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Abstract

Multilingual knowledge graphs (KGs) provide001
high-quality relational and textual information002
for various NLP applications but they are of-003
ten incomplete, especially in non-English lan-004
guages. Previous research has shown that com-005
bining information from several knowledge006
graphs in different languages aids both Knowl-007
edge Graph Completion (KGC), the task of pre-008
dicting of missing relations between entities,009
and Knowledge Graph Enhancement (KGE),010
the task of predicting missing textual infor-011
mation for entities. While previous efforts012
have considered KGC and KGE as indepen-013
dent tasks, we hypothesize that they are inter-014
dependent and mutually beneficial. To this end,015
we introduce KG-TRICK, a novel sequence-016
to-sequence framework that unifies the tasks017
of textual and relational information comple-018
tion for multilingual knowledge graphs. KG-019
TRICK demonstrates that i) it is possible to020
unify the tasks of KGC and KGE into one sin-021
gle framework, and ii) combining textual in-022
formation from multiple languages is benefi-023
cial to improve the completeness of a KG. As024
part of our contributions, we also introduce025
WikiKGE-10++, the largest manually-curated026
benchmark for textual information completion027
of KGs, which features over 30,000 instances028
across 10 diverse languages.029

1 Introduction030

Knowledge graphs (KGs) aim to encode struc-031

tured information about the world in a machine-032

readable format (Hogan et al., 2021), providing033

high-quality relational and textual information for034

various NLP applications, such as question an-035

swering (Mckenna and Sen, 2023), information036

retrieval (Reinanda et al., 2020), entity linking (Hu037

et al., 2023), and machine translation (Modrzejew-038

ski et al., 2020), among others. While large lan-039

guage models (LLMs) are increasingly retrieving040

information from KGs to improve their factuality041

and performance on many NLP tasks (Wang et al., 042

2023), their effectiveness in multilingual applica- 043

tions is limited due to the important gap between 044

the completeness of English and non-English in- 045

formation in multilingual KGs (Peng et al., 2023). 046

Indeed, KGs are not complete: a non-negligible 047

quantity of information about entities (e.g., entity 048

names, aliases, and descriptions) and relations (e.g., 049

the connections between entities) is missing in non- 050

English languages (Conia et al., 2023a). Therefore, 051

improving the completeness of KGs has attracted 052

significant attention over the years. 053

To address this issue, the research community 054

has worked on two main tasks: Knowledge Graph 055

Completion (KGC) and Knowledge Graph En- 056

hancement (KGE). KGC is the task of predicting 057

missing relations between entities already defined 058

in a KG (Bordes et al., 2013), while KGE is the 059

task of predicting missing textual information for 060

entities in a KG (Conia et al., 2023b). More for- 061

mally, KGC is defined as follows: given a KG G, 062

the task of KGC is to predict the missing tail en- 063

tity t given the head entity h and the relation r 064

in a triplet (h, r, ?). For example, given the triplet 065

(Joe Biden, occupation, ?), a possible answer 066

could be politician or, more specifically, the ID of 067

the politician entity in the KG. On the other hand, 068

KGE is defined as follows: given an entity e in a 069

KG G, the task of KGE is to predict missing textual 070

information (e.g., an entity name, alias, or descrip- 071

tion) for e in a target language. For example, given 072

the entity Joe Biden in English, a possible alias 073

would be Joseph R. Biden Jr. or Joseph Robinette 074

Biden Jr. in English, or the primary name in Chi- 075

nese would be 乔·拜登. In this simple example, 076

we can already demonstrate the interdependence 077

between KGC and KGE: the same head and tail 078

entities can have different names in different lan- 079

guages, but the relation between them should hold 080

across languages. However, their interdependence 081

becomes challenging when dealing with ambigu- 082
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ous entities (e.g., Paris the city and Paris the prince083

of Troy) and entities whose names are not directly084

translatable (e.g., The Matrix in English and黑客085

帝国 (Hacker’s Empire) in Chinese).086

While KGC and KGE have previously been con-087

sidered as independent tasks, in this work, we in-088

vestigate their interdependence and hypothesize089

that they are mutually beneficial. Our hypothesis is090

based on two symmetric observations. First, solv-091

ing KGC provides rich language-independent re-092

lational information about entities, which may aid093

KGE to generate higher quality textual information094

across languages. Second, solving KGE provides095

rich language-dependent textual information about096

entities, which may aid KGC to align entities with097

names and descriptions across languages more ef-098

fectively. To this end, we introduce KG-TRICK099

(Textual and Relational Information Completion of100

Knowledge), a novel unified framework that com-101

bines the tasks of KGC and KGE into one single102

task. Different from previous approaches, the KG-103

TRICK framework is multilingual by design and104

is able to leverage the complementary textual in-105

formation from multiple languages to improve the106

completeness of a multilingual KG. Not only does107

KG-TRICK remove the need for separate KGC108

and KGE models, but it also outperforms similarly-109

sized state-of-the-art approaches tailored for each110

individual task, while achieving competitive perfor-111

mance compared to much larger language models.112

To evaluate the robustness of KG-TRICK and en-113

courage future systems on textual information com-114

pletion of KGs, we also introduce WikiKGE-10++,115

the largest manually-curated benchmark for textual116

information completion for multilingual KG in 10117

languages.118

We can summarize our contributions as follows:119

• We unify the tasks of KGC and KGE to en-120

compass not only the task of predicting miss-121

ing links in a KG but also the task of complet-122

ing its multilingual textual information;123

• We introduce WikiKGE-10++, the largest124

manually-curated benchmark for textual in-125

formation completion of KGs, including over126

30,000 entities over 10 languages, to accom-127

pany KGC benchmarks and create a compre-128

hensive evaluation suite;129

• We present KG-TRICK, a novel sequence-to-130

sequence model that is able to combine infor-131

mation from multiple languages in an effective132

way to tackle textual and relation completion 133

of knowledge graphs in a joint fashion; 134

• We show that KG-TRICK outperforms 135

similarly-sized state-of-the-art models tai- 136

lored for each task, while achieving competi- 137

tive performance compared to larger LMs. 138

We believe that our work – our task reformula- 139

tion, manual benchmark, and unified method – is a 140

significant step forward to improve the quality of 141

multilingual KGs and broaden their applicability 142

to multilingual downstream tasks. To encourage fu- 143

ture work in this direction, we release our software 144

and benchmark at https://anonymized. 145

2 Related Work 146

In this section, we briefly review the literature on 147

Knowledge Graph Completion (KGC) and Knowl- 148

edge Graph Enhancement (KGE) and discuss the 149

challenges of completing textual and relational in- 150

formation in multilingual knowledge graphs. 151

Multilingual Knowledge Graphs. As men- 152

tioned above, KGs aim to encode information about 153

our world knowledge in a structured, machine- 154

readable format (Hogan et al., 2021). Such in- 155

formation also includes lexicalizations like entity 156

names, aliases, and descriptions; when these are 157

available in multiple languages, the KG is called a 158

multilingual KG. There are different ways to con- 159

struct and organize multilingual KGs. For example, 160

in DBPedia (Lehmann et al., 2015), an entity is 161

language-dependent and is represented in different 162

languages using different entity IDs, whereas in 163

Wikidata (Vrandečić and Krötzsch, 2014), an en- 164

tity is language-specific and is represented by the 165

same entity ID to which different language-specific 166

labels are attached. The construction of multilin- 167

gual KGs is an active area of research, and there 168

are several challenges to be addressed, such as the 169

alignment of entities across languages (Chakrabarti 170

et al., 2022), the completion of missing relational 171

information (Chen et al., 2020b), and the addition 172

of textual information, especially in non-English 173

languages (Conia et al., 2023b). 174

Knowledge Graph Completion. The task of 175

KGC is to predict missing relations between en- 176

tities already defined in a KG (Bordes et al., 2013). 177

This task has been studied extensively in the litera- 178

ture, and there are categories of methods to solve 179

it, including embedding-based methods (Lin et al., 180

2

https://anonymized


2015b), path-based methods (Lin et al., 2015a),181

and rule-based methods (Chen et al., 2020a). More182

recently, sequence-to-sequence models have been183

proposed to solve KGC, by treating it as a text-184

to-text generation task where the input is a partial185

triplet and the output is the missing entity (Saxena186

et al., 2022). However, these approaches have been187

designed for monolingual KGs, as multilinguality188

adds a layer of complexity to the task. Chakrabarti189

et al. (2022) have taken a step in this direction by in-190

cluding an auxiliary task to translate entity names,191

but they neither consider completing triples across192

languages nor the completion of more complex193

textual information, such as entity descriptions.194

Knowledge Graph Enhancement. The task of195

KGE is to predict missing textual information for196

entities in a KG. This task is more recent in the197

literature, but there are several approaches to tackle198

it, such as machine translation, web search, and lan-199

guage model-based methods (Conia et al., 2023a).200

However, Conia et al. (2023a) have mainly focused201

on i) combining answers from multiple KGE sys-202

tems to improve coverage and precision, and ii)203

evaluating the quality of the textual information204

generated by KGE systems for popular entities only,205

while iii) ignoring the connection between KGE206

and KGC, especially in the multilingual setting.207

3 Unifying Textual and Relational208

Information Completion209

In this section, we introduce KG-TRICK, or how210

we unify the tasks of KGC and KGE into one single211

framework, and how we leverage the complemen-212

tary textual information from multiple languages213

to improve the completeness of a multilingual KG.214

3.1 Task Reformulation215

Given the similarities between the two tasks of216

KGC and KGE and the interdependence between217

them (see Section 1, in which we provide a high-218

level intuition), we reformulate both tasks as a219

single multilingual text-to-text generation task220

as shown in Figure 1. KG-TRICK consists of221

three main components, namely the verbalization,222

the fine-tuned multilingual sequence-to-sequence223

model and the ensemble module to obtain the pre-224

dicted entities for KGC task. This unified frame-225

work allows us to i) treat KGC and KGE as a single226

task, and ii) to leverage the complementary textual227

information from multiple languages to better com-228

plete factual information and reversely to improve229

the latent, dense representation of the fine-tuned 230

sequence-to-sequence model leading to improved 231

KGE performance. Figure 1 illustrates the pipeline 232

of KG-TRICK for both KGC and KGE. Thanks to 233

our reformulation, KG-TRICK sees both tasks as 234

the task of predicting the tail entity t given the head 235

entity h and the relation r in a triplet (h, r, ?), as 236

we will detail in the following sections. 237

3.1.1 KGC as Text-to-Text Generation 238

In KGC, the task is to predict the missing tail entity 239

t given the head entity h and the relation r in a 240

triplet (h, r, ?). We first reformulate this task as 241

a text-to-text generation task, where the input is a 242

partial triplet composed of the primary name and 243

short description of the head entity h and the re- 244

lation r. The model is then asked to generate the 245

missing tail, or, more precisely, the primary name 246

and short description of the tail entity t. 247

One important drawback of this reformulation 248

is that it does not take into account the input and 249

output languages, which is crucial for multilingual 250

KGs. We overcome this limitation by extending 251

the triplet to a tuple of five elements, which include 252

the source and target languages, as shown in Fig- 253

ure 1. More specifically, the input to the model is 254

now a tuple (ls, lt, h, r, ?), where ls is the source 255

language of the input, lt is the target language of 256

the output, h = primary name + short description, 257

and r is the relation. The model then predicts t, 258

i.e., the primary name and short description of 259

the tail entity in lt. For example, given the input 260

(en, es, h, r, ?), the model generates the primary 261

name and short description of the entity político 262

| persona involucrada en la política; while given 263

the input (en, zh, h, r), the model generates the pri- 264

mary name and short description of the entity 政 265

治家 | 从事政治活动的人 . This reformulation 266

significantly increases the training data pairs by ex- 267

tending cross lingual name based entity alignment 268

to cross lingual relation based entity alignment re- 269

sulting in higher quality of entity alignment. 270

3.1.2 KGE as Text-to-Text Generation 271

In KGE, the task is to predict missing textual in- 272

formation for entities in a KG. This task can also 273

be reformulated as a text-to-text generation task, 274

similar to KGC. We can immediately see that the 275

formulation outlined above for KGC can be directly 276

applied to KGE, with the only difference being that 277

the head entity h may be represented only by its 278

primary name in case we want to generate a short 279
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Figure 1: KG-TRICK: a unified seq-to-seq framework for KGC and KGE. KGC dataflow is in blue; KGE dataflow
is in green. For KGE, an input triplet (Q68761,names, ?) is verbalized as “[de] Elsa Löwenthal|namen|?” and then
passed to the model, which can generate the names in multiple languages. For KGC, an input triplet (Q937, spouse, ?)
is verbalized as “[en] Albert Einstein | spouse | ?” and then passed to the model, which can generate the name Elsa
Einstein in multiple languages. The ensemble module consolidates all the outputs into the best one.

description for h itself. Moreover, we also allow280

the head entity h and the tail entity t to be the same281

entity, which allows us to generate aliases for an282

entity in a specific language. For example, given283

the partial triplet Joe Biden: President of the US |284

has name |, the model predicts the primary name285

of the entity Joe Biden in the target language but286

it can also generate one or more aliases, such as287

Joseph R. Biden Jr. or Joseph Robinette Biden Jr.288

in English, or 乔·拜登 or 乔·罗宾内特·拜登 in289

Chinese. Interestingly, when this reformulation is290

used in its most simple form, i.e., by using only the291

primary name of the head entity, it becomes equiv-292

alent to translation into the target language. This293

is a powerful feature, as it allows us to generate294

missing textual information in any language in KG.295

3.2 The KG-TRICK Model296

Unifying KGE and KGC, we implement KG-297

TRICK as a general sequence-to-sequence model,298

which learns to generate both missing relational299

and textual missing information in a KG. More300

formally, given a tuple (ls, lt, h, r, ?), the model is301

asked to generate t from the source language ls to302

the target language lt conditioned on h and r as303

following:304

o = KG-TRICK(ls, lt, h, r, ?) (1)305

where o is the output generated by the model. In306

other words, o is the primary name and short de-307

scription of the tail entity in the target language,308

and KG-TRICK learns to estimate the probability309

of generating o given the input (ls, lt, h, r, ?).310

KG-TRICK can be implemented using any311

sequence-to-sequence architecture, such as a trans-312

former (Vaswani et al., 2017) or a recurrent neu-313

ral network (Rumelhart et al., 1985). In prac-314

tice, we conducted our experiments with one main315

architecture, i.e., multilingual BART, which is a 316

transformer-based encoder-decoder model, and we 317

found that it performs well on the task, as shown in 318

Section 5. The model can be trained using a stan- 319

dard maximum likelihood estimation (MLE) objec- 320

tive, and it can be evaluated using standard metrics 321

for text generation, such as BLEU (Papineni et al., 322

2002), ROUGE (Lin, 2004), and COMET (Rei 323

et al., 2020). In this work, we study three main 324

variants of KG-TRICK, which differ in the training 325

data they use: i) TRICKKGC, which uses only the 326

relational information of the KG, ii) TRICKKGE, 327

which uses only the textual information of the KG, 328

and iii) TRICKKGC+KGE, which uses both the rela- 329

tional and textual information of the KG. 330

3.3 Inference for KGC and KGE 331

Once the output is generated, it can be used to 332

complete the KG in two ways. The application to 333

KGE is straightforward, as the output is the miss- 334

ing textual information for an entity in the target 335

language. The application to KGC is slightly more 336

complex, as the output is the textual representation 337

(i.e., the primary name and short description) of the 338

missing tail entity in the target language. Relying 339

only on an exact match between primary names 340

may not be sufficient to determine the correct en- 341

tity, especially in the case of ambiguous entities, 342

such as Paris the city and Paris the prince of Troy. 343

While previous work (Saxena et al., 2022) enumer- 344

ates the entities with the same name (e.g., Paris1, 345

Paris2, etc.), we incorporate entity descriptions as 346

additional information from KG-TRICK to help 347

disambiguate entities with the same primary name 348

resulting in higher entity linking accuracy. 349

Ensemble across languages. Since KG-TRICK 350

can generate text in any target language for which it 351
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has been (pre-)trained, we leverage this capability352

to complete the missing information from multi-353

ple languages. When corresponding entity ID are354

linked from generated text by different languages,355

we then ensemble and choose the most common356

predictions as is showed in Figure 1.357

4 WikiKGE-10++358

In this section, we introduce WikiKGE-10++, the359

largest manually-curated benchmark for textual in-360

formation completion of KGs, which features over361

30,000 instances across 10 diverse languages. Hav-362

ing realized the importance of evaluating systems363

on textual information completion of multilingual364

KGs, in 2023, Conia et al. created WikiKGE-10,365

a benchmark for evaluating KGE systems on the366

completion of entity names and aliases in 10 lan-367

guages. However, WikiKGE-10 is limited in two368

dimensions: i) it only allows for the evaluation369

of entity names and aliases, and ii) the entities in-370

cluded in the benchmark are popular entities only,371

i.e., they belong to the top-10% most popular enti-372

ties in Wikidata according to number of page views373

of their corresponding Wikipedia pages.374

A core contribution of our work is the creation375

of WikiKGE-10++, which extends WikiKGE-10 in376

two above-mentioned dimensions, hence the two377

“+” signs in the name of our benchmark. First,378

WikiKGE-10++ includes not only entity names and379

aliases, but also entity descriptions, which are cru-380

cial for many downstream tasks to create better381

entity representations (Ri et al., 2022). Second,382

WikiKGE-10++ includes a much larger set of en-383

tities, which belong to the torso of the popularity384

distribution of Wikidata (i.e., between the top-10%385

and top-50% most popular entities) and also the386

tail of the popularity distribution (i.e., below the387

top-50% most popular entities). This is important388

because the majority of entities in a KG are not389

popular, and different conclusions can be drawn390

when evaluating systems on different popularity391

tiers. Overall, WikiKGE-10++ is around 3 times392

larger than WikiKGE-10 in terms of the number of393

entities while also including entity descriptions.394

Including torso and tail entities. The inclusion395

of torso and tail entities in WikiKGE-10++ is im-396

portant to assess the robustness of KGE systems397

on the completion of textual information for enti-398

ties for which the amount of information available399

inside (and also outside) the KG is limited. While400

most of the search queries and user interactions401

may be focused on popular entities, the majority of 402

entities in a KG are not popular, and they are often 403

the most challenging. Therefore, we asked a team 404

of annotators to manually curate 1000 torso entities 405

and 1000 tail entities per language. 406

Including entity descriptions. The inclusion of 407

entity descriptions in WikiKGE-10++ is important 408

for evaluating KGE systems on the completion of 409

textual information that is usually longer and more 410

complex than entity names and aliases. However, 411

evaluating KGE systems on the entity descriptions 412

already available in Wikidata is not ideal, as those 413

are not always manually curated and often under- 414

specific, e.g., the description of many cities is sim- 415

ply city in country. Therefore, we asked a team of 416

annotators to produce high-quality descriptions for 417

1000 entities per popularity tier per language. 418

5 Experiments and Results 419

5.1 Datasets and Benchmarks 420

KGC. We carry out our KGC experiments on 421

Wikidata5M (Wang et al., 2021a) transductive 422

split. We stress that, although entities in Wikidata 423

are language-agnostic, the original Wikidata5M 424

dataset is English-only, i.e., the textual information 425

(names and descriptions) for the 5 million entities 426

is only in English. Therefore, this English-only 427

setting may not be ideal to evaluate our multilin- 428

gual KGC system; however, as is illustrated in 429

Table 3, our reformulation could further enhance 430

TRICKKGE’s performance with multilinguality. 431

KGE. We carry out our KGE experiments on our 432

newly annotated WikiKGE-10++ dataset, which 433

features 10 languages and 30,000 entities as intro- 434

duced in Section 4. We use this dataset to evaluate 435

KGE models on the completion of entity names, 436

aliases, and descriptions in 10 languages. 437

5.2 Comparison Systems 438

KGC. Baseline approaches for KGC can be di- 439

vided into two categories: embedding-based and 440

text-based. Embedding-based methods derive an 441

embedding for each entity and relation from the 442

graph structure of the KG, and rank the most prob- 443

able tail entity via a vector similarity function, e.g., 444

L2 distance (Bordes et al., 2013), complex space 445

distance (Trouillon et al., 2016b) or other distance 446

measures. Text-based methods use encoder-only 447

language models (Wang et al., 2022, SimKGC) to 448
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encode both the head entity and the relation us-449

ing their textual information, or encoder-decoder450

language models (Saxena et al., 2022, KG-T5)451

to generate the missing tail entity. Concurrent452

work (Kochsiek et al., 2023, KGT5-context) com-453

bines subgraph-structure information and sequence-454

to-sequence models. Since we build upon text-455

based methods, we compare our KG-TRICK mod-456

els with SimKGC and KG-T5, which are the most457

relevant baselines for a fair comparison.458

KGE. While KGE is a relatively recent task, pre-459

vious work has already indicated several strong460

baselines, including i) using NLLB-2001 (Costa-461

jussà et al., 2022) to translate entity names and462

descriptions from a language , and ii) prompting463

LLMs (e.g. GPT-3.5 or Llama), to generate textual464

information for an entity.465

5.3 Experimental Setup466

We use the entities within Wikidata5M which con-467

tains a set of around 5 million entities and a collec-468

tion of around 20 million triplets and collect their469

available textual information (entity names, aliases,470

and descriptions) for English and 9 other languages471

from a Wikidata dump2 to create a silver training472

set E for KGE in multiple EN→XX directions con-473

taining around 16 million records. For KGC, the474

original Wikidata5M triplets are expanded with475

our downloaded Wikidata dump to form over 150476

million triplets T multilingually (EN→XX) in 9477

languages pairs. We train three variants of KG-478

TRICK: one on E (denoted as TRICKKGE), one on479

T (denoted as TRICKKGC), and one on the mix-480

ture of both (denoted as TRICKKGC+KGE). 3 To481

verify the multilinguality of TRICKKGE, we also482

include a bilingual version train with single lan-483

guage pair (e.g. EN→IT) on KGE task, denoted as484

TRICKKGE(bilingual) in Table 3. While the num-485

ber of training samples are disproportional for KGC486

and KGE, to trade off the performance between487

the two tasks, as is shown in Table 5, we find a488

sweet spot of combining 50% of KGC data into489

the joint training. We denote this derivative as490

TRICK50%KGC+KGE in Table 2 and Table 3. We491

provide more details balancing the training data of492

the two tasks in Appendix C.493

Evaluation. For KGC, we evaluate the systems494

using standard ranking-based metrics, namely,495

1In this work we use NLLB-200-Distilled (600M).
2Downloaded in November 2023.
3All TRICK models are fine-tuned from mBART-large-50.

Model MRR hit@1 hit@3 hit@10

TransE (Bordes et al., 2013) 25.3 17.0 31.1 39.2
DisMult (Yang et al., 2014) 25.3 20.8 27.8 33.4
SimpIE (Kazemi and Poole, 2018) 29.6 25.2 31.7 37.7
RotatE (Sun et al., 2019) 29.0 23.4 32.2 39.0
QuatE (Zhang et al., 2019) 27.6 22.7 30.1 35.9
ComplEx (Trouillon et al., 2016a) 30.8 25.5. - 39.8

DKRL (Xie et al., 2016) 16.0 12.0 18.1 22.9
KEPLER (Wang et al., 2021b) 21.0 17.3 22.4 27.7
MLMLM (Clouatre et al., 2021) 22.3 20.1 23.2 26.4
SimKGC + Desc. 35.8 31.3 37.6 44.1
KG-T5 30.0 26.7 31.8 36.5
KG-T5 + Desc. 38.1 35.7 39.7 42.2
KG-T5 + Desc.∗ 37.0 34.7 38.4 41.1

TRICKKGC 38.2 36.0 39.7 41.8
TRICKKGC+KGE 38.8 36.6 40.4 42.6

Table 1: KGC results on the test set of Wikidata5M.
TRICK achieves strong performance over competitive
baselines. *: retrained in the same setting as TRICKKGC.

hit@1, hit@3, hit@10, and Mean Reciprocal Rank 496

(MRR). Hit@k measures the proportion of correct 497

answers in the top-k predictions, while MRR mea- 498

sures the average rank of the correct answer. For 499

KGE, we follow the evaluation protocol proposed 500

by Conia et al. (2023a), which includes two main 501

metrics: coverage and precision. Coverage evalu- 502

ates the number of entities for which a system is 503

able to produce at least one correct entity name, 504

while Precision evaluates the ability of a system to 505

identify incorrect entity names and aliases. Finally, 506

we report the COMET scores for the completion 507

of entity descriptions, a standard metric for text 508

generation and machine translation. 509

5.4 Results on KGC 510

Table 1 shows the results obtained by our KG- 511

TRICK models compared to other KGC-only mod- 512

els on the test set of Wikidata5M. In general, we 513

can observe that KG-TRICK generally outperforms 514

all the other strong baselines on MRR, hit@1, 515

and hit@3, and it is the second best model for 516

hit@10. More specifically, TRICKKGC (trained 517

only on KGC data but in multiple languages) al- 518

ready outperforms both SimKGC and KG-T5, on 519

almost all the metrics. Notably, this first result 520

demonstrates that our model is able to outperform 521

strong baselines that are tailored for KGC on a 522

dataset Wikidata5M that is designed for KGC (and 523

that is biased in its creation towards entities that 524

have English lexicalizations). Moreover, we can ob- 525

serve that TRICKKGC+KGE achieves scores that are 526

even higher than TRICKKGC, which demonstrates 527

that unifying KGC and KGE leads to additional 528
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Coverage Precision COMET

Head Torso Tail Avg. Head Torso Tail Avg. Head Torso Tail

NLLB-200 EN→XX 29.1 26.1 24.3 26.5 47.6 39.6 34.9 40.7 0.64 0.63 0.63
Llama3-8B 27.2 22.9 20.4 23.5 46.0 36.6 31.2 37.9 0.62 0.62 0.62
GPT-3.5 35.0 29.6 26.7 30.4 51.9 42.7 36.8 43.8 0.66 0.64 0.64

TRICKKGE 31.5 31.4 29.9 30.9 56.4 51.4 46.5 51.4 0.63 0.64 0.64
TRICK50%KGC+KGE 33.1 31.2 30.1 31.5 57.7 51.7 47.1 52.1 0.61 0.62 0.62
TRICKKGC+KGE 31.6 29.5 28.2 29.7 57.8 52.2 46.5 52.2 0.60 0.60 0.61

Table 2: KGE results on WikiKGE-10++ split by head, torso and tail entities. Best results in bold.

improvements on the KGC task. This second result529

empirically shows that the two tasks are indeed530

interdependent and mutually beneficial, and that531

the combination of the two tasks can lead to better532

results than the two tasks individually.533

On the other hand, we can observe that the per-534

formance of TRICKKGC and TRICKKGC+KGE is535

not as good as the performance of SimKGC on536

hit@10. We hypothesize that this is likely due to537

the fact that the sampling capacity of sequence-to-538

sequence models is limited and constrains their539

performance with higher values of k. Indeed,540

for SimKGC, TransE and ComplEx, due to their541

closed-world assumption, the candidates for the tail542

entities are known during inference for similarity543

search. However, for text generation models, such544

as KG-T5 and KG-TRICK, which operate under545

a more challenging open-world assumption, the546

diversity of generated candidates may be limited547

by the sampling strategy used for decoding. Fu-548

ture work could focus on improving the sampling549

capacity of generative models.550

5.5 Results on KGE551

Table 2 shows the KGE results on our new552

WikiKGE-10++ benchmark split by entity popular-553

ity, while Table 3 shows the results by language.554

Coverage. Overall, we could observe that555

TRICK50%KGC+KGE outperforms strong baselines556

on average and across most languages. Interest-557

ingly in Table 2, TRICKKGE and TRICKKGC+KGE558

perform worse than GPT-3.5 on Coverage of head559

entities. This is likely due to the fact that GPT-3.5560

has seen substantially more popular entity names561

during its pre-training and is equipped with con-562

siderably more parameters to store such informa-563

tion. However, TRICK series quickly catch up with564

GPT-3.5 on Coverage of torso entities, and signif-565

icantly outperform GPT-3.5 on Coverage of tail566

entities. It shows that GPT-3.5 quickly loses its ad-567

vantage when the entities are less popular, and that 568

KG-TRICK models feature a more balanced and 569

consistent performance across different popularity 570

tiers. 571

Precision. Overall, we can observe that TRICK 572

significantly outperforms strong baselines on pre- 573

cision on head, torso, and tail entities, i.e., it is a 574

more reliable system in identifying incorrect en- 575

tity names and aliases in a given target language 576

in a multilingual knowledge graph. In fact, TRICK 577

is particularly effective on torso and tail entities, 578

where it improves over NLLB-200 and GPT-3.5 by 579

around 10% points in F1 score. This is important 580

as completing missing knowledge is not only about 581

providing the correct information but also about 582

avoiding incorrect information. 583

Entity descriptions. Finally, we also report the 584

COMET score for the completion of entity de- 585

scriptions, borrowing a metric for open-ended text 586

generation from MT. In this task, we can observe 587

that TRICKKGE is comparable with NLLB-200 and 588

GPT-3.5, while TRICKKGC+KGE is slightly worse 589

on average than TRICKKGE. These results open the 590

door to future work: indeed, very different methods 591

achieve comparable results on entity description 592

completion, meaning that there is still a wide room 593

for improvement in this task or COMET is not a 594

good metric for comparing descriptions. We note 595

that BLEU is not appropriate either, as its score is 596

not defined for short texts, e.g., one word. 597

Multilingual and Multi-task As is illus- 598

trated in Table 3, TRICKKGE outperforms 599

TRICKKGE(bilingual) on almost all languages for 600

both Precision and Coverage, indicating that jointly 601

train a unified model for all languages could inher- 602

ently benefit its multilinguality. On the multi-task 603

side, combining KGC and KGE tasks requires cau- 604

tion, as is demonstrated by TRICKKGC+KGE and 605

TRICK50%KGC+KGE. KGC and KGE are mutually 606
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Coverage F1 #Params AR DE ES FR IT JA KO ZH Avg

NLLB-200 EN→XX 0.6B 16.9 39.8 37.9 40.8 40.5 9.4 18.6 8.1 26.5
Llama3-8B 8B 11.3 35.9 32.8 35.0 32.6 12.4 15.5 12.5 23.5
GPT-3.5 175B 20.1 40.8 39.1 41.3 40.9 19.6 21.5 20.0 30.4

TRICKKGE(bilingual)

0.6B

24.4 39.5 33.7 37.2 34.0 18.4 23.3 15.3 27.5
TRICKKGE 24.4 39.5 38.8 40.8 40 20.4 26.3 17.0 30.9
TRICK50%KGC+KGE 23.0 40.9 40.0 41.9 41.1 20.5 26.0 18.2 31.5
TRICKKGC+KGE 22.6 39.2 37.2 39.4 39.4 19.8 24.3 16.0 29.7

Precision F1 #Params AR DE ES FR IT JA KO ZH Avg

NLLB-200 EN→XX 0.6B 30.3 49.1 48.9 51.2 52.0 28.3 30.6 34.9 40.7
Llama3-8B 8B 24.1 46.0 45.0 47.7 45.4 30.4 26.6 38.3 37.9
GPT-3.5 175B 33.2 49.5 49.7 51.9 52.3 36.9 33.1 43.8 43.8

TRICKKGE(bilingual)

0.6B

46.3 52.3 53.1 54.5 55.3 43.8 46.3 45.5 49.6
TRICKKGE 48.4 54.3 55.2 57.0 56.2 45.6 47.5 47.5 51.4
TRICK50%KGC+KGE 48.1 55.9 55.6 56.4 56.9 45.7 50.0 48.5 52.1
TRICKKGC+KGE 49.4 54.8 55.5 56.7 56.6 47 49.0 48.3 52.2

de
sc

ri
pt

io
ns

COMET Score #Params AR DE ES FR IT JA KO ZH Avg

NLLB-200 EN→XX 0.6B 0.59 0.62 0.66 0.63 0.65 0.63 0.65 0.64 0.63
Llama3-8B 8B 0.56 0.62 0.65 0.63 0.65 0.60 0.60 0.61 0.62
GPT-3.5 175B 0.60 0.63 0.66 0.63 0.66 0.66 0.67 0.67 0.65

TRICKKGE

0.6B
0.58 0.63 0.66 0.63 0.65 0.67 0.64 0.64 0.64

TRICK50%KGC+KGE 0.56 0.61 0.63 0.60 0.64 0.64 0.62 0.60 0.61
TRICKKGC+KGE 0.55 0.59 0.63 0.58 0.62 0.63 0.62 0.60 0.60

Table 3: KGE experiments on WikiKGE-10++. TRICK achieves best performance on Precision and Coverage F1
scores. Best results in bold.

beneficial when training data is properly balanced,607

otherwise one task would dominate the distribution608

and cause regression on the other. More analysis609

on data balancing is discussed in Appendix C. We610

could also observe that the multilingual capability611

of Llama3-8B is far from ideal in KGE task.612

5.6 Downstream Application: Results on613

Multilingual Question Answering614

In addition to the KGC and KGE tasks, we also615

evaluate our KG-TRICK on a downstream appli-616

cation: our intuition is that (post-)pretraining on617

KGC and KGE tasks can allow a model to store618

more factoid knowledge, which can be useful for619

multilingual question answering. Therefore, we620

evaluate the performance of our TRICKKGC+KGE621

when fine-tuned on answering the questions in622

the Mintaka dataset (Sen et al., 2022), which is623

a multilingual question answering dataset that con-624

tains knowledge-seeking questions, and compare625

its results in the same setting with directly fine-626

tune on Mintaka using mBART-large-50 that has627

not been (post-)pretrined on KGC and KGE tasks.628

Our experiments show that our model outperforms629

mBART-large-50 by 3.1% (29.2% vs. 26.1%) on 630

average in terms of EM (Exact Match), which 631

demonstrates that the knowledge embedded in 632

KGC and KGE training data could be easily trans- 633

ferred to the QA task in cross-lingual settings. 634

6 Conclusion 635

The contributions of this paper are threefold. First, 636

we propose a novel multilingual KGC and KGE 637

system, TRICK, which is able to complete rela- 638

tional and textual information in and across 10 639

languages. Second, we introduce a new human- 640

curated dataset, WikiKGE-10++, which contains 641

10 languages and 30,000 entities for KGE eval- 642

uation. Third, we demonstrate that our TRICK 643

system outperforms strong baselines on both KGC 644

and KGE tasks, and that the combination of the two 645

tasks can lead to better results than the two tasks 646

individually. We also show that the knowledge em- 647

bedded in KGC and KGE training data could be 648

easily transferred cross-lingual QA. We hope our 649

work and our WikiKGE-10++ can inspire future 650

research on multilingual KGC and KGE. 651
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Limitations652

Closed world assumption of KGC. In this paper,653

we assume that the entities within KGC tasks exist654

in the KG. If the model predicts some entities that655

do not exist, we simply ignore the inference. This656

assumption limits the model’s capability to explore657

the encoded knowledge within pre-trained multilin-658

gual LMs. Although our model can be extended659

to predict and extract entities outside of KG, our660

experiments in section Section 5 demonstrate that661

there is still a big headroom to further complete662

the relation information when KG are extended663

into multilingual setting since we can combine the664

knowledge across languages that are not consid-665

ered in a monolingual setting. We leave the deeper666

exploration into future work.667

Limited exploration of pre-trained multilin-668

gual LMs. Our KGE task pays great attention to669

enrich the entity names and descriptions of entities670

with limited attention to other textual information671

such as mottos , quotes. Given the pre-trained LMs672

have been trained on huge amount of data, there673

are great potential to extract out the information674

that has been seen by the pre-trained LMs which675

does not exist in KG. Even though KG-Trick can676

be extended to infer other entity facts, our analysis677

shows that entity names and descriptions are most678

essential to enrich and disambiguate entities and679

have led to great improvement of KGC task. Espe-680

cially that description is a summarized free form681

text that is highly representative of a particular en-682

tity.683

Support unified multilingual KGs. We focus684

on the multilingual KGs that has entities repre-685

sented by entity IDs and language dependent tex-686

tual information are structured as the attributes as-687

sociated with corresponding entities. Thus, differ-688

ent from other research work that needs to align en-689

tities and relationships together, our systems elimi-690

nate such requirement. The benefit of this setting691

is that we enriched the KG that are unified at the692

very beginning and derive the knowledge from the693

KG itself by extracting and inferring information694

that can be derived by the multilingual KG itself.695

Our system do not suffer from the error propaga-696

tion introduced by entity and relation alignment697

between different KGs. Nonetheless, our system is698

limited to the setting of unified multilingual KGs699

such as Wikidata. KG-Trick is complementary to700

the other related work on multilingual KG comple-701

tion which calls for integration of different KGs.702

Our system can be applied to further improve the 703

completeness after the KGs are unified since such 704

techniques focus on fusing different KGs but not 705

inferring knowledge from the unified KG itself. 706

WikiKGE-10++ While WikiKGE-10++ signifi- 707

cantly extends WikiKGE-10 by adding 2X entities 708

sampled from torso and tail entities and descrip- 709

tions for such comprehensively sampled set of en- 710

tities, it contains only two types of facts including 711

entities names and descriptions. By extending the 712

WikiKGE-10++ to cover more facts associated with 713

the entities, the research community can be able to 714

get a more accurate and thorough picture on how 715

the proposed approach can improve KG. 716

Potential risks for generative textual infor- 717

mation completion As we employ a text-to-text 718

framework for multilingual KG textual information 719

completion task, it may generate biased or inaccu- 720

rate text that could be misleading for downstream 721

tasks. If this work is considered for production use, 722

human annotators might be in the loop to reduce 723

the risks of harmful text generation. 724

. 725
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A Creating WikiKGE-10++ 943

In this section, we describe the in-depth details on 944

the creation of WikiKGE-10++, our novel human- 945

curated dataset for evaluation automatic approaches 946

on KGE of Wikidata entity names and descriptip- 947

tions. 948

A.1 Choice of Languages 949

Aligned with the previous work completed in Co- 950

nia et al., the benchmark sustains the selection of 951

9 languages from a set of topologically diverse lin- 952

guistic families, while interchanging the Russian 953

(Slavic) language for the Turkish (Altaic) language: 954

• West Germanic: English, German; 955

• Romance: Spanish, French, Italian; 956

• Semitic: Arabic; 957

• Sino-Tibetan: Chinese (simplified); 958

• Altaic: Turkish; 959

• Koreanic: Korean; 960

• Japonic: Japanese. 961

The Russian language was interchanged for the 962

Turkish language due to export and import restric- 963

tions placed on Russia, thereby, restricting access 964

to Russia-based human annotators. 965
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A.2 Human annotation process966

The objective of the annotation process was to (i)967

rate and suggest entity names in the target language,968

(ii), verify the suggest entity names in the target969

languages, (iii) curate description for the entity970

in the target language, (iv) validate the provided971

descriptions quality.972

A.2.1 Rate and suggest entity names.973

The objective of the annotation process was the974

rate entity names in a target language. Detailed in-975

formation on the annotation process and UI design976

can be found in Conia et al..977

A.2.2 Verify suggested entity names.978

The objective of the annotation process was the979

verify the suggested entity names in the target lan-980

guage provided by the human annotators. Detailed981

information on the annotation process and UI de-982

sign can be found in Conia et al..983

A.2.3 Curate entity descriptions.984

The objective of the annotation process was cu-985

rate descriptions for the given entity in the target986

language.987

Given an entity name in a target language, an-988

notations were required to familiarize themselves989

with the its information: the user interface provided990

the entity names, as well as a built-in panel that991

directly displayed Wikipedia articles for the corre-992

sponding entity in English and the target language,993

if available. In addition, annotators were recom-994

mended to further familiarize themselves with the995

entity outside of the provided information.996

Next, the annotators were tasked with learning997

about the required format of the requested descrip-998

tion with detailed instructions. This was facilitated999

by providing: (i) examples of correctly curated de-1000

scription given an example entity, and (ii) strict1001

rules that the descriptions had to comply by.1002

After learning about the entity and the required1003

description format, the human annotator was re-1004

quested to manually curate the description for the1005

corresponding entity in the target language. During1006

this task, the human annotator was provided with1007

descriptions from other sources (such as Wikidata)1008

in English and the target language. Human anno-1009

tators were instructed that they could leverage the1010

extraneous descriptions, but not to copy and paste1011

unless satisfactory.1012

A.2.4 Validate entity descriptions. 1013

The objective of the annotation process was the 1014

validate the quality of the descriptions in the target 1015

language provided by the human annotators. 1016

First, given an entity, the human annotator was 1017

provided corresponding information (i.e., entity 1018

names/aliases, Wikipedia pages, etc) as done in the 1019

previous task. In addition, the description require- 1020

ments were detailed (in-depth guidelines provided 1021

in a different document). 1022

Then, they were prompted to analyze the cor- 1023

responding description for the entity in the target 1024

language with a series of questions. The ques- 1025

tions were reformulated to from description require- 1026

ments, to verify the presented description in the 1027

target language followed the requested format. If 1028

the annotator negatively responded to any of the 1029

presented questions, they were prompted to edit 1030

the description to satisfy the requirements. If the 1031

initial description the requirements, the originally 1032

provided description was sustained. 1033

A.3 Quality assurance and inter-annotator 1034

agreement. 1035

B Short Description Evaluation 1036

As is shown in Table Table 4, we calculate the 1037

BLEU score for every baseline and our method. 1038

However, the BLEU score for all languages and 1039

all baselines are under 10, which suggests that the 1040

translated text from English can hardly relate to 1041

ground truth in target languages. This phenomenon 1042

could suggest that BLEU is not a proper metric for 1043

entity short description evaluation, as (i) Short de- 1044

scription for the same entity in different languages 1045

are not directly translatable. (ii) A large amount 1046

of short descriptions are less than 4 tokens (e.g. 1047

Politician), which could biases the judgement of 1048

BLEU when calculating the weighted average. 1049

C Balancing the training data for KGC 1050

and KGE 1051

In this section, we provide more details on how 1052

balancing the training data between KGC and KGE 1053

tasks can impact the performance of the two tasks. 1054

Indeed, the training datasets available for the two 1055

tasks are not balanced: the KGC dataset contains 1056

150 million records generated multilingually from 1057

20 million triplets, while the KGE dataset contains 1058

around 16 million records generated multilingually 1059

from 5 million entities. Therefore, we investigate 1060

the impact of mixing different proportions of the 1061
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Figure 2: UI used for the annotation task: the annotators could familiarize themselves with the task with an outline
of the task instructions (detailed guidelines could be read in a separate page) and the information about the entity,
including its names in English and its Wikipedia pages in English and the target language (Italian in this case).

de
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BLEU Score #Params AR DE ES FR IT JA KO ZH Avg

NLLB-200 EN→XX → 0.6B 2 3.4 7 4.8 4.6 1.5 4.1 5.9 4.2
GPT-3.5 175B 2.8 4.2 7.2 4.9 5.5 3.9 4.3 9.8 5.3

TRICKKGE

0.6B
2.2 3.4 8.0 5.1 5.9 3.8 2.5 4.9 4.5

TRICK50%KGC+KGE 1.4 2.1 5.8 2.8 4.1 2.3 1.6 2.8 2.9
TRICKKGC+KGE 1 0.8 2.6 1.3 2.1 2 1.5 2.2 1.7

Table 4: BLEU score for entity short description evaluation

two datasets on the performance of the two tasks.1062

More specifically, we investigate different propor-1063

tions of the KGC and KGE datasets, ranging from1064

0% to 100% of the KGC dataset, and evaluate the1065

performance of the two tasks on WikiKGE-10++.1066

The results are reported in Table 5. We can observe1067

that the best performance on KGC is achieved when1068

the full KGC dataset is used, which suggests that1069

the KGC task is more difficult than the KGE task.1070

On the other hand, the best performance on KGE1071

is achieved when up to 50% of the KGC dataset is1072

used. Therefore, the best compromise between the1073

data mixing proportion for the two tasks is to use1074

50% of the KGC dataset.1075

KGE KGC

KGC% Precision Coverage MRR hit@1

0% 51.5 30.9 - 30.4
1% 52.4 30.4 32.7 32.1
10% 52.4 30.6 34.4 31.7
20% 51.7 28.8 34 32.8
50% 52.1 31.5 35.2 33
full 52.2 29.7 38.8 36.6

Table 5: Investigation on the different data mixing pro-
portion between KGC and KGE, and their impact on
KGC and KGE tasks performance
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Figure 3: UI used for the annotation task: the annotators familiarized themselves with the description format with
an outline of the requirements (detailed guidelines could be read in a separate page).

Figure 4: UI used for the annotation task: the annotator provied the description in a text box. A warning message
was prompted if the token length of the description was too short or too long.
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Figure 5: UI used for the annotation task: annotators were required to examine the description in the target language,
and answer a series of questions that reflected the description requirements.

Figure 6: UI used for the annotation task: annotators were prompted to correct the description by rewriting it, if they
negatively answer the series of questions provided.
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