergone any learning
or fine-tuning.  ResNet50 (pre-trained on ImageNet) already contains these classes.

5.5.2 Effects of Evolution

ECO leverages evolution to extract and refine core knowledge, enhancing transferability across model
sizes and tasks. In contrast, traditional pre-trained models are optimized for specific objectives and
lack mechanisms for isolating generalizable components. As a result, methods that directly extract
fragments from such models (i.e., Direct Select) fail to capture broadly applicable knowledge, as
shown in Table

Tournament selection plays a critical role in identifying high-quality learngenes for preservation in
the Gene Pool (GP), thereby facilitating the accumulation and iterative refinement of transferable
core knowledge across generations. As evidenced in Table[3] the removal of tournament selection
and GP (i.e., w/o Tournament & GP) disrupts this process, resulting in the retention of redundant or
suboptimal knowledge and weakening the influence of superior candidates across generations.

5.6 Visualization of Core Knowledge in Learngenes

To illustrate the core knowledge encapsulated in learngenes, we visualize model attention using
CAM [51]] on sample images from novel classes in minilmageNet, which are not involved during
learngene evolution.

As shown in Figure[f] randomly initialized models tend to focus on diffuse or irrelevant regions, while
pre-trained models, though more focused, often highlight background areas. For instance, pre-trained
ResNet12 fails to localize novel objects, and ResNet50, despite identifying relevant regions, exhibits
background activation that may introduce bias (see Figure[Th).

In contrast, models initialized with learngenes produce compact, focused attention maps, concentrat-
ing on semantically meaningful and discriminative regions, even to unseen categories.

6 Conclusion

Inspired by biological knowledge transfer, we propose ECO, a method that condenses core knowledge
into learngenes for efficient transfer across models. Built upon the Genetic Transfer Learning (GTL)
framework, ECO enables the evolution of neural networks and the inheritance of learngenes in
supervised tasks. Experiments show that learngenes impart strong learning capabilities, while ensuring
scalability and adaptability across model sizes and tasks, providing an efficient and generalizable
alternative for knowledge transfer through the inheritance of core knowledge.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to the Introduction (Section|[I)), which clearly states the paper’s
contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

17



Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please see Sectiondand Appendix [C]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The datasets used in the paper are all public datasets, which are described in
the Sectiond]and Appendix [C|

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

 The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide experimental setting and hyperparameters in Section 4 and Ap-
pendix[C]
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provided variance and 95% confidence intervals in Table [4{and Figure
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please see Sectiond]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research strictly conforms to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please see Appendix [F
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of models or data, hence there are no
associated risks requiring safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Data and experimental setup details, including source citations and licensing

compliance, are thoroughly documented in the experiments section and supplementary
materials.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not used as an essential, original, or non-standard component in
the core methodology of this research. All research methods and analyses were conducted
independently of LLMs.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
L.LM) for what should or should not be described.
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A Additional Related Work

A.1 Common Knowledge in Neural Networks

Common knowledge refers to transferable representations that can be shared across neural networks.
It typically falls into two categories: size-agnostic knowledge, which generalizes across network
architectures of different scales, and task-agnostic knowledge, which transfers across tasks.

Size-agnostic Knowledge. The modular nature of neural networks (e.g., convolutional filters
and Transformer blocks) enables knowledge sharing across models of varying widths and depths.
For example, Filter-in-Filter [[76], versatile filters [72]], and TBC show that filters can be
reused to detect multiple patterns or reduce redundancy. Other works [36}, [81], compress CNNs
through cross-filter weight sharing. Similarly, in Transformer-based models, reusable blocks [[75] and
parameter-sharing techniques [33} [83]] achieve efficient scaling without performance degradation.

Task-agnostic Knowledge. Task-agnostic knowledge captures general visual features that are
transferable across domains. Tape encodes such priors for image restoration, while Park et
al.[47]] and Polyhistor[39] learn generalizable representations and reusable adapters for multi-task
learning. The idea of a universal backbone, as in Universal Template [62]], improves generalization in
few-shot settings. Meta-learning approaches like OML [25]] and iTAML [48]] enhance transferability
by decoupling task-specific heads from shared representations.

ECO integrates and condenses such size- and task-agnostic knowledge into adaptive neural fragments
called learngenes, which encapsulate what we refer to as core knowledge. These learngenes enable
flexible adaptation across network scales and task types.

B Additional Details of Methods

B.1 Learngenes in ResNets

160 @ 64x1x1
320 @ 160x1x1
640 @ 320x1x1

64 @ 64x3x3
64 @ 64x3x3
160 @ 64x3x3
160 @ 160x3x3
160 @ 160x3x3
320 @ 160x3x3
320 @ 320%x3x3
320 @ 320x3x3
640 @ 320x3x3
640 @ 640x3x3
640 @ 640x3x3

Figure 7: The form of the learngenes in ResNet12, where the kernels in skip connection layers are
also integrated as components of the learngenes.

ResNets enhance traditional CNN architectures by introducing skip connections, typically realized
through 1x 1 convolutions. These connections enable feature propagation across non-adjacent layers,
promoting representational reuse.

To accommodate this architectural feature, the formulation of learngenes in ResNets should extended
beyond standard convolutional layers to explicitly incorporate skip connections. Let L; and L; denote
the source and target layers of a skip connection, where L; > L;, and let the corresponding skip
layer be denoted as L. To ensure structural alignment with the main pathway, the number of kernels
and filters in the learngenes at L. are defined as:

NI((LSC) _ N}(:*Li), NéLsc) — N}(;Lj) 8)
Accordingly, the selected kernel and filter index sets of learngenes are given by:
ICsc:fi»-Fsc:]:j 9

This configuration ensures that learngenes encapsulate both primary and residual pathways, forming
complete kernel-level circuits essential for effective knowledge transfer, as illustrated in Figure[7]
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Algorithm 1 Mutation of the Learngene

Input: Learngene G, Mutation probability p,,, Number of layers /N;, and number of filters N 1(:” in [-th
layer

1: # Mutation layer by layer

2: for [ =1to Nz, do

3 # Whether to mutate in l-th layer

4:  Randomly generate a number r ~ U(0, 1).

5: while » < p,,, do

6: # Mutate!

7: # Whether to increase and decrease a filter of G in layer |

8 Randomly generate a number s ~ U(0, 1).

9 if s < p; then

10: # Random increase a filter

11: Randomly select a filter index f from [1, N fpl )] - F
12: # Update the corresponding sets F; and K;
13: Fi«+— FU{f}

14: Kiy1 <~ K1 U {f}

15: else

16: # Random decrease a filter

17: Randomly select a filter index f from F;
18: # Update the corresponding sets F; and K,
19: Fi— Fi—{f}

20: ’Cl+1 — /Cl+1 — {f}

21: end if

22: # Whether to continue mutating in layer [

23: Randomly generate r ~ U (0, 1).

24:  end while

25: end for

Algorithm 2 Genetic Transfer Learning

Input: Training dataset Dy.in With n; classes, Validate dataset Dy, with n,, classes, Population number n,,, and
total number of generation Ng

1: for g = 0to Ng do
# Initialize population with learngenes
Randomly initialize population Py with n,, networks N;
if g # 0 then

Select ancestry learngenes G = {G1, G, ..., Gn,, } from the Gene Pool for each \; using Eq. (7). Then
initialize each AV; by inheriting G;

6 end if

7 # Train population P on Dipain

8:  for each network \V; do

9 Sample k classes from Diyin to form task 7;
10 Train AV; on 7T;
11 end for
12:  # Learngene extraction and evaluation
13: for each learngene G; do
14:
15
16
17
18
19

Mutate G; according to Appendix Algorithm|[T]
Initialize critic networks C; with mutated G;
Train C; on a n,-way classification task on Dy,
Calculate learngene score s; based on the accuracy of C;
end for
# Update Gene Pool and Gene Tree
20:  Perform learngene competition and select winners G*

21:  Take winners as leaf nodes of the Gene Tree

22:  Update scores of ancestral learngenes according to Eq. (6))

23:  Refresh Gene Pool by adding winners and eliminating learngenes with lower scores
24: end for
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Figure 8: The learngenes exhibit scalability, enabling the initialization of networks with the same
structures and the flexibility to initialize networks with narrower/wider and deeper structures. The
normal kernels in networks are randomly initialized, while the zero kernels and identity kernels are
initialed by 0 (i.e., zero matrix) and 1, respectively.

B.2 Further Details on Learngene Mutation

Learngene mutation serves not only to alter structural configurations but also to refine the condensed
core knowledge. This process increases structural diversity while maintaining a broad reservoir of
“raw material” for subsequent selection, thereby facilitating the identification of core knowledge most
suitable for transfer.

The complete mutation procedure is outlined in Algorithm|[T]

B.3 Further Details of Genetic Transfer Learning (GTL)

The complete GTL procedure is presented in Algorithm [2] complementing the illustration in Figure 3]

A key component of GTL is the recursive update of learngene scores, which begins at a selected
high-performing learngene (i.e., a leaf node in the current generation) and proceeds upward along
its lineage to the root node. This process ensures that the performance feedback of descendants
is reflected in the evaluation of their ancestors. The specific score update strategy is described in
Algorithm[3]

Algorithm 3 Update of the Learngene Score

Input: Winner learngenes G*, Parental decay coefficient 7, Path length 7 and Gene
Tree (GT)

1: for each G} in G* do

2:  Initialize node pointer pt < G
3:  Setpathlength T <~ 0
4:  # Recursively traverse Gene Tree for ancestral learngenes
5: while pt has parent G,, do
6: # Increase path length
7 T+ T1+1
8: # Update parental learngene score s,
9: Sp < Sp + 17 sF
10: # Move pointer
11: pt < G,
12:  end while
13: end for
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B.4 Further Details on Learngene Inheritance

Learngenes possess high structural scalability, enabling the initialization of target networks with
varying widths, depths, and architectures, as illustrated in Figure[§]

Identical Model Sizes and Architectures. When the target network shares the same architecture as
the source (Figure [8p), initialization is achieved by directly replacing the randomly initialized kernels
at the indices specified by the learngenes. Filters containing unassigned kernels are padded with
zeros, denoted as white kernels in Figure@

Width Adaptation. For target networks that Before After
differ in width, index mappings must be adapted B il
to avoid index overflows. Specifically, the filter
and kernel indices in the [-th layer are re-indexed
as F| = [1,|F]] and K] = [1, |K;|], ensuring
compatibility with the narrower or wider target
network (Figure 8p and Figure[J).

Depth Extension. When the number of layers in

the target network NV éd) exceeds that in the learn-

gene N'“), additional Partial Identity Mapping . .

(PIM) layers are inserted to preserve feature con- F1gure 9: Sorting the positions of learngene filters
tinuity (Figure Eh) Each PIM layer bridges adj a- and kprnels. To prevent ll’ldeX.OV.eI’ﬂOW when ini-
cent layers L; and L1 by introducing an inter- tializing a narrower model, the indices of learngene
mediate mapping: L; — Lyim — Li41, where kernels and filters are rearranged starting from 1.
the filter set is defined as:

Layer [  Layerl+1 Layer [ ~ Layerl+1

fpim =F (10)

For each filter f € F, the corresponding kernel in the PIM layer is initialized as:

1 ifk=f 3 _[00
K’“vf’l’lm_{ 0 otherwise » Laxs = 08

[=lele)

] (1

This identity-preserving initialization ensures seamless propagation of core features across expanded
network depths.

C Implementation Details

C.1 Hyperparameters for Evolution

Table [6] provide the hyperparameters used for evolving the learngenes using GTL.

Table 6: Hyperparameters in evolution.

Hyperparameter VGG11 ResNetl2 ResNet50 MobileNetV3-Large
Training Class Number n; 64 64 640 640
Validation Class Number n,, 16 16 160 160
Novel Class Number 20 20 200 200
Init Class kipjc 5 5 50 50
Max Class kpax 15 15 70 110
Initial Percentage of Learngene Filters 0.3 0.3 0.3 0.4
Mutation Probability p,, 0.1 0.1 0.2 0.2
Population Size n), 20 20 6 6
Gene Pool Size p 8 8 6 6
Obsolete Number 4 4 2 2
Generational Decay Coefficient 3 0.9 0.9 0.9 0.9
Parental Decay Coefficient 7 0.1 0.1 0.1 0.1
Networks Number in Competition s 3 3 3 3
Generation Number 250 250 100 100
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Table 7: Performance of ECO across various model sizes and downstream datasets. “Scratch” refers
to training from scratch, while “Gyge11” and “Giee12” represent the initialization using learngenes
extracted from VGGI11 and ResNetl2, respectively. “-N/W” denotes narrower or wider network
width. Note that results are given in terms of Top-3 accuracy.

VGG | ResNet
Datasets 11 11N 11w 16 19 \ 12 12_n 12w 18
Scratch 51.41 49.18 5324 47.32 41.78 |56.64 56.16 56.58 56.24
Flower Gy 609.25° 66.94* 66.97* 72.00* 74.50* |68.99 66.22 66.21 63.15
esi2 39.15 5694 57.65 69.75 60.66 |77.33* 79.83* 74.63* 76.96*
Scratch 70.75 66.86 73.28 66.60 69.31 |63.96 63.72 64.03 67.57
CUB Guger1  79.65* 78.67* 81.57* 82.74 84.21* |76.67 75.15 76.70 78.24
esl2 17.89 7599 79.58 83.53* 81.15 |81.55* 82.24* 80.34* 83.62*
Scratch 86.01 81.07 88.24 87.14 89.16 |80.13 74.43 80.40 82.51
Cars Guget1  92.25* 91.36" 93.04* 94.62 9529*|92.80 91.74 93.02 93.62
esi2 89.78 88.05 91.33 95.20* 94.68 |95.63* 95.92* 95.37* 96.10*
Scratch 80.74 79.73 80.29 79.54 76.23 |84.62 8421 8528 87.59
Food Guger1  85.49* 84.73* 84.79* 87.30* 86.85* |88.19 87.32 88.32 89.00
esl2 84.69 83.06 84.44 86.46 84.28 |89.54* 89.09* 89.74* 90.57*
20 iter 50 iter 100 iter | 20 iter 50 iter 100 iter
60 60 60 - | o 60 601 1 60{T
S 40 40 I 4] = L5 s0]d 40 a0 =]
(O] = I T I T
d ! - | % I- I
> 20 = 20 1 _ 2 I | 920 I, T 20 2
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Figure 10: Performance of ECO and other methods on novelty classes with minimal training steps.
“iter” indicates parameter update iterations (one iteration equals one optimizer update).

D Additional Results and Analysis

D.1 Scalability and Adaptability of Learngenes

To further evaluate the scalability and adaptability of learngenes, we initialize networks with varying
widths (e.g., VGGI11-N, VGG11-W, ResNet12-N, ResNetl12-W), depths (e.g., VGG16, VGG19,
ResNet18), and even across architectures (e.g., VGG=ResNet). The results on four downstream
datasets are presented in Table

Learngenes (i.e., Gygg11 and Gre12) successfully initialize networks of varying depths (e.g., VGG11,
VGG16, VGG19; ResNetl2, ResNet18), consistently outperforming models trained from scratch.
They also enhance performance when initializing networks with different widths. For example, Gygo11
initialize a wider VGG11-W, achieving better performance on CUB (81.57% vs. 79.65%), while
Gres12 Initialize a narrower ResNet12-N, surpassing the standard ResNet12 on Flower (79.83% vs.
77.33%).

Moreover, learngenes demonstrate effective cross-architecture transferability, with Gyge11 successfully
initializing ResNet18 and outperforming models trained from scratch. Despite potential architectural
incompatibilities, learngenes show greater flexibility and scalability compared to pre-trained models,
which are often limited by architecture. This underscores their capability to transfer core knowledge
across varying model sizes and architectures in downstream tasks.

D.2 Instincts of Models Brought by Learngenes

To further explore the initialization ability of learngenes, we extend the concept of “instinct” from
reinforcement learning [[11]] to supervised learning, referring to the innate ability that model initializa-
tion provides to neural networks. Figure|10|illustrates the early training performance (within the first
epoch) of ECO and other methods on VGG11 and ResNet12, with one iteration represents a single
optimizer step.
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ECO exhibits notable advantages during early training, requiring only minimal updates to achieve
significant performance improvements. Despite transferring more parameters, other methods often
struggle to adapt quickly to new classes due to over-transfer of knowledge, which reduces network
flexibility. In contrast, ECO selectively transfers only core knowledge via learngenes, enabling
descendant networks to quickly adapt to novel tasks. This early-stage capacity for classification with
minimal training is referred to as the “instinct” provided by learngenes.

E Limitations and Future Works

ECO demonstrates robust performance on convolutional architectures by integrating size- and task-
agnostic knowledge through learngenes. While inherently scalable, current evaluations are limited to
small and medium-sized models. Extending ECO to larger architectures remains promising, though it
may incur additional training time and computational overhead. Beyond convolutional networks, we
also aim to extend ECO to transformer-based models, where the modular representation of learngenes
may further facilitate cross-architecture knowledge inheritance and generalization.

F Impact Statement

ECO offers a unified framework for modular knowledge transfer through learngenes, enabling efficient
model initialization across architectures and scales. By reducing the need for extensive retraining,
ECO lowers computational costs and improves performance in low-data and resource-constrained
scenarios. Its architecture-agnostic design supports broad applicability across domains. By promoting
the reuse of pre-trained models with minimal overhead, ECO contributes to more sustainable and
accessible machine learning, aligning with the goals of green Al.
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