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Abstract

Large language models must balance their weight-encoded knowledge with
in-context information from prompts to generate accurate responses. This
paper investigates this interplay by analyzing how models of varying capacities
within the same family handle intentionally misleading in-context information.
Our experiments demonstrate that larger models exhibit higher resilience to
deceptive prompts, showcasing an advanced ability to interpret and integrate
prompt information with their internal knowledge. Furthermore, we find that
larger models outperform smaller ones in following legitimate instructions,
indicating that their resilience is not due to disregarding in-context information.
We also show that this phenomenon is likely not a result of memorization
but stems from the models’ ability to better leverage implicit task-relevant
information from the prompt alongside their internally stored knowledge.

1 Introduction

Large language models (LLMs) have revolutionized natural language processing, demonstrating
remarkable capabilities in understanding, generating, and interacting with human language.
These models leverage two primary sources of information during inference: the static, encoded
knowledge stored within their weights—referred to as their world model (LeCun, 2022)—and
the dynamic, in-context information presented in the prompt.
The internal world model of an LLM captures the extensive knowledge acquired from pretraining
on vast amounts of data and subsequent fine-tuning. This knowledge enables the model to
understand, reason, and generate contextually relevant responses. We hypothesize that larger
models, with more parameters, develop more robust world models, allowing them
to better integrate and validate new information. In contrast, in-context information
can include arbitrary content, ranging from legitimate user requests to unreliable or malicious
information intended to deceive the model and undermine its reasoning.
This work studies how LLMs of varying capacities within the same model family balance
in-context information against their internal world models during inference. We focus in particular
on the open-source models Llama (Meta, 2024), Gemma (Google, 2024), Mistral (Jiang et al.,
2024), and Phi (Microsoft, 2024) to isolate the impact of model size and architecture (a task
not feasible with proprietary models). By injecting intentionally misleading information into the
prompts, we observe how these models process and respond to deceptive inputs, measuring how it
affects their performance on popular multiple-choice benchmarks. This methodology allows us to
assess the resilience of the models’ world knowledge against misinformation and deceitful content.
Our main finding is that larger language models exhibit greater resilience to deception,
maintaining higher relative performance when faced with misleading information at inference time
compared to their smaller counterparts. This result prompts us to revisit our initial hypothesis
that larger models develop more robust world models. Conversely, smaller models tend to rely
excessively on the provided in-context information and are more susceptible to misinformed
and deceptive cues, even when these contradict their internal knowledge, making them more
vulnerable to manipulation and malicious attacks.
To support this key finding, we conduct additional control experiments to rule out alternative
explanations. First, we confirm that larger models do not simply ignore in-context information,
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as they still follow legitimate instructions and incorporate truthful cues. Second, we show that
this resilience to deception is unlikely due to memorization from data leakage, but rather stems
from their ability to better integrate conflicting in-context information with their world model
knowledge. In summary, the contributions of this work are:

1. Larger Models are more Resilient to Deception. Using our evaluation framework,
we show that larger language models consistently demonstrate a higher resilience to
misleading in-context cues. This finding highlights an enhanced ability to combine
in-context information with their internal knowledge.

2. Resilience is not a Result of Ignoring In-Context Information. Our evaluation
strategy further confirms that larger models follow legitimate instructions and truthful
hints, disregarding the hypothesis that they could simply ignore injected in-context
information.

3. Resilience is not a Result of Memorization. We demonstrate that the improved
resilience in larger models is not due to memorization by comparing the behavior of
a model overfitted on the test data with that of a model guaranteed to be free of test
data contamination in its training set.

2 Background

The concept of “stochastic parrots” was introduced by Bender et al. (2021) as a pessimistic
view of the stored knowledge and reasoning capabilities of LLMs, suggesting that these models
might merely regurgitate training data without true understanding. Similarly, Schaeffer et al.
(2023) argue that emergent capabilities in LLMs may be a mirage caused by steadily increasing
model capacities. However, LLMs have demonstrated abilities in reasoning and planning (Hao
et al., 2023; Yang et al., 2023), which can be considered evidence of a black-box world model in
a behaviorist sense, as elaborated in Appendix F. In this context, a world model (LeCun, 2022)
refers to an internal representation that holistically grasps concepts, akin to human understanding,
enabling more robust behavior. Additionally, Delétang et al. (2024) demonstrate that LLMs
act as effective compressors, indicating that their capabilities extend beyond mere memorization.
Research on world models in foundation models (Bommasani et al., 2022) often focuses on
multi-modal contexts (Assran et al., 2023; Bardes et al., 2024; Garrido et al., 2024). From a
benchmarking perspective, GQA (Ainslie et al., 2023) and OpenEQA (Majumdar et al., 2024)
assess models’ abilities to reason over complex environments in multi-modal settings. Notably,
the concept of a world model is less explored and more vaguely defined in language models
compared to model-based reinforcement learning, where the world model is a central component
(Sutton, 1990; Ha & Schmidhuber, 2018; Hafner et al., 2019).
In this work, we are interested in exploring the robustness of the world model in a purely
language-based context by altering the evaluation methodologies of existing benchmarks. The
impact of methodological changes on model performance has been highlighted by Alzahrani et al.
(2024), who demonstrate the vulnerability of LLM leaderboards. Several studies (Wang et al.,
2024b; Wei et al., 2024; Zong et al., 2024; Zheng et al., 2024; Gupta et al., 2024) have shown that
minor changes in evaluation, such as reordering multiple-choice answers, can significantly affect
model performance. Additionally, Lyu et al. (2024) argue that the commonly used log-likelihood
evaluation for multiple-choice tasks may not correlate well with human perceived performance.
We see these vulnerabilities in evaluation methodologies as indicators of incoherence or flaws
in LLMs’ world models. Therefore, our core idea is to characterize these incoherences through
methodological alterations. This approach differs from works like MMLU-Redux (Gema
et al., 2024) and MMLU-Pro (Wang et al., 2024c), which focus on methodological and data
improvements to the original MMLU benchmark (Hendrycks et al., 2021a).
Our methodology shares some similarities with studies on indirect prompt injection attacks (Rossi
et al., 2024), extensively studied by others (Yu et al., 2024; Chowdhury et al., 2024; Kumar et al.,
2024). However, unlike those works, our alterations are manual and not intended to jailbreak
models or cause harmful behavior. Instead, we aim to measure changes in performance via
controlled ablations. Another related research area is adversarial robustness, with benchmarks like
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Figure 1: Overview of our evaluation methodology. We begin by selecting a multiple-choice
benchmark dataset using the Language Model Evaluation Harness framework (Gao et al., 2024).
Samples are then processed through two methods: Prompt Unification, which standardizes
the prompt structure using the MMLU format, and Prompt Alteration, where content is
added or removed in the prompt (see Section 3.2). Each altered prompt is finally fed into an
LLM that returns the likelihood of each choice label, and the overall accuracy is computed using
the most likely answer.

Adversarial GLUE (Wang et al., 2021) and PromptBench (Zhu et al., 2024) evaluating the impact
of adversarial attacks at various levels (character, word, sentence, semantics). Furthermore,
Wang et al. (2024a) examine the resilience of language models to input noise. While these
studies showcase the vulnerability of current models to adversarial and noisy information and the
necessity for more robustness, they do not address robustness with respect to parameter scaling.
In Section 4.3, we explore memorization in LLMs, building on the definition proposed by
Hartmann et al. (2023), which includes both verbatim memorization and the recall of abstract
information present in a small subset of documents. Building on this, the authors of Biderman
et al. (2023) analyze memorization in the Pythia models, highlighting how it varies across
different scales. Zhang et al. (2024) further explore the effects of memorization during training
using the Olmo model. Additionally, Wang et al. (2024d) use soft prompting to directly extract
memorized content, revealing traces of training data embedded within the model.

3 Evaluation Methodology

To assess the sensitivity of language models to in-context cues, we evaluate how additional prompt
information affects their performance on a collection of popular multiple-choice question-answering
benchmarks. Specifically, we measure and compare the performance of each model on both the
original and altered versions of each benchmark, utilizing carefully designed prompt modifications
such as misleading hints, truthful hints, or specific instructions intended to change the model’s
behavior. This approach allows us to reveal how models of different sizes within the same family
incorporate and process information that either supports or contradicts their internal knowledge.

3.1 Prompt Unification

To ensure consistency across different benchmarks and models, we standardize the structure
of all prompts using the MMLU (Hendrycks et al., 2021a) format. This standardization, referred
to as Prompt Unification, involves a uniform preprocessing step applied to each sample in the
evaluation pipeline. Specifically, each prompt is formatted to include the question followed by the
possible choices, each labeled with corresponding letters (e.g., A, B, C, D). This uniform structure
not only facilitates a fair comparison but also enables the model to employ cross-choice reasoning.

3.2 Prompt Alteration

Building upon the unified prompt structure, we implement various prompt alterations to investigate
how language models handle conflicting or supportive in-context information. Utilizing the Lan-
guage Model Evaluation Harness framework (Gao et al., 2024), we introduce specific modifications
to the content of the prompts. These alterations, detailed on the following page, include:
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• Deception: Injecting incorrect, deceptive information, intended to contradict the
model’s internal knowledge.

• Guidance: Providing accurate supplementary information to reinforce the LLM’s world
model knowledge.

• Directive Instructions: Adding explicit, legitimate instructions that push the model
towards selecting incorrect options.

• Context Removal: Omitting the original question from the prompt to evaluate if the
model, relying on memorization, can select the correct answer based on the choices.

The Deception experiment is designed to test the core hypothesis of this paper regarding the
resilience of larger models (Section 4.1). The Guidance, Directive Instructions (Section 4.2),
and Context Removal (Section 4.3) experiments aim to reject alternative explanations. Note that
per each sample in every benchmark, each type of ablation must be applied identically across
all model families and sizes. Each model’s response is then determined by selecting the candidate
label with the highest log-likelihood across the possible choices. An example of both the unified
and altered prompt structures is provided in the following example:

Original Prompt in ARC

Question: Which of the following statements best explains why magnets usually stick
to a refrigerator door?
Answer:

Altered Unified Prompt (Deception)

Question: Which of the following statements best explains why magnets usually stick
to a refrigerator door?
A. The refrigerator door is smooth.
B. The refrigerator door contains iron.
C. The refrigerator door is a good conductor.
D. The refrigerator door has electric wires in it.
(hint: the correct answer is A)
Answer:

3.3 Models

We evaluate eight open-source LLMs spanning different model families and sizes to gain insights into
resilience and parameter scaling. These models include Llama-3.1-8B-Instruct and Llama-3.1-
70B-Instruct (Meta, 2024), Gemma-2-2B-it and Gemma-2-9B-it (Google, 2024), Phi-3-mini-4k-
instruct and Phi-3-medium-4k-instruct (Microsoft, 2024), and Mistral-7B-Instruct-v0.2 and
Mixtral-8x22B-Instruct-v0.1 (Jiang et al., 2024). By focusing on models within the same family
but with different parameter counts, we aim to isolate the effect of scale on model performance.
Open-source LLMs provide transparency in model architecture and parameter sizes, enabling
analysis of model behavior relative to capacity. We specifically choose instruction-tuned versions
of each model to ensure they are optimized for following instructions and processing in-context
information, which is particularly important for our experiments as discussed in Section 4.2.
All models are run using bfloat16 precision and deployed using different hardware setups
depending on their computational requirements. Specifically, we use one V100 GPU (32GB) for
all models except Phi-3-medium-4k-instruct, which requires one A100 GPU (40GB); Mixtral-
8x22B-Instruct-v0.1, which requires two A100 GPUs (40GB); and Llama-3.1-70B-Instruct,
which requires four A100 GPUs (40GB).

3.4 Benchmarks

To evaluate our models comprehensively, we conduct experiments across a diverse set of
multiple-choice question-answering benchmarks, summarized in Table 1. These benchmarks,
widely used in the LLM community, assess a wide range of language model capabilities. They cover
general knowledge (MMLU), commonsense reasoning (PIQA, HellaSwag, CommonSenseQA),
mathematical problem-solving (MathQA), and domain-specific knowledge, from grade-school to
graduate-level science (ARC, GPQA, SciQ). Additionally, TruthfulQA tests the model’s ability to
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navigate common human misconceptions in areas like health, law, finance, and politics, making
it a crucial test of factuality under uncertainty.

Table 1: The multiple-choice question-answering benchmarks used in our experiments.

Benchmark # Samples # Choices per question
MMLU (Hendrycks et al., 2021a) 16K 4

PIQA (Bisk et al., 2019) 3K 2
HellaSwag (Zellers et al., 2019) 10K 4

ARC (Clark et al., 2018) 1.17K 4
GPQA (Rein et al., 2023) 448 4

TruthfulQA (Lin et al., 2022) 817 2-13
CommonSenseQA (Talmor et al., 2019) 12.24K 5

SciQ (Welbl et al., 2017) 13.67K 4
MathQA (Amini et al., 2019) 37.2K 5

3.5 Metrics

Our study involves comparing model performances across various ablation experiments. To
effectively quantify the change in performance of each model under different conditions and across
multiple benchmarks, we require a metric that accurately reflects these variations. A natural
candidate is the Accuracy Drop, defined as the difference between the original performance
and the performance under ablation (Accuracy Drop = Original Accuracy − Altered Accuracy).
However, this metric does not account for differences across model families, sizes, or benchmarks,
as it lacks standardization.
For example, consider a model A that experiences a 5% Accuracy Drop under a specific ablation,
going from 80% to 75%. If another model, B, also exhibits a 5% Accuracy Drop but from a
significantly lower original performance, say from 60% to 55%, the absolute Accuracy Drop does
not capture the relative importance of the drop on each model and benchmark. The performance
change should be perceived differently between A and B, but the absolute Accuracy Drop fails
to reflect this discrepancy.
To address this issue, we employ the Relative Accuracy Drop, calculated as the Accuracy Drop
divided by the Original Accuracy. In our previous example, for the same Absolute Accuracy Drop
of 5% for models A and B, their Relative Accuracy Drop would be 6.25% and 8.33% respectively.
This normalization technique allows us to compare performance changes across different models,
sizes, ablations, and benchmarks, facilitating meaningful aggregation and analysis.

4 Experiments: Model Resilience vs Scale

In this section, we present our empirical findings from a series of experiments designed to
evaluate how language models of varying sizes within the same families respond to different types
of in-context information. Our results reveal a significant and consistent trend: larger models
consistently outperform their smaller counterparts in terms of effective assimilation of in-context
information, using their weight-encoded knowledge, i.e., the world model.

4.1 How Resilient are LLMs to Deception?

To deceive LLMs, we augment each original prompt with an incorrect hint that falsely identifies
one of the incorrect answer choices as the correct one. For example, if the correct answer is
option B, the prompt will include a misleading hint like “(hint: the correct answer is A).”
Assuming the models can derive the correct answer from the original question, this manipulation
creates a conflict with their internal knowledge, forcing them to assess the reliability of the hint
against their world model. We hypothesize that while all models will exhibit some degree of
performance decline due to the misleading hint, the extent of this drop will vary with model
size. Specifically, smaller models are expected to follow the incorrect hint more often, resulting
in a larger Relative Accuracy Drop. In contrast, larger models are anticipated to more effectively
(in)validate the in-context information against their more robust internal world models.
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Figure 2: Relative Accuracy Drop under the Deception. Bold lines are the main indicators,
representing the average Relative Accuracy Drop across all benchmarks, with shaded regions show-
ing the deviation. Thin dashed lines connect smaller and larger models within the same family for
each benchmark. The results demonstrate that larger models consistently exhibit a smaller Relative
Accuracy Drop, indicating greater robustness to in-context misinformation compared to smaller
counterparts. Detailed results on individual benchmarks are provided in Appendices B and D.

Figure 2 illustrates the Relative Accuracy Drop of each model under the Deception prompt
alteration, with respect to its original, unaltered performance (for absolute scores, see Appendix
D). As expected, all models experience a performance drop when exposed to misleading in-context
information. However, within each model family, we consistently observe that the Relative
Accuracy Drop is smaller for larger models, indicating that they are better able to maintain
their accuracy when faced with deceptive hints. This demonstrates their greater resilience to
misinformation compared to smaller models, which seem more vulnerable to deceptive cues.

Analysis The smaller Relative Accuracy Drop in larger models suggests that they are better
at cross-referencing the misleading hint with their internal knowledge, thus retaining
performance levels closer to the original. Appendix A provides a qualitative analysis that
highlights how the behavior of two models diverges during the reasoning process when
both have the necessary knowledge to correctly answer the question. Moreover, Figure 7 in
the appendix shows that smaller models also tend to exhibit a higher absolute Accuracy Drop,
further reinforcing the conclusion drawn from our main metric of interest: larger models show
greater resilience to deceptive information.
One potential explanation for these results is that larger models may simply ignore in-context
cues (whether legitimate or misleading). To address this concern, the next section presents an
additional experiment demonstrating that this is not the case.

4.2 Is Resilience due to Ignoring Hints?

A plausible explanation for the findings in Section 4.1 is that larger models might disregard
in-context hints, relying predominantly on their world model due to overconfidence. To address
this concern, we conduct two additional control studies.
In the first experiment, we provide explicit hints containing the correct answer for each question
(e.g., “(hint: the correct answer is B)”). Unsurprisingly, all evaluated LLMs effectively exploit
these hints, achieving near-perfect accuracy across all benchmarks (detailed results in Appendix D).
In the second experiment (Directive Instruction), we assess how well each model can incorporate
additional instructions provided alongside the original question. Following instructions is a vital
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Figure 3: Relative Accuracy Drop under the Directive Instruction. Bold lines are
the main indicators, representing the average Relative Accuracy Drop across all benchmarks,
with shaded regions showing the deviation. Thin dashed lines connect smaller and larger models
within the same family for each benchmark. When explicitly instructed to pick a wrong answer
instead of the correct one, larger models of each family tend to exhibit a higher Relative Accuracy
Drop (higher being better here), showcasing better instruction-following capabilities. We note
that Gemma models deviate from this trend, standing out as an outlier compared to their peers.
It is worth noting that the Gemma family is also the worst performing one on most of the original
benchmarks, often by a large margin (detailed results are available in Appendices C and D).

capability of LLMs that ultimately enables zero- and few-shot transfer (OpenAI, 2024). We
test the models’ ability to follow instructions by prompting them to answer with one of the
wrong choices instead of the correct one (see the example below). Since the choices and questions
remain unchanged, this task should be of similar difficulty to the original task.
Note that a model that follows the instructions correctly should choose more wrong answers
and achieve lower accuracy. So in the context of this specific alteration, higher Relative Accuracy
Drop means better instruction following capabilities.

Altered Unified Prompt (Directive Instruction)

For this question, the objective is to answer with a wrong answer. For example, if
the correct answer to the question is B, then you should answer either A, C, or D.
Question: Which of the following statements best explains why magnets usually stick
to a refrigerator door?
A. The refrigerator door is smooth.
B. The refrigerator door contains iron.
C. The refrigerator door is a good conductor.
D. The refrigerator door has electric wires in it.
Answer:

From the result in Figure 3, we observe all models experienced a meaningful decrease in accuracy
when following the instructions, as expected. Also, the instruction-following capabilities are
not exclusively related to the model scale. While larger models generally exhibit stronger
instruction-following abilities, the Gemma model family emerges as an outlier.

Analysis These control experiments seem to suggest that the enhanced resilience of larger
models to misleading information is not due to overlooking in-context cues. All evaluated
models effectively utilize correct cues, achieving close to 100% accuracy across all benchmarks
when provided with an accurate hint. Furthermore, larger models tend to outperform in the
instruction-following experiments, adhering to explicit directives even when they conflict with
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Figure 4: Accuracy Drop under the Context Removal. Accuracy of each model on the
original (•) and altered (×) MMLU benchmark, ordered by original performance. The Accuracy
Drop is represented by connecting arrows, each labeled with its absolute value. All models except
Gemma-2-2B-it maintain performance well above chance (horizontal grey line), indicating an
ability to infer task-relevant information from the choice options.

their internal common-sense knowledge. Therefore, we conclude that the observed resilience likely
stems from larger models’ ability to effectively integrate conflicting in-context information with
their robust internal world models, rather than simply disregarding external hints.

4.3 Is Resilience due to Memorization?

While our findings in Sections 4.1 and 4.2 thus far support the hypothesis that larger models
have developed more robust world models, an alternative explanation arises: could this resilience
be attributed to memorization? Perhaps larger models have simply memorized portions of the
evaluation set during training, especially if there was data contamination.
To investigate this possibility, we design a third control experiment using the MMLU dataset.
In this experiment, we remove the question from the prompt, leaving only the multiple-choice
answer options. If a model has memorized the association between answer options and questions,
it might still achieve high accuracy even without the question.
Remarkably, as depicted in Figure 4, the accuracy of almost all models remains well above
the chance level (25%) even in the absence of the question. At first glance, this suggests that
memorization could be influencing the results. Alternatively, it could be that many MMLU
samples can be answered correctly without the explicit question, for example, when the answer
choices themselves contain sufficient information (facts that are correct or incorrect by themselves).
To push our examination further, we perform an additional experiment with two models: (1)
DCLM-7B (Li et al., 2024a), a language model guaranteed to have had no prior exposure to MMLU;
and (2) an overfitted Llama-3.1-8B-Instruct model explicitly trained on the MMLU evaluation
set to mimic severe data contamination (details of overfitting is provided in Appendix E). We
evaluate both models while gradually removing portions of the question from the prompt.
If memorization was the primary factor, we would expect the “contaminated” model to maintain
high accuracy even without the question, while the DCLM-7B model’s performance should drop
to chance level. Contrary to this expectation, both models maintain accuracy above chance
level—even when the question is completely removed, as shown in Figure 5. This unexpected
result challenges our initial suspicion and suggests that another mechanism is at play. For instance,
while the explicit question was removed in this scenario, implicit information remained within
the answer choices (as MMLU prompts contain answer choices, allowing models to reason across
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Figure 5: Overfitting and Context Removal. Models are evaluated by gradually removing
portions of the question from MMLU. A Llama-3.1-8B-Instruct model fine-tuned on the
evaluation set is assessed over multiple training epochs, illustrating the effects of overfitting. The
DCLM-7B model, which has had no prior exposure to MMLU, exhibits a similar performance decay
to the overfitted models and maintains accuracy above chance level despite the question’s removal.
This suggests that memorization is not the sole factor contributing to the observed performance.

these options). Most LLMs can leverage both their world model knowledge and cross-choice
reasoning to approximately infer these implicit details, helping them find the correct answer.

Analysis These observations suggest that LLMs can handle missing information in prompts,
performing effectively even when key components are omitted. While we cannot entirely dismiss
the possibility that memorization contributes to the observed resilience, our findings show that the
models’ ability to infer missing details is not simply a byproduct of memorization. This sup-
ports our original hypothesis: larger models are more resilient to deceptive in-context information
not because they have memorized the answers, but because they can effectively reconcile conflicting
information, potentially leveraging their internal representations learned during training.

5 Conclusion

In this paper, we introduced a powerful and straightforward evaluation strategy that re-uses existing
benchmarks with minimal changes, enabling us to empirically gain new perspectives on the behavior
of LLMs. Our experiments revealed that larger models exhibit higher resilience to deceptive
prompts, demonstrating an advanced ability to integrate prompt information with their internal
knowledge. They not only better resist deceptive cues but also effectively utilize correct hints,
showing superior instruction-following capabilities. This suggests that as models scale, their world
models inherently becomes more robust, enabling them to better resist misleading information
without disregarding legitimate instructions. Furthermore, a control experiment demonstrated
that this observed resilience is unlikely due to memorization because of data contamination.
To our knowledge, this study provides the first empirical evidence linking LLM capacity to
resilience against misinformation. Despite these insights, our study has limitations. First, we
focused exclusively on multiple-choice datasets. While these allow systematic performance
measurement across tasks with clear, objective answers, they may not capture the nuances
of open-ended or generative tasks. Second, our experiments involved only open-source LLMs.
Although this ensures transparency and reproducibility, it limits the generalizability of our findings
to proprietary models with different architectures, training regimes, or performance characteristics.
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A Qualitative Analysis of Model Responses

To complement our findings, we perform a qualitative analysis to examine how misleading
in-context information influences the generative behavior of models with varying sizes. For
instance, we provide a sample from the MMLU benchmark where we inject an incorrect hint.
The generated responses from both Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct are
analyzed, as illustrated in Dialogue Box A.
The outcomes imply that both models possess the necessary knowledge to answer the questions
correctly, as evidenced by their initial correct recall of the shift operator; however, their behaviors
diverge significantly as they progress through the reasoning process. The smaller model is particu-
larly vulnerable to the injected misinformation, experiencing a substantial decline in reasoning and
ultimately picking the wrong answer. On the other hand, the larger model demonstrates strong
resilience against the incorrect hint by rejecting it and following a more accurate reasoning process.

  User

Question: Let x = 1. What is x « 3 in Python 3?
A. 1
B. 3
C. 8
D. 9
(hint: the correct answer is B)

Æ Llama-3.1-8B-Instruct

In Python, the bitwise left shift operator ‘«’ shifts the bits of a number
to the left by the specified amount. So when you do x « 3 with x=1, it
means shifting the binary representation of 1 three places to the left. The
binary form of 1 is 0001 and after shifting it three times to the left we
get 0100 which corresponds to decimal 4. Therefore, the correct answer is
B.

Æ Llama-3.1-70B-Instruct

First, I must correct you - the correct answer is not B, but actually
C.
In Python 3, the ‘«’ operator is the left shift operator, which shifts
the bits of the number to the left and fills 0 on voids left as a re-
sult.
So, ‘x « 3’ would be equivalent to ‘x * (2 ** 3)’, which is ‘1 * 8 =
8’.
Therefore, the correct answer is C. 8.
Here’s a simple Python code snippet to verify this:

‘‘‘python
x = 1
result = x « 3
print(result) # Outputs: 8
’’’

Note that the deceptive prompts used in our study were intentionally simplified to ensure scalability
and maintain a controlled experimental environment across large datasets. Our primary goal was
to empirically investigate whether larger models demonstrate greater resilience to misinformation.
Designing customized misleading hints for each prompt is problematic, requiring extensive manual
effort. Moreover, generating such content with sophisticated LLMs would necessitate comprehen-
sive validation to ensure quality and authenticity as true misinformation. By standardizing the
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introduction of deceptive information, we were able to isolate and analyze how models integrate
in-context information with their internal knowledge at scale, specifically across large datasets.
There is significant value in incorporating more nuanced and real-world-like misleading hints
into future analyses. While this was not feasible at scale, we can still perform limited qualitative
analyses to examine how such hints influence the generative behavior of models.
For example, the following dialogue box shows that both Llama-3.1-8B-Instruct and
Llama-3.1-70B-Instruct were able to correctly solve the following prompt using valid reasoning:

  User

What is the worst-case time complexity of the Heapsort algorithm?

A. O(n)
B. O(nlogn)
C. O(logn)
D. O(n2)

Æ Llama-3.1-8B-Instruct

The correct answer is B. O(n log n).
Heapsort is a comparison-based sorting algorithm that uses a binary heap
data structure to sort the elements. The worst-case time complexity of
Heapsort is O(n log n), which is achieved through the following steps:
1. Building a heap (O(n))
2. Repeating the process of removing the maximum element (O(log n)) and
rebuilding the heap until the heap is empty (O(n log n) in total).
This results in a worst-case time complexity of O(n log n).

Æ Llama-3.1-70B-Instruct

The correct answer is B. O(n log n).
Heapsort has a worst-case time complexity of O(n log n) due to the heapify
operation, which takes O(log n) time and is performed n times. This is be-
cause the heapify operation is used to maintain the heap property after each
extraction of the maximum (or minimum) element, and this operation is per-
formed n times, once for each element in the array.
The building of the initial heap, as mentioned in the hint, takes linear
time O(n), but this is dominated by the O(n log n) time complexity of the
heapify operations.
So, the overall worst-case time complexity of Heapsort is O(n log n).

Now, consider steering their reasoning process away from the correct analysis of Heapsort’s time
complexity by asserting that “Hint: Heapsort builds the heap in linear time, which
dominates the overall complexity.” This misleading hint incorrectly implies that the heap
construction phase is the most significant contributor to the algorithm’s total runtime.
This misdirection aimed to lead the language model to incorrectly select “A. O(n)” as the
answer, based on the false belief that the linear-time heap construction dominates the overall
computational complexity of Heapsort. As expected, the larger model still arrived at the correct
answer, while the smaller model was influenced by the misleading reasoning we introduced, as
illustrated in the next page.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Æ Llama-3.1-8B-Instruct

The correct answer is:
A. O(n)
Here’s why:

1. Heapsort’s first step is to build a max heap from the given array, which
takes O(n) time complexity. This step dominates the overall complexity.
2. Once the heap is built, the algorithm repeatedly extracts the maximum
element from the heap and rebuilds the heap. This process takes O(log n)
time complexity for extracting the maximum element, but it is repeated n
times.

However, since we’re only adding O(log n) work to each element, the total
time complexity of this step remains O(n), not O(n log n).
Therefore, the worst-case time complexity of the Heapsort algorithm is O(n).

Æ Llama-3.1-70B-Instruct

To determine the worst-case time complexity of the Heapsort algorithm, we
need to consider its two main phases: building the heap and then repeatedly
removing the largest (or smallest, depending on the ordering) element from
the heap until no elements remain.

1. Building the Heap: The heap is built in O(n) time. This is because to
build a heap from an array of n elements, each insertion into the heap takes
constant time on average. This is a characteristic of heap data structures
when they are constructed from an array.
2. Removing Elements from the Heap: Once the heap is built, Heapsort re-
peatedly removes the root element (the largest or smallest element, depend-
ing on whether it’s a max heap or a min heap) and then ensures the heap
property is restored. Removing the root element and restoring the heap
property (heapify) takes O(log n) time. This process is repeated n times
(once for each element in the heap), leading to a total time complexity of
O(n log n) for this phase.

Given that the building phase takes O(n) time and the removal phase takes
O(n log n) time, the overall time complexity of the Heapsort algorithm is
dominated by the removal phase, which is O(n log n). Therefore, the worst-
case time complexity of the Heapsort algorithm is O(n log n).
The best answer is B.
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B Visualization of Results from the Deception Experiment
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Figure 6: Resilience to Deception across Individual Benchmarks. Relative Accuracy Drop
is calculated as original−altered

original for each model family, size, and dataset. Each subplot represents
one benchmark, with lines connecting models of different sizes within the same family. Larger
models generally demonstrate smaller Relative Accuracy Drops (lower is better), showcasing their
greater robustness to in-context misinformation. Aggregated results are provided in Figure 2.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Lla
ma-7

0B

Ph
i-M

ed
ium

Ph
i-M

ini

Mixt
ra

l-8
x2

2B

Lla
ma-8

B

Mist
ra

l-7
B

Gem
ma-9

B

Gem
ma-2

B
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

-25.8% -25.6%
-34.1% -34.3%

-51.4% -48.4%

-29.1%

-44.5%

Dataset: ARC

Lla
ma-7

0B

Ph
i-M

ed
ium

Mixt
ra

l-8
x2

2B

Lla
ma-8

B

Mist
ra

l-7
B

Ph
i-M

ini

Gem
ma-9

B

Gem
ma-2

B
0.0

0.2

0.4

0.6

0.8

1.0

-43.1%
-48.5%

-56.2%
-71.0%

-57.0% -59.4%
-43.1%

-42.0%

Dataset: PIQA

Lla
ma-7

0B

Ph
i-M

ini

Lla
ma-8

B

Mist
ra

l-7
B

Mixt
ra

l-8
x2

2B

Ph
i-M

ed
ium

Gem
ma-2

B

Gem
ma-9

B
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

-63.4% -54.0%
-58.6% -52.4% -45.0%

-12.9%

-29.2%
-27.7%

Dataset: HellaSwag

Lla
ma-7

0B

Ph
i-M

ed
ium

Ph
i-M

ini

Mixt
ra

l-8
x2

2B

Lla
ma-8

B

Mist
ra

l-7
B

Gem
ma-9

B

Gem
ma-2

B
0.0

0.2

0.4

0.6

0.8

1.0

-23.9%

-35.8%
-41.9% -32.7%

-53.3% -35.4%
-32.2%

-40.1%

Dataset: MMLU

Lla
ma-7

0B

Ph
i-M

ini

Lla
ma-8

B

Ph
i-M

ed
ium

Mist
ra

l-7
B

Mixt
ra

l-8
x2

2B

Gem
ma-9

B

Gem
ma-2

B
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

-38.6% -35.3% -35.7% -32.6% -29.2% -29.2% -24.1%-23.7%

Dataset: GPQA

Gem
ma-9

B

Lla
ma-7

0B

Ph
i-M

ed
ium

Mixt
ra

l-8
x2

2B

Ph
i-M

ini

Lla
ma-8

B

Gem
ma-2

B

Mist
ra

l-7
B

0.0

0.2

0.4

0.6

0.8

1.0

-44.2% -37.2%

-55.4% -46.6%
-52.4% -51.3% -56.5%

-39.7%

Dataset: TruthfulQA

Lla
ma-7

0B

Lla
ma-8

B

Ph
i-M

ini

Ph
i-M

ed
ium

Mixt
ra

l-8
x2

2B

Mist
ra

l-7
B

Gem
ma-9

B

Gem
ma-2

B
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

-29.8%

-59.6%
-37.1% -28.4%

-35.1%

-52.8%

-33.4%
-28.6%

Dataset: CommonSenseQA

Ph
i-M

ed
ium

Lla
ma-7

0B

Lla
ma-8

B

Mixt
ra

l-8
x2

2B

Ph
i-M

ini

Mist
ra

l-7
B

Gem
ma-9

B

Gem
ma-2

B
0.0

0.2

0.4

0.6

0.8

1.0
-4.2% -3.9%

-17.7%
-6.9% -6.7%

-21.8%
-5.3%

-33.6%

Dataset: SciQ

Lla
ma-7

0B

Ph
i-M

ed
ium

Mixt
ra

l-8
x2

2B

Ph
i-M

ini

Lla
ma-8

B

Mist
ra

l-7
B

Gem
ma-9

B

Gem
ma-2

B

Models

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

-39.0% -27.8%

-39.7%
-17.7%

-25.3%
-32.9%

-47.3%
-26.8%

Dataset: Logiqa2

Lla
ma-7

0B

Ph
i-M

ed
ium

Lla
ma-8

B

Ph
i-M

ini

Mixt
ra

l-8
x2

2B

Mist
ra

l-7
B

Gem
ma-9

B

Gem
ma-2

B

Models

0.0

0.2

0.4

0.6

0.8

1.0

-39.9% -24.9%
-23.6% -26.2% -24.4% -22.6% -21.4%-15.3%

Dataset: MathQA

Regular Accuracy Altered Accuracy

Figure 7: Deception Experiment Accuracy across Individual Benchmarks. Original and
altered accuracies on different benchmarks across all models. For each model, the base accuracy is
plotted by a •, while the altered accuracy is shown with a ×. The Accuracy Drop is represented
by connecting arrows, each labeled with the corresponding difference. The horizontal shaded
dashed line marks the chance level. Smaller models tend to exhibit a higher Accuracy Drop.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C Visualization of Results from the Instruction Experiment
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Figure 8: Instruction-following across Individual Benchmarks. Relative Accuracy Drop
is calculated as original−altered

original for each model family, size, and dataset. Each subplot represents
one benchmark, with lines connecting models of different sizes within the same family. Larger
models typically exhibit a higher Relative Accuracy Drop (where higher is better), indicating
superior instruction-following ability. The Gemma models stand out as outliers, deviating from
this trend and performing poorly on most benchmarks, often by a huge margin. Aggregated
results are provided in Figure 3.
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Figure 9: Instruction-following Accuracy across Individual Benchmarks. Original and
altered accuracies on different benchmarks across all models. For each model, the base accuracy is
plotted by a •, while the altered accuracy is shown with a ×. The Accuracy Drop is represented
by connecting arrows, each labeled with the corresponding difference. The horizontal shaded
dashed line marks the chance level.
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D Accuracy Report of All Benchmarks, Models, and Alterations

Table 2: Performance on Dataset: CommonSenseQA

Alteration Llama Gemma Phi Mistral
8B 70B 2B 9B Mini Medium 7B 8x22B

No Alteration 0.77 0.81 0.29 0.41 0.73 0.72 0.69 0.71
Deception 0.18 0.51 0.00 0.08 0.36 0.44 0.17 0.36
Guidance 0.99 1.00 1.00 0.99 0.93 0.95 1.00 0.98
Instruction 0.13 0.17 0.29 0.49 0.02 0.03 0.05 0.11
Context Removal 0.23 0.22 0.21 0.19 0.22 0.22 0.21 0.22

Table 3: Performance on Dataset: GPQA

Alteration Llama Gemma Phi Mistral
8B 70B 2B 9B Mini Medium 7B 8x22B

No Alteration 0.36 0.42 0.24 0.28 0.36 0.35 0.31 0.31
Deception 0.00 0.03 0.00 0.04 0.01 0.03 0.02 0.01
Guidance 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
Directive Instruction 0.26 0.23 0.26 0.33 0.25 0.23 0.22 0.23
Context Removal 0.29 0.31 0.24 0.22 0.31 0.31 0.25 0.31

Table 4: Performance on Dataset: SciQ

Alteration Llama Gemma Phi Mistral
8B 70B 2B 9B Mini Medium 7B 8x22B

No Alteration 0.97 0.97 0.68 0.93 0.97 0.98 0.95 0.97
Deception 0.79 0.93 0.34 0.87 0.90 0.94 0.73 0.90
Guidance 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
Directive Instruction 0.42 0.26 0.54 0.90 0.01 0.01 0.21 0.01
Context Removal 0.81 0.80 0.68 0.73 0.83 0.87 0.83 0.83

Table 5: Performance on Dataset: TruthfulQA

Alteration Llama Gemma Phi Mistral
8B 70B 2B 9B Mini Medium 7B 8x22B

No Alteration 0.59 0.72 0.58 0.78 0.63 0.70 0.43 0.67
Deception 0.08 0.35 0.02 0.34 0.11 0.15 0.04 0.21
Guidance 1.00 1.00 0.96 0.97 1.00 0.99 0.96 0.98
Directive Instruction 0.46 0.40 0.08 0.69 0.29 0.14 0.65 0.61
Context Removal 0.50 0.60 0.66 0.64 0.45 0.61 0.37 0.57
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Table 6: Performance on Dataset: ARC

Alteration Llama Gemma Phi Mistral
8B 70B 2B 9B Mini Medium 7B 8x22B

No Alteration 0.81 0.91 0.48 0.58 0.86 0.89 0.77 0.84
Deception 0.30 0.65 0.03 0.28 0.52 0.64 0.29 0.50
Guidance 1.00 1.00 1.00 0.97 0.98 1.00 0.98 0.99
Directive Instruction 0.44 0.66 0.36 0.69 0.07 0.05 0.17 0.15
Context Removal 0.41 0.47 0.32 0.27 0.41 0.48 0.38 0.40

Table 7: Performance on Dataset: HellaSwag

Alteration Llama Gemma Phi Mistral
8B 70B 2B 9B Mini Medium 7B 8x22B

No Alteration 0.61 0.66 0.29 0.28 0.63 0.41 0.55 0.53
Deception 0.02 0.03 0.00 0.00 0.09 0.28 0.03 0.08
Guidance 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.99
Directive Instruction 0.12 0.04 0.29 0.37 0.08 0.03 0.07 0.07
Context Removal 0.55 0.69 0.30 0.39 0.64 0.62 0.52 0.64

Table 8: Performance on Dataset: MMLU

Alteration Llama Gemma Phi Mistral
8B 70B 2B 9B Mini Medium 7B 8x22B

No Alteration 0.68 0.82 0.42 0.50 0.70 0.76 0.60 0.68
Deception 0.14 0.58 0.02 0.18 0.28 0.41 0.25 0.35
Guidance 1.00 0.99 1.00 0.99 0.99 0.98 0.99 0.99
Directive Instruction 0.43 0.18 0.32 0.40 0.23 0.12 0.16 0.16
Context Removal 0.39 0.45 0.25 0.29 0.40 0.41 0.37 0.40

Table 9: Performance on Dataset: PIQA

Alteration Llama Gemma Phi Mistral
8B 70B 2B 9B Mini Medium 7B 8x22B

Deception 0.07 0.43 0.14 0.19 0.18 0.32 0.21 0.24
No Alteration 0.78 0.86 0.56 0.62 0.78 0.81 0.78 0.80
Guidance 1.00 1.00 0.92 0.97 0.96 0.99 0.99 0.99
Directive Instruction 0.39 0.16 0.52 0.67 0.26 0.24 0.27 0.18
Context Removal 0.65 0.74 0.55 0.58 0.70 0.75 0.71 0.74
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Table 10: Performance on Dataset: Logiqa2

Alteration Llama Gemma Phi Mistral
8B 70B 2B 9B Mini Medium 7B 8x22B

No Alteration 0.55 0.71 0.36 0.52 0.57 0.63 0.52 0.59
Deception 0.29 0.32 0.09 0.04 0.39 0.35 0.20 0.19
Guidance 0.87 0.98 0.90 1.00 0.87 0.95 0.93 0.97
Directive Instruction 0.39 0.41 0.32 0.52 0.20 0.19 0.27 0.33
Context Removal 0.42 0.51 0.31 0.35 0.43 0.47 0.41 0.44

Table 11: Performance on Dataset: MathQA

Alteration Llama Gemma Phi Mistral
8B 70B 2B 9B Mini Medium 7B 8x22B

No Alteration 0.29 0.40 0.21 0.22 0.28 0.34 0.23 0.26
Deception 0.06 0.00 0.06 0.01 0.02 0.10 0.00 0.02
Guidance 0.87 1.00 0.95 1.00 0.98 0.81 1.00 0.99
Directive Instruction 0.27 0.26 0.21 0.23 0.23 0.21 0.18 0.22
Context Removal 0.24 0.25 0.21 0.21 0.24 0.26 0.19 0.22

E Overfitting Details

We performed an overfitting experiment on instructed models to assess their possible test
data contamination and memorization of test examples in benchmarks. For this experiment,
we test the Meta-Llama-3.1-8B-Instruct model (Meta, 2024). We performed this overfitting
using Low-Rank Adaptation (LoRA; Hu et al. (2021)), which reduces the number of trainable
parameters by introducing low-rank matrices into each layer. We set the LoRA rank to 8 and
the scaling factor to 32. We used a learning rate of 0.00001, and a total batch size of 64, using
4 80GB A100 GPUs. The model was overfitted on the test split of MMLU, and evaluations
were also conducted on this test split to maximize the potential for memorization. The training
loop was executed for 50 epochs, ensuring extensive exposure to the data.
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F Understanding World Models within LLMs

The concept of a “world model” in large language models carries ambiguity and can lead to
different interpretations. To clarify our use of this term, we outline two primary hypotheses
regarding what LLMs have learned and how they process information:

• LLMs are sophisticated pattern matchers. Some researchers (Bender & Koller,
2020; Bisk et al., 2020) posit that LLMs primarily learn an extensive collection
of statistical correlations from their training data without forming a coherent or
interpretable understanding of the data-generating processes. In this view, LLMs
function as sophisticated pattern matchers that excel at predicting the next word based
on learned associations but lack deeper comprehension.

• LLMs form an internal world model. In contrast, other studies (Gurnee &
Tegmark, 2024; Li et al., 2024b; Nanda et al., 2023; Li et al., 2021; Patel & Pavlick, 2022;
LeCun, 2022) suggest that LLMs, through the compression of vast amounts of training
data, develop compact, coherent, and interpretable models of the generative processes
underlying the data—essentially forming an internal world model. This model enables
the agent to assess the probability of different elements and concepts, determining what
is more likely, plausible, or less probable within a given context (LeCun, 2022).
For instance, Gurnee & Tegmark (2024) demonstrated that LLMs can learn linear
representations of spatial and temporal concepts, indicating that they encode structured
knowledge about space and time within their internal representations. Another study
(Li et al., 2024b) showed that transformers trained on next-token prediction for the game
Othello develop explicit internal representations of the game state. Furthermore, Nanda
et al. (2023) revealed that these representations are linear and interpretable, suggesting
that the models internally capture the game’s rules and state transitions.

This paper is grounded in the latter hypothesis: we propose that LLMs build internal world
models that extend beyond surface-level statistical patterns.

G Extending Results to Open-Ended Tasks

As mentioned in Section 5, this study’s focus on multiple-choice question-answering benchmarks
was a deliberate choice, aligned with the specific objectives of our study. These benchmarks
offer a controlled environment for systematically measuring performance using clear and objective
metrics such as Relative Accuracy Drop.
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Figure 10: Resilience to Deception across Generative Open-Ended Benchmarks.
Relative Drop is calculated as original exact match−altered exact match

original exact match for each model family, size, and
dataset. Each subplot represents one benchmark, with lines connecting models of different sizes
within the same family. Larger models typically exhibit smaller Relative Drops (lower values
indicate better performance).
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Figure 11: Resilience to Directive Instruction across Open-Ended Benchmarks.
Relative Drop is calculated as original exact match−altered exact match

original exact match for each model family, size, and
dataset. Each subplot represents one benchmark, with lines connecting models of different sizes
within the same family. Larger models mostly showcase greater Relative Drops (higher values
indicate better performance).

On the other hand, evaluating open-ended tasks presents significant challenges. The subjective
nature of potential answers makes it difficult to establish objective evaluation metrics. Common
generative metrics like BLEU (Papineni et al., 2002) or ROUGE (Lin, 2004) primarily assess
surface-level n-gram overlaps, which may not adequately capture the correctness or relevance
of a response, especially in the context of resilience to deceptive information. For example, a
model could generate a syntactically correct yet factually incorrect answer, and these metrics
would fail to sufficiently penalize such outputs. While human evaluation is a potential alternative,
it is resource-intensive and beyond the scope of this study.
Acknowledging the value of broader task settings, we have included two generative benchmarks
on assessing math-solving abilities: MATH (Hendrycks et al., 2021b) and GSM8K (Cobbe et al.,
2021), as shown in Figures 10 and 9.
To deceive the models, we could no longer mislead with incorrect labels. Instead, we consistently
pushed the model to generate double the correct answer in GSM8K and aimed for an answer
of 0 in MATH. The metric used for both benchmarks is exact match.
Results in Figure 10 confirm the main findings on deception: larger models are more resilient than
smaller ones. However, the difference in the Relative Drop (based on exact match) between smaller
and larger models is less noticeable compared to what we observed in Figure 2. This was expected,
as assessment here is more complex. As previously mentioned, determining the “correctness” of
answers and the semantic divergence from the original response is inherently harder to compute.
These results are further supported by the Directive Instruction experiments. As shown in
Figure 9, larger models generally exhibit greater relative drops, reinforcing the findings presented
in Section 4.2.
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