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Abstract

Assistant AI agents should be capable of rapidly acquiring novel skills and adapting
to new user preferences. Traditional frameworks like imitation learning and
reinforcement learning do not facilitate this capability because they support only
low-level, inefficient forms of communication. In contrast, humans communicate
with progressive efficiency by defining and sharing abstract intentions. Reproducing
similar capability in AI agents, we develop a novel learning framework named
Communication-Efficient Interactive Learning (CEIL). By equipping a learning
agent with an abstract, dynamic language and an intrinsic motivation to learn
with minimal communication effort, CEIL leads to emergence of a human-like
pattern where the learner and the teacher communicate progressively efficiently by
exchanging increasingly more abstract intentions. CEIL demonstrates impressive
performance and communication efficiency in a 2D MineCraft domain featuring
long-horizon decision-making tasks. Agents trained with CEIL quickly master
new tasks, outperforming non-hierarchical and hierarchical imitation learning by
up to 50% and 20% in absolute success rate, respectively, given the same number
of interactions with the teacher. Especially, the framework performs robustly with
teachers modeled after human pragmatic communication behavior.

1 Introduction

Imagine Alice, a programming expert, teaching Bob, a novice, how to write computer programs.
Initially, because they share little common knowledge in this domain, Alice has to demonstrate step
by step how a program is written. This strategy quickly enables Bob to write simple programs,
but it is inadequate for teaching him to compose sophisticated programs consisting of thousands of
lines of code. Hence, after teaching through demonstrations for a while, Alice switches to a more
efficient strategy: she grows a shared vocabulary with Bob and gradually adds to it increasingly more
abstract terms that help them express complex intentions succinctly. For example, after explaining
the concepts of “for-loop” and “a function that checks whether an integer is a prime”, Alice can
teach Bob to count the number of two-digit primes by giving a high-level instruction like “write a
for loop from 1 to 99, and call the prime-checking function in each iteration” rather than having to
dictate a full program to him. In general, as Alice and Bob communicate more frequently and want
to exchange increasingly intricate ideas, they reduce effort by making their communication more
abstract. We refer to this phenomenon as progressively efficient communication.

In order to excel as personal assistants of humans, AI agents should be capable of progressively
efficient communication. These agents should handle increasingly complex user requests without de-
manding extensive user effort to adapt their behavior. In this paper, we demonstrate that incorporating
elements of human communication allows for the construction of such agents. We first identify two
elements that are prerequisite for progressively efficient communication but are missing in traditional
frameworks like imitation learning (IL) and reinforcement learning (RL): (i) a dynamic, referential
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Figure 1: An illustration of CEIL on a “bake pork” task in a 2D MineCraft environment (a). The
environment features compositional tasks which represent intentions at various levels of abstraction
(b). CEIL enables the learner to quickly learn complex tasks by capitalizing on its mastery of
simpler tasks. When interacting with the teacher (c), the learner can choose to verbally communicate
an intention (a reference to an action sequence) and receive correction, or execute an intention
by taking actions in the environment and obtain evaluation. It can alternate between these two
modes of communication within a learning episode. Aiming to reduce communication effort, the
learner conveys increasingly more abstract intentions over time (d). Learning efficiency enhances
as communication becomes more abstract.

communication medium (the means) and (ii) a desire to minimize collaborative effort (the motivation).
We develop Communication-Efficient Interactive Learning (CEIL), a learning framework that equips
the learning agent with human-like means and motivation for progressively efficient communication.
As illustrated in Figure 1, CEIL transcends IL and RL by allowing the teacher and the learner to
exchange abstract intentions rather than low-level signals like numerical rewards or primitive actions.
Furthermore, it injects into the learner an intrinsic motivation to minimize long-term communication
effort, encouraging the learner to understand and use abstract terms to express intentions concisely.
While incorporating one of these elements of human communication has been previously explored
[Kulkarni et al., 2016, Le et al., 2018, Ren et al., 2021, Brantley et al., 2020, Zhang and Cho, 2016],
our work is the first to integrate both of them in a single framework with the goal of mimicking the
progressive efficiency of human communication.

We present a variant of our framework with IL-like instructive feedback and RL-like evaluative
feedback, and propose a practical learning algorithm by extending Q-learning. We evaluate the
effectiveness of our algorithm on a challenging 2D MineCraft domain where each task is composed
of various subtasks and requires a long sequence of actions to complete. Results indicate that our
algorithm CEIL learns significantly faster and achieves higher asymptotic performance than various
RL and IL baselines. The algorithm achieves performance gain consistently across various models of
the teacher we construct, including those mimicking human pragmatic behavior. The temporal change
in the distribution of utterances indicates that progressively efficient communication indeed emerges,
as the learner conveys increasingly more abstract intentions to the teacher. Our work illustrates that
integrating human communication traits holds great promise in the advancement of more efficient
and human-compatible learning frameworks.

2 Overview

In this section, we highlight the key novelties of our framework. More details of the implementation
are provided in Appendix A.

Referential, productive communication with abstract intentions. CEIL allows the learner and
the teacher to convey abstract intentions. An intention is a symbol that refers to a sequence of actions
that aims to accomplish a task (e.g., “bake pork”, “make arrow”). Using intention as the medium,
CEIL supports referential communication. Moreover, the framework allows for the expansion of the
set of intentions and the composition of existing intentions for expressing new intentions, making
communication also productive.
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We frame learning in CEIL as a communicative activity, where the goal is for the learner and the
teacher to agree on the meaning of the intention referring to the main task. To achieve this goal,
the two interlocutors repeat a process in which the learner conveys its current interpretation of the
intention, and the teacher provides feedback to rectify that interpretation. To convey its interpretation
of an intention, the learner can select between two general options:

(a) verbal communication: express the intention in terms of other intentions;
(b) non-verbal communication: execute the intention by taking actions in the environment to

perform the task that it refers to.

For option (a), in our implementation, the learner utters only an initial part of the expression so that
the teacher can correct it more efficiently. For example, when learning a “bake pork” task, it would
say “[to bake pork, I will] get coal” rather than “[to bake pork, I will] get coal, then hit pig”.

      : I will bake pork
      : OK
      : To bake pork, I will get iron next
      : No, you should get coal 

[End of episode]

      : I will bake pork
      : OK
      : To bake pork, I will get coal next
      : OK
      : [ performs get coal ]
      : 0.5
      : To bake pork, I will hit pig next
      : OK
      : To hit pig, I will make arrow next
      : OK
      : [ performs make arrow ]
      : 0.8
      : [ performs hit pig (with arrow) ]
      : 0.7

[End of episode]

Figure 2: Conversations between
the learner and teacher for learn-
ing the “bake pork” task.

Upon observing the learner’s interpretation, the teacher offers
feedback. CEIL can be instantiated with various types of feed-
back. In this paper, we present a variant in which the teacher
issues IL-like instructive feedback and RL-like evaluative feed-
back. Specifically, if the learner chooses option (a), the teacher
provides instructive feedback in the form of intention correc-
tion. When the proposed intention is correct, the teacher simply
confirms. If the learner chooses option (b), the teacher offers
evaluative feedback in the form of numerical evaluation of task
execution. With this option, other types of feedback, such as
language descriptions [Nguyen et al., 2021] can be incorporated.
We choose numerical feedback to simplify the learning algorithm.

Figure 2 shows example conversations between the learner and
the teacher. Since our focus is on communication at the intention
level, we simplify the problems of generating natural expressions
to convey intentions and interpreting intentions from natural
expressions. Despite the uncomplicated look of the language,
our communication protocol is highly general, since the learner
and the teacher can potentially exchange a broad set of intentions.
In particular, the protocol strictly generalizes those of IL and
RL: (hierarchical) IL is equivalent to CEIL with only verbal
communication, while RL (with sparse reward) is analogous to
CEIL with only non-verbal communication.

Pragmatic communication to save long-term effort. Within the realm of verbal communication,
CEIL allows interlocutors to convey expressions of varying levels of abstraction. We adopt a simple
notion of level of abstraction, defining it as the number of actions that an intention refers to. For
example, in CEIL, the learner may utter either “[to bake pork I will] make stone pickaxe” or “[to
bake pork I will] get stone” to refer to an initial step of “bake pork”, but the former is a more abstract
expression because “get stone” is a subtask of “make stone pickaxe”.

Having flexibility in the language enables the learner to communicate pragmatically to optimize for
a goal. In CEIL, the learner’s goal is to minimize the long-term (joint) communication effort. We
express this goal by setting a learning objective that minimizes short-term communication effort while
also minimizing task error. Striving for this objective drives the learner to speak with the teacher
at a level of abstraction that best suits their current mutual knowledge and to gradually speak more
abstractly. Specifically, the learner begins by communicating using the least abstract intentions, as
the meanings of those are easiest to learn. At this stage, the communication effort is substantial: the
learner proposes numerous intentions during an episode, inducing tantamount effort from the teacher
to provide feedback. CEIL allows the learner to explore, occasionally uttering more abstract intentions.
The urge to save communication effort prompts the learner to improve its understanding of these
abstract intentions (by incorporating the teacher’s feedback) and to leverage them incrementally more
often to shorten its verbal expressions. When the learner has mastered the main task, it will commu-
nicate minimally with the teacher. It will simply declare the intention of performing the task (e.g., “[I
will] bake pork”) and execute that intention immediately, which is the same as its behavior at test time.
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(b) Language-based pragmatic
teacher
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(c) Performance-based pragmatic
teacher

Figure 3: Success rate on the training task (BakePork) as a function of number of feedback requests
made to the teacher. Results are averaged over four random seeds.

It is important to emphasize that CEIL does not directly force the learner to speak increasingly more
abstractly. Much like in humans, this capability emerges as a means for the learner to achieve its
socially motivated goal—to communicate effectively with minimal effort.

Pragmatic teachers. Another novelty of our framework is the employment of teachers modeled
after human pragmatic behavior. Hierarchical IL or RL (e.g., [Le et al., 2018]) typically assumes
a top-down teacher, who always recommends the most abstract intention to correct the learner’s
intention. Consider the example in Figure 2, where the learner falsely proclaims “[to bake pork I will]
get iron”. According to the task tree in Figure 1, “get coal”, “make stone pickaxe”, “get stone” are all
valid intentions to refer to the learner. A top-down teacher would choose “get coal”, the most abstract,
to utter. This teacher is non-pragmatic because it ignores the learner’s behavior. To better mimic
communication with humans, we simulate two types of pragmatic teacher, each of which employs a
heuristic to select an intention that is deemed easiest for the learner to interpret. The language-based
teacher replies with the intention whose level of abstraction is most similar to that of the proposed
intention of the learner. Meanwhile, the performance-based teacher samples an intention among the
candidates with probability proportional to the historical execution success rate of the learner. More
details about these teachers are given in §A.7.

Unlike the top-down teacher, the two pragmatic teachers lack motivation to communicate abstractly.
We will empirically demonstrate that regardless of whether the teacher possesses this motivation, our
learner is still able to drive communication to be incrementally more abstract and efficient.

3 Experimental Setup

Environment. We employ the simulator developed by [Sohn et al., 2018], which emulates a
MineCraft-style game on an 8× 8 grid. The player can move, interact with other entities to collect
items, and combine them to create new items.

Baselines. We compare with: (a) flat imitation learning (FIL) implements DAgger [Ross et al., 2011],
(b) flat reinforcement learning (FRL) is standard Q-learning, (c) hierarchical imitation learning (HIL)
performs DAgger with a teacher that can suggest high-level intentions, and (d) active hierarchical
imitation learning (AHIL) is an ablated version of our algorithm which intrinsic motivation concerns
only performance maximization.

Training settings. We evaluate all approaches on three settings. In the learn-from-scratch setting,
agents are trained from random parameter initialization to perform the BakePork task, which requires
on average 68 actions to complete. In the environment-adaptation setting, we put the agents learned
in the first setting in new environment layouts and continue training them on the BakePork task. In
the task-adaptation setting, we instead train those agents to perform two novel tasks, BakeBeef and
SmeltSilver. These two tasks share several common subtasks with the BakePork task. All agents are
given a budget of 10k feedback requests for the two adaptation settings.
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(b) Adaptation to new tasks

Figure 4: Performance of different approaches when adapted to new BakePork environments and
to new tasks (BakeBeef and SmeltSilver). All agents learn with the performance-based pragmatic
teacher. They were pre-trained on the BakePork task to reach the same success rate, and then were
adapted with the same request budget of 10K. In both settings, CEIL adapts more successfully,
showing that the mutual knowledge it acquired with the teacher during the learn-from-scratch phase
generalizes more robustly.
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(a) Language-based pragmatic teacher
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(b) Performance-based pragmatic teacher

Figure 5: Distribution of uttered intentions on the BakePork task. We group the intentions into four
levels of abstraction, which is a function of the distance to the root in the task tree (level IV is most
abstract). CEIL exhibits a strong inclination to propose increasingly more abstract intentions.

4 Results

Learn-from-scratch setting. In Figure 3, we plot the performance of CEIL and the baselines
against the number of teacher feedback requests. CEIL outperforms all baselines in terms of both
asymptotic success rate and sample efficiency. With the non-pragmatic teacher, CEIL reaches the
same final performance as hierarchical IL approaches, but it learns much faster. With the pragmatic
teachers, CEIL not only learns faster, but also achieves a higher final success rate.

Adaptation settings. Figure 4 shows the performance of the agents in the two adaptation settings.
Interestingly, while CEIL, HIL, and AHIL were pre-trained to have the same performance on the
BakePork task, their adaptation performances differ significantly. CEIL attains the highest success
rate in all settings. Most vividly, in adapting to the SmeltSilver task, the CEIL outperforms HIL
and AHIL by a subtantial margin of more than 20% in absolute success rate. This shows that CEIL
induces a communication capability that generalizes much better than the other two approaches. The
gaps between CEIL and other methods are smaller when adapting to the BakeBeef task or to new
BakePork environments. The generalization challenge in these scenarios is not as significant as in
learning the SmeltSilver task: the agents mostly need to further improve learned skills, while they
have to learn many novel skills to smelt silver. These results show that our framework not only
induces efficient learning but also enables robust generalization. This is somewhat surprising, because
the intrinsic motivation we install in the agent does not explicitly force it to generalize better.

Does the agent communicate more abstractly over time? To answer this question, we visualize
the distribution of intentions proposed by the agent over time. We divide the intentions into four
groups, from least to most abstract. Figure 5 shows the changes in the way agents communicate with
the two pragmatic teachers. We observe that AHIL and HIL also enables the agent to speak more
abstractly over time. However, CEIL induces the strongest manifestation of this phenomenon.
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A Appendix

A.1 Related work

Previous work on curriculum-based IL and RL [He et al., 2012, Narvekar et al., 2020, Kumar
et al., 2019, Zhao et al., 2020, Florensa et al., 2017, Liu et al., 2021] has extended the pragmatic
communication capabilities of the teacher by enabling them to choose the order of tasks to teach the
learner. These strategies can be viewed as making the teacher more pragmatic in choosing which
intentions to convey. But in choosing how to express those intentions, the teacher is restricted to
a low-level language. Work on hierarchical IL and RL [Kulkarni et al., 2016, Sutton et al., 1999,
Le et al., 2018] attempts to enrich the language of the teacher and the learner, allowing them to
exchange high-level intentions. This provides a better means for efficient communication, but the
learner still follows the teacher’s way of communication without having its own intrinsic motivation
to communicate more efficiently over time. Moreover, most formulations adopt a hierarchy of only
two levels, constraining the flexibility of the language.

Active learning [Ren et al., 2021, Settles, 2009] aims to reduce the feedback queries made to the
teacher. This framework has been instantiated in non-hierarchical IL and RL settings [Hsu, 2019,
Brantley et al., 2020, Judah et al., 2012, Torrey and Taylor, 2013]. Our work shows that combining
active learning with a rich, flexible language results in much more efficient learning. Previous active
learning strategies are based on intrinsic uncertainty [Da Silva et al., 2020, Culotta and McCallum,
2005, Nguyen et al., 2019], error prediction [Zhang and Cho, 2016, Nguyen and Daumé III, 2019], or
direct optimization of the number of queries via reinforcement learning [Fang et al., 2017, Nguyen
et al., 2022]. We demonstrate that minimizing both the number of queries and the task error is
important for progressively efficient communication to emerge strongly.

Recent advances in large language models allow humans to teach them through highly natural
language [Brown et al., 2020, Chowdhery et al., 2022, OpenAI, 2023]. Users can alternate the
behavior of these systems using complex instructions and in-context examples [Bubeck et al., 2023,
Wei et al., 2022]. However, due to lacking theoretical guarantees, it remains unclear how to reliably
inject intrinsic motivation into these models. Our work focuses on learning through parameter
optimization, which allows us to easily adapt the model continually and enforce intrinsic motivation.

A.2 Enriching the means: communication of referential intentions

Intentions. Let I ⊆ G be the set of intentions the learner can convey. Initially, it contains a set of
seed intentions, which includes the intention of performing the main task. The seed intentions can be
constructed with a knowledge base. For example, one can collect a comprehensive list of MineCraft
tasks from the game’s Wiki. Moreover, this set is expandable: when the teacher introduces a new
task to the learner, it can add to set the task’s name as a new intention. We do not specify the levels of
abstraction of the intentions to the learner. It realizes this quality through interaction with the teacher.

Learner components. The learner has two components: a policy πθ(u | s, i) and a memory M(u).
The policy takes as input an environment state s ∈ S and an intention i ∈ I , and outputs a distribution
over actions u ∈ I ∪ {[do], [done]}, where [do] and [done] are special actions which we will
define shortly. The memory helps the learner update and keep track of its current intention. Each
action u can be verbal or executive. Taking a verbal action (u ∈ I ∪ {[done]}) alters the current
intention of the learner (its mental state), while taking an executive action (u = [do]) changes its
environment state.

Interactions during an episode (Algorithm 1). The learner starts in state s1 and conveys the
intention i1 = g, which is to perform the main task. At the time step t, suppose the learner’s intention
and environment state are it and st, respectively. The learner selects an action ut ∼ πθ(st, it). If
ut ∈ I ∪ {[done]}, the learner chooses to verbally communicate an intention. The [done] action
represents the intention of relinquishing the current intention. The learner computes a new current
intention it+1 = M(ut) by querying the memory with the action. Meanwhile, the environment
state remains the same st+1 = st. After that, the learner receives instructive feedback ft = u⋆

t ∈
I ∪ {[done]} from the teacher, which indicates the correct intention in the current state.

If ut = [do], the learner elects to execute the current intention it. In this case, the agent
continuously taking primitive actions until it decides to terminate, generating an execution
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(s1t = st, a
1
t , · · · , sLt , aLt ), where L is the trajectory length, alt ∈ A for 1 ≤ l ≤ L. It then updates

its current intention and environment state, setting it+1 = M([done]) and st+1 = sLt , and receives
evaluative feedback from teacher, which is a score ft ∈ R judging the execution.

Algorithm 1 CEIL training episode
1: Observe initial state s1 and main task g
2: Set initial intention i1 = g
3: Initialize memory stack M = {i1}
4: t = 0
5: while not M .empty() do
6: t← t+ 1
7: Get current intention it = M .top()
8: Choose action ut ∼ πθ(st, it)
9: if ut ∈ I ∪ {[done]} then // verbal

10: Receive instructive feedback ft = u⋆
t

11: Stay in the same state st+1 = st
12: Set new intention it+1 = M(ut)
13: else // non-verbal
14: Execute it and arrive in final state sLt
15: Receive evaluative feedback ft ∈ R
16: Set new state st+1 = sLt
17: Set new intention it+1 = M([done])
18: end if
19: end while
20: Update policy πθ w.r.t. learning objective

Memory. Following Nguyen et al. [2022], we
implement the memory M as a stack data struc-
ture, which prioritizes the most recently proposed
intentions. Initially, the stack contains only the
main-task intention i1. When the learner chooses
to communicate verbally, the communicated
intention is pushed to the stack. However, when
the special [done] action is taken, the intention
at the top of the stack is popped. After pushing
or popping, the intention at the top of the stack
is returned as the current intention. If there is
no intention in the stack to return, the episode
ends. This stack-based memory allows the learner
to learn a deep hierarchy of tasks, making CEIL
more general than prior work on hierarchical IL
and RL that assumes only a two-level hierarchy
[Kulkarni et al., 2016, Le et al., 2018]. We defer
the exploration of more intricate memory designs,
such as interleaving executions of multiple tasks
or prioritizing tasks that cost less resources to
execute from the current state.

A.3 Injecting the motivation: minimization of long-term communication effort

Learner’s intrinsic motivation. As mentioned, the CEIL learner aims to minimize the long-term
communication effort. To formalize this goal, let π0 be the learner’s current policy and πn be the its
policy after n learning updates. For simplicity, we assume the policy is updated after every learning
episode. We associate a communication cost c(s, i, u) with every action u taken by the learner when
it is in state s with intention i. C(τ) =

∑T
t=1 c(st, it, ut) represents the communication effort in

an episode an episode τ = {(st, it, ut)}Tt=1. Let the task error Jerr(π) be a function that quantifies
the degree of misalignment of a policy π with respect to the teacher’s expectation, where Jerr = 0
indicates perfect alignment. In our setting, Jerr(π) reflects the average number of incorrect intentions
proposed by π, and the negative average score of its intention executions. We define the number of
learning episodes N as the smallest integer n such that Jerr(πn) = 0.

The long-term communication effort is defined as the communication effort accumulated across all
future learning episodes

J(π1) = Eτ1∼π1,··· ,τN∼πN

[
N∑

n=1

C(τn)

]
(1)

where τ ∼ π denotes generating a learning episode with policy π, and πn = Improve(πn−1, J) with
Improve being an optimizer (e.g., Adam) that computes a new policy πn such that J(πn) < J(πn−1).
The expectation is taken over all possible sequences of future episodes.

Computing this objective is impractical, so we resort to an approximation scheme. We split J(π1)

into two terms, E[C(τ1)] and E[C(τ2)+ · · ·C(τN )]. The first term, E[C(τ1)] ≜ Jcom(π1), represents
the communication effort in the next episode and can be effectively optimized with an RL algorithm.
While we cannot directly optimize the second term, we aim to minimize the number of terms in the
summation, i.e. minimizing N . To do that, we heuristically minimize Jerr(π1). The intuition here is
that the less misaligned a policy is, the less learning episodes are needed to perfectly align it. This may
not always be true but we find the heuristic works sufficiently well in practice. In the end, the current
policy π0 is updated to a new policy π1 that satisfies Jcom(π1) + Jerr(π1) < Jcom(π0) + Jerr(π0).

Both terms in the new objective are essential. If trained to minimize only Jcom(π1), the learner would
quickly resort to taking only a single [do] action during an episode. This behavior resembles a
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sparse-reward RL setting, in which the learner executes the main task and receives a single reward. In
this case, because sparsely provided rewards are weak learning signals, the learner would need more
learning episodes to master the task, which would result in more long-term communication effort.
On the other hand, if the aim is only to reduce Jerr(π1), the learner would not be strongly motivated
to attempt communication at a higher level of abstraction. It may be content with proposing and
executing low-level intentions because those are easy to execute accurately.

Learning algorithm. We propose an algorithm that extends Q-learning to optimize for the learner’s
objective. We define the reward function r(s, u; i) = −c(s, i, u) and the optimal Q-function
Q⋆(s, u; i) based on r. We approximate this function by Qθ(s, u; i) and define the learner’s pol-
icy as πθ(u | s, i) = 1{u = argmaxu′ Qθ(s, u

′; i)}. In each episode, we generate a trajectory
using the current policy and store it in a replay buffer. Then we sample a batch of transitions
{(st, it, ut, rt, st+1, it+1)}Bi=1 from the buffer to update the Q-function. To minimize the next-
episode communication effort, we apply the standard Q-learning update:

θnew = min
θ

1

B

B∑
i=1

(
Q(st, ut; it)− (rt + γmax

u
Qθ(st+1, u; it+1))

)2

(2)

where γ is a discount factor. To reduce the task error, we enables the learner to improve by incorpo-
rating the teacher’s feedback. We consolidate the instructive feedback using a max-margin objective:

θnew = min
θ

1

B

B∑
i=1

max(0, λ+ max
u̸={[do],u⋆}

Q(st, u; it)−Q(st, u
⋆
t ; it)) (3)

which aims to separate the Q-value of the correct intention u⋆
t from others by a margin of at least

λ. To integrate the evaluative feedback, we implement a weighted self-imitation learning approach,
which first computes the objective in Equation 3 with u⋆

t being the primitive actions taken during
an execution, and weights this objective by the numerical score provided by the teacher.

A.4 Task graph

Below is the complete task graph of the MineCraft environment. Each node represents a task. Each
arrow points from a task to its parents, of which it is a subtask. Orange nodes are subtasks of the
BakePork task. Green nodes represent subtasks of the two tasks, BakeBeef and SmeltSilver, which
the agents learn during the adaptation settings.

Make Stone
Pickaxe Make Arrow

Get Stone Cut Wood Get String

Make Bow

Hit PigGet Coal

Bake Pork

Hit Cow

Bake Beef

Make
Firewood

Light
up Furnace

Get Silver

Smelt Silver

A.5 CEIL without minimizing communication cost

Figure 6 shows the results of CEIL with and without minimizing the next-episode communication
effort (Jcom). The objective term does not noticeably impact the performance with the top-down
teacher. However, when learning with the pragmatic teachers, it becomes crucial for enhancing
communication efficiency because it effectively guides the learner towards uttering increasingly more
abstract intentions.
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(a) Top-down (non-pragmatic)
teacher

0 0.6m 1.2m 1.8m 2.4m 3m
Number of Feedback Requests (Millions)

0%

10%

20%

30%

40%

50%

60%

70%

80%

Su
cc

es
s R

at
e

(b) Language-based pragmatic
teacher
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(c) Performance-based pragmatic
teacher

Figure 6: CEIL with and without minimizing next-episode communication effort.

A.6 Additional implementation details

We implement our baselines and CEIL based on the stable-baselines3 [Raffin et al., 2021]
codebase. We trained all agents with Nvidia 2080Ti GPUs. It took about one and a half days to train
CEIL with a 3M feedback-request budget. For the imitation learning baselines, we used an learning
rate of 10−4, and for CEIL, we used 5 · 10−5. For CEIL, we apply a communication cost of 0.01 per
each request for instructive feedback when the student’s intention is correct, and 0.05 when it is not.
The cost of providing evaluative feedback is 0.2 per request.

Below is the CNN architecture of the state encoder of the learner’s policy:

state_encoder = nn.Sequential(
nn.Conv2d(n_input_channels , 16, kernel_size =1, stride=1,

padding =0),
nn.ReLU(),
nn.Conv2d (16, 32, kernel_size =3, stride=2, padding =0),
nn.ReLU(),
nn.Conv2d (32, 64, kernel_size =3, stride=1, padding =1),
nn.ReLU(),
nn.Conv2d (64, 96, kernel_size =3, stride=1, padding =1),
nn.ReLU(),
nn.Conv2d (96, 128, kernel_size =3, stride=1, padding =1),
nn.ReLU(),
nn.Conv2d (128, 64, kernel_size =1, stride=1, padding =0),
nn.ReLU(),
nn.Flatten (),
nn.Linear (1024 , 256))

)

A.7 Pragmatic teachers

We consider two heuristically pragmatic strategies. With the language-based strategy, the teacher
aims to speak at the same level of abstraction as the learner. We define the level of abstraction of an
intention as the optimal number of actions required to complete the corresponding task. Let T ⋆

u be
the level of abstraction of intention u. The teacher samples an intention to return according to the
probability distribution P (u) ∝ |T ⋆

u − T ⋆
û |−1 where T ⋆

û is the level of abstraction of the learner’s
proposed intention. With the performance-based strategy, the teacher records the moving success
rate ρu of the learner in executing each intention u. The returned intention is sampled according to
P (u) ∝ ρu. Thus, the better the learner is at executing an intention, the more likely the teacher is to
refer to that intention when instructing it.
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