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Abstract

Recently, the prompt-based continual learning has become a new state-of-the-art
by using small prompts to induce a large pre-trained model toward each target task.
However, we figure out that they still suffer from memory problem as the number of
prompts should increase if the model learns very many tasks. To improve this limit,
inspired by the human hippocampus, we propose Lightweight Prompt Learning
with General Representation (LPG), a novel rehearsal-free continual learning
method. Throughout the study, we experimentally show our LPG’s promising
performances and corresponding analyses. We expect our proposition to spotlight
a novel continual learning paradigm that utilizes a single prompt to hedge memory
problems as well as sustain precise performance.

1 Introduction

Background and Motivation Humans have a sophisticated ability to acquire knowledge from the past,
and they continuously learn to solve multiple tasks throughout their lifetime. Although deep neural
networks accomplished enormous successes in various tasks [1, 2, 3, 4, 5, 6], they are still insufficient
in continual learning, which aims to train a single model under non-stationary data distribution
where streams of tasks are sequentially given [7, 8, 9, 10]. One primary challenge to this continual
learning is catastrophic forgetting [11, 12], which harshly decreases the model’s performance on
previously-trained task. But then, why do deep neural networks experience catastrophic forgetting
while humans do not suffer? Our study aims to scrutinize this reason and bridge this gap by proposing
an effective continual learning model.

The early regularization-based methods [13, 14, 15, 16] isolate the plasticity of the model or dynami-
cally expand the number of neurons to solve novel tasks [17, 18]. From a different viewpoint, another
stream of work leveraged a rehearsal buffer that stores several past data and re-trains the model to
sustain inductive biases on the past tasks [9, 19, 20]. While they accomplish precise continual learning
performances, they were not adequate in the real world. These approaches cannot be established when
storing past samples is not allowed (i.e., privacy concerns), and the performance drastically decreases
under complex datasets or limited memory size. Several works recently suggested prompt-based
approaches as rehearsal-free continual learning, which became novel state-of-the-art[21, 8]. A prompt
is a small learnable model that instructs a pre-trained model to effectively reuse its representations
on the novel task rather than fine-tuning. Instead of storing past data in the rehearsal buffer, these
methods store these prompts in a prompt pool. Under the frozen pre-trained model, these methods
train the prompts to dynamically instruct the pre-trained model to solve novel tasks. Following the
Complementary Learning System theory [22, 23, 24], we regard this prompt-based paradigm as
precisely imitating the human brain. A large pre-trained model behaves like a neocortex, which
acquires long-term memories and generalization ability, and prompts act similar to the hippocampus
that fastly learns the specific experience. However, we hereby discover one major drawback of prior
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prompt-based approaches. As they store many prompts (i.e., more than 10) in the prompt pool, the
size of the prompt pool should also become larger if the number of tasks increases or the task becomes
more complex. We presume this poses a computation overhead in the real world.

Main Idea and Its Novelty Inspired by the human hippocampus, an organ that consists of many
neurons, we seek to improve this memory issue. The human hippocampus is a single organ located in
each left and right temporal lobe. Therefore, if we aim to imitate the human brain, we hypothesize
that one well-designed prompt (which acts like the hippocampus) can sufficiently alternate many
prompts in the prior approaches. Furthermore, in the hippocampus, only a small number of neurons
are activated for a specific experience. Therefore, we presume not every neuron is necessary for
solving novel tasks; instead, some neurons can be re-used to solve novel tasks if given share similar
representation to the past task. To this end, we propose Lightweight Prompt learning with General
representation (LPG), a novel, lightweight prompt-based continual learning method. Our main idea is
re-using particular neurons at a single prompt if a given task shares a similar representation with the
task seen a priori. We experimentally show our idea works well with various task streams consisting
of public benchmarks and provide corresponding analyses. We hereby highlight our proposition is
novel, because this is the first attempt to utilize a single prompt instead of many prompts. Moreover,
our work firstly establishes prompt-based continual learning by re-using particular neurons.

Figure 1: Overview of the proposed LPG

2 Our Approach: Lightweight Prompt learning with General representation

Our LPG consists of two modules: 1) General Representation Module and 2) Guiding Module. Given
a task stream, LPG passes the data into each module and concatenates the output representations
to make a final prediction. The LPG trains both global representation module and guiding module
simultaneously at each task. We hereby highlight that our LPG requires a fixed small memory for
serving the general representation module and guiding module, and it barely increases along with the
task number. Please refer to the supplementary materials for training details.

2.1 General Representation Module

The global representation module is a pre-trained model that already acquires a general understanding
of the task stream. This module aims to provide a general representation of a given data. We
presume this representation cannot perfectly describe discriminative cues for a given task but provide
a sufficient baseline understanding of it. This representation finally becomes effective when it is
concatenated with task-specific representations yielded by the guiding module. In our LPG, we utilize
an ImageNet pre-trained ResNet-50[25] for this module as ImageNet-trained weight contributed
enormous successes in various computer vision tasks [26]. While previously-proposed prompt-based
method requires transformer-architecture for encoding representations on a given task, we hereby
highlight our LPG’s benefit; Any deep neural network models (i.e., Convolutional Neural Networks or
Vision Transformers [27]) can be widely utilized as our method does require particular architecture.

2.2 Guiding Module

Prompt Model The prompt model aims to induce the pre-trained model to understand task-specific
knowledge. When the first task is given (we say it is Task 1), it simply fine-tunes the prompt with
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the given data. Then, we randomly select some portion of the neurons, prune the other neurons, and
trains the selected neurons with the given data again. At this stage, our guiding module records which
neurons were activated for Task 1. When the next task (Task 2) is provided, the prompt considers the
result of a similar task discriminator (and this discriminator’s details are illustrated below section). If
the discriminator says the Task 2 looks similar to Task 1, then the prompt retrieves selected neurons
at Task 1, prunes the others and trains the Task 2’s data on the selected neurons. On the other hand,
if the discriminator decides the Task 2 does not share any representation with Task 2, the prompt
selects the other neurons except for the ones chosen for Task 1, prunes the others, and fine-tunes the
selected neurons with Task 2’s data. Note that neurons selected for Task 2 are also recorded in small
memory space. For the upcoming tasks (Task N > 3), it iterates the aforementioned procedures. To
this end, we alternate past continual learning approaches’ multiple prompts or rehearsal buffers to
reduce memory consumption. Instead, we let particular neurons be activated for each task, and new
neurons are only activated when unseen representations is provided as a novel task.

Similar Task Discriminator Given a novel task, the similar task discriminator aims to classify
whether a given data can share similar representation with the past task. The discriminator sends
given data to extract representations from the frozen pre-trained model and frozen prompt. Then, it
concatenates yielded representations and calculates variance among them. As the guiding module
records which neurons are activated for which task, the discriminator examines whether each past
task shares a similar representation with the given one. Suppose Task 1, 2 are already recorded. In
this case, the discriminator selects corresponding neurons for Task 1, 2, prunes the other neurons, and
concatenates the representation with the one yielded from the general representation module. We
presume the variance becomes small when these models particularly understand the given data, and
this understanding would have stemmed from the past tasks. If the variance from every task exceeds
the threshold, we regard the given task as a novel one. Conversely, we regard the given task as a
similar one if its variance is lower than the threshold and the other past tasks’ variances. Note that we
empirically set this preset threshold as 10.05.

3 Experiment

Experimental Setups We implement two scenarios: 1) coarse-grained scenarios and 2) fine-grained
scenarios. The coarse-grained scenario is a continual learning task where labels at each task do
not share many similar characteristics. We configure the coarse-grained scenario with four public
benchmark datasets sequentially: CIFAR-10, CIFAR-100 [28], STL-10 [29], and SVHN [30]. The
fine-grained scenario is another continual learning task where discriminative cues among each task
are particularly similar. We split labels at the Stanford-Cars dataset [31] (which is conventionally
utilized for fine-grained classification) into four tasks. From Task 1 to Task 3, it has 50 labels, and Task
4 has 46 labels. For evaluation metrics, we measure the classification accuracy on each task after we
finish training every task sequentially. For a comparative study, we compare our LPG’s performance
with task-specific supervised classification, which is a conventional fine-tuning. To implement this
supervised classification, we use ImageNet-trained ResNet-50 as a model. Moreover, we additionally
compare the results with two classical continual learning methods: PackNet [17] and LWF [13]. Note
that we acknowledge the LPG should be compared with state-of-the-art prompt-based methods, but
we could not perform it due to computational limitations. We leave this as an improvement avenue.

LPG’s Effectiveness and Ablations We then examine whether our LPG accomplishes promising
continual learning performances compared to the baselines. We perform experiments on coarse-
grained and fine-grained scenarios and report the results in Table 1. Following the result, we discover
that LPG successfully outperforms the baselines in most tasks. Based on these results, we urge that
using a single prompt is conceptually sufficient to solve continual learning problems; thus, we can
utilize much lightweight prompt-based continual learning in the real world.

Furthermore, to scrutinize which module contributes to this precise performance, we perform abla-
tions. First, we implement the LPG without training the general representation module to examine
whether the pre-trained model had better stay in a frozen status (denoted as w/o Update). Second,
we also implement the LPG without updating pre-trained model as well as deactivated similar task
discriminator (denoted as w/o Update and Disc. Without a similar task discriminator, a different set
of neurons are independently used for each task. Following the results shown in Table 1, we figure
out that both updating the pre-trained model and similar task discriminator is essential, but its impact
differs along with how much shared representation exists across each task. In the coarse-grained
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scenario, where STL-10 shows similar representations to CIFAR-10, these two components become
significant as ablated LPG achieves decreased performance. We analyze this phenomenon happens
because two modules support utilizing shared representations among given tasks; thus, under the
coarse-grained scenario where shared knowledge exists, these components become much more
effective rather than the other.

Table 1: Experiment results on the effectiveness of our LPG and its ablations
Scenario PackNet LWF Supervised OURS w/o Update w/o Update&Disc Predicted Similar Task

Coarse-grained

CIFAR-10 89.82 91.29 94.80 97.56 96.61 96.56 -
CIFAR-100 83.09 82.25 89.23 82.97 82.43 78.32 N/A

STL-10 92.81 92.78 96.30 94.86 93.56 90.82 CIFAR-10
SVHN 89.45 88.28 94.05 95.52 93.50 94.23 N/A

Fine-grained

Stanford Cars1 42.89 69.74 74.89 58.22 60.98 58.93 -
Stanford Cars2 20.10 28.65 75.22 44.21 44.11 43.32 N/A
Stanford Cars3 41.90 26.86 76.44 42.75 41.01 42.08 N/A
Stanford Cars4 63.45 35.07 75.83 65.23 46.05 54.90 N/A

Figure 2: Validation on Similar Task Discriminator

Effectiveness of Similar Task Discriminator
Lastly, we aim to scrutinize whether our simi-
lar task discriminator indeed contributes to se-
lecting adequate neurons at the prompt module.
First, we examine how the variance differs be-
tween the data which shares similar representa-
tions with the past task and the one that does not
share. We set a frozen CIFAR-10 trained model
and provide test samples at CIFAR-100, STL,
and SVHN. Note that we perform uniform sam-
pling at each label of the corresponding dataset.
We visualize the concatenated representations (utilized at the discriminator) with t-sne [32] to analyze
how the CIFAR-10 model interprets these unseen data. Following the results in Figure 2, we discover
the samples in STL-10 (which was classified to have similar representations with CIFAR-10) show
less variance, and the CIFAR-10 model was able to establish decision boundaries between STL-10’s
labels. Conversely, on the other datasets, the CIFAR-10 model fails to understand their labels and
yields high variances. Therefore, we conclude that the similar task discriminator indeed poses low
variances to the task where it can re-use the representations learned a priori.

Table 2: Experiment results for our neuron selection strategy’s effectiveness
Scenario Coarse-grained Fine-grained

CIFAR-10 CIFAR-100 STL-10 SVHN Stanford Cars1 Stanford Cars2 Stanford Cars3 Stanford Cars4
Random Marking 96.56 70.59 94.29 90.67 58.22 41.93 7.99 47.45

LPG (OURS) 96.56 82.27 94.86 95.52 58.22 44.21 42.75 65.23

To take one step further, we compare the original LPG with the one that randomly select target
neurons to train the prompt at each task. Following the results shown in Table 2, we figure out that
our neuron selecting strategy has a tangible impact on continual learning performances. Especially
in a fine-grained scenario, our neuron selection strategy seems to prevent catastrophic forgetting to
many extents. We interpret particular neurons to encode essential information regarding the task, and
careless training of whole neurons definitely causes catastrophic forgetting.

4 Discussions and Conclusion

Throughout the work, we propose LPG, a novel rehearsal-free continual learning method, and perform
a series of analyses that supports its effectiveness. While we show the LPG’s promising performances
compared to the baselines, still, it requires more in-depth analyses. First, the LPG should be compared
with recent state-of-the-art methods [21] and regularization-based or rehearsal-based approaches
under various public benchmarks. Moreover, more experimental questions still exist as follows. What
if we change the size of the pre-trained model into various architectures? What if we change the size
of the prompt model? What if we change the threshold for a similar task discriminator? By resolving
these questions, we highly expect the machine learning community can design an effective continual
learner that precisely imitates the human brain.
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A Do Pretrained Global Representation Well Describes Stream of Tasks?

Setup First, we aim to examine whether the pre-trained model (which is the ImageNet-trained model)
already understands particular knowledge given tasks. We expect our LPG to become meaningful
only if the general representation already understands a given task; thus, we first perform this analysis.
To discover an answer, we measure the representation similarity between the pre-trained model
and the one fine-tuned on the target task. Suppose the representation does not change a lot after
fine-tuning; we regard the pre-trained model as already embracing particular knowledge as it shows
additional training on the given tasks does not convey significant knowledge to the model. We utilize
Centered Kernel Alignment (CKA)[33] to measure representation similarity between two models.
The CKA yields a similarity score between 0 and 1, where 1 means high representation similarity
at the particular layers of a different model. We measure representation similarities among residual
blocks of ResNet-50 between the ImageNet-trained model and four fine-tuned models (independently
trained with CIFAR-10, CIFAR-100, STL-10, and SVHN).

Result Looking at the diagonal area (0,0 to 50,50) of visualized representation similarities, we
discover that pre-trained and fine-tuned models do not have many representation differences. To
interpret, layer M at the pre-trained model embraces similar representations at the layer M of the
fine-tuned model. Consequentially, we discover that pre-trained general representation already knows
the novel task’s discriminative cues. Furthermore, one thing to improve the task performance in a
continual learning scenario is just guiding this general representation to solve the target task, not just
simply training it for every target task (as it causes catastrophic forgetting).

Figure 3: Representation similarities between pre-trained global representation and fine-tuned models.
Note that both x, y axis implies layer at ResNet-50.

B Formalized Description on Similar Task Discriminator

We formalize this similar task discriminator in equation 1. Note that Z is the concatenated vector of
global and task-specific representation, and nc is the number of samples in the c label at a given task.
The total number of the label is c, and tc is a threshold.

1

cnc

c∑
i=1

nc∑
j=1

(Zij −
1

nc
(Zi))

2 < tc, (C = 1, 2, .., c) (1)

C Training Details

For every experiment in our work, we train the model with cross-entropy loss with Adam
Optimizer[34, 35]. We also normalized the given image with the one used at ImageNet train-
ing. We set the learning rate with 1e-5 and scheduled with cosine annealing[36], and the batch size
was 128. The prompt model is a simple two-layered convolutional neural networks, where each layer
has a size of 64. For model training, we used the NVIDIA 2 TESLA P100 provided by the Google
Cloud Platform.
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