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ABSTRACT

Understanding the optimization dynamics of neural networks is necessary for
closing the gap between theory and practice. Stochastic first-order optimization
algorithms are known to efficiently locate favorable minima in deep neural networks.
This efficiency, however, contrasts with the non-convex and seemingly complex
structure of neural loss landscapes. In this study, we delve into the fundamental
geometric properties of sampled gradients along optimization paths. We focus on
two key quantities, which appear in the restricted secant inequality and error bound.
Both hold high significance for first-order optimization. Our analysis reveals that
these quantities exhibit predictable, consistent behavior throughout training, despite
the stochasticity induced by sampling minibatches. Our findings suggest that not
only do optimization trajectories never encounter significant obstacles, but they
also maintain stable dynamics during the majority of training. These observed
properties are sufficiently expressive to theoretically guarantee linear convergence
and prescribe learning rate schedules mirroring empirical practices. We conduct
our experiments on image classification, semantic segmentation and language
modeling across different batch sizes, network architectures, datasets, optimizers,
and initialization seeds. We discuss the impact of each factor. Our work provides
novel insights into the properties of neural network loss functions, and opens the
door to theoretical frameworks more relevant to prevalent practice.

1 INTRODUCTION

Despite the theoretical complexity of their loss landscapes, deep neural networks have demonstrated
remarkable empirical reliability across a broad range of applications. Blum & Rivest (1992) proved
decades ago that neural network training is NP-hard. The intricacy of their loss functions, especially
the non-convexity implying potential bad local minima and saddle points, has led to an enduring
conundrum concerning the empirical efficiency of stochastic first-order optimization methods for
training neural networks.

Numerous studies have strived to reconcile this apparent contradiction, focusing on the behaviors of
stochastic gradient descent (SGD) and its variants at local minima and saddle points (Panageas et al.,
2019; Jin et al., 2019). The central hypothesis in these works posits that the efficiency of training
arises from the ability of these algorithms to navigate complex loss landscapes adeptly and manage
non-convexity.

Conversely, other investigations have empirically found loss landscapes to be simpler than their
theoretical complexity might suggest (Lucas et al., 2021). Notably, Goodfellow et al. (2015) observed
that “in fact, on a straight path from initialization to solution, a variety of state of the art neural
networks never encounter any significant obstacles.“

Notwithstanding, our current understanding of how neural loss landscapes are empirically simpler
than expected remains quite limited. There is yet to emerge a robust mathematical characterization
of this empirical simplicity. Consequently, we contend that the theoretical assumptions currently in
use fail to accurately capture the objective functions typical in deep learning. This discrepancy is a
significant barrier to applying theoretical insights effectively in the optimization of neural networks.

One such common assumption, smoothness, is illustrative of this gap. Despite its popularity, smooth-
ness is encumbered by several limitations: it is computationally intensive to approximate for large
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Figure 1: Cosine similarities between the gradients Gt sampled at step t and the difference (wt−wT )
between current weights and final weights, averaged over each epoch. The shaded regions denote
the range from minimum to maximum values observed at each epoch. The results are presented
for a selection of scenarios: (top left) varying depths and widths of ResNet on ImageNet, (top
right) different batch sizes on WikiText-2 using a Transformer, (bottom left) a range of optimizers
on CIFAR-10 using ResNet-18, and (bottom right) distinct architectures on Vaihingen semantic
segmentation. This figure highlights the stability of the cosine similarity throughout most of training,
suggesting it as a fundamental characteristic of neural loss landscapes.

neural networks, and necessitates additional assumptions such as bounded gradients for theoretical
guarantees in stochastic settings (Qian et al., 2019; Shamir & Zhang, 2013) although recent works
have tried to discard them (Nguyen et al., 2018; Loizou et al., 2021). Finally, recent findings suggest-
ing certain directional sharpness in neural networks Dinh et al. (2017) call into question the suitability
of smoothness as a measure of their simplicity.

To address these issues, our study undertakes an empirical analysis of the geometric properties of the
loss function in regions traversed by first-order optimization algorithms. Our focus is on a variant of
the quantities involved in the Restricted Secant Inequality (RSI) (Zhang & Yin, 2013) and Error Bound
(EB) (Luo & Tseng, 1993), which pertain to the relationship between sampled gradients, current
iterate, and final iterate of the optimization sequence. Our findings indicate that these quantities and
their ratio exhibit stable, predictable patterns throughout training across diverse settings, thereby
quantitatively characterizing the simplicity of neural loss landscape geometry. Furthermore, these
quantities offer several advantages over smoothness, including efficient estimations post-training,
inherent compatibility with stochasticity due to direct measurement on sampled gradients, and a
well-behaved empirical nature that still allows the derivation of theoretical results such as linear
convergence or the prescription of learning rate schedules.

Our key contributions are as follows:

• We devise an experimental procedure for examining the geometry of optimization paths on
common architectures. We assume almost-everywhere differentiability, but not smoothness.

• We execute experiments across a range of realistic deep learning settings, identifying
consistently verified properties. For instance, the cosine similarity between the negative
stochastic gradient and the direction to the final iterate is almost always positive and exhibits
remarkable stability across iterations and epochs.

• We demonstrate how our empirical investigations can inform the prescription of learning
rate schedules, aligning with established empirical knowledge.

• We provide an extensive discussion on the implications and limitations of our findings.
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Collectively, our work quantifies crucial geometric properties of stochastic gradients along deep learn-
ing optimization paths, underlining their importance in understanding neural network optimization
and enhancing current methodologies.

2 RELATED WORK

Our investigation centers on the application of RSI and EB to enhance our comprehension of the
geometric principles governing neural network optimization. Consequently, our work intersects with
previous research on neural loss landscapes and the utilization of RSI and EB in optimization.

RSI and EB: The study of RSI and EB for first-order optimization is not new. RSI (Zhang & Yin,
2013) has been applied in numerous theoretical works (Yi et al., 2019; Schöpfer, 2016; Yuan et al.,
2016; Karimi et al., 2016). EB (Luo & Tseng, 1993) has seen less extensive study (Dmitriy Drusvy-
atskiy, 2018), possibly due to the dominance of smoothness —a condition stronger than EB— in
the field. It should not be confused with error bounds on the distance to a set, a term also prevalent
in optimization literature (Qian et al., 2023; Zhou & So, 2015). Both RSI and EB, along with
other conditions, were analyzed in Guille-Escuret et al. (2021). Furthermore, it was demonstrated
in Guille-Escuret et al. (2022) that gradient descent is optimal for the class of functions defined by
this pair of conditions.

Neural Loss Landscape Geometry: The intricacies of neural loss landscapes have been a focal
point of research since the emergence of deep learning. Efforts have ranged from loss landscape
visualizations (Li et al., 2018) to investigations of low loss basin connectivity (Garipov et al., 2018)
and linear mode connectivity (Frankle et al., 2020). While prior research has noted the seeming
simplicity of loss landscape geometry along optimization paths (Lucas et al., 2021; Goodfellow et al.,
2015), these observations often involve straightforward phenomena such as monotonic decrease along
linear interpolations. Our work takes this approach a step further by studying quantifiable properties
with theoretical implications. Additionally, others have examined the geometric properties of neural
loss landscapes in the near-infinite width, or Neural Tangent Kernel (NTK), regime (Jacot et al.,
2018; Lee et al., 2019). These studies suggest that neural network training can be approximated
by linear dynamics or that the loss surface adheres to the Polyak-Łojasiewicz condition (Liu et al.,
2022). Unfortunately, this scenario was found to be distinct from empirical settings (Chizat et al.,
2019), although recent studies have delved into the evolution of the NTK under more realistic
conditions (Fort et al., 2020). We also note the active research direction regarding the influence of
BatchNorm on the optimization trajectory Santurkar et al. (2018b); Ioffe & Szegedy (2015a).

3 BACKGROUND

The training of a neural network on a dataset comprised of n examples can typically be formulated as
the finite-sum optimization problem

min
w∈Rd

L(w) := 1

n

n∑
i=1

li(w), (1)

where w are the parameters of the neural network, L is the empirical risk, and li corresponds to the
loss function for the i-th data sample, for i = 1, . . . , n. We denote the empirical risk with respect to
any minibatch B ⊆ [n] of size m as LB := 1

m

∑
i∈B li. Throughout this work, we assume the loss to

be differentiable, but we do not require it to be smooth.

We now recall the definitions of RSI− and EB+ as provided by Guille-Escuret et al. (2021). Given
an objective function L with a convex set of global minima X ⋆, and letting w⋆

p be the orthogonal
projection of w into X ⋆,

Definition 3.1 (Lower Restricted Secant Inequality). Let µ > 0. L ∈ RSI−(µ) iff:

∀w ∈ Rd,∇L(w)T (w − w⋆
p) ≥ µ

∥∥w − w⋆
p

∥∥2
2
. (2)

Definition 3.2 (Upper Error Bounds). Let L > 0. L ∈ EB+(L) iff:

∀w ∈ Rd, ∥∇L(w)∥2 ≤ L
∥∥w − w⋆

p

∥∥
2
. (3)
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The classes of functions RSI− and EB+ are thus defined in the literature as those respecting the
above bounds over the entire parameter space. However, in this work, our focus lies not merely on
their extremal values but on the local quantities bounded by RSI− and EB+.

For simplicity, we refrain from introducing new terminology, and henceforth denote these quantities
as RSI(G,w,w⋆) and EB(G,w,w⋆), where G is an oracle for the gradient at w. We do not mandate
G to be the full gradient of L; it could, for instance, correspond to the gradient ∇LB with respect to
a minibatch B. Similarly, w⋆ is not assumed to be a minimum of the objective function. Formally, for
any gradient oracle G, and any w⋆ ∈ Rd, w ̸= w⋆:

RSI(G,w,w⋆) := G(w)T (w−w⋆)

∥w−w⋆∥2
2

and EB(G,w,w⋆) :=
∥G(w)∥2

∥w−w⋆∥2
.

The ratio between RSI and EB imparts a direct geometrical interpretation:

γ(G,w,w⋆) := RSI(G,w,w⋆)
EB(G,w,w⋆) = G(w)T (w−w⋆)

∥G∥2∥w−w⋆∥2
= cosine(G(w), w − w⋆),

where cosine(w1, w2) is the cosine of the angle between vectors w1 and w2.

This ratio, γ, signifies the alignment between the negative sampled gradient and the direction from w
to w⋆. When γ approaches 1, it indicates a negative gradient strongly directed toward w⋆. Conversely,
a γ close to 0 suggests a gradient almost orthogonal to w − w⋆. A negative γ indicates a negative
gradient directed away from w⋆. Additionally, γ can be interpreted as the inverse of a local variant of
the condition number, κ := supEB

inf RSI , which is a measure of the complexity of optimizing L in prior
works (Guille-Escuret et al., 2021).

RSI and EB are intrinsically connected to the dynamics of stochastic gradient descent (SGD). Indeed,
the distance to w⋆ following an SGD step with step size η can be precisely articulated using RSI and
EB. For all w ̸= w⋆,B,

∥w − η∇LB(w)− w⋆∥22 = ∥w − w⋆∥22 − 2η∇LB(w)
T (w − w⋆) + η2 ∥∇LB(w)∥22

=
(
1− 2ηRSI (∇LB, w, w

⋆) + η2 EB2 (∇LB, w, , w
⋆)
)
∥w − w⋆∥22.

(4)
Consequently, with a step size of

η⋆ := argmin
η
∥w − η∇LB(w)− w⋆∥2 = RSI(∇LB,w,w⋆)

EB2(∇LB,w,w⋆)
, (5)

SGD guarantees
∥wt+1 − w⋆∥2 =

√
1− γ(∇LB, w, w⋆)2 ∥wt − w⋆∥2 . (6)

Furthermore, if inf
w,B

RSI(∇LB, w, w
⋆) ≥ µ and sup

w,B
EB(∇LB, w, w

⋆) ≤ L hold for some µ > 0,

L > 0, then equation equation 4 demonstrates that running SGD with a fixed step size of η = µ
L2

will converge to w⋆ at a guaranteed rate:

∥wt − w⋆∥22 ≤ (1− µ2

L2 )
t ∥w0 − w⋆∥22 , (7)

This holds irrespective of how the minibatches are sampled. Under these assumptions, this rate is, in
fact, worst-case optimal among all continuous first-order algorithms (Guille-Escuret et al., 2022).

Experimental Measurement of RSI and EB: One of the most significant challenges in experimen-
tally measuring RSI and EB lies in the selection of w⋆. Even in cases where the objective function
admits an unique global minimum, finding it in the context of deep neural networks is computationally
infeasible Blum & Rivest (1992). To navigate this complication, we initially train a neural network
and subsequently choose the final iterate wT of the optimization sequence. Given successful training,
the sequence will converge to the vicinity of a (local) minimum, and measuring RSI and EB with
respect to this minimum will provide insightful understanding of the training dynamics.

Notably, under this procedure, w⋆ is dependent on the optimization sequence rather than being
predetermined. Therefore, interpreting the ensuing results warrants care, see Section 6.

Considering that saving all gradients and iterates observed during training would be prohibitively
resource-intensive, we perform two identical training runs. The first run computes w⋆ = wT ,
and the second run computes RSI and EB along the optimization path. A detailed description of
our experimental protocol is provided in Algorithm 1 in Appendix A.1, and we share our code at
https://anonymous.4open.science/r/LossLandscapeGeometry-B7BD/.
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4 EMPIRICAL GEOMETRY OF LANDSCAPES ALONG OPTIMIZATION PATHS
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Figure 2: Depicted are the trends of RSI (top), EB (middle) and γ (bottom) across three different sce-
narios: image classification on CIFAR-10 with a ResNet-18 (left), image classification on ImageNet
with a ResNet-50 (middle) and language modeling on WikiText-2 with a transformer model (right).

Figure 1 offers an initial glance at our results, outlining the behavior of γ across four datasets, with
variations across architecture, batch size, and optimization technique. Figure 2 presents a more
streamlined view on three of these datasets, exhibiting not only γ but also RSI and EB on a single run
to preserve clarity. To avoid precision issues when wt approaches w⋆, the results from the final epoch
have been excluded. Our hyperparameters were initially adjusted to optimize validation accuracy,
echoing practical conditions. All experiments were coded in PyTorch Paszke et al. (2019) and detailed
descriptions of the specific training configurations, along with final test performances, are available
in Appendix A to ensure full reproducibility.

CIFAR-10 (ResNet-18): Across the entire training run, not a single iteration exhibits a negative
γ. Even though there are slight fluctuations across epochs, γ predominantly remains within the
[0.0075, 0.02] range and does not exhibit substantial shifts. While the variance of RSI and EB across
iterations tends to increase as training progresses, their mean values largely remain stable.

ImageNet-1K (ResNet-50): Except for a few iterations at the very early stage, γ remains positive
throughout all of training. Moreover, the variance across iterations is notably low until the last epochs.
Epoch-wise, RSI, EB, and γ increase monotonically, with a sharp rise observed towards the end.

WikiText-2 (Transformer): Throughout training, γ remains strictly positive and always exceeds
0.05 after the second epoch. The cosine similarity maintains a remarkable stability, exhibiting only
minor variations across iterations and epochs. While RSI and EB show very low variance within
epochs, they do increase towards the end of the training period.

4.1 FUNDAMENTAL PROPERTIES

Upon careful analysis, we find that the optimization trajectories of deep neural networks exhibit the
following major characteristic features:

• The cosine similarity, γ, is almost always positive.
• γ demonstrates notable stability across both epochs and iterations, rarely departing from its

(low) average value.
• RSI and EB follow predictable trends, contingent upon whether the model adheres to an

interpolation or a non-interpolation regime.

Interpolation vs Non-Interpolation Regime: The behavior of RSI and EB are directly tied to
how well the final iterate w⋆ interpolates the training data. For CIFAR-10, where the model reaches
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close to 0 training loss, RSI and EB retain relatively stable mean values up to the last epochs,
which is made possible by stochastic gradients decreasing to 0 as wt approaches w⋆. Conversely, in
scenarios where the model fails to interpolate the training data, such as for ImageNet and WikiText-2,
stochastic gradients remain significant. In such a scenario, RSI and EB inevitably rise to infinity
as wt − w⋆ approaches zero. This phenomenon is particularly obvious with ImageNet due to the
learning rate decay, which induces minuscule distances between wt and w⋆ in the later stages of
training. Additional experimental results supporting this interpretation are provided in Appendix C.

Late Training Behavior: The results obtained towards the end of training should be interpreted
with caution. Besides the previously described phenomenon in the non-interpolation regime, the
correlation between sampled gradients and wt − w⋆ increases as the sequence nears its termination.
Intuitively, w⋆ approximates a minima, and the approximation error becomes significant as iterates
get sufficiently close. Further discussion on related implications can be found in Section 6.

Low Value of Cosine Similarity: The low values of γ empirically encountered are to be expected:
if γ was stable at reasonably high values, then we would find a near-minima in a small number of
steps using SGD, which is notoriously not the case for modern problems. Instead, optimization
sequences approach their final iterate at a slow but regular pace. While the stability and positivity of
γ imply a linear convergence rate, its low value indicate a linear rate close to 1, similarly to a strongly
convex and smooth objective being badly conditioned. A plausible cause for γ being small is that the
useful signal from generalizable features in sampled gradients is dominated by that of spurious and
coincidental correlations.

Significance: These observations imply that, despite the well-documented non-convexity of the loss
landscapes associated with neural networks and the inherent stochasticity introduced by minibatch
sampling, the learning process of neural networks remains remarkably consistent. The networks
progress steadily towards their destination throughout the training, with each stochastic gradient
contributing valuable information to reach the final model state. With very few exceptions, gradients
always point toward the right direction, and training trajectories never take a wrong turn when
optimizing the loss function. We find these observations to be particularly remarkable on ImageNet.
Given the presence of 1000 semantic classes (exceeding the batch size) and in excess of 5000
minibatches per epoch, the consistence of the cosine similarity γ throughout entire epochs seems
surprising. In addition, Section 6 establishes links between empirically adopted learning rate schedules
and RSI and EB. Overall, RSI and EB are powerful tools to capture the elusive simplicity of neural
loss landscapes, with empirical properties theoretically guaranteeing linear convergence rates. We thus
encourage future works to consider RSI and EB to characterize the classes of objectives encountered
in deep learning applications.

We further explore the impact of various factors and provide a more comprehensive substantiation of
our findings in Section 5. Following this, we discuss the implications and potential limitations of our
observations in Section 6. We also discuss plausible causes in Appendix D.

5 INFLUENCE OF TRAINING SETTINGS

Batch Size: the top right of Figure 1 delineates the cosine similarities corresponding to batch sizes
ranging from 32 to 256 on the WikiText-2 dataset. As a complementary experiment, Figure 6 in
Appendix B portrays the cosine similarities associated with batch sizes from 64 to 512 on the CIFAR-
10 dataset. The outcomes of both these experiments consistently reveal a positive correlation between
batch size and cosine similarity. This outcome is foreseeable: for two minibatches Bi and Bj , we
have

RSI(∇LBi
+∇LBj

) = RSI(∇LBi
)+RSI(∇LBj

), EB(∇LBi
+∇LBj

) ≤ EB(∇LBi
)+EB(∇LBj

).

It should be noted that the selection of batch size not only affects the measurement of RSI and EB,
but it also influences the optimization trajectory and the speed of convergence. Therefore, direct
numerical comparisons across different batch sizes ought to be interpreted with caution. Nonetheless,
our observations suggest that cosine similarities may scale with the square root of the batch size.

Optimizer: Figure 1 (bottom left) illustrates the cosine similarity for three distinct optimizers
utilized on the CIFAR-10 dataset. Intriguingly, Adam appears to result in lower cosine similarity
values, albeit with reduced variance. We hypothesize that Adam, by amplifying the effective step
size along directions with lower curvature, traverses further in flat dimensions, thereby leading to a
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reduced alignment compared to SGD. This conjecture is substantiated by Figure 12 in Appendix C,
demonstrating that the journey undertaken by Adam indeed surpasses that of SGD in terms of distance.
Notably, the employment of a momentum value of 0.9 with SGD does not significantly impact the
value of γ, compared to not using momentum. Prior works also suggest that the optimization methods
may affect the geometry of visited regions (Cohen et al., 2021).

Model Depth and Width: Our attention now turns to the impact of depth and width on the geometric
characteristics of the optimization trajectory, as depicted in Figure 1 (top left). In this experiment, we
trained ResNets of varying depth — 18, 50, and 152 layers — with both standard and doubled width.
A salient observation is that an increase in depth slightly enhances the cosine similarities, while an
increase in width appears to have a comparatively trivial impact. These findings could potentially
shed light on the prevalent trend in contemporary neural network designs favouring increased depth
over width (He et al., 2016).

6 KEY TAKEAWAYS AND DISCUSSION

Geometrically Justified Learning Rate Schedules: As established in Equation equation 5, we define
the locally optimal learning rate (loLR) as the minimizer of ∥wt − η∇LBt

− w⋆∥2, η⋆(w) = RSI(w)
EB2(w)

.
It is important to note, however, that η⋆ may not necessarily be globally optimal. Indeed, certain
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Figure 3: Left panel: The locally optimal learning rate, derived as per Equation equation 5, for various
architectures implemented on the CIFAR-10 dataset. Right panel: The locally optimal learning rate,
similarly determined, across a spectrum of batch sizes employed on the WikiText-2 dataset.

methodologies may initiate slower but accumulate more information, ultimately leading to faster
convergence over a large number of steps. Furthermore, as the measurement of RSI and EB requires
the knowledge of w⋆, which in turn depends on the learning rate (LR), the expression cannot be
utilized to dynamically tune it.

Despite these limitations, we find intriguing parallels between the evolution of the loLR derived from
our experiments and the shape of empirically validated LR schedules, as demonstrated in Figure 3.
For instance, a widely adopted strategy for training on ImageNet involves a linear warm-up phase of
the LR for the initial few epochs, followed by a cosine annealing phase. This pattern is mirrored in
our empirical observations on ImageNet, except for a sharper decrease immediately after warmup.

Moreover, the results on WikiText-2 echo two popular practices: linearly decreasing the LR and
increasing the batch size over time. These intriguing observations suggest that the geometry of the
loss landscape could potentially inform the design of more effective learning rate schedules.

Lastly, the apparent correspondence between loLR and empirical learning rate strategies implies
that the efficiency of fixed learning rates may be contingent upon the stationarity of RSI and EB.
Similarly, the existence of straightforward and efficient learning rate schedules can be associated with
the predictable evolution of these geometrical properties. This strongly reinforces the view that such
geometrical attributes play a substantial role in the widespread practical successes of deep learning.
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Biases Induced by Using Final Iterates as Reference Points: A critical limitation of our exper-
imental approach is the inescapable correlation between w⋆ and the optimization sequence. This
association must be thoroughly addressed to appropriately interpret our findings.
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Figure 4: Depiction of cosine similarities during the training of a ResNet-18 on the CIFAR-10 dataset,
with variations in (left) initialization seed and (right) epoch budget.

• Initialization: Firstly, RSI and EB may represent local properties of the loss landscape, and could
be dependent on the initialization region. However, this possibility is refuted by the left panel of
Figure 4, which demonstrates minimal variation in γ measurements across different random seeds.

• Epoch Budget: Secondly, our results might be influenced by the particular moment when we
terminate the optimization sequence to extract w⋆. The right panel of Figure 4 presents different
measurements for epoch budgets ranging from 100 to 280, with all other parameters kept consistent.
Our findings indicate a relative similarity in results before the sequence nears w⋆, suggesting that our
experiments do not display excessive sensitivity to the epoch budget.

• Induced Bias: However, this experiment also underscores the phenomenon detailed in Section
4.1: as the sequence approaches completion, the correlation between sampled gradients and wt − w⋆

- induced by gradient updates - becomes increasingly significant. This correlation is a by-product
of the optimization method, rather than a feature of local geometry, and augments the value of RSI
and γ by diminishing the impact of stochasticity. Consequently, this correlation should be taken into
account when interpreting RSI and EB in the concluding epochs.

A compelling illustration of this correlation can be seen in a discrete isotropic random walk with a
fixed step size s in a dimension d. When dimension d significantly exceeds the number of steps, each
pair of steps can be assumed to be nearly orthogonal with high probability. In such a setting, if we
denote (xt)t=0...T as the sequence generated by the random walk, we can calculate that, with high
probability, ∀t,

(xt − xt+1)
T (xt − xT )

∥xt − xT ∥22
≈ ∥xt − xt+1∥22
∥xt − xT ∥22

≈ 1

T − t
> 0 and

∥xt − xt+1∥2
∥xt − xT ∥2

≈ 1√
T − t

(8)

Consequently, the cosine similarity γ(xt) ≈ (T − t)−0.5 remains strictly positive, and experiences a
sharp increase toward the end, exemplifying the effect of the correlation induced by the selection
of w⋆. It’s worth noting that in the case of neural networks, γ remains approximately constant
for the majority of training (as is clearly visible in Figure 1), which marks a distinction in their
dynamics. Nonetheless, akin to the random walk scenario, it can be anticipated that the correlation
induced by the choice of w⋆ would become increasingly evident as the number of remaining iterations
diminishes.

Contrasting Examples: Functions Without Beneficial Geometric Properties: We now turn our
attention to delineating the behaviors that could potentially manifest in stochastic and non-convex
optimization scenarios. To this end, we have engineered two illustrative counter-examples which
effectively demonstrate that the consistency observed in Sections 4 and 5 is not a mere byproduct of
our experimental paradigm. Our first example, termed Asymmetric Linear Model (ALM), entails the
training of a linear model with the objective of consistently yielding outputs that are lower than their
corresponding targets. The error between these values is calculated on stochastic minibatches using

8
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Figure 5: Left column: RSI and γ values for a convex yet significantly stochastic objective. Right
column: RSI and γ values for a deterministic objective characterized by substantial non-convexity.
Despite their simplicity, these functions exemplify the irregular behaviors one might anticipate
encountering within the complex terrain of neural loss landscapes.

Root Mean Square Error (RMSE), thereby introducing a substantial degree of stochasticity. Despite
this, the objective is a finite sum of convex functions and thus remains convex.

The second function, designated Sinusoidal Mixture (SM), is deterministic but exhibits a pronounced
degree of non-convexity. The mathematical expressions for both ALM and SM are presented below,
with coefficients ai, xi, yi drawn randomly from normal distributions,

ALM(w) =
∑
i

[
max(0, wTxi − yi)

]2
; SM(w) = ∥w∥22 + 100

∑
i

sin(aiwi)
2. (9)

Figure 5 presents the measurements of RSI and γ for both ALM and SM. Although these functions
are characterized by relatively simple functional forms and do not simultaneously exhibit stochasticity
and non-convexity, they demonstrate unpredictable trajectories and negative values for RSI and γ.
This evidence compellingly suggests that the observed simplicity associated with neural networks is
not a trivial characteristic.

7 CONCLUSION

We have conducted an extensive series of experiments, assessing RSI and EB across a broad spectrum
of training settings. These experiments reveal that these geometric properties display a collection of
desirable characteristics, effectively demonstrating that neural network training proceeds smoothly,
maintaining a consistently steady advancement towards its destination throughout the training process.

These results contrast starkly with the theoretical complexity of neural landscapes and potentially
open new pathways for developing theoretical results tailored to deep learning, or for designing
optimization algorithms that exploit the geometry of empirical objective functions.

A noteworthy point is that while RSI and EB appear to encapsulate significant beneficial aspects
of neural networks, they likely do not encompass the entire scope of these advantages. There may
be additional, complementary properties yet to be discovered. An intriguing indication of this is
the fact that vanilla gradient descent has been proven to be exactly optimal for functions verifying
the lower restricted secant inequality and upper error bound (Guille-Escuret et al., 2022). Given the
well-documented efficacy of momentum in training neural networks, we conjecture that momentum
exploits additional properties not captured by RSI and EB, which we encourage future works to
explore.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. Beyond rgb: Very high resolution urban
remote sensing with multimodal deep networks. ISPRS Journal of Photogrammetry and Remote
Sensing, 2017. ISSN 0924-2716. doi: https://doi.org/10.1016/j.isprsjprs.2017.11.011.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(12):2481–2495, 2017. doi: 10.1109/TPAMI.2016.2644615.

Avrim L. Blum and Ronald L. Rivest. Training a 3-node neural network is np-complete.
Neural Networks, 5(1):117–127, 1992. ISSN 0893-6080. doi: https://doi.org/10.
1016/S0893-6080(05)80010-3. URL https://www.sciencedirect.com/science/
article/pii/S0893608005800103.

Lénaïc Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable program-
ming. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf.

Jeremy M. Cohen, Simran Kaur, Yuanzhi Li, J. Zico Kolter, and Ameet Talwalkar. Gradient descent
on neural networks typically occurs at the edge of stability. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. URL https://openreview.net/forum?id=jh-rTtvkGeM.

Michael Cramer and Norbert Haala. Dgpf project: Evaluation of digital photogrammetric aerial-based
imaging systems- overview and results from the pilot center. Photogrammetric engineering and
remote sensing, 76(9):1019–1029, 2010.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. In International Conference on Machine Learning, pp. 1019–1028. PMLR, 2017.

Adrian S. Lewis Dmitriy Drusvyatskiy. Error bounds, quadratic growth, and linear convergence
of proximal methods. In Mathematics of Operations Research 43(3):919-948, 2018. URL
https://doi.org/10.1287/moor.2017.0889.

Kilian Fatras, Bharath Bhushan Damodaran, Sylvain Lobry, Remi Flamary, Devis Tuia, and Nicolas
Courty. Wasserstein Adversarial Regularization for learning with label noise. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M
Roy, and Surya Ganguli. Deep learning versus kernel learning: an empirical study
of loss landscape geometry and the time evolution of the neural tangent kernel. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 5850–5861. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/405075699f065e43581f27d67bb68478-Paper.pdf.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pp. 3259–3269. PMLR, 2020. URL http://proceedings.
mlr.press/v119/frankle20a.html.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wil-
son. Loss surfaces, mode connectivity, and fast ensembling of dnns. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,

10

https://www.sciencedirect.com/science/article/pii/S0893608005800103
https://www.sciencedirect.com/science/article/pii/S0893608005800103
https://proceedings.neurips.cc/paper_files/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf
https://openreview.net/forum?id=jh-rTtvkGeM
https://doi.org/10.1287/moor.2017.0889
https://proceedings.neurips.cc/paper_files/paper/2020/file/405075699f065e43581f27d67bb68478-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/405075699f065e43581f27d67bb68478-Paper.pdf
http://proceedings.mlr.press/v119/frankle20a.html
http://proceedings.mlr.press/v119/frankle20a.html


Under review as a conference paper at ICLR 2024

2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf.

Ian Goodfellow, Oriol Vinyals, and Andrew Saxe. Qualitatively characterizing neural network
optimization problems. In International Conference on Learning Representations, 2015. URL
http://arxiv.org/abs/1412.6544.

Charles Guille-Escuret, Manuela Girotti, Baptiste Goujaud, and Ioannis Mitliagkas. A study of con-
dition numbers for first-order optimization. In International Conference on Artificial Intelligence
and Statistics, pp. 1261–1269. PMLR, 2021.

Charles Guille-Escuret, Adam Ibrahim, Baptiste Goujaud, and Ioannis Mitliagkas. Gradient descent
is optimal under lower restricted secant inequality and upper error bound. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=s1yaWFDLxVG.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pp. 448–456, Lille, France, 07–09 Jul 2015a. PMLR. URL https://proceedings.
mlr.press/v37/ioffe15.html.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015b.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and general-
ization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M. Kakade, and Michael I. Jordan. On nonconvex
optimization for machine learning: Gradients, stochasticity, and saddle points, 2019.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak-Łojasiewicz condition. In Paolo Frasconi, Niels Landwehr,
Giuseppe Manco, and Jilles Vreeken (eds.), Machine Learning and Knowledge Discovery in
Databases, volume abs/1608.04636, pp. 795–811, Cham, 2016. Springer International Publishing.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learning multiple layers of features from tiny
images. Advances in Neural Information Processing Systems, 2012. URL http://www.cs.
toronto.edu/~kriz/cifar.html.

Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. arXiv preprint arXiv:1902.06720, 2019.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/
2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.

11

https://proceedings.neurips.cc/paper_files/paper/2018/file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf
http://arxiv.org/abs/1412.6544
https://openreview.net/forum?id=s1yaWFDLxVG
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://proceedings.neurips.cc/paper_files/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf


Under review as a conference paper at ICLR 2024

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Applied and Computational Harmonic Analysis, 59:85–
116, 2022. ISSN 1063-5203. doi: https://doi.org/10.1016/j.acha.2021.12.009. URL https://
www.sciencedirect.com/science/article/pii/S106352032100110X. Special
Issue on Harmonic Analysis and Machine Learning.

Robert L. Logan, IV, Nelson F. Liu, Matthew E. Peters, Matt Gardner, and Sameer Singh. Barack’s
wife Hillary: Using knowledge graphs for fact-aware language modeling. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Florence, Italy, July 2019. Association for Computational Linguistics.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for SGD: an adaptive learning rate for fast convergence. In Arindam Banerjee and
Kenji Fukumizu (eds.), The 24th International Conference on Artificial Intelligence and Statistics,
AISTATS 2021, April 13-15, 2021, Virtual Event, volume 130 of Proceedings of Machine Learning
Research, pp. 1306–1314. PMLR, 2021. URL http://proceedings.mlr.press/v130/
loizou21a.html.

James Lucas, Juhan Bae, Michael R. Zhang, Stanislav Fort, Richard S. Zemel, and Roger B.
Grosse. Analyzing monotonic linear interpolation in neural network loss landscapes. CoRR,
abs/2104.11044, 2021. URL https://arxiv.org/abs/2104.11044.

Zhi-Quan Luo and Paul Tseng. Error bounds and convergence analysis of feasible descent methods:
a general approach. Annals of Operations Research, 46(1):157–178, 1993.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Lam M. Nguyen, Phuong Ha Nguyen, Marten van Dijk, Peter Richtárik, Katya Scheinberg, and
Martin Takác. SGD and hogwild! convergence without the bounded gradients assumption. In
Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pp. 3747–3755. PMLR, 2018. URL
http://proceedings.mlr.press/v80/nguyen18c.html.

Ioannis Panageas, Georgios Piliouras, and Xiao Wang. First-order methods almost always avoid saddle
points: The case of vanishing step-sizes. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/3fb04953d95a94367bb133f862402bce-Paper.pdf.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019.

Xun Qian, Peter Richtárik, Robert M. Gower, Alibek Sailanbayev, Nicolas Loizou, and Egor Shulgin.
SGD with arbitrary sampling: General analysis and improved rates. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 5200–5209. PMLR, 2019. URL http://proceedings.
mlr.press/v97/qian19b.html.

Yitian Qian, Shaohua Pan, and Lianghai Xiao. Error bound and exact penalty method for optimiza-
tion problems with nonnegative orthogonal constraint. IMA Journal of Numerical Analysis, 02
2023. ISSN 0272-4979. doi: 10.1093/imanum/drac084. URL https://doi.org/10.1093/
imanum/drac084. drac084.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In The International Conference on Medical image computing and computer-
assisted intervention, 2015.

12

https://www.sciencedirect.com/science/article/pii/S106352032100110X
https://www.sciencedirect.com/science/article/pii/S106352032100110X
http://proceedings.mlr.press/v130/loizou21a.html
http://proceedings.mlr.press/v130/loizou21a.html
https://arxiv.org/abs/2104.11044
http://proceedings.mlr.press/v80/nguyen18c.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/3fb04953d95a94367bb133f862402bce-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3fb04953d95a94367bb133f862402bce-Paper.pdf
http://proceedings.mlr.press/v97/qian19b.html
http://proceedings.mlr.press/v97/qian19b.html
https://doi.org/10.1093/imanum/drac084
https://doi.org/10.1093/imanum/drac084


Under review as a conference paper at ICLR 2024

Franz Rottensteiner, Gunho Sohn, Jaewook Jung, Markus Gerke, Caroline Baillard, Sebastien
Benitez, and Uwe Breitkopf. The ISPRS benchmark on urban object classification and 3D building
reconstruction. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 2012.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018a. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018b. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf.

Frank Schöpfer. Linear convergence of descent methods for the unconstrained minimization of
restricted strongly convex functions. SIAM J. Optim., 26:1883–1911, 2016.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence
results and optimal averaging schemes. In Proceedings of the 30th International Conference on
Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, volume 28 of JMLR Workshop
and Conference Proceedings, pp. 71–79. JMLR.org, 2013. URL http://proceedings.mlr.
press/v28/shamir13.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Xinlei Yi, Shengjun Zhang, Tao Yang, Karl H. Johansson, and Tianyou Chai. Exponential convergence
for distributed smooth optimization under the restricted secant inequality condition, 2019.

K. Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent. SIAM J.
Optim., 26:1835–1854, 2016.

Hui Zhang and Wotao Yin. Gradient methods for convex minimization: better rates under weaker
conditions. Cam report, UCLA, 2013.

Zirui Zhou and Anthony So. A unified approach to error bounds for structured convex optimization
problems. Mathematical Programming, 12 2015. doi: 10.1007/s10107-016-1100-9.

13

https://proceedings.neurips.cc/paper_files/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
http://proceedings.mlr.press/v28/shamir13.html
http://proceedings.mlr.press/v28/shamir13.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


Under review as a conference paper at ICLR 2024

A EXPERIMENTAL SETTING

A.1 ALGORITHM

Algorithm A.1 provides a detailed account of our experimental protocol. This algorithm describes
our methodology to measure RSI and EB values throughout the training process.

Intuitively, the algorithm follows two training runs with identical initialization and minibatch sampling.
The first runs aims at computing the last iterate w⋆ and saving it, and the second runs uses w⋆ to
compute RSI and EB.

This approach removes the necessity to save all gradients throughout the run (in order to compute
RSI and EB at the end), which would be unreasonably expensive in memory.

Algorithm 1 Measurement of RSI and EB

Input: initial weights w0, sequence of minibatches B0...T−1

1: for t = 0, . . . , T − 1 do
2: compute gradient Gt = ∇LBt

(wt)
3: update weights wt+1 = Opt(w0...t, G0...t))
4: end for
5: w⋆ ← wT

6: reset weights to w0

7: for t = 0, . . . , T − 1 do
8: compute gradient Gt = ∇LBt

(wt)

9: compute RSIt =
GT

t (wt−w⋆)

∥wt−w⋆∥2
2

10: compute EBt =
∥Gt∥2

∥wt−w⋆∥2

11: update weights wt+1 = Opt(w0...t, G0...t))
12: end for
Output: RSI0...T−1, EB0...T−1

A.2 IMPLEMENTATION AND ENVIRONMENT FOR EXPERIMENTS

Computational Environment: We perform our experiments mainly with cluster A (redacted until
publication). For cluster A, each node is composed of NVIDIA A100×4GPU and AMD Milan 7413
@ 2.65 GHz 128M cache L3×2CPU. As a software environment, we use Rocky Linux 8.7, gcc 9.3.0,
Python 3.10.2, pytorch 1.13.1, torchvision 0.14.1, cuDNN 8.2.0, and CUDA 11.4.

Licence of Datasets: It should be noted that the CIFAR-10 dataset (Krizhevsky et al., 2012) does
not explicitly stipulate any licensing terms 1. The authors of the CIFAR-10 merely ask users of their
dataset to provide appropriate citation. ImageNet-1K (Deng et al., 2009) does not explicitly state its
license 2. Licenses of the WikiText-2 (Logan et al., 2019) is CC-BY-SA-3.0 3. No license is specified
for the dataset in Vaihingen (Cramer & Haala, 2010), but it is allowed to be used in scientific papers.
However, acknowledgment and citation are required4.

Implementation: All codes for experiments are modifications of the codes provided by PyTorch’s
official implementation for image classification and language modeling tasks5 and Audebert et al.
(2017) for segmentation task 6. The license for the official Pytorch implementation is the BSD-3-
Clause, and the license for the segmentation task implementation is GPLv3. Our code can be found
at the link below.
https://github.com/Hiroki11x/LossLandscapeGeometry

1https://www.cs.toronto.edu/~kriz/cifar.html
2https://www.image-net.org/challenges/LSVRC/2012/index.php
3https://www.salesforce.com/products/einstein/ai-research/

the-wikitext-dependency-language-modeling-dataset/
4For more details, see page 7 of https://www2.isprs.org/media/komfssn5/

complexscenes_revision_v4.pdf
5https://github.com/pytorch/examples
6https://github.com/nshaud/DeepNetsForEO
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A.3 DATASETS DESCRIPTION

CIFAR10: CIFAR-10 dataset (Krizhevsky et al., 2012), one of the most widely used datasets for
machine learning research, is a unique resource that offers a robust benchmark for algorithms,
primarily image recognition. The dataset is a curated collection of 60,000 color images, each of a size
of 32x32 pixels, uniformly divided across ten distinctive classes. These classes encompass various
common objects: airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Each
class in the CIFAR-10 dataset is represented equally, with 6,000 images per category. The dataset is
split into two segments: a training set comprising 50,000 images and a test set of 10,000 images.

ImageNet-1K: The ImageNet-1K dataset, a subset of the more extensive ImageNet database (Deng
et al., 2009), has become an essential resource for research in machine learning, particularly for image
recognition and classification tasks. ImageNet-1K is an extensively curated dataset of approximately
1.28 million high-resolution color images spread across 1,000 distinct categories or classes. These
classes span various objects, organisms, and phenomena, capturing a rich diversity of the visual
world.

WikiText-2: The WikiText-2 dataset (Logan et al., 2019) is a significant benchmark for various
natural language processing tasks, specifically those related to language modeling. It comprises over
2 million tokens extracted from verified Wikipedia articles. WikiText-2 retains the original structure
and complexity of the language found in the source articles. This characteristic has enabled training
models to handle various language structures and styles. The dataset is divided into three segments: a
training set with roughly 2.08 million tokens, a validation set with approximately 217,000 tokens,
and a test set with about 245,000 tokens.

Vaihingen: The Vaihingen dataset (Rottensteiner et al., 2012) is a land covering remote sensing
dataset. Its purpose is to segment correctly aerial images of the Vaihingen city in Germany. It is
composed of 33 tiles and we use 11 tiles for training, 5 tiles for validation, and the remaining 17 tiles
for testing our model, which is the split used in (Fatras et al., 2021). Furthermore, we only consider
the RGB components of the Vaihingen dataset. We follow the training procedure and PyTorch
implementation from (Audebert et al., 2017). We build our training (resp. validation) dataset by
taking randomly 256× 256 patches from the training (resp. validation) tiles. The number of images
seen during a training epoch is set to 10.000 patches while it is set to 1000 for the validation set.

Table 1: Default setting of experiments
Task Dataset Model Batch size Epochs

Image Classification

CIFAR-10 ResNet18-1 [64, 128, 256, 512] [100, 190, 280]
Medium-MLP [64, 128, 256, 512] [100, 190, 280]

ImageNet-1K

ResNet-18-1 256 [90, 180]
ResNet-18-2 256 [90, 180]
ResNet-50-1 256 [90, 180]
ResNet-50-2 256 [90, 180]

ResNet-152-0.5 256 [90, 180]
ResNet-152-1 256 [90, 180]

Word Language Model WikiText-2 Transformer [32, 64, 128, 256] 20

Segmentation Vaihingen UNet 10 26
SegNet 10 26

A.4 HYPERPARAMETERS AND DETAILED CONFIGURATIONS

In the experimental procedure of our study, we employed a systematic grid search method to explore
hyperparameters. This approach facilitates the identification of the most effective combinations that
provide superior performance.

The specifics concerning the batch size and the total number of epochs allocated for each dataset
and corresponding model have been exhaustively tabulated in Table 1. These parameters were
meticulously selected to ensure optimal learning while mitigating overfitting concerns.

Further, we present detailed settings of specific ablation experiments in Table 2, 3,4, and 5. These
ranges were defined based on prior search of hyperparameters maximizing validation performance.
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’SGD’ denotes the standard SGD algorithm without momentum, ’Momentum’ denotes SGD with
momentum with β = 0.9, and ’Adam’ denotes the Adam algorithm with β1 = 0.9 and β2 = 0.999.

CIFAR10: We train a ResNet-18 (He et al., 2016) for 190 epochs on CIFAR-10 (Krizhevsky et al.,
2012) with SGD + momentum using a batch size of 256, a weight decay of 10−6, and a fixed step
size of 10−2 as a default configuration.

For batch-size experiments, the learning rate was designated as 5.0 × 10−3 for a batch size of 64,
and subsequently scaled proportionally to the square root of the batch size, adhering to the guidelines
from prior research (Krizhevsky, 2014).

ImageNet-1K: We train a ResNet-50 on ImageNet Deng et al. (2009) for 180 epochs with SGD
+ momentum using a batch size of 256, weight decay of 10−4, and a learning rate of 10−3. The
learning rate is subjected to a linear warmup for the first 3 epochs, followed by cosine annealing as a
default configuration. We indicate by ’max LR’ the maximum value of the learning rate, reached
after the warmup epochs.

WikiText-2: We train a transformer Vaswani et al. (2017) 7 on WikiText-2 Merity et al. (2016) for 20
epochs with Adam Kingma & Ba (2017) using a batch size of 32, weight decay of 10−5 and learning
rate of 10−4.

Vaihingen: We train a SegNet Badrinarayanan et al. (2017) and a UNet (Ronneberger et al., 2015).
We augment our data with flip and mirror transformations. We use a batch size of 10 patches taken
randomly within images as done in Audebert et al. (2017). We train for 25 epochs with SGD +
momentum, learning rate 0.01 and weight decay 1e−5. We then do an extra epoch with the learning
rate and the weight decay divided by 10. Note that we train both the UNet and the SegNet from
scratch.

Table 2: Hyperparameter: Image Classification Task (CIFAR-10)
Task Model Dataset Optimizer Batch size LR Epochs Budget

Optimizer ResNet18-1 CIFAR-10
[SGD,

Momentum,
Adam]

256
[0.0001,
0.0005,
0.001]

[100, 190, 280]

Seed ResNet18-1 CIFAR-10 Momentum 256 0.01 190
Batch Size ResNet18-1 CIFAR-10 Momentum [64, 128, 256, 512] 0.005 8 190

Model [Medium-MLP,
ResNet18-2] CIFAR-10 Momentum 256 0.01 150

Table 3: Hyperparameter: Image Classification Task (ImageNet-1K)
Task Model Dataset Optimizer Batch size max LR Epochs Budget

Model

[ResNet18-1,
ResNet18-2,
ResNet50-1,
ResNet50-2,

ResNet152-05,
ResNet152-1]

ImageNet-1K Momentum 256 0.1 [90, 180]

Table 4: Hyperparameter: Language Model Task (WikiText-2)
Task Model Dataset Optimizer Batch size LR Epochs Budget
Batch Size Transformer WikiText-2 Adam [32, 64, 128, 256] 0.0001 9 20

7We use pytorch official implementation of transformer for language model: https://github.com/
pytorch/examples/blob/main/word_language_model/model.py

8The base learning rate is configured with an assumption of a batch size of 64. If the batch size is doubled,
the learning rate should be multiplied by the square root of 2.

8Same as above.
9Same as above.
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Table 5: Hyperparameter: Segmentation Task (Vaihingen)
Task Model Dataset Optimizer Batch size LR Epochs Budget
Model [UNet, SegNet] Vaihingen Momentum 10 0.01 26

A.5 VALIDATION PERFORMANCE

To support the relevance of our experimental setting, we report the validation performance in the
standard settings of each dataset and model.

Table 6: Validation accuracy on CIFAR-10 with batch size 256.

Model Validation accuracy
ResNet18-1 90.25
Vanilla MLP 59.42

Table 7: Validation accuracy on ImageNet with batch size 256.

Model Validation accuracy
ResNet18-1 67.63
ResNet18-2 69.75
ResNet50-1 72.31
ResNet50-2 73.67
ResNet152-0.5 72.23
ResNet152-1 73.07

Table 8: Validation perplexity on WikiText-2 with batch size 64.

Model Validation perplexity
Transformer 60.72

Table 9: Validation accuracy on Vaihingen with batch size 10.

Model Validation accuracy
SegNet 84.56
UNet 85.40

B ABLATION STUDY

In this section, we provide additional results that did not fit in the main paper for ablation studies. For
instance, in addition to the cosine similarities presented in figure 1, we provide the individual values
of RSI and EB.

We provide in Figure 6 the cosine similarities for different batch sizes on CIFAR-10, as a complement
to Figure 1 to study the impact of batch size RSI and EB.
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Figure 6: cosine similarities measured during the training of a ResNet-18 on CIFAR-10, for batchsizes
ranging from 64 to 512.
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Figure 7: RSI and EB throughout training of a transformer on WikiText-2 with different batch sizes.
This figure is complementary to figure 1.
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Figure 8: RSI and EB throughout training for the training of a ResNet18 on CIFAR-10 with different
optimizers. This figure is complementary to figure 1.
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Figure 9: RSI and EB throughout training for the training of different ResNet architectures on
ImageNet. This figure is complementary to figure 1.
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Figure 10: RSI and EB throughout training for the training of a ResNet18 on ImageNet with different
random seed. This figure is complementary to figure 4.
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Figure 11: RSI and EB throughout training for two different architectures on Vaihingen semantic
segmentation. This figure is complementary to figure 1.
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C ADDITIONAL FIGURES

In this section we introduce additional figure supporting claims or conjectures made in the main
paper.

Figure 12 shows the evolution of ∥wt − w⋆∥2 throughout training. We can see Adam traverses a
larger distance than Vanilla SGD and Momentum SGD, and evolves as a more regular pace. We
believe this could be a factor in the lower cosine similarities exhibited by Adam in Figure 1.
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Figure 12: ∥wt − w⋆∥2 over training of a ResNet18-1 on CIFAR-10, with different optimizers.

Figure 13 indicates the value of ∥wt − w⋆∥2 over training in the three settings of Figure 2. An
important remark is that due to the cosine decreasing learning rate schedule, in the case of ImageNet,
this distance becomes negligible in the last 25 epochs. This raise precision issues as discussed
in section 4.1. Since wt is subject to negligible variations in the last 25 epochs of the ImageNet
experiment, Figures 1 and Figure 2 omit the epochs after 155 in the case of ImageNet, in order to
improve readability and focus on meaningful settings.
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Figure 13: ∥wt − w⋆∥2 over training in the three different settings of Figure 2.
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D PLAUSIBLE CAUSES

In this section, we examine potential factors that might be contributing to the remarkable geometric
regularity observed via RSI and EB within the loss landscapes of neural networks. These are
conjectural in nature, and we advocate for more rigorous investigation in future work to substantiate
these propositions.

• Architectural Characteristics: The deep learning landscape has witnessed a plethora of archi-
tectural enhancements since its inception. Notably, ResNets incorporate advanced features such as
skip-connections and batch normalization (Ioffe & Szegedy, 2015b), which were found to simplify
the structure of the loss landscape (Santurkar et al., 2018a; Li et al., 2018). It is plausible that such
favorable geometric attributes could play a significant role in the success of neural network archi-
tectures. Therefore, our observations may be more a byproduct of the selection of high-performing
networks rather than an universal characteristic.

Nonetheless, Figure 14 provides an interesting comparison of cosine similarities derived from the
training of a wide 4-layer Perceptron (MLP) with ReLU activations and a double-width ResNet-
18. Despite a similar parameter count, these two architectures exhibit a considerable performance
gap. Intriguingly, not only does the MLP not exhibit inferior geometrical properties, but it actually
shows greater regularity in cosine similarity compared to the ResNet-18. This result suggests
that the beneficial geometry of neural loss landscapes is not simply a consequence of extensive
architectural tuning, but potentially a more intrinsic feature. Nonetheless, prior work concluded that
skip connections significantly simplify the loss landscape at higher depth (Li et al., 2018).

• High Dimensionality: Our conjecture is that the primary contributor to the regular patterns
observed by RSI, EB, and γ is the large dimensionality of neural loss landscapes. Assuming that
a significant number of dimensions maintain a degree of independence, even when the gradient
occasionally points in the ’wrong direction’ in certain dimensions, this can be offset by averaging
over a sufficiently vast number of dimensions. However, formalizing such an effect is challenging
due to the evident dependencies between dimensions.

• Properties of Real-World Data: Lastly, the geometric simplicity of optimization paths might
be influenced by inherent properties of real-world data distributions. For instance, it is commonly
postulated that unstructured data from real-world applications resides within lower-dimensional
manifolds. Analogous properties could be pivotal in shaping loss landscapes, which appear more
benign than what worst-case scenarios might suggest.
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Figure 14: Comparison of cosine similarities derived from a CIFAR-10 classification task employing
two distinct architectures: a straightforward Multi-Layer Perceptron (MLP) and a more complex
ResNet-18 structure.
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