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Abstract

Cell Penetrating Peptides (CPPs) are a promising approach for intracellular de-
livery of diverse molecular cargos. Although hundreds of CPPs have been previ-
ously characterized, most are cationic peptides with limited penetration efficiency
or poor pharmaceutical properties; new high-throughput discovery approaches are
thus needed. Here we introduce BaggingCPP, a machine learning-based CPP
discovery framework that integrates inductive Positive-Unlabeled (PU) learning,
protein language models and parameter-efficient fine-tuning algorithms. Unlike
prior works, we do not use an artificial negative set that leads to distribution shift
but instead use PU learning to train and infer on the same dataset - a large corpora
of naturally expressed peptides such as hormones, neuropeptides, and small pro-
teins. BaggingCPP reaches a cross-validated AUC-ROC of 0.984 on our dataset
and matches the performance of the state-of-the-art GraphCPP when both methods
are trained and inferred on the public CPP1708 benchmark. We used BaggingCPP
to identify several candidate CPPs with low similarity to any known CPP and ex-
perimentally validated two. BaggingCPP thus represents a data-driven, biologi-
cally grounded route to expand the chemical diversity of known CPPs.
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Figure 1: The inductive PU learning setting: (a) training with a bagging ensemble, (b) ensemble
inference, (c) candidate selection.

1 Introduction

Cell-penetrating peptides (CPPs) are short sequences that can transport macromolecules across cel-
lular membranes. Since the discovery of the HIV-1 Tat fragment in 1988 [1], CPPs have been widely
explored as delivery tools in biomedicine [2], being tested for cancer therapy and diagnostics [3].
Yet their clinical translation remains limited by issues of stability, selectivity, and endosomal es-
cape [4]. Recently, natural protein fragments have inspired novel CPPs, such as a defensin-derived
peptide from Medicago truncatula that efficiently penetrates mammalian cells and delivers protein
cargo with low cytotoxicity [5]. At the same time, deep learning for peptide science has matured
into an established field: predictive and generative models have been applied to antimicrobial, anti-
cancer, and cell-penetrating peptides, demonstrating that Al can efficiently explore sequence space
and propose candidates with tailored properties [6, 7]. Machine learning has also enabled the de-
sign of multifunctional therapeutic peptides, such as those engineered for sustained ocular drug
delivery [8]. Together, these advances highlight both the promise and the limitations of current
approaches, motivating the development of BaggingCPP, an inductive PU-learning framework de-
signed to overcome label bias and expand CPP diversity beyond the classical cationic-rich motifs.

Positive—Unlabeled Setting: Validated CPPs are biased toward easily detectable cationic motifs,
i.e. unrandom sample of the true distribution—this is the PGPU assumption in PU learning [9]. As
shown in Appendix Figure C.1, many CPPs cluster near the Tat fragment first described in 1988 [1].
PGPU implies that despite label bias, score rankings remain informative, making it possible to pri-
oritize candidates. Since explicit negatives are unavailable and estimates over the unlabeled pool
are noisy, we stabilize predictions with bagging ensembles [10], where each bootstrap resample
offers a complementary view of the unlabeled set (Figure 1a), reducing variance while preserving
PGPU-based ranking structure.

Methodological Innovations: BaggingCPP integrates protein language modelling for sequence
embeddings, Low-Rank Adaptation (LoRA) for efficient fine-tuning, and Light-Attention pool-
ing to capture long-range interactions. These components are combined within a bagging ensemble,
an approach particularly effective in PU learning. A submodel architecture is illustrated in Figure 2.

residue
level protein-
Peptide embedding level
sequence matrix vector

Light
NRVYIHPFTL Y
- 7 Attention l Output value

Figure 2: Architecture of the BaggingCPP submodels.




2 Methods

We implemented our framework using PyTorch [11] and the Transformers library [12], with
parameter-efficient fine-tuning provided by the PEFT/LoRA package [13]. Supporting bioinformat-
ics operations such as sequence parsing and structure handling were carried out with Biopython [14]
and Biotite [15]. The complete workflow integrates positive—unlabeled ensembling, representation
learning via Light Attention, and candidate filtering, as detailed in the subsections below. For com-
parison, we additionally implemented a convolutional neural network ensemble baseline, described
in Appendix A.1. Training hyperparameters and optimization settings are provided in Appendix A.2.

2.1 Dataset

To maximize the discovery of novel CPPs while maintaining biological relevance, we assembled
a large and diverse peptide dataset enriched for sequences with a higher a priori likelihood of cell
penetration. Known CPPs were drawn from CPPsite2.0 [16] (around 1200 experimentally validated
sequences). For the unlabeled pool, we combined Hmrbase2 [17] (around 2500 peptide hormones),
NeuroPep1 [18] (around 1000 neuropeptides), and BIOPEP_UWMix [19] (around 3500 bioactive
peptides) as biologically enriched sources, and SmProt2 [20] (around 450,000 small proteins iden-
tified from ribosome profiling) as a representative background of naturally expressed peptides. This
design increases the odds that the unlabeled pool contains true but as-yet undiscovered CPPs while
still reflecting the general peptide distribution, enabling our PU-learning framework to operate in a
realistic discovery setting. The resulting dataset is highly imbalanced, with a positive-to-unlabeled
ratio of 0.0026:1. We adopted five-fold cross-validation to ensure that every positive contributed
to both training and testing while mitigating overfitting. To prevent data leakage, we clustered se-
quences with MMseqs2 [21] at 50% identity and 40% coverage and then distributed entire clusters
across folds such that positives were balanced as evenly as possible.

2.2 Positive—unlabeled ensemble training protocol

Following Mordelet et al.[10], we trained K =50 sub-models per ensemble. For each base learner
we combined the full positive set P with a disjoint 30% sample of the unlabeled pool U (treated
as negatives) (Figure la). A base score is thus defined as g;(z) = Pr[s=1 | z; PU U], i€
{1,...,K}. Where s=1 denotes a labeled (positive) instance. Final predictions are obtained by
averaging the g;, as illustrated in Figure 1b.

2.3 Model architecture

Each base learner consists of an ESM2_t6_8M_UR50D transformer backbone [22], fine-tuned with
Low-Rank Adaptation (LoRA) [13] applied to the key and value projections of every layer
(rank 10, =8, dropout 0.3). This reduces trainable parameters by ~95% while retaining expressiv-
ity. Per-residue embeddings are passed to a Light Attention head [23] with a convolutional kernel
of size 7, which aggregates them into a 128-dimensional sequence representation via attention-
weighted pooling. The resulting vector feeds into the classification layer. An overview of the
architecture is shown in Figure 2, where the transformer block denotes the LoRA-adapted ESM2
backbone.

2.4 Candidate Selection

We applied a multi-stage filtering and clustering pipeline to reduce the large unlabeled pool into a
small set of experimentally testable candidates. Briefly, we combined predictions from our ensem-
bles with additional toxicity, novelty, and developability constraints. This process reduced ~450,000
unlabeled peptides to a final ranked set of 64 cluster representatives, from which 8 were selected for
wet-lab validation. Full details of the candidate selection procedure are provided in Appendix A.3.

3 Results

AUC-ROC serves as our primary evaluation metric, given its threshold-free nature and direct prob-
abilistic interpretation in the positive—unlabeled setting (see Appendix A.4)



3.1 Architecture-Related Results

Benchmarking Against Existing Methods: On the CPP1708 benchmark (Table 1), our sequence-
only model achieves state-of-the-art AUC-ROC. Training on our corpus yields 0.686, while retrain-
ing on CPP1708 (x) boosts performance to 0.848, matching GraphCPP [24] (0.846). This gap re-
flects distribution shift between datasets. Notably, a single ESM2+LoRA+LA* model slightly outper-
forms its ensemble, suggesting CPP1708 is less contaminated and more like a standard benchmark
where ensembling adds little. Thus, BaggingCPP reaches GraphCPP-level accuracy without 3D
structures, enabling scalable high-throughput screening.

Table 1: Comparison on the CPP1708 dataset. (*) indicates models trained on CPP1708.

Method F1 ACC MCC AUC
CellPPD [25] 0.000  0.590 0.000 -

C2Pred [26] 0.328 0.571 0.054 0.650
MLCPP2.0 [27] 0.386 0.667 0.300 0.686
GraphCPP [24] 0.752 0.795 0.579 0.846
ESM2+LoRA+LA 0.535 0.646 0.316 0.686
ESM2+LoRA+LA (ensemble) 0.605 0.650 0.302 0.696
ESM2+LoRA+LA* 0.758 0.768 0.536 0.848

ESM2+LoRA+LA (ensemble)* 0.776  0.759 0.530 0.846

3.2 Impact of Training-Inference Distribution Alignment

Reliable CPP discovery requires training under deployment-like conditions; we therefore adopt an
inductive PU learning setting, training and inferring on the same biologically enriched peptide cor-
pus. To highlight the benefits of this approach, we compare it against a non-inductive regime, in
which the model is trained on the public CPP1708 benchmark but evaluated on our curated corpus.

Quantitative Performance: Aligning train and inference distributions yields substantial gains:
our model reaches 0.984 AUC-ROC in the inductive PU setting versus 0.846 when trained on
CPP1708 and tested on our corpus (Table 2). Appendix C.2 further shows t-SNE embeddings from
a single ESM2+LoRA+LA model, where positives and unlabeled peptides are clearly separated,
illustrating the ensemble’s discriminative capability.

Table 2: Evaluation metrics for different architectures over our dataset. Total training time is for 5
folds; params are per fold. (¥) ensemble trained on CPP1708.

Base model Fine-tune Head Type Trainable params Train time AUC-ROC
CNN - MLP  Single 291,841 ~3 min 0.926
CNN - MLP  Ensemble 14,592,050 ~2h 0.970
ESM2 Frozen LA Single 286,977 ~1.67h 0.976
ESM2 Frozen LA Ensemble 14,348,850 ~33h 0.980
ESM2 LoRA MLP  Single 179,841 ~1.67h 0.968
ESM2 LoRA MLP  Ensemble 8,992,050 ~41h 0.981
ESM2 LoRA LA Single 363,777 ~2h 0.976
ESM2 LoRA LA Ensemble 18,188,850 ~41 h 0.984
ESM2 LoRA LA Ensemble* 18,188,850 ~1.5h 0.846

Enrichment Analysis: Figure 3 compares score distributions across unlabeled sources. The
CPP1708-trained model (a) fails to distinguish SmProt (red), the broad background of natural pep-
tides, from enriched groups such as neuropeptides, hormones, and bioactive peptides. By contrast,
the inductive PU-trained model (b) shifts SmProt scores sharply lower relative to these groups, in-
dicating clear separation. This distinction is essential: it ensures that high-scoring candidates reflect
genuine biological signal rather than dataset-specific artifacts.
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Figure 3: Enrichment histograms comparison.

3.3 Experimental validation

We experimentally tested eight model-selected candidates alongside two positive and two negative
controls using a standardized FITC-uptake assay in HeLa cells (detailed in Appendix A.5). Both
classes of controls behaved as expected: the known CPPs showed robust intracellular fluorescence,
while the negative peptides remained at background levels. Among the eight candidates, two pep-
tides demonstrated clear and reproducible intracellular uptake. Notably, one corresponds to a frag-
ment of Cortistatin (fig 4,absent from our training corpora) and the other to Angiotensin I, a hormone
precursor not previously reported to act as a CPP. These results highlight BaggingCPP’s ability to
generalize beyond peptide families represented in the data and to uncover biologically novel uptake
events. Representative images and peptide-level descriptions are provided in Appendix A.5.
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Figure 4: Representative fluorescence microscopy image of HeLa cells incubated with the
Cortistatin-derived peptide (PCKNFFWKTFSSCK) at 24 uM. Clear intracellular fluorescence in-
dicates robust uptake in this single-experiment condition.

4 Discussion

Most computational CPP studies stop short of experimental testing. BaggingCPP closes this gap
through wet-lab validation of computationally predicted CPPs, achieving high predictive accuracy
(AUC-ROC = 0.984) via inductive PU learning paired with ensembling. Training and inference
on biologically enriched distributions mitigated the distribution shift that limited earlier methods.
Although many models are trained, the framework remains lightweight: a five-fold ensemble trained
in ~41 hours with only ~18M parameters per fold (Table 2), enabling rapid screening of hundreds
of thousands of peptides. For comparison, we estimate that retraining the GraphCPP architecture
with a similar bagging protocol our on dataset would take about 20 days.

Two predicted CPPs were validated in the first experimental round, though more follow-up assays
will be necessary to evaluate their merits as delivery agents. Scaling to additional peptide sources
and larger assays will accelerate discovery and elucidate the therapeutic potential of novel CPPs. In
the broader landscape, our discriminative PU-learning approach is complementary to recent gener-
ative peptide LMs such as PepMLM [28], which could be coupled with BaggingCPP for integrated
design—screening pipelines.
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A Appendix

A.1 Convolutional neural network ensemble baseline

As alightweight baseline we designed a 1-D CNN comprising two convolutional blocks (128 filters,
kernel size 5, zero-padding to maintain length) followed by two fully connected layers and a sigmoid
output. Input peptides were right-padded one-hot tensors of shape 20 x 50. The same PU ensemble
strategy (Section 2.3) was applied, i.e. 50 independently trained CNNs each receiving the entire
positive set and 30% of U.

A.2 Training details

All models were optimised with AdamW (learning rate 10~3, weight decay 10~2) and trained with
binary cross-entropy loss using balanced class weights for up to 200 epochs, using mini-batches
of size 256. Early stopping monitored the AUC-ROC on the held-out fold with a patience of five
epochs.

A.3 Candidate Selection

We began with a pool of 447,327 unlabeled peptide sequences. The selection procedure followed a
multi-stage filtering and clustering pipeline (Figure 1):

1. Model-based filtering: Sequences were retained if both our ESM2+LoRA+LA ensemble and
the convolutional ensemble assigned probabilities above 0.5, leaving 1,650 candidates.

2. Toxicity filtering: A custom toxicity predictor (see Toxicity model paragraph next) was
applied, and only peptides with predicted toxicity below 0.2 were kept, resulting in 1,407
sequences.

3. Novelty and developability constraints: To prioritize non-redundant, short, and biophys-
ically favorable peptides, we required sequences to satisfy:

* 9 < length < 20,
* isoelectric point < 10.5,
* net charge < 4,

* sequence identity < 0.6 to any known CPP (with an additional boolean constraint: the
closest peptide must differ by at least 5 residues),

* instability index < 50,
* hydrophobicity < 1.0.

This filtering left 81 sequences.

4. Clustering: Pairwise sequence identities were computed using Biotite’s optimal alignment
with the standard protein substitution matrix. An agglomerative clustering algorithm (av-
erage linkage, distance cutoff 0.35) grouped peptides at 65% identity. Within each cluster,
the sequence with the highest average prediction score (mean of ESM2+LoRA+LA ensemble
and convolutional ensemble) was chosen as representative, resulting in 64 clusters.

The final ranked list of 64 cluster representatives was used for downstream manual curation, from
which 8 peptides were selected for wet-lab validation, as can be seen in Table 3.

Toxicity model: To remove harmful peptides, we trained a classifier on 1,826 known toxic and
7,490 non-toxic peptides. We used peptide features such as length, charge, hydrophobicity, insta-
bility index, and amino acid frequencies. To prevent overfitting, we grouped similar sequences by
identity and split data by groups for training and testing. A Histogram Gradient Boosting model
reached an Fi, . of 0.483 on the test set. For candidate filtering, we set a threshold of 0.2, chosen to
achieve at least 75% recall on toxic peptides. This ensured that most toxic peptides were removed
while still keeping many safe ones for further screening.



Table 3: Representative peptide candidates after filtering and clustering. The top 8 entries are the
selected candidates; the last 4 rows are controls (two known CPPs and two negative checks).

ESM2+

Sequence LoRA+LA CNN Description Source Toxicity Ch.lsm Mean
ensemble size prob.
ensemble
PCKNFFWKTFSSCK 0.977 0.899 Cortistatin Hmrbase2 0.051 8 0.938
NRVYIHPFTL 0.907 0.704 Angiotensin [ Hmrbase2 0.034 3 0.805
DNIQGITKPAIR 0.885 0.939 Immunomodulating peptide BIOPEP.UWMix  0.021 1 0.912
YGGFLRKYPK 0.822 0.999 Opioid peptide alpha- BIOPEP.UWMix  0.005 1 0.910
neoendorphin
APEKWAAFHGSW 0.870 0.641 MIP III Hmrbase2 0.005 1 0.755
GQTTVTKIDEDY 0.771 0.694 Antifungal peptide BIOPEP_.UWMix  0.029 1 0.732
KCIPRKDKGCI 0.604 0.713 - SmProt2 0.037 1 0.658
GYRKPPENGSIF 0.372 0.720 SIFamide Hmrbase2 0.014 - -
SGGGEGSGMWFGPRL 0.036 0.307 CAPA-Pyrokinin (CAPA-PK; Hmrbase2 0.044 - -
FXPRL-amide)
VYRKPPFNGSIF 0.004 0.048 SIFamide Hmrbase2 0.007 - -
MITYRDLISKK 0.999 1.000 - CPPsite2.0 0.037 - -
NYRWRCKNQN 0.998 1.000 - CPPsite2.0 0.098 - -

A.4 Evaluation Protocol

We report AUC-ROC exclusively, as it is threshold-free and invariant to the (unknown) positive-to-
negative ratio, facilitating fair comparison across datasets with different class priors. Importantly,
AUC-ROC has a direct probabilistic interpretation: it represents the probability that a randomly cho-
sen positive instance is ranked higher than a randomly chosen unlabeled instance. This makes it more
interpretable in the positive—unlabeled setting compared to PR-AUC, where recall and precision are
confounded by the unknown number of true negatives and cannot be meaningfully interpreted.

A.5 Experimental Validation over the candidates

Experiments protocol: Peptides bearing an N-terminal fluorescein (FITC) label were synthesized
by GLchina and supplied as lyophilized powders. Each peptide was first dissolved to 50 mM in
DMSO, then diluted in HeLa cell culture medium to final concentrations of 24 uM and 12 uM. HeLa
cells were incubated with the peptide solutions for 1 hour at 37 °C, washed twice with PBS to remove
excess peptide, and following fixation with 4 percent PFA were imaged using an Incucyte live-cell
analysis system. Fluorescence signal intensity within the cell monolayer was quantified directly
in the Incucyte software to assess and compare the cell-penetrating efficiency of each peptide. In
parallel, the number of cells in each field was determined using the Incucyte cell-count algorithm.
Fluorescence values were then normalized to the corresponding cell counts to assess and compare
the cell-penetrating efficiency of each peptide.

Experiments results: As a sanity check, both control classes behaved as expected: the positive
controls showed strong intracellular fluorescence at the tested concentrations, whereas the negative
checks remained at background levels.

Out of the eight peptide candidates, two exhibited clear and reproducible uptake (Table 4):

« PCKNFFWKTFSSCK: Its C-terminal segment NFFWKTFSSCK corresponds to the C-
terminus of Cortistatin, a neuropeptide related to Somatostatin that binds all human SSTR
subtypes. While Somatostatin itself is not considered a canonical CPP, several Somatostatin
analogs are known to enter cells via SSTR-mediated endocytosis [29]. Notably, Cortistatin-
family sequences were absent from our training corpora, supporting BaggingCPP’s ability
to generalize beyond families represented in the data.

 NRVYIHPFTL (Angiotensin I): A decapeptide hormone precursor. To the best of our
knowledge, CPP-like uptake of Angiotensin I has not been previously reported, marking it
as a novel discovery.

Representative microscopy images of these experiments are shown in Figure 5.

It should be noted that among the candidates that did not display uptake in this assay, some may
still act as CPPs in other cellular contexts. In particular, they could rely on receptor-mediated inter-
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Figure 5: Representative fluorescence microscopy images of HeLa cells incubated with peptides at
24 uM and 12 pM. Left: negative control (CAPA-PK). Middle: positive control (known CPP). Right:
Cortistatin fragment, showing strong intracellular fluorescence.

nalization pathways that are absent or underrepresented in HeLa cells, and might therefore require
validation in additional cell lines.
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Table 4: Summary of candidate peptides with model score (ESM2+LoRA+LA) and experimental
fluorescence values (green integrated intensity per image normalized to confluency, mean+SD).

Name Sequence (N-terminus FITC)  Score Fluor. 12 pM Fluor. 24 yM
Cortistatin fragment FITC-PCKNFFWKTFSSCK 0.977 108,944.5 + 46,227.1 367,007.8 & 139,605.2
Angiotensin I FITC-NRVYIHPFTL 0.907 13,871.9 + 10,093.7 15,835.6 4+ 9,062.5
Immunomodulating pep.  FITC-DNIQGITKPAIR 0.885 0.0+ 0.0 454.3 + 759.9
Alpha-neoendorphin FITC-YGGFLRKYPK 0.822 6,265.9 + 10,951.8 5,570.5 + 7,128.3
MIP III FITC-APEKWAAFHGSW 0.870 3,006.8 + 6,103.7 3,678.7 + 10,053.3
Antifungal peptide FITC-GQTTVTKIDEDY 0.771 96.6 £+ 198.6 117.6 £ 332.5
- FITC-KCIPRKDKGCI 0.604 4,825.6 £ 8,208.2 3,555.4 + 4,186.2
SIFamide FITC-GYRKPPENGSIF 0.372 5,116.5 4+ 8,378.7 4,201.6 + 8,677.8
CAPA-PK (control) FITC-SGGGEGSGMWEFGPRL  0.036 2,860.3 +1,712.9 8,670.7 + 16,585.8
SIFamide (control) FITC-VYRKPPENGSIF 0.004 8,290.0 + 16,562.4 7,576.2 £ 5,616.5
Known CPP (control) FITC-MITYRDLISKK 0.999 25,232.8 + 25,941.3 45,197.3 4+ 22,710.1
Known CPP (control) FITC-NYRWRCKNQN 0.998  25,517.2 4+ 22,998.3 34,303.7 4+ 19,091.4
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Figure C.1: Scatter plot of peptide charge versus isoelectric point for the positive set. Sequences
containing the canonical HIV-1 Tat fragment (YGRKKRRQRRR) [1] are highlighted in red, while
all other positives are shown in blue. Most points cluster in the highly cationic region, and might
reflect a bias in experimentally validated CPPs toward Tat-like motifs.
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Figure C.2: Embeddings of ESM2+LoRA+LA 5 folds over a 1:1 positives to negatives, subset of
our dataset were all of the positives were taken and the negatives were randomly selected.
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