

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FINETUNING-FREE ALIGNMENT OF DIFFUSION MODEL FOR TEXT-TO-IMAGE GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion models have demonstrated remarkable success in text-to-image generation. While many existing alignment methods primarily focus on fine-tuning pre-trained diffusion models to maximize a given reward function, these approaches require extensive computational resources and may not generalize well across different objectives. In this work, we propose a novel finetuning-free alignment framework by leveraging the underlying nature of the alignment problem—sampling from reward-weighted distributions. Moreover, we give an in-depth discussion of adopting current guidance methods for text-to-image alignment. We identify a fundamental challenge: the adversarial nature of the guidance term can introduce undesirable artifacts in the generated images. To address this, we propose a regularization strategy that stabilizes the guidance signal. We evaluate our approach on a text-to-image benchmark and demonstrate comparable performance to state-of-the-art models with one-step generation while achieving at least a 60% reduction in computational cost.

1 INTRODUCTION

Diffusion models have achieved impressive performance in text-to-image generation, as demonstrated by state-of-the-art models such as Imagen (Saharia et al., 2022), DALL-E 3 (Betker et al.), and Stable Diffusion (Rombach et al., 2021). These models have been proven capable of generating high-quality, creative images even from novel and complex text prompts.

Inspired by Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022), many alignment approaches leverage preference pairs to fine-tune models for generating samples that align with task-specific objectives. RLHF-type methods (Lee et al., 2023; Fan et al., 2023; Black et al., 2023; Clark et al., 2024; Chakraborty et al., 2024) typically learn a reward function and then use the policy gradients (Jaques et al., 2016; 2020) to update the model. On the other hand, Direct Preference Optimization (DPO)-type methods (Rafailov et al., 2024; Wallace et al., 2023; Yang et al., 2023; Liang et al., 2024; Yang et al., 2024) directly optimize the model to adhere to human preferences, without requiring explicit reward modeling or reinforcement learning.

Despite their effectiveness, these approaches require modifying model parameters through fine-tuning, which comes with several limitations. For example, fine-tuning for new reward functions is computationally expensive and often requires carefully designed training strategies; otherwise, optimizing on a limited set of input prompts can limit generalization to unseen prompts. More importantly, existing fine-tuning approaches do not fully exploit the structure of the alignment problem. Instead, they typically apply Low-Rank Adaptation (LoRA) to optimize model weights for a specific reward function, which may not be the most efficient strategy.

In contrast, plug-and-play alignment methods integrate new objectives without modifying the underlying model parameters, significantly reducing computational costs while adapting flexibly to different reward functions. In this paper, we develop a plug-and-play guidance term for the text-to-image diffusion models. Instead of treating alignment purely as a fine-tuning problem, we formulate it as a sampling problem from a reward-weighted distribution, leveraging its unique structure. We demonstrate that the score function required for this reward-weighted distribution can be effectively decomposed into the pre-trained score function with an additional guidance term. However, we also identify a critical issue: it is hard to determine the strength of the guidance, stemming from the adversarial nature of the guidance. To address this, we introduce a novel regularization term that

Figure 1: [Qualitative comparison with Vanilla SDXL, Diffusion-DPO, and SPO](#). Our method achieves better aesthetic quality and stronger alignment with the text prompt. Prompts are provided in the Appendix B.3.

mitigates this issue and empirically validates its effectiveness on a text-to-image benchmark with one-step generation.

Our contributions can be summarized as follows.

- We identify that the alignment problem exhibits a particular structure well-suited for guidance-based methods—namely, alignment can be framed as sampling from a reward-weighted distribution. Based on this insight, we introduce a finetuning-free alignment framework that leverages guidance to achieve alignment efficiently.
- We uncover a critical challenge in applying guidance-based methods to text-to-image diffusion models: the adversarial nature of guidance can lead to undesirable artifacts in the generated images, compromising visual quality and alignment with human preferences.
- We propose a regularization technique for training the guidance network, mitigating the identified issue and achieving strong performance on text-to-image alignment benchmarks. Furthermore, we demonstrate the effectiveness of our approach in the one-step generation setting, significantly reducing computational costs.

1.1 RELATED WORK

Existing alignment methods can be broadly categorized into two approaches: RLHF-based method that uses policy gradient to update the diffusion models, and DPO-based methods that use a parametrization trick to update the diffusion models without explicitly learning the reward function.

RLHF-based alignment of diffusion model. The authors first train a reward model to predict human feedback and adopt a reward-weighted finetuning objective to align the diffusion model in (Lee et al., 2023). In (Fan et al., 2023; Black et al., 2023), the authors use policy gradient algorithms to update the diffusion models under Kullback–Leibler (KL) constraints. The authors propagate the reward function gradient through the full sampling procedure in (Clark et al., 2024). They reduce the memory costs by adopting low-rank adaptation (LoRA) (Hu et al., 2021) and gradient checkpointing (Chen et al., 2016).

108 **DPO-based alignment of diffusion model.** This line of works (Wallace et al., 2023; Yang et al., 2023) directly applies DPO (Rafailov et al., 2024) to align the diffusion model with human preference. In (Liang et al., 2024), Liang et al. propose a step-aware preference model and a step-wise resampler to align the preference optimization target with the denoising performance at each timestep. The authors take on a finer dense reward perspective and derive a tractable alignment objective that emphasizes the initial steps in (Yang et al., 2024).

114
115 **Training-free guidance.** This line of work (Chung et al., 2022; Graikos et al., 2022; Lu et al., 2023; Song et al., 2023; Bansal et al., 2023; Yu et al., 2023; Shen et al., 2024; Ye et al., 2024) explores the use of diffusion models as plug-and-play priors for solving inverse problems. Recently, several studies (Li et al., 2024) have focused on adopting training-free guidance to enhance alignment in language tasks, particularly in discrete diffusion models. Some work Shen et al. (2024); Tang et al. (2024); Uehara et al. (2024); Ma et al. (2025); Singhal et al. (2025) study inference-time optimization for alignment. However, to the best of our knowledge, there has been limited exploration of applying guidance to address the challenge of text-to-image alignment in the context of one-step generation. This gap motivates our work.

124 2 PRELIMINARY

126 In this section, we focus on existing techniques for aligning pre-trained models with human preferences. We first provide a brief description of Diffusion Model in Section 2.1. Then, we decompose 127 the alignment procedure into two important components, reward learning to model the human preference 128 in Section 2.2 and the alignment methods in Section 2.3.

131 2.1 DIFFUSION MODELS

133 The diffusion model (Ho et al., 2020; Song et al., 2021) first gradually injects Gaussian noise into 134 samples \mathbf{x}_0 from the data distribution by following the stochastic differential equation:

$$135 \quad d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t)dt + g(t)d\mathbf{w}, \quad t \in [0, T], \quad (1)$$

137 where \mathbf{w} is the standard Brownian motion, $\mathbf{f}(\cdot, t) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is a drift coefficient, and $g(\cdot) : \mathbb{R} \rightarrow \mathbb{R}$ 138 is a diffusion coefficient. We use $p_t(\mathbf{x})$ to denote the marginal distribution of \mathbf{x}_t at time t . And we 139 can use the time reversal of equation 1 for generation, which admits the following form (Anderson, 1982):

$$140 \quad d\mathbf{x}_t = [\mathbf{f}(\mathbf{x}_t, t) - g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})] dt + g(t)d\bar{\mathbf{w}}, \quad (2)$$

141 where $\bar{\mathbf{w}}$ is a standard Brownian motion when time flows backwards from T to 0, and dt is an 142 infinitesimal negative time step. The score function of each marginal distribution $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$ needs 143 to be estimated by the following score matching objective:

$$145 \quad \min_{\theta} \mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{p_t(\mathbf{x}_t)} \left[\left\| \mathbf{s}_{\theta}(\mathbf{x}_t, t) - \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) \right\|_2^2 \right] \right\}, \quad (3)$$

147 where $\lambda(t) : [0, T] \rightarrow \mathbb{R}_{>0}$ is a positive weighting function, t is uniformly sampled over $[0, T]$. The 148 latent diffusion model (Rombach et al., 2021; Podell et al., 2023) further extends diffusion models 149 to text-to-image generation. They use an image encoder \mathcal{E} that maps \mathbf{x} into a latent representation 150 and use a text encoder τ that maps the prompts y into an embedding as the condition.

151 2.2 REWARD LEARNING

153 The Bradley-Terry (BT) models (Bradley & Terry, 1952) (or more general Plackett-Luce ranking 154 models (Plackett, 1975; Luce, 1979)) are a popular way to model preferences. Given a prompt y and 155 a pair of answers $\mathbf{x}_w \succ \mathbf{x}_l \mid y$, where \mathbf{x}_w denotes the winning response and \mathbf{x}_l denotes the losing 156 response under the preference of humans. The BT model depicts the preference distribution as

$$157 \quad p(\mathbf{x}_w \succ \mathbf{x}_l \mid y) = \frac{\exp(r(\mathbf{x}_w, y))}{\exp(r(\mathbf{x}_w, y)) + \exp(r(\mathbf{x}_l, y))},$$

159 where $r(\mathbf{x}, y)$ denotes the reward model and can be learned by the following maximum likelihood 160 objective,

$$161 \quad \min_{\phi} -\mathbb{E}_{(\mathbf{x}_w, \mathbf{x}_l, y) \sim \mathcal{D}} [\log \sigma(r(\mathbf{x}_w, y) - r(\mathbf{x}_l, y))], \quad (4)$$

162 where $\mathcal{D} = \left\{ \mathbf{x}_w^{(i)}, \mathbf{x}_l^{(i)}, y^{(i)} \right\}_{i=1}^N$ is the offline preference dataset and σ denotes the logistic function.
 163
 164

165 2.3 ALIGNMENT OF DIFFUSION MODEL

166 Building on the success of alignment techniques for finetuning large pre-trained language models,
 167 many studies have explored aligning diffusion models with human preferences. A detailed discus-
 168 sion follows.
 169

170 **RLHF.** This type of works (Lee et al., 2023; Xu et al., 2023; Fan et al., 2023; Black et al., 2023;
 171 Clark et al., 2024) finetune the pre-trained model π_{ref} by policy gradient objective (Jaques et al.,
 172 2016; 2020),
 173

$$174 \max_{\pi_{\theta}} \mathbb{E}_{y \sim \mathcal{D}_{\text{prompt}}, \mathbf{x} \sim \pi_{\theta}(\mathbf{x} | y)} [r(\mathbf{x}, y)] - \beta \mathbb{D}_{\text{KL}} [\pi_{\theta}(\mathbf{x} | y) \| \pi_{\text{ref}}(\mathbf{x} | y)], \quad (5)$$

175 where $\mathcal{D}_{\text{prompt}}$ denotes the prompt dataset. This type of method requires a pre-trained reward function
 176 for policy optimization (Schulman et al., 2017).
 177

178 **DPO.** The authors propose not to explicitly learn the reward function in (Rafailov et al., 2024).
 179 They start with the analytic solution of equation 5 as the energy-guided form,
 180

$$182 \pi_r(\mathbf{x} | y) = \frac{1}{Z(y)} \pi_{\text{ref}}(\mathbf{x} | y) \exp \left(\frac{1}{\beta} r(\mathbf{x}, y) \right), \quad (6)$$

183 where $Z(y) = \int \pi_{\text{ref}}(\mathbf{x} | y) \exp \left(\frac{1}{\beta} r(\mathbf{x}, y) \right) d\mathbf{x}$ is the partition function. Therefore, they can
 184 reparametrize the reward function $r(\mathbf{x}, y)$ as
 185

$$186 r(\mathbf{x}, y) = \beta \log \frac{\pi_r(\mathbf{x} | y)}{\pi_{\text{ref}}(\mathbf{x} | y)} + \beta \log Z(y). \quad (7)$$

187 Plugging equation 7 into equation 4, we yield the objective of DPO-type methods:
 188

$$189 \min -\mathbb{E}_{(\mathbf{x}_w, \mathbf{x}_l, y) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(\mathbf{x}_w | y)}{\pi_{\text{ref}}(\mathbf{x}_w | y)} - \beta \log \frac{\pi_{\theta}(\mathbf{x}_l | y)}{\pi_{\text{ref}}(\mathbf{x}_l | y)} \right) \right]. \quad (8)$$

190 3 METHOD

191 In this section, we introduce the proposed finetuning free method to directly sample from the reward-
 192 guided distribution. We introduce the methodology formulation in Section 3.1. We provide an
 193 in-depth analysis of several vanilla methods for calculating the guidance, as discussed in Section
 194 3.2. We highlight that these vanilla guidance methods exhibit adversarial guidance, which generates
 195 undesirable artifacts and worsens performance, particularly in text-to-image generation. Then, we
 196 present an enhanced method in Section 3.3 that alleviates the problem.
 197

198 3.1 METHODOLOGY FORMULATION

199 Inspired by previous works from transfer learning (Ouyang et al., 2024), we consider preference
 200 learning in terms of transferring a pre-trained diffusion model to adapt to the given preference data.
 201 To this end, we propose a finetuning-free alignment method for the diffusion models. Instead of
 202 using RLHF-type (like equation 5) or DPO-type (like equation 8) alignments, we propose to directly
 203 sample from the reward-weighted distribution $\pi_r(\mathbf{x} | y)$ in equation 6 leveraging the relationships
 204 between score functions in the following Theorem.

205 **Theorem 3.1.** *Let the conditional distribution of reference diffusion model $\pi_{\text{ref}}(\mathbf{x} | y)$ be denoted as
 206 distribution p and the reward-weighted distribution $\pi_r(\mathbf{x} | y)$ defined in equation 6 as distribution q .
 207 Under some mild assumption of the forward noising process detailed in Appendix A, let ϕ^* be the
 208 optimal solution for the conditional diffusion model trained on target domain $q(\mathbf{x}_0, y)$, i.e.,
 209*

$$210 \phi^* = \arg \min_{\phi} \mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{q_t(\mathbf{x}_t, y)} \left[\left\| \mathbf{s}_{\phi}(\mathbf{x}_t, y, t) - \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t | y) \right\|_2^2 \right] \right\}, \quad (9)$$

Figure 2: Illustration of the Adversarial Nature of Guidance. When the strength of the guidance is too small, there is little difference between the generated images with or without guidance. However, as the magnitude of the guidance increases (from left to right), undesirable artifacts become more pronounced. The prompt is "A 3D Rendering of a cockatoo wearing sunglasses. The sunglasses have a deep black frame with bright pink lenses. Fashion photography, volumetric lighting, CG rendering".

then

$$\mathbf{s}_{\phi^*}(\mathbf{x}_t, y, t) = \underbrace{\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t | y)}_{\text{pre-trained conditional model on source}} + \underbrace{\nabla_{\mathbf{x}_t} \log \mathbb{E}_{p(\mathbf{x}_0 | \mathbf{x}_t, y)} \left[\exp\left(\frac{1}{\beta} r(\mathbf{x}_0, y)\right) \right]}_{\text{conditional guidance}}. \quad (10)$$

The proof can be found in Appendix A. Based on equation 19, we can calculate the additional guidance term rather than finetuning the text-to-image generative model by RLHF-type (like equation 5) or DPO-type (like equation 8). In general, the guidance term in equation 19 is not easy to compute because we need to sample from $p(\mathbf{x}_0 | \mathbf{x}_t, y)$ for each \mathbf{x}_t in the generation process. In the following, we first discuss the existing ways to calculate the guidance term.

3.2 VANILLA METHOD TO COMPUTE THE GUIDANCE TERM

M1: Direct backpropagate through diffusion process. The first method directly backpropagates through diffusion process to calculate $\nabla_{\mathbf{x}_t} \log \mathbb{E}_{p(\mathbf{x}_0 | \mathbf{x}_t, y)} \left[\exp\left(\frac{1}{\beta} r(\mathbf{x}_0, y)\right) \right]$ for fine-tuning the diffusion model. In Song et al. (2023), the author proposes an unbiased Monte Carlo estimation:

$$\nabla_{\mathbf{x}_t} \log \mathbb{E}_{p(\mathbf{x}_0 | \mathbf{x}_t, y)} \left[\exp\left(\frac{1}{\beta} r(\mathbf{x}_0, y)\right) \right] \approx \nabla_{\mathbf{x}_t} \log \frac{1}{n} \sum_{i=1}^n \exp\left(\frac{1}{\beta} r(\mathbf{x}_0^i, y)\right), \quad (11)$$

where \mathbf{x}_0^i denotes the i -th sample drawn from $p(\mathbf{x}_0 | \mathbf{x}_t, y)$. However, this Monte Carlo estimation significantly increases memory costs, especially in text-to-image generation. Inspired by recent studies (Clark et al., 2024), we can borrow the same techniques, e.g., accumulated gradients along the diffusion process using techniques such as low-rank adaptation (LoRA) (Hu et al., 2021) and truncation or gradient checkpointing (Prabhudesai et al., 2023; Clark et al., 2024), to alleviate the memory cost of backpropagate through the diffusion process for calculating the guidance term. We can further reduce the memory cost by using the few-step diffusion model as the reference model. Despite these techniques, the memory requirements remain higher compared to the proposed approach.

M2: Approximate and apply Tweedie's formula. The second method first approximates the guidance term inspired by (Chung et al., 2022):

270
271
272
273

$$\nabla_{\mathbf{x}_t} \log \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\exp \left(\frac{1}{\beta} r(\mathbf{x}_0, y) \right) \right] \approx \frac{1}{\beta} \nabla_{\mathbf{x}_t} r(\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)}[\mathbf{x}_0], y). \quad (12)$$

274 Then, Tweedie's formula is further applied by Bansal et al. (2023); Chung et al. (2022); Yu et al.
275 (2023):

276

277
$$\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t, y] = \mathbf{x}_t + \sigma_t^2 \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t | y).$$

278

279 However, as noted by Lu et al. (2023); Song et al. (2023), the approximation used in equation 12 is
280 biased, leading to an incorrect calculation of the guidance term.281 In the following, we empirically evaluate the effectiveness of these methods for aligning text-to-
282 image generation tasks. We first identify a previously overlooked issue that contributes to suboptimal
283 alignment performance. Fig 2 illustrates the performance of two vanilla methods under the guidance
284 of PickScore (Kirstain et al., 2023), a reward function that evaluates whether the generated images
285 align with human aesthetic and semantic preferences. The x-axis represents the strength of the
286 guidance term, denoted by α ¹. Our experiments reveal that tuning this hyperparameter presents
287 significant challenges. Insufficient values of α produce results indistinguishable from unguided
288 generation, while excessive values introduce substantial artifacts that degrade image quality.289 We attribute this phenomenon to the adversarial nature of the guidance mechanism, as observed in
290 prior work (Shen et al., 2024). In equation 19, the guidance term is directly added to the estimated
291 score. If the landscape is not smooth or does not behave well², the adversarial nature of the guidance
292 can lead to undesirable artifacts in the generated images. To address these limitations, our proposed
293 framework provides theoretical guarantees for generating properly aligned distributions with a fixed
294 strength parameter $\alpha = 1$. Furthermore, we develop an additional regularization technique for
295 training the guidance network that mitigates these instability issues.296
297

3.3 PROPOSED FINETUNING-FREE GUIDANCE

298 We first utilize the following trick to calculate the conditional expectation. This trick has been used
299 in previous works such as (Ouyang et al., 2024; Lu et al., 2023).300
301**Lemma 3.2.** For a neural network $h_{\psi}(\mathbf{x}_t, y, t)$ parameterized by ψ , define the objective

302
$$\mathcal{L}_{\text{guidance}}(\psi) := \mathbb{E}_{p(\mathbf{x}_0, \mathbf{x}_t, y)} \left[\left\| h_{\psi}(\mathbf{x}_t, y, t) - \exp \left(\frac{1}{\beta} r(\mathbf{x}_0, y) \right) \right\|_2^2 \right], \quad (13)$$

303
304

305
306then its minimizer $\psi^* = \arg \min_{\psi} \mathcal{L}_{\text{guidance}}(\psi)$ satisfies:307
308
309

$$h_{\psi^*}(\mathbf{x}_t, y, t) = \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\exp \left(\frac{1}{\beta} r(\mathbf{x}_0, y) \right) \right].$$

310
311
312
313
314By Lemma 3.2, we can instead estimate the value $\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\exp \left(\frac{1}{\beta} r(\mathbf{x}_0, y) \right) \right]$ using the guidance
network h_{ψ^*} obtained by minimizing the objective function $\mathcal{L}_{\text{guidance}}(\psi)$, which can be approxi-
mated by easy sampling from the joint distribution $p(\mathbf{x}_0, \mathbf{x}_t, y)$. Then, the estimated score function
for the aligned diffusion model can be calculated as follows:315
316
317

$$\mathbf{s}_{\psi^*}(\mathbf{x}_t, y, t) = \underbrace{\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | y)}_{\text{pre-trained model on source}} + \underbrace{\nabla_{\mathbf{x}_t} \log h_{\psi^*}(\mathbf{x}_t, y, t)}_{\text{guidance network}}. \quad (14)$$

318
319
320
321To alleviate the adversarial nature of the guidance, we can adopt the consistency regularization
 $\mathcal{L}_{\text{consistency}}$ to learn the guidance network h_{ψ^*} better, i.e., the gradient of $\mathcal{L}_{\text{consistency}}(\mathbf{x}_t, y, t)$ with
respect to \mathbf{x}_t should match the score in preferred data. The key point of this regularization is that we322 ¹Although there is no α in equation 19, many guidance methods (Lu et al., 2023; Song et al., 2023) add this
323 hyperparameter in practice to balance the strength of guidance term with the score.²We use landscape to describe the change of reward given the change of images.

324
 325 Table 1: Comparison of finetuning-free alignment algorithms. Our method uniquely provides theo-
 326 retical guarantees for the correct form for guidance with a step size guarantee.

Method	Classifier Guidance	Direct backpropagate (M1)	Tweedie's formula (M2)	Ours
Formulation	$\frac{1}{\beta} \nabla_{\mathbf{x}_t} r(\mathbf{x}_t, y)$	$\nabla_{\mathbf{x}_t} \log \frac{1}{n} \sum_{i=1}^n \exp\left(\frac{1}{\beta} r(\mathbf{x}_0^i, y)\right)$	$\frac{1}{\beta} \nabla_{\mathbf{x}_t} r(\mathbb{E}_{p(\mathbf{x}_0 \mathbf{x}_t, y)}[\mathbf{x}_0], y)$	$\nabla_{\mathbf{x}_t} \log h_{\psi^*}(\mathbf{x}_t, y, t)$
Unbiased Step size guarantee	✗ ✗	✓ ✗	✗ ✗	✓

331
 332 cannot easily change the landscape of a given predetermined reward function, but we can regularize
 333 the landscape of the learned guidance network to ensure the generation of high-quality images.

334
 335 $\psi^* = \arg \min_{\psi} \mathcal{L}_{\text{consistence}}$

$$337 \quad := \mathbb{E}_{q(\mathbf{x}_0, y)} \mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} \left[\left\| \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x}_0, y) + \nabla_{\mathbf{x}_t} \log h_{\psi}(\mathbf{x}_t, y, t) - \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t|\mathbf{x}_0, y) \right\|_2^2 \right]. \quad (15)$$

341 Combining the consistency regularization terms together with the original guidance loss equation 24,
 342 the final learning objective for the guidance network can be described as follows:

343
 344 $\psi^* = \arg \min_{\psi} \{ \mathcal{L}_{\text{guidance}} + \eta \mathcal{L}_{\text{consistence}} \}, \quad (16)$

345 where $\eta \geq 0$ are hyperparameters that control the strength of additional regularization, which also
 346 enhances the flexibility of our solution scheme.

348 3.4 FURTHER IMPROVEMENT TO ONE-STEP GENERATION

349
 350 The training objective in equation 24 and equation 15 is agnostic to the reference model, meaning
 351 we can use any pre-trained diffusion model with any reward function, whether differentiable or not.
 352 Given that one-step generative models are fast and computationally efficient for practical use, can
 353 we design an explicit training objective for a one-step text-to-image model?

354 Surprisingly, the solution is remarkably simple—instead of sampling t uniformly from $[0, T]$, we
 355 can simply set $t = T$. This small modification offers several advantages. First, while one-step
 356 diffusion models may not perform as well as few-step (2–4) models (Salimans & Ho, 2022), we em-
 357 pirically find that with additional guidance, their performance improves significantly, as presented in
 358 Section 4.3. Additionally, the guidance network h_{ψ} becomes time-independent, meaning it always
 359 guides the diffusion model from x_T to x_0 . Empirically, we find that h_{ψ} is easy to train—with ten
 360 training epochs on the Pick-a-Pic V1 dataset, our guidance network produces high-quality images,
 361 which can be found in Section 4.2. We summarize the final learning pipeline in Algorithm 1 in the
 362 Appendix.

363 3.5 FURTHER EXTENSION TO FLOW MATCHING

364
 365 Given that state-of-the-art models are grounded in Diffusion Transformers (Peebles & Xie, 2022)
 366 and flow matching (Lipman et al., 2022), we present the exact form of flow-matching guidance in
 367 the theorem below.

368 **Theorem 3.3.** *Let ϕ^* be the optimal solution for the conditional flow matching model trained on
 369 target domain $q(\mathbf{x}_1, y)$ (where \mathbf{x}_1 are sampled from data distribution, $\mathbf{v}_q(\mathbf{x}_t, y, t)$ denotes the oracle
 370 velocity field on target distribution), i.e.,*

$$371 \quad \phi_q^* = \arg \min_{\phi} \mathbb{E}_t \left\{ \mathbb{E}_{q_t(\mathbf{x}_t, y)} \left[\left\| \mathbf{v}_{\phi}(\mathbf{x}_t, y, t) - \mathbf{v}_q(\mathbf{x}_t, y, t) \right\|_2^2 \right] \right\},$$

373 then

$$374 \quad \mathbf{v}_{\phi_q^*}(\mathbf{x}_t, y, t) = \mathbf{v}_{\phi_p}(\mathbf{x}_t, y, t) +$$

$$375 \quad \mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}(\mathbf{x}_1|\mathbf{x}_t, y)} \left[\left(\frac{\exp\left(\frac{1}{\beta} r(\mathbf{x}_1, y)\right)}{\mathbb{E}_{\mathbf{x}'_1 \sim p_{1|t}(\mathbf{x}_1|\mathbf{x}_t, y)} \left[\exp\left(\frac{1}{\beta} r(\mathbf{x}'_1, y)\right) \right]} - 1 \right) \mathbf{v}_t(\mathbf{x}_t | \mathbf{x}_1, y) \right], \quad (17)$$

378 According to the formulation of equation 17, we propose a training-free guidance that directly calculates the guidance term, which can be found in A.2. Compared with no base-model fine-tuning proposed in equation 14, this formulation offers greater computational efficiency.
 379
 380
 381

382 4 EXPERIMENTAL RESULTS 383

384 In this section, we present our comprehensive experimental evaluation, demonstrating the effectiveness
 385 of our finetuning-free method for sampling directly from reward-guided distributions. We first
 386 outline our experimental setup and evaluation criteria in Section 4.1, followed by benchmark re-
 387 sults against state-of-the-art methods in Section 4.2. Finally, we provide an in-depth ablation study
 388 that validates our key theoretical claims and demonstrates the superior performance of our guidance
 389 network in Section 4.3.
 390

391 4.1 EXPERIMENTAL SETUP 392

393 We follow the official configurations recommended for SPO (Liang et al., 2024), Diffusion-DPO
 394 (Wallace et al., 2023), and MAPO (She et al., 2024). Diffusion-DPO and MAPO are fine-tuned on
 395 the Pick-a-Pic V2 dataset, which contains over 800k image preference pairs. In contrast, SPO is
 396 fine-tuned online using 4k text prompts (without images) randomly selected from Pick-a-Pic V1.
 397 Our method trains the guidance network offline using 583k image preference pairs from Pick-a-Pic
 398 V1. Overall, our method and the competing models in the text-to-image alignment benchmark are
 399 trained on comparable datasets, allowing for a fair comparison.
 400

401 We adopt Stable Diffusion XL (SDXL)-Turbo as the reference model for one-step text-to-image
 402 generation. SDXL-Turbo is specifically designed for fast inference by incorporating a distillation
 403 process that reduces the number of required denoising steps while maintaining high image quality.
 404 Unlike SDXL, which typically requires 20–50 steps for high-fidelity generation, SDXL-Turbo
 405 leverages progressive distillation (Sauer et al., 2023) to achieve comparable performance in as few
 406 as one to four steps. Since the distillation dataset is a subset of the original SDXL training data, it
 407 may not introduce additional information to improve performance. We also include ablation studies
 408 in Section 4.3 to verify the effectiveness of our method.
 409

410 **Implementation Detail** Since the guidance network takes noisy images x_T and prompts y as input
 411 and outputs a scalar value, we adopt the same variational autoencoder (VAE), tokenizer, and text
 412 encoder from the reference diffusion model for encoding image and text. Consequently, the trainable
 413 parameters of our guidance network are quite small. In practice, we adopt two convolutional layers
 414 for processing VAE-encoded feature maps and a five-layer multi-layer perceptron (MLP) to project
 415 the image and text embedding to a scalar. The total parameter size of the guidance network is
 416 only 72 MB, making it lightweight and easy to train. We train the guidance network on the Pick-
 417 a-Pic training dataset for 10 epochs with batch size 32, Adam optimizer, learning rate 1e-3, and
 418 hyperparameters $\eta = 1$.
 419

420 **Evaluation Criterion** Following established evaluation protocols (Wallace et al., 2023; Liang
 421 et al., 2024), we report quantitative results using 500 validation prompts from the validation unique
 422 split of Pick-a-Pic. We adopt four evaluation criteria to evaluate different aspects of image quality.
 423 PickScore (Kirstain et al., 2023) measures overall human preference by aggregating judgments
 424 on aesthetic appeal, coherence, and realism. HPSV2 (Wu et al., 2023) assesses prompt adherence,
 425 ensuring the generated image accurately reflects the given textual description. ImageReward (Xu
 426 et al., 2023) quantifies human preference based on fine-grained attributes such as composition, detail
 427 preservation, and semantic relevance. Lastly, the aesthetic evaluation model from LAION (Schuh-
 428 mann, 2022) focuses on visual appeal, capturing factors such as color harmony, style, and artistic
 429 quality.
 430

431 4.2 EXPERIMENTAL RESULTS 432

433 As shown in Table 2, our method surpasses baseline approaches across four evaluation criteria,
 434 demonstrating its effectiveness in enhancing text-to-image alignment. The improvements are ob-
 435 served in both perceptual quality and semantic coherence, indicating that our guidance network
 436

432
433
434
435
436
437
438
439
440
441

Figure 3: Effectiveness of the Proposed Method: The results demonstrate that 2-step and 3-step generation significantly improve the quality of the generated images compared to one-step generation. While two vanilla guidance methods (Tweedie’s formula or directly backpropagation summarized in Section 3.2) fail to produce meaningful changes in the scene despite appropriate guidance strength, our method successfully achieves this enhancement. The prompt is “A photo of a frog holding an apple while smiling in the forest”.

Table 2: Benchmark comparison of different methods on text-to-image alignment. Our method achieves the highest scores in PickScore, HPSV2, and Aesthetic metrics, demonstrating superior alignment and image quality.

Type	Method	PickScore	HPSV2	ImageReward	Aesthetic	Training GPU Hour
Baseline	SDXL	21.95	26.95	0.5380	5.950	-
Training-free	Direct backpropagate	21.84	27.53	0.5870	5.922	-
	Tweedie’s formula	22.34	28.76	0.9501	6.002	-
Finetuning-based	Diff.-DPO	22.64	29.31	0.9436	6.015	4800
	SPO	23.06	31.80	1.0803	6.364	234
Finetuning-free	Ours	23.08	32.12	1.0625	6.452	92
Baseline	SD3.5 large turbo	22.30	30.29	1.0159	6.5190	-
Finetuning-free	Ours	23.14	32.31	1.1025	6.5280	-

successfully refines image generation to better match textual descriptions. This performance gain highlights the advantages of our lightweight architecture and the optimization strategy used during training. Figure 1 provides a qualitative comparison with baseline methods, further illustrating the superior visual fidelity and text alignment achieved by our approach.

4.3 ABLATION STUDY

In this section, we first verify the advantages of our proposed method against other finetuning-free guidance methods in Table 1. We then analyze the impact of few-step (2–4) generation compared to one-step generation, highlighting how our guidance term significantly enhances performance.

As illustrated in Figure 3, vanilla guidance methods struggle to induce meaningful improvements in generated images, even with carefully tuned guidance strength. Increasing the guidance parameter α often leads to undesirable artifacts rather than quality improvements. In contrast, our method effectively enhances image generation by leveraging a regularized guidance network, demonstrating its ability to refine scene details and improve alignment with input prompts.

Figure 4: Ablation study comparing the performance of our method with no guidance and two vanilla guidance methods under one-step and multi-step generation. Our method outperforms all baselines, which demonstrates the effectiveness of our guidance network in refining image quality and prompt alignment.

Method	PickScore
Ours (1 step)	23.08
No guidance (1 step)	22.14
Tweedie’s (1 step)	22.34
Backpropagate (1 step)	21.84
No guidance (2 steps)	22.64
No guidance (3 steps)	22.56

To further explore this, we examine the performance of our method against two vanilla guidance techniques, Tweedie’s and Backpropagate, as well as the no guidance baseline, all under a one-step sampling condition. As shown in Table 4, our method achieves the highest PickScore. This demonstrates that our regularized guidance network provides a substantial improvement over no guidance scenario and traditional methods. Consistent with prior studies, increasing the number of steps from one to two or three results in improved image quality, as shown in Figure 3 and Table 4. However, our method enables one-step generation to achieve performance even better than 2- or 3-step generation, highlighting the power of our guidance network. In Appendix B, we include the sensitive analysis of the regularization strength and we provide the experiments with non-differentiable reward on the GenEval benchmark (Ghosh et al., 2023) in Appendix B.4.

5 CONCLUSION

In this paper, we introduced a novel finetuning-free framework for aligning text-to-image diffusion models with human preferences. By formulating alignment as sampling from a reward-weighted distribution, our approach eliminates the need for computationally expensive fine-tuning and instead leverages a plug-and-play guidance mechanism. Specifically, we decomposed the score function into a pre-trained score and an additional guidance term, enabling efficient alignment without modifying the underlying diffusion model. Moreover, we identified a key challenge: the adversarial nature of the guidance term can lead to undesirable artifacts. To mitigate this, we proposed a regularization strategy that stabilizes guidance. Our experimental results on the text-to-image benchmark demonstrated that our method effectively aligns model outputs with human preferences.

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. It does not involve human subjects, sensitive personal information, or experiments with potential harm to individuals or communities. All experiments rely exclusively on publicly available datasets and benchmarks.

REPRODUCIBILITY STATEMENT

We attach the code in the supplementary materials. The assumption and theoretical result can be found in Theorem A.1. The proof can be found in Appendix A.1.

REFERENCES

Brian. D. O. Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their Applications*, 12:313–326, 1982. URL <https://api.semanticscholar.org/CorpusID:3897405>.

Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Universal guidance for diffusion models. *2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*, pp. 843–852, 2023. URL <https://api.semanticscholar.org/CorpusID:256846836>.

Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schonlieb, and Christian Etmann. Conditional image generation with score-based diffusion models. *ArXiv*, abs/2111.13606, 2021. URL <https://api.semanticscholar.org/CorpusID:244709128>.

James Betker, Gabriel Goh, Li Jing, TimBrooks, Jianfeng Wang, Linjie Li, LongOuyang, Jun-tangZhuang, JoyceLee, YufeiGuo, WesamManassra, PrafullaDhariwal, CaseyChu, YunxinJiao, and Aditya Ramesh. Improving image generation with better captions. URL <https://api.semanticscholar.org/CorpusID:264403242>.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models with reinforcement learning. *ArXiv*, abs/2305.13301, 2023. URL <https://api.semanticscholar.org/CorpusID:258833251>.

540 Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I.
 541 the method of paired comparisons. *Biometrika*, 39:324, 1952. URL <https://api.semanticscholar.org/CorpusID:125209808>.

542

543 Souradip Chakraborty, Jiahao Qiu, Hui Yuan, Alec Koppel, Dinesh Manocha, Furong Huang, Amrit
 544 Bedi, and Mengdi Wang. MaxMin-RLHF: Alignment with diverse human preferences. In *Proceedings
 545 of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine
 546 Learning Research*, pp. 6116–6135. PMLR, 2024.

547

548 Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
 549 memory cost. *ArXiv*, abs/1604.06174, 2016. URL <https://api.semanticscholar.org/CorpusID:15865278>.

550

551 Hyungjin Chung, Jeongsol Kim, Michael T. McCann, Marc Louis Klasky, and J. C. Ye. Diffusion
 552 posterior sampling for general noisy inverse problems. *ArXiv*, abs/2209.14687, 2022. URL
 553 <https://api.semanticscholar.org/CorpusID:252596252>.

554

555 Kevin Clark, Paul Vicol, Kevin Swersky, and David J. Fleet. Directly fine-tuning diffusion models
 556 on differentiable rewards. *ICLR*, 2024. URL <https://api.semanticscholar.org/CorpusID:263310957>.

557

558 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, P. Abbeel,
 559 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning
 560 for fine-tuning text-to-image diffusion models. *ArXiv*, abs/2305.16381, 2023. URL <https://api.semanticscholar.org/CorpusID:258947323>.

561

562 Dhruba Ghosh, Hanna Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
 563 for evaluating text-to-image alignment. *ArXiv*, abs/2310.11513, 2023. URL <https://api.semanticscholar.org/CorpusID:264288728>.

564

565 Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models
 566 as plug-and-play priors. *ArXiv*, abs/2206.09012, 2022. URL <https://api.semanticscholar.org/CorpusID:249889060>.

567

568 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
 569 2020.

570

571 J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
 572 Weizhu Chen. Lora: Low-rank adaptation of large language models. *ArXiv*, abs/2106.09685,
 573 2021. URL <https://api.semanticscholar.org/CorpusID:235458009>.

574

575 Natasha Jaques, Shixiang Shane Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato, Richard E.
 576 Turner, and Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation mod-
 577 els with kl-control. In *International Conference on Machine Learning*, 2016. URL <https://api.semanticscholar.org/CorpusID:15636415>.

578

579 Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Àgata Lapedriza,
 580 Noah Jones, Shixiang Shane Gu, and Rosalind Picard. Human-centric dialog training
 581 via offline reinforcement learning. *ArXiv*, abs/2010.05848, 2020. URL <https://api.semanticscholar.org/CorpusID:222291028>.

582

583 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 584 a-pic: An open dataset of user preferences for text-to-image generation. *ArXiv*, abs/2305.01569,
 585 2023. URL <https://api.semanticscholar.org/CorpusID:258437096>.

586

587 Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, P. Abbeel,
 588 Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human
 589 feedback. *ArXiv*, abs/2302.12192, 2023. URL <https://api.semanticscholar.org/CorpusID:257102772>.

590

591 Xiner Li, Yulai Zhao, Chenyu Wang, Gabriele Scialia, Gökçen Eraslan, Surag Nair, Tommaso Bian-
 592 calani, Aviv Regev, Sergey Levine, and Masatoshi Uehara. Derivative-free guidance in continuous
 593 and discrete diffusion models with soft value-based decoding. *ArXiv*, abs/2408.08252, 2024. URL
<https://api.semanticscholar.org/CorpusID:271874728>.

594 Zhanhao Liang, Yuhui Yuan, Shuyang Gu, Bohan Chen, Tiankai Hang, Ji Li, and Liang Zheng. Aes-
 595 thetic post-training diffusion models from generic preferences with step-by-step preference op-
 596 timization. *ArXiv*, abs/2406.04314, 2024. URL <https://api.semanticscholar.org/CorpusID:270285804>.

598 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
 599 matching for generative modeling. *ArXiv*, abs/2210.02747, 2022. URL <https://api.semanticscholar.org/CorpusID:252734897>.

602 Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
 603 prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In *Inter-
 604 national Conference on Machine Learning*, 2023. URL <https://api.semanticscholar.org/CorpusID:258309302>.

606 R. Duncan Luce. Individual choice behavior: A theoretical analysis. 1979. URL <https://api.semanticscholar.org/CorpusID:123178801>.

609 Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,
 610 Yandong Li, T. Jaakkola, Xuhui Jia, and Saining Xie. Inference-time scaling for diffusion mod-
 611 els beyond scaling denoising steps. 2025. URL <https://api.semanticscholar.org/CorpusID:275570556>.

613 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 614 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 615 ton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano,
 616 Jan Leike, and Ryan J. Lowe. Training language models to follow instructions with human
 617 feedback. *ArXiv*, abs/2203.02155, 2022. URL <https://api.semanticscholar.org/CorpusID:246426909>.

619 Yidong Ouyang, Liyan Xie, Hongyuan Zha, and Guang Cheng. Transfer learning for diffusion
 620 models. *NeurIPS*, 2024. URL <https://api.semanticscholar.org/CorpusID:270063340>.

623 William S. Peebles and Saining Xie. Scalable diffusion models with transformers. 2023 *IEEE/CVF
 624 International Conference on Computer Vision (ICCV)*, pp. 4172–4182, 2022. URL <https://api.semanticscholar.org/CorpusID:254854389>.

626 Robin L. Plackett. The analysis of permutations. *Journal of The Royal Statistical Society Series
 627 C-applied Statistics*, 24:193–202, 1975. URL <https://api.semanticscholar.org/CorpusID:116534299>.

629 Dustin Podell, Zion English, Kyle Lacey, A. Blattmann, Tim Dockhorn, Jonas Muller, Joe Penna,
 630 and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image syn-
 631 thesis. *ArXiv*, abs/2307.01952, 2023. URL <https://api.semanticscholar.org/CorpusID:259341735>.

634 Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-
 635 image diffusion models with reward backpropagation. *ArXiv*, abs/2310.03739, 2023. URL
 636 <https://api.semanticscholar.org/CorpusID:263671961>.

637 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 638 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 639 in Neural Information Processing Systems*, 36, 2024.

640 Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
 641 image synthesis with latent diffusion models. 2022 *IEEE/CVF Conference on Computer Vision
 642 and Pattern Recognition (CVPR)*, pp. 10674–10685, 2021.

644 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Seyed
 645 Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, Seyedeh Sara Mahdavi, Raphael Gontijo
 646 Lopes, Tim Salimans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic
 647 text-to-image diffusion models with deep language understanding. *ArXiv*, abs/2205.11487, 2022.
 URL <https://api.semanticscholar.org/CorpusID:248986576>.

648 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. *arXiv*
 649 *preprint arXiv:2202.00512*, 2022.

650

651 Axel Sauer, Dominik Lorenz, A. Blattmann, and Robin Rombach. Adversarial diffusion dis-
 652 tillation. In *European Conference on Computer Vision*, 2023. URL <https://api.semanticscholar.org/CorpusID:265466173>.

653

654 Christoph Schuhmann. Laion-aesthetics, 2022. URL <https://laion.ai/blog/laion-aesthetics/>. Accessed: 2023-11-10.

655

656

657 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
 658 mal policy optimization algorithms. *ArXiv*, abs/1707.06347, 2017. URL <https://api.semanticscholar.org/CorpusID:28695052>.

659

660

661 Shuaijie She, Shujian Huang, Wei Zou, Wenhao Zhu, Xiang Liu, Xiang Geng, and Jiajun Chen.
 662 Mapo: Advancing multilingual reasoning through multilingual alignment-as-preference opti-
 663 mization. In *Annual Meeting of the Association for Computational Linguistics*, 2024. URL
 664 <https://api.semanticscholar.org/CorpusID:266998982>.

665

666 Yifei Shen, Xinyang Jiang, Yezhen Wang, Yifan Yang, Dongqi Han, and Dongsheng Li. Un-
 667 derstanding and improving training-free loss-based diffusion guidance. 2024. URL <https://api.semanticscholar.org/CorpusID:268531795>.

668

669 Raghad Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
 670 Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
 671 models. 2025. URL <https://api.semanticscholar.org/CorpusID:275470889>.

672

673 Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin
 674 Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable gen-
 675 eration. In *International Conference on Machine Learning*, 2023. URL <https://api.semanticscholar.org/CorpusID:260957043>.

676

677 Yang Song, Jascha Narain Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon,
 678 and Ben Poole. Score-based generative modeling through stochastic differential equations. *ArXiv*,
 679 abs/2011.13456, 2021.

680

681 Zhiwei Tang, Jiangweizhi Peng, Jiasheng Tang, Mingyi Hong, Fan Wang, and Tsung-Hui Chang.
 682 Inference-time alignment of diffusion models with direct noise optimization. 2024. URL <https://api.semanticscholar.org/CorpusID:270095097>.

683

684 Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding re-
 685 enforcement learning-based fine-tuning of diffusion models: A tutorial and review. *ArXiv*,
 686 abs/2407.13734, 2024. URL <https://api.semanticscholar.org/CorpusID:271270725>.

685

686

687

688 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 689 Stefano Ermon, Caiming Xiong, Shafiq R. Joty, and Nikhil Naik. Diffusion model alignment
 690 using direct preference optimization. *2024 IEEE/CVF Conference on Computer Vision and Pat-
 691 tern Recognition (CVPR)*, pp. 8228–8238, 2023. URL <https://api.semanticscholar.org/CorpusID:265352136>.

692

693

694 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 695 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 696 image synthesis. *ArXiv*, abs/2306.09341, 2023. URL <https://api.semanticscholar.org/CorpusID:259171771>.

696

697

698 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yux-
 699 iao Dong. Imagereward: Learning and evaluating human preferences for text-to-image gen-
 700 eration. *ArXiv*, abs/2304.05977, 2023. URL <https://api.semanticscholar.org/CorpusID:258079316>.

701

702 Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen, Qimai Li, Weihan Shen, Xiaolong Zhu,
703 and Xiu Li. Using human feedback to fine-tune diffusion models without any reward model.
704 *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 8941–
705 8951, 2023. URL <https://api.semanticscholar.org/CorpusID:265352082>.

706 Shentao Yang, Tianqi Chen, and Mingyuan Zhou. A dense reward view on aligning text-
707 to-image diffusion with preference. *ArXiv*, abs/2402.08265, 2024. URL <https://api.semanticscholar.org/CorpusID:267636835>.

708 Haotian Ye, Haowei Lin, Jiaqi Han, Minkai Xu, Sheng Liu, Yitao Liang, Jianzhu Ma,
709 James Zou, and Stefano Ermon. Tfg: Unified training-free guidance for diffusion mod-
710 els. *ArXiv*, abs/2409.15761, 2024. URL <https://api.semanticscholar.org/CorpusID:272832564>.

711 Jiwen Yu, Yinhui Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-free
712 energy-guided conditional diffusion model. *2023 IEEE/CVF International Conference on Com-
713 puter Vision (ICCV)*, pp. 23117–23127, 2023. URL <https://api.semanticscholar.org/CorpusID:257622962>.

714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A THEORETICAL DETAILS FOR SECTION 3**
 757

758 **A.1 PROOF OF THEOREM A.1**
 759

760 We first provide the formal theorem as follows:

761 **Theorem A.1.** *Let the conditional distribution of reference diffusion model $\pi_{\text{ref}}(\mathbf{x}|y)$ be denoted as
 762 distribution p and the reward-weighted distribution $\pi_r(\mathbf{x}|y)$ defined in equation 6 as distribution q .
 763 Assume \mathbf{x}_t and y are conditionally independent given \mathbf{x}_0 in the forward process, i.e., $p(\mathbf{x}_t|\mathbf{x}_0, y) =$
 764 $p(\mathbf{x}_t|\mathbf{x}_0)$, $\forall t \in [0, T]$. Additionally, assume the forward process on the reward-weighted distribution
 765 is identical to that on the reference distribution $q(\mathbf{x}_t|\mathbf{x}_0) = p(\mathbf{x}_t|\mathbf{x}_0)$ ³, and ϕ^* is the optimal solution
 766 for the conditional diffusion model trained on target domain $q(\mathbf{x}_0, y)$, i.e.,*

767
$$\phi^* = \arg \min_{\phi} \mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{q_t(\mathbf{x}_t, y)} \left[\left\| \mathbf{s}_{\phi}(\mathbf{x}_t, y, t) - \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t|y) \right\|_2^2 \right] \right\}, \quad (18)$$

768 *then*
 769

770
$$\mathbf{s}_{\phi^*}(\mathbf{x}_t, y, t) = \underbrace{\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t|y)}_{\substack{\text{pre-trained conditional model} \\ \text{on source}}} + \underbrace{\nabla_{\mathbf{x}_t} \log \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\exp\left(\frac{1}{\beta} r(\mathbf{x}_0, y)\right) \right]}_{\text{conditional guidance}}. \quad (19)$$

771 *Proof.* The proof is based on the theoretical framework of Ouyang et al. (2024). For the ease of
 772 readers, we incorporate the relevant conclusion from their work as lemmas below. To prove Eq 19,
 773 we first build the connection between the Conditional Score Matching on the target domain and
 774 Importance Weighted Conditional Denoising Score Matching on the source domain in the following
 775 Lemma:

776 **Lemma A.2.** *Conditional Score Matching on the target domain is equivalent to Importance
 777 Weighted Denoising Score Matching on the source domain, i.e.,*

778
$$\begin{aligned} \phi^* &= \arg \min_{\phi} \mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{q_t(\mathbf{x}_t, y)} \left[\left\| \mathbf{s}_{\phi}(\mathbf{x}_t, y, t) - \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t|y) \right\|_2^2 \right] \right\} \\ &= \arg \min_{\phi} \mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{p(\mathbf{x}_0, y)} \mathbb{E}_{p(\mathbf{x}_t|\mathbf{x}_0)} \left[\left\| \mathbf{s}_{\phi}(\mathbf{x}_t, y, t) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x}_0) \right\|_2^2 \frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right] \right\}. \end{aligned}$$

779 *Proof of Lemma A.2.* We first connect the Conditional Score Matching objective in the target do-
 780 main to the Conditional Denoising Score Matching objective in target distribution, which is proven
 781 by Batzolos et al. (2021), i.e.,

782
$$\begin{aligned} \phi^* &= \arg \min_{\phi} \mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{q_t(\mathbf{x}_t, y)} \left[\left\| \mathbf{s}_{\phi}(\mathbf{x}_t, y, t) - \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t|y) \right\|_2^2 \right] \right\} \\ &= \arg \min_{\phi} \mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{q(\mathbf{x}_0, y)} \mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} \left[\left\| \mathbf{s}_{\phi}(\mathbf{x}_t, y, t) - \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t|\mathbf{x}_0) \right\|_2^2 \right] \right\}. \end{aligned}$$

783 Then we split the mean squared error of the Conditional Denoising Score Matching objective on the
 784 target distribution into three terms as follows:

785
$$\begin{aligned} &\mathbb{E}_{q(\mathbf{x}_0, y)} \mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} \left[\left\| \mathbf{s}_{\phi}(\mathbf{x}_t, y, t) - \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t|\mathbf{x}_0) \right\|_2^2 \right] \\ &= \mathbb{E}_{q(\mathbf{x}_0, \mathbf{x}_t, y)} \left[\left\| \mathbf{s}_{\phi}(\mathbf{x}_t, y, t) \right\|_2^2 \right] - 2 \mathbb{E}_{q(\mathbf{x}_0, \mathbf{x}_t, y)} [\langle \mathbf{s}_{\phi}(\mathbf{x}_t, y, t), \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t|\mathbf{x}_0) \rangle] + C_1, \quad (20) \end{aligned}$$

786 where $C_1 = \mathbb{E}_{q(\mathbf{x}_0, \mathbf{x}_t, y)} \left[\left\| \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t|\mathbf{x}_0) \right\|_2^2 \right]$ is a constant independent with ϕ , and $q(\mathbf{x}_t|\mathbf{x}_0, y) =$
 787 $q(\mathbf{x}_t|\mathbf{x}_0)$ because of conditional independent of \mathbf{x}_t and y given \mathbf{x}_0 by assumption. We can similarly

809 ³These two assumptions are mild since \mathbf{x}_0 contains all information about y and $p(\mathbf{x}_t|\mathbf{x}_0)$ and $q(\mathbf{x}_t|\mathbf{x}_0)$ are
 810 forward noising process, which is easy to control.

split the mean squared error of Denoising Score Matching on the source domain into three terms as follows:

$$\begin{aligned}
 & \mathbb{E}_{p(\mathbf{x}_0, y)} \mathbb{E}_{p(\mathbf{x}_t | \mathbf{x}_0)} \left[\|\mathbf{s}_\phi(\mathbf{x}_t, y, t) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{x}_0)\|_2^2 \frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right] \\
 &= \mathbb{E}_{p(\mathbf{x}_0, \mathbf{x}_t, y)} \left[\|\mathbf{s}_\phi(\mathbf{x}_t, y, t)\|_2^2 \frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right] - 2 \mathbb{E}_{p(\mathbf{x}_0, \mathbf{x}_t, y)} \left[\langle \mathbf{s}_\phi(\mathbf{x}_t, y, t), \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{x}_0) \rangle \frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right] \\
 &\quad + C_2,
 \end{aligned} \tag{21}$$

where C_2 is a constant independent with ϕ .

It is obvious to show that the first term in equation 20 is equal to the first term in equation 21, i.e.,

$$\begin{aligned}
 & \mathbb{E}_{p(\mathbf{x}_0, \mathbf{x}_t, y)} \left[\|\mathbf{s}_\phi(\mathbf{x}_t, y, t)\|_2^2 \frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right] \\
 &= \int_{\mathbf{x}_0} \int_{\mathbf{x}_t} \int_y p(\mathbf{x}_0, y) p(\mathbf{x}_t | \mathbf{x}_0) \|\mathbf{s}_\phi(\mathbf{x}_t, y, t)\|_2^2 \frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} d\mathbf{x}_0 d\mathbf{x}_t dy \\
 &= \int_{\mathbf{x}_0} \int_{\mathbf{x}_t} \int_y p(\mathbf{x}_0, y) q(\mathbf{x}_t | \mathbf{x}_0) \|\mathbf{s}_\phi(\mathbf{x}_t, y, t)\|_2^2 \frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} d\mathbf{x}_0 d\mathbf{x}_t dy \\
 &= \int_{\mathbf{x}_0} \int_{\mathbf{x}_t} \int_y q(\mathbf{x}_0, \mathbf{x}_t, y) \|\mathbf{s}_\phi(\mathbf{x}_t, y, t)\|_2^2 d\mathbf{x}_0 d\mathbf{x}_t dy \\
 &= \mathbb{E}_{q(\mathbf{x}_0, \mathbf{x}_t, y)} \left[\|\mathbf{s}_\phi(\mathbf{x}_t, y, t)\|_2^2 \right].
 \end{aligned}$$

And the second term is also equivalent:

$$\begin{aligned}
 & \mathbb{E}_{p(\mathbf{x}_0, \mathbf{x}_t, y)} \left[\langle \mathbf{s}_\phi(\mathbf{x}_t, y, t), \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{x}_0) \rangle \frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right] \\
 &= \int_{\mathbf{x}_0} \int_{\mathbf{x}_t} \int_y p(\mathbf{x}_0, \mathbf{x}_t, y) \langle \mathbf{s}_\phi(\mathbf{x}_t, y, t), \frac{\nabla_{\mathbf{x}_t} p(\mathbf{x}_t | \mathbf{x}_0)}{p(\mathbf{x}_t | \mathbf{x}_0)} \rangle \frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} d\mathbf{x}_0 d\mathbf{x}_t dy \\
 &= \int_{\mathbf{x}_0} \int_{\mathbf{x}_t} \int_y p(\mathbf{x}_0, \mathbf{x}_t, y) \langle \mathbf{s}_\phi(\mathbf{x}_t, y, t), \frac{\nabla_{\mathbf{x}_t} q(\mathbf{x}_t | \mathbf{x}_0)}{p(\mathbf{x}_t | \mathbf{x}_0)} \rangle \frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} d\mathbf{x}_0 d\mathbf{x}_t dy \\
 &= \int_{\mathbf{x}_0} \int_{\mathbf{x}_t} \int_y \langle \mathbf{s}_\phi(\mathbf{x}_t, y, t), \nabla_{\mathbf{x}_t} q(\mathbf{x}_t | \mathbf{x}_0) \rangle q(\mathbf{x}_0, y) d\mathbf{x}_0 d\mathbf{x}_t dy \\
 &= \int_{\mathbf{x}_0} \int_{\mathbf{x}_t} \int_y \langle \mathbf{s}_\phi(\mathbf{x}_t, y, t), \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t | \mathbf{x}_0) \rangle q(\mathbf{x}_t | \mathbf{x}_0) q(\mathbf{x}_0, y) d\mathbf{x}_0 d\mathbf{x}_t dy \\
 &= \mathbb{E}_{q(\mathbf{x}_0, \mathbf{x}_t, y)} [\langle \mathbf{s}_\phi(\mathbf{x}_t, y, t), \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t | \mathbf{x}_0) \rangle].
 \end{aligned}$$

□

Lemma A.3. Assume \mathbf{x}_t and y are conditional independent given \mathbf{x}_0 in the forward process, i.e., $p(\mathbf{x}_t | \mathbf{x}_0, y) = p(\mathbf{x}_t | \mathbf{x}_0)$, $\forall t \in [0, T]$, and let the forward process on the target domain be identical to that on the source domain $q(\mathbf{x}_t | \mathbf{x}_0) = p(\mathbf{x}_t | \mathbf{x}_0)$, and ϕ^* is the optimal solution for the conditional diffusion model trained on target domain $q(\mathbf{x}_0, y)$, i.e.,

$$\phi^* = \arg \min_{\phi} \mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{q_t(\mathbf{x}_t, y)} \left[\|\mathbf{s}_\phi(\mathbf{x}_t, y, t) - \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t | y)\|_2^2 \right] \right\}, \tag{22}$$

then

$$\mathbf{s}_{\phi^*}(\mathbf{x}_t, y, t) = \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t | y) + \nabla_{\mathbf{x}_t} \log \mathbb{E}_{p(\mathbf{x}_0 | \mathbf{x}_t, y)} \left[\frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right]. \tag{23}$$

Proof of Lemma A.3. According to Lemma A.2, the optimal solution satisfies

$$\phi^* = \arg \min_{\phi} \mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{p(\mathbf{x}_0, y)} \mathbb{E}_{p(\mathbf{x}_t | \mathbf{x}_0)} \left[\|\mathbf{s}_\phi(\mathbf{x}_t, y, t) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{x}_0)\|_2^2 \frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right] \right\}$$

864 where $Z(y) = \int p(\mathbf{x}_0, y) \exp\left(\frac{1}{\beta}r(\mathbf{x}_0, y)\right) d\mathbf{x}$. Then, we use Importance Weighted Conditional
 865 Denoising Score Matching on the source domain to get the analytic form of \mathbf{s}_{ϕ^*} as follows:
 866

$$867 \mathbf{s}_{\phi^*}(\mathbf{x}_t, y, t) = \frac{\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x}_0) \frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right]}{\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right]}.$$

$$870$$

871 Moreover, the RHS of equation 23 can be rewritten as:
 872

$$873 \text{RHS} = \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t|y) + \nabla_{\mathbf{x}_t} \log \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right]$$

$$874 = \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t|y) + \frac{\nabla_{\mathbf{x}_t} \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right]}{\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right]}$$

$$875 = \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t|y) + \frac{\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_0|\mathbf{x}_t, y) \right]}{\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right]}.$$

$$876$$

$$877$$

$$878$$

$$879$$

$$880$$

$$881$$

$$882$$

$$883$$

$$884$$

Since

$$885 \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_0|\mathbf{x}_t, y) = \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x}_0, y) + \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_0|y) - \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t|y)$$

$$886 = \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x}_0, y) - \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t|y),$$

$$887 = \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x}_0) - \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t|y),$$

$$888$$

889 we can further simplify the RHS of equation 23 as follows:
 890

$$891 \text{RHS} = \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t|y) + \frac{\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x}_0) \right]}{\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right]} - \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t|y)$$

$$892 = - \frac{\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x}_0) \frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right]}{\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right]}$$

$$893 = \mathbf{s}_{\phi^*}(\mathbf{x}_t, t).$$

$$894$$

$$895$$

$$896$$

$$897$$

$$898$$

$$899$$

900 Thereby, we finish the proof. \square

$$901$$

$$902$$

903 According to the lemma A.3, we replace the density ratio $\frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)}$ by $\frac{\exp\left(\frac{1}{\beta}r(\mathbf{x}_0, y)\right)}{Z(y)}$, we get
 904

$$905 \mathbf{s}_{\phi^*}(\mathbf{x}_t, y, t) = \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t|y) + \nabla_{\mathbf{x}_t} \log \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\frac{q(\mathbf{x}_0, y)}{p(\mathbf{x}_0, y)} \right]$$

$$906 = \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t|y) + \nabla_{\mathbf{x}_t} \log \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\frac{\exp\left(\frac{1}{\beta}r(\mathbf{x}_0, y)\right)}{Z(y)} \right]$$

$$907 = \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t|y) + \nabla_{\mathbf{x}_t} \log \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\exp\left(\frac{1}{\beta}r(\mathbf{x}_0, y)\right) \right]$$

$$908$$

$$909$$

$$910$$

$$911$$

$$912$$

913 Thereby, we finish the proof. \square

$$914$$

$$915$$

A.2 PROOF OF THEOREM 3.3

916 We provide the detailed discussion about training-free guidance of flow matching in this subsection.
 917

918 *Proof of Theorem 3.3.* Denote $\mathbf{v}_t(\mathbf{x}_t, y)$ and $\mathbf{v}_t(\mathbf{x}_t \mid \mathbf{x}_1, y)$ as the marginal and conditional velocities, respectively. Then we have

919

920
$$\mathbf{v}_t^q(\mathbf{x}_t, y) = \mathbb{E}_{\mathbf{x}_1 \sim q_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} [\mathbf{v}_t(\mathbf{x}_t \mid \mathbf{x}_1, y)]$$

921

922
$$= \mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\mathbf{v}_t(\mathbf{x}_t \mid \mathbf{x}_1, y) \frac{q_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)}{p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \right]$$

923

924
$$= \mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\mathbf{v}_t(\mathbf{x}_t \mid \mathbf{x}_1, y) \frac{\frac{q_{t|1}(\mathbf{x}_t \mid \mathbf{x}_1, y) q_1(\mathbf{x}_1)}{q_t(\mathbf{x}_t, y)}}{\frac{p_{t|1}(\mathbf{x}_t \mid \mathbf{x}_1, y) p_1(\mathbf{x}_1)}{p_t(\mathbf{x}_t, y)}} \right]$$

925

926
$$= \mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\mathbf{v}_t(\mathbf{x}_t \mid \mathbf{x}_1, y) \frac{q_{t|1}(\mathbf{x}_t \mid \mathbf{x}_1, y) q_1(\mathbf{x}_1) p_t(\mathbf{x}_t, y)}{p_{t|1}(\mathbf{x}_t \mid \mathbf{x}_1, y) p_1(\mathbf{x}_1) q_t(\mathbf{x}_t, y)} \right]$$

927

928
$$= \mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\mathbf{v}_t(\mathbf{x}_t \mid \mathbf{x}_1, y) \frac{q_1(\mathbf{x}_1)}{p_1(\mathbf{x}_1)} \cdot \frac{p_t(\mathbf{x}_t, y)}{q_t(\mathbf{x}_t, y)} \right] \quad (\text{because } q_{t|1}(\mathbf{x}_t \mid \mathbf{x}_1, y) = p_{t|1}(\mathbf{x}_t \mid \mathbf{x}_1, y))$$

929

930

931

932
$$= \mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\mathbf{v}_t(\mathbf{x}_t \mid \mathbf{x}_1, y) \frac{q_1(\mathbf{x}_1)}{p_1(\mathbf{x}_1)} \right]$$

933

934

935
$$= \mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\mathbf{v}_t(\mathbf{x}_t \mid \mathbf{x}_1, y) \frac{\frac{q_1(\mathbf{x}_1)}{p_1(\mathbf{x}_1)}}{\frac{q_t(\mathbf{x}_t, y)}{p_t(\mathbf{x}_t, y)}} \right]$$

936

937

938
$$= \mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\mathbf{v}_t(\mathbf{x}_t \mid \mathbf{x}_1, y) \frac{\frac{q_1(\mathbf{x}_1)}{p_1(\mathbf{x}_1)}}{\sum_{\mathbf{x}'_1} p_{1|t}(\mathbf{x}'_1 \mid \mathbf{x}_t, y) \frac{q_1(\mathbf{x}'_1)}{p_1(\mathbf{x}'_1)}} \right]$$

939

940

941

942
$$= \mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\mathbf{v}_t(\mathbf{x}_t \mid \mathbf{x}_1, y) \frac{\frac{q_1(\mathbf{x}_1)}{p_1(\mathbf{x}_1)}}{\mathbb{E}_{\mathbf{x}'_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\frac{q_1(\mathbf{x}'_1)}{p_1(\mathbf{x}'_1)} \right]} \right]$$

943

944

945

946
$$= \mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\mathbf{v}_t(\mathbf{x}_t \mid \mathbf{x}_1, y) \frac{\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)}{\mathbb{E}_{\mathbf{x}'_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\exp\left(\frac{1}{\beta}r(\mathbf{x}'_1, y)\right) \right]} \right]$$

947

948

949
$$= \mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\mathbf{v}_t(\mathbf{x}_t \mid \mathbf{x}_1, y) \frac{\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)}{\mathbb{E}_{\mathbf{x}'_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\exp\left(\frac{1}{\beta}r(\mathbf{x}'_1, y)\right) \right]} \right]$$

950

951

952

953

954
$$= \mathbf{v}_t^p(\mathbf{x}_t, y) + \mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\left(\frac{\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)}{\mathbb{E}_{\mathbf{x}'_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\exp\left(\frac{1}{\beta}r(\mathbf{x}'_1, y)\right) \right]} - 1 \right) \mathbf{v}_t(\mathbf{x}_t \mid \mathbf{x}_1, y) \right].$$

955

956

957

958 The above derivation is the training-based guidance for flow matching, where we need to train the
 959 first guidance network ψ_1^* satisfies:

960

961
$$h_{\psi_1^*}(\mathbf{x}_t, y, t) = \mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right) \right]$$

962

963 by minimizing the objective

964

965
$$\mathcal{L}_{\text{guidance}}(\psi_1) := \mathbb{E}_{p(\mathbf{x}_1, \mathbf{x}_t, y)} \left[\left\| h_{\psi_1}(\mathbf{x}_t, y, t) - \exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right) \right\|_2^2 \right].$$

966

967

968 And then we need the second guidance network ψ_2^* satisfies:

969

970
$$h_{\psi_2^*}(\mathbf{x}_t, y, t) = \mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\left(\frac{\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)}{\mathbb{E}_{\mathbf{x}'_1 \sim p_{1|t}(\mathbf{x}_1 \mid \mathbf{x}_t, y)} \left[\exp\left(\frac{1}{\beta}r(\mathbf{x}'_1, y)\right) \right]} - 1 \right) \mathbf{v}_t(\mathbf{x}_t \mid \mathbf{x}_1, y) \right]$$

971

972 by minimizing the objective
 973

$$974 \quad \mathcal{L}_{\text{guidance}}(\psi_2) := \mathbb{E}_{p(\mathbf{x}_1, \mathbf{x}_t, y)} \left[\left\| h_{\psi_2}(\mathbf{x}_t, y, t) - \left(\frac{\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)}{h_{\psi_1}(\mathbf{x}_t, y, t)} - 1 \right) \mathbf{v}_t(\mathbf{x}_t | \mathbf{x}_1, y) \right\|_2^2 \right].$$

$$975$$

$$976$$

977 The guidance network for flow matching is more complex than that used in diffusion models. The
 978 estimation errors from two guidance networks may accumulate and ultimately degrade generation
 979 performance. To address this limitation, we propose a training-free guidance method for flow match-
 980 ing that mitigates these issues.
 981

$$982 \quad \mathbf{v}_t^q(\mathbf{x}_t, y)$$

$$983$$

$$984 \quad = \mathbf{v}_t^p(\mathbf{x}_t, y) + \mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}(\mathbf{x}_1 | \mathbf{x}_t, y)} \left[\left(\frac{\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)}{\mathbb{E}_{\mathbf{x}'_1 \sim p_{1|t}(\mathbf{x}'_1 | \mathbf{x}_t, y)} [\exp\left(\frac{1}{\beta}r(\mathbf{x}'_1, y)\right)]} - 1 \right) \mathbf{v}_t(\mathbf{x}_t | \mathbf{x}_1, y) \right]$$

$$985$$

$$986$$

$$987 \quad = \mathbf{v}_t^p(\mathbf{x}_t, y) + \int_{\mathbf{x}_1} \left(\frac{\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)}{\mathbb{E}_{\mathbf{x}'_1 \sim p_{1|t}} [\exp\left(\frac{1}{\beta}r(\mathbf{x}'_1, y)\right)]} - 1 \right) \mathbf{v}_t(\mathbf{x}_t | \mathbf{x}_1, y) p_{1|t}(\mathbf{x}_1 | \mathbf{x}_t, y) d\mathbf{x}_1$$

$$988$$

$$989$$

$$990 \quad = \mathbf{v}_t^p(\mathbf{x}_t, y) + \int_{\mathbf{x}_1} \left(\frac{\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)}{\mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}} [\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)]} - 1 \right) \mathbf{v}_t(\mathbf{x}_t | \mathbf{x}_1, y) \frac{p_{t|1}(\mathbf{x}_t | \mathbf{x}_1, y) p(\mathbf{x}_1 | y)}{p_t(\mathbf{x}_t | y)} d\mathbf{x}_1$$

$$991$$

$$992$$

$$993 \quad = \mathbf{v}_t^p(\mathbf{x}_t, y) + \mathbb{E}_{\mathbf{x}_1 \sim p(\mathbf{x}_1 | y)} \left[\left(\frac{\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)}{\mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}} [\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)]} - 1 \right) \mathbf{v}_t(\mathbf{x}_t | \mathbf{x}_1, y) \frac{p_{t|1}(\mathbf{x}_t | \mathbf{x}_1, y)}{p_t(\mathbf{x}_t | y)} \right]$$

$$994$$

$$995$$

$$996 \quad = \mathbf{v}_t^p(\mathbf{x}_t, y) + \mathbb{E}_{\mathbf{x}_1 \sim p(\mathbf{x}_1 | y)} \left[\left(\frac{\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)}{\mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}} [\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)]} - 1 \right) \mathbf{v}_t(\mathbf{x}_t | \mathbf{x}_1, y) \frac{p_{t|1}(\mathbf{x}_t | \mathbf{x}_1, y)}{\mathbb{E}_{\mathbf{x}_1 \sim p(\mathbf{x}_1 | y)} [p_{t|1}(\mathbf{x}_t | \mathbf{x}_1, y)]} \right]$$

$$997$$

$$998$$

$$999 \quad = \mathbf{v}_t^p(\mathbf{x}_t, y) + \mathbb{E}_{\mathbf{x}_1 \sim p(\mathbf{x}_1 | y)} \left[\left(\frac{\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)}{\mathbb{E}_{\mathbf{x}_1 \sim p_{1|t}} [\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)]} - 1 \right) \mathbf{v}_t(\mathbf{x}_t | \mathbf{x}_1, y) \frac{p_{t|1}(\mathbf{x}_t | \mathbf{x}_1, y)}{\mathbb{E}_{\mathbf{x}_1 \sim p(\mathbf{x}_1 | y)} [p_{t|1}(\mathbf{x}_t | \mathbf{x}_1, y)]} \right]$$

$$1000$$

$$1001$$

$$1002 \quad = \mathbf{v}_t^p(\mathbf{x}_t, y) + \mathbb{E}_{\mathbf{x}_1 \sim p(\mathbf{x}_1 | y)} \left[\left(\frac{\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)}{\mathbb{E}_{\mathbf{x}_1 \sim p(\mathbf{x}_1 | y)} [\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)]} - 1 \right) \mathbf{v}_t(\mathbf{x}_t | \mathbf{x}_1, y) \frac{p_{t|1}(\mathbf{x}_t | \mathbf{x}_1, y)}{\mathbb{E}_{\mathbf{x}_1 \sim p(\mathbf{x}_1 | y)} [p_{t|1}(\mathbf{x}_t | \mathbf{x}_1, y)]} \right]$$

$$1003$$

$$1004$$

$$1005 \quad = \mathbf{v}_t^p(\mathbf{x}_t, y) + \mathbb{E}_{\mathbf{x}_1 \sim p(\mathbf{x}_1 | y)} \left[\left(\frac{\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)}{\mathbb{E}_{\mathbf{x}_1 \sim p(\mathbf{x}_1 | y)} [\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)]} - 1 \right) \mathbf{v}_t(\mathbf{x}_t | \mathbf{x}_1, y) \frac{p_{t|1}(\mathbf{x}_t | \mathbf{x}_1, y)}{\mathbb{E}_{\mathbf{x}_1 \sim p(\mathbf{x}_1 | y)} [p_{t|1}(\mathbf{x}_t | \mathbf{x}_1, y)]} \right]$$

$$1006$$

$$1007$$

$$1008 \quad = \mathbf{v}_t^p(\mathbf{x}_t, y) + \mathbb{E}_{\mathbf{x}_1 \sim p(\mathbf{x}_1 | y)} \left[\left(\frac{\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)}{\mathbb{E}_{\mathbf{x}_1 \sim p(\mathbf{x}_1 | y)} [\exp\left(\frac{1}{\beta}r(\mathbf{x}_1, y)\right)]} - 1 \right) \mathbf{v}_t(\mathbf{x}_t | \mathbf{x}_1, y) \frac{p_{t|1}(\mathbf{x}_t | \mathbf{x}_1, y)}{\mathbb{E}_{\mathbf{x}_1 \sim p(\mathbf{x}_1 | y)} [p_{t|1}(\mathbf{x}_t | \mathbf{x}_1, y)]} \right].$$

$$1009$$

$$1010$$

$$1011$$

$$1012 \quad \square$$

A.3 PROOF OF LEMMA 3.2

1013 *Proof.* The proof is straightforward and we include it below for completeness. Note that the objec-
 1014 tive function can be rewritten as

$$1015 \quad \mathcal{L}_{\text{guidance}}(\psi)$$

$$1016$$

$$1017 \quad := \mathbb{E}_{p(\mathbf{x}_0, \mathbf{x}_t, y)} \left[\left\| h_{\psi}(\mathbf{x}_t, y, t) - \exp\left(\frac{1}{\beta}r(\mathbf{x}_0, y)\right) \right\|_2^2 \right]$$

$$1018$$

$$1019 \quad = \int_{\mathbf{x}_t} \int_y \left\{ \int_{\mathbf{x}_0} p(\mathbf{x}_0 | \mathbf{x}_t, y) \left\| h_{\psi}(\mathbf{x}_t, y, t) - \exp\left(\frac{1}{\beta}r(\mathbf{x}_0, y)\right) \right\|_2^2 d\mathbf{x}_0 \right\} p(\mathbf{x}_t | y) p(y) dy d\mathbf{x}_t$$

$$1020$$

$$1021$$

$$1022 \quad = \int_{\mathbf{x}_t} \int_y \left\{ \|h_{\psi}(\mathbf{x}_t, y, t)\|_2^2 - 2 \langle h_{\psi}(\mathbf{x}_t, y, t), \int_{\mathbf{x}_0} p(\mathbf{x}_0 | \mathbf{x}_t, y) \exp\left(\frac{1}{\beta}r(\mathbf{x}_0, y)\right) d\mathbf{x}_0 \rangle \right\} p(\mathbf{x}_t | y) p(y) dy d\mathbf{x}_t + C$$

$$1023$$

$$1024$$

$$1025 \quad = \int_{\mathbf{x}_t} \int_y \left\| h_{\psi}(\mathbf{x}_t, y, t) - \mathbb{E}_{p(\mathbf{x}_0 | \mathbf{x}_t, y)} \left[\exp\left(\frac{1}{\beta}r(\mathbf{x}_0, y)\right) \right] \right\|_2^2 p(\mathbf{x}_t | y) p(y) dy d\mathbf{x}_t,$$

1026 where C is a constant independent of ψ . Thus we have the minimizer $\psi^* = \arg \min_{\psi} \mathcal{L}_{\text{guidance}}(\psi)$
 1027
 1028 satisfies $h_{\psi^*}(\mathbf{x}_t, y, t) = \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t, y)} \left[\exp \left(\frac{1}{\beta} r(\mathbf{x}_0, y) \right) \right]$. \square
 1029
 1030

1031 B MORE DETAILS ON EXPERIMENTS

1032 B.1 ALGORITHMS FOR TRAINING THE GUIDANCE NETWORK

1033 Algorithm 1 is the algorithm for training the guidance network.

1038 **Algorithm 1** Algorithm for Training a Guidance Network

1039 **Require:** Samples from alignment dataset, pre-trained one-step diffusion model $s(\mathbf{x}_T, y, T)$, pre-
 1040 determined reward function $r(\mathbf{x}_0, y)$, hyperparameters η, β , and initial weights of guidance net-
 1041 work ψ .

1042 1: **repeat**
 1043 2: Sample mini-batch data from alignment dataset with batch size b .
 1044 3: Perturb \mathbf{x}_0 using forward transition $p(\mathbf{x}_T|\mathbf{x}_0)$.
 1045 4: Compute guidance loss:
 1046 5:

$$1047 \mathcal{L}_{\text{guidance}}(\psi) = \frac{1}{b} \sum_{\mathbf{x}_0, \mathbf{x}_T, y} \left\| h_{\psi}(\mathbf{x}_T, y) - \exp \left(\frac{1}{\beta} r(\mathbf{x}_0, y) \right) \right\|_2^2.$$

1047 6: Sample mini-batch from winning responses (\mathbf{x}', y) with batch size b .
 1048 7: Perturb \mathbf{x}'_0 using forward transition $q(\mathbf{x}'_T|\mathbf{x}'_0)$.
 1049 8: Compute consistency loss:
 1050 9:

$$1051 \mathcal{L}_{\text{consistency}} = \frac{1}{b} \sum_{\mathbf{x}'_0, \mathbf{x}'_T, y} \left\| s(\mathbf{x}'_T, y, T) + \nabla_{\mathbf{x}'_T} \log h_{\psi}(\mathbf{x}'_T, y) - \nabla_{\mathbf{x}'_T} \log q(\mathbf{x}'_T|\mathbf{x}'_0, y) \right\|_2^2.$$

1052 10: Update ψ via gradient descent:
 1053
$$\nabla_{\psi} (\mathcal{L}_{\text{guidance}} + \eta \mathcal{L}_{\text{consistency}}).$$

 1054 11: **until** convergence
 1055 12: **return** weights of guidance network ψ .

1066 B.2 ABLATION STUDY ON HYPERPARAMETER

1067 In this subsection, we provide the ablation study of the strength of the regularization η and the
 1068 strength of the reward function β in the following table.

1073 Table 3: Ablation study of hyperparameter on PickScore.

η	$\beta = 10$	$\beta = 15$	$\beta = 20$
0.1	22.82	22.79	22.72
0.5	22.78	23.01	22.79
1	22.76	23.08	22.84

1080

1081

Table 4: Prompts used to generate Figure 1.

Image	Prompt
Col1	Saturn rises on the horizon.
Col2	a watercolor painting of a super cute kitten wearing a hat of flowers
Col3	A galaxy-colored figurine floating over the sea at sunset, photorealistic.
Col4	fireclaw machine mecha animal beast robot of horizon forbidden west horizon zero dawn bioluminescence, behance hd by jesper ejsing, by rhads, makoto shinkai and lois van baarle, ilya kuvshinov, rossdraws global illumination
Col5	A swirling, multicolored portal emerges from the depths of an ocean of coffee, with waves of the rich liquid gently rippling outward. The portal engulfs a coffee cup, which serves as a gateway to a fantastical dimension. The surrounding digital art landscape reflects the colors of the portal, creating an alluring scene of endless possibilities.
Col6	A profile picture of an anime boy, half robot, brown hair
Col7	Detailed Portrait of a cute woman vibrant pixie hair by Yanjun Cheng and Hsiao-Ron Cheng and Ilya Kuvshinov, medium close up, portrait photography, rim lighting, realistic eyes, photorealism pastel, illustration
Col8	On the Mid-Autumn Festival, the bright full moon hangs in the night sky. A quaint pavilion is illuminated by dim lights, resembling a beautiful scenery in a painting. Camera type: close-up. Camera lens type: telephoto. Time of day: night. Style of lighting: bright. Film type: ancient style. HD.

1087

1088

B.3 PROMPTS FOR FIGURE IN MAIN PAPER

1089

B.4 NONE DIFFERENTIABLE REWARD

1090

1091

Since the proposed framework is model agnostic and reward agnostic. Our method can be applied to any one-step model and even a non-differentiable reward function. We adopt the GenEval dataset to further demonstrate the effectiveness of the proposed method. The GenEval dataset evaluates whether the generated images are aligned with the prompt regarding object co-occurrence, position, count, and color. We apply official GenEval scripts to generate 5k training prompts. We use SDXL-turbo to generate 10 images per prompt to construct the source dataset and select the correct text image pair as the target dataset for regularization. We train the guidance network for 10 epochs and get the results in Table 5. It verifies the general applicability of the proposed framework. Most importantly, the reward function of the GenEval dataset is binary (1 for correct, 0 for incorrect), which is not differentiable. The unbiased Monte Carlo estimation of the direct backpropagation method cannot be applied to this non-differentiable reward function.

1092

1093

Table 5: Performance on the GenEval benchmark. Our method consistently outperforms SDXL across all sub-tasks.

1094

1095

Method	Single Obj.	Two Obj.	Counting	Colors	Position	Color Attr.	Overall
SDXL	0.97	0.72	0.37	0.83	0.10	0.21	0.53
Ours	0.98	0.75	0.41	0.86	0.16	0.26	0.57

1096

1097

LLM USAGE

1098

1099

LLMs are only used for polishing the writing. No ideas or discoveries are contributed by LLMs.

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133