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ABSTRACT

Learning on sets is increasingly gaining attention in the machine learning com-
munity, due to its widespread applicability. Typically, representations over sets
are computed by using fixed aggregation functions such as sum or maximum.
However, recent results showed that universal function representation by sum- (or
max-) decomposition requires either highly discontinuous (and thus poorly learn-
able) mappings, or a latent dimension equal to the maximum number of elements
in the set. To mitigate this problem, we introduce LAF (Learning Aggregation
Functions), a learnable aggregator for sets of arbitrary cardinality. LAF can ap-
proximate several extensively used aggregators (such as average, sum, maximum)
as well as more complex functions (e.g. variance and skewness). We report experi-
ments on semi-synthetic and real data showing that LAF outperforms state-of-the-
art sum- (max-) decomposition architectures such as DeepSets and library-based
architectures like Principal Neighborhood Aggregation.

1 INTRODUCTION

The need to aggregate representations is ubiquitous in deep learning. Some recent examples include
max-over-time pooling used in convolutional networks for sequence classification (Kim, 2014), av-
erage pooling of neighbors in graph convolutional networks (Kipf & Welling, 2017), max-pooling
in Deep Sets (Zaheer et al., 2017), in (generalized) multi-instance learning (Tibo et al., 2017) and in
GraphSAGE (Hamilton et al., 2017). In all the above cases (with the exception of LSTM-pooling
in GraphSAGE) the aggregation function is predefined, i.e., not tunable, which may be in general
a disadvantage (Ilse et al., 2018). Sum-based aggregation has been advocated based on theoretical
findings showing the permutation invariant functions can be sum-decomposed (Zaheer et al., 2017;
Xu et al., 2019). However, recent results (Wagstaff et al., 2019) showed that this universal function
representation guarantee requires either highly discontinuous (and thus poorly learnable) mappings,
or a latent dimension equal to the maximum number of elements in the set. This suggests that
learning set functions that are accurate on sets of large cardinality is difficult.

Inspired by previous work on learning uninorms (Melnikov & Hüllermeier, 2016), we propose a new
parametric family of aggregation functions that we call LAF, for learning aggregation functions. A
single LAF unit can approximate standard aggregators like sum, max or mean as well as model
intermediate behaviours (possibly different in different areas of the space). In addition, LAF layers
with multiple aggregation units can approximate higher order moments of distributions like variance,
skewness or kurtosis. In contrast, other authors (Corso et al., 2020) suggest to employ a predefined
library of elementary aggregators to be combined. Since LAF can represent sums, it can be seen as
a smooth version of the class of functions that are shown in Zaheer et al. (2017) to enjoy universality
results in representing set functions. The hope is that being smoother, LAF is more easily learnable.
Our empirical findings show that this can be actually the case, especially when asking the model to
generalize over large sets.

In particular, in this paper we offer an extensive experimental analysis showing that:

• LAF layers can learn a wide range of aggregators (including higher-order moments) on sets
of scalars without background knowledge on the nature of the aggregation task

• LAF layers on the top of traditional layers can learn the same wide range of aggregators on
sets of high dimensional vectors (MNIST images)

• LAF outperforms state-of-the-art set learning methods such as DeepSets and PNA on real-
world problems involving point clouds and text concept set retrieval.
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Name Definition a b c d e f g h α β γ δ limits
constant c ∈ R 0 1 - - 0 1 - - c 0 1 0
max maxi xi 1/r r - - 0 1 - - 1 0 1 0 r →∞
min mini xi 0 1 1/r r 0 1 - - 1 -1 1 0 r →∞
sum

∑
i xi 1 1 - - 0 1 - - 1 0 1 0

nonzero count |{i : xi 6= 0}| 1 0 - - 0 1 - - 1 0 1 0
mean 1/N

∑
i xi 1 1 - - 1 0 - - 1 0 1 0

kth moment 1/N
∑

i x
k
i 1 k - - 1 0 - - 1 0 1 0

lth power of kth moment (1/N
∑

i x
k
i )

l l k - - l 0 - - 1 0 1 0
min/max mini xi/maxi xi 0 1 1/r r 1/s s - - 1 1 1 0 r, s→∞
max/min maxi xi/mini xi 1/r r - - 0 1 1/s s 1 0 1 1 r, s→∞

Table 1: Different functions achievable by varying the parameters in the formulation in Eq. 2

• LAF performs comparably to PNA on random graph generation tasks, outperforming
several graph neural networks architectures including GAT (Veličković et al., 2018) and
GIN (Xu et al., 2019)

The rest of this work is structured as follows. In Section 2 we define the LAF framework and show
how appropriate parametrizations of LAF allow to represent a wide range of popular aggregation
functions. In Section 3 we discuss some relevant related work. Section 4 reports synthetic and real-
world experiments showing the advantages of LAF over (sets of) predifined aggregators. Finally,
conclusions and pointers to future work are discussed in Section 5.

2 THE LEARNING AGGREGATION FUNCTION FRAMEWORK

We use x = {x1, . . . , xN} to denote finite multisets of real numbers xi ∈ R. Note that directly
taking x to be a multiset, not a vector, means that there is no need to define properties like ex-
changeability or permutation equivariance for operations on x. An aggregation function agg is any
function that returns for any multiset x of arbitrary cardinality N ∈ N a value agg(x) ∈ R.

Standard aggregation functions like mean and max can be understood as (normalized) Lp-norms.
We therefore build our parametric LAF aggregator around generalized Lp-norms of the form

La,b(x) :=

(∑
i

xbi

)a

(a, b ≥ 0). (1)

La,b is invariant under the addition of zeros: La,b(x) = La,b(x ∪ 0) where 0 is a multiset of zeros
of arbitrary cardinality. In order to also enable aggregations that can represent conjunctive behavior
such as min, we make symmetric use of aggregators of the multisets 1−x := {1−xi|xi ∈ x}. For
La,b(1 − x) to be a well-behaved, dual version of La,b(x), the values in x need to lie in the range
[0, 1]. We therefore restrict the following definition of our learnable aggregation function to sets x
whose elements are in [0, 1]:

LAF(x) :=
αLa,b(x) + βLc,d(1− x)

γLe,f (x) + δLg,h(1− x)
(2)

defined by tunable parameters a, . . . , h ≥ 0, and α, . . . , δ ∈ R. In cases where sets need to be
aggregated whose elements are not already bounded by 0, 1, we apply a sigmoid function to the set
elements prior to aggregation.

Table 1 shows how a number of important aggregation functions are special cases of LAF (for
values in [0, 1]). We make repeated use of the fact that L0,1 returns the constant 1. For max and
min LAF only provides an asymptotic approximation in the limit of specific function parameters
(as indicated in the limits column of Table 1). In most cases, the parameterization of LAF for the
functions in Table 1 will not be unique. Being able to encode the powers of moments implies that
e.g. the variance of x can be expressed as the difference 1/N

∑
i x

2
i − (1/N

∑
i xi)

2 of two LAF
aggregators.

Since LAF includes sum-aggregation, we can adapt the results of Zaheer et al. (2017) and Wagstaff
et al. (2019) on the theoretical universality of sum-aggregation as follows.
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Proposition 1 Let X ⊂ R be countable, and f a function defined on finite multisets with elements
from X . Then there exist functions φ : X → [0, 1], ρ : R → R, and a parameterization of LAF,
such that f(x) = ρ(LAF (φx);α, β, γ, δ, a, b, c, d), where φx is the multiset {φ(x)|x ∈ x}.

A proof in Wagstaff et al. (2019) for a very similar proposition used a mapping fromX into the reals.
Our requirement that LAF inputs must be in [0, 1] requires a modification of the proof (contained
in the supplementary material), which for the definition of φ relies on a randomized construction.
Proposition 1 shows that we retain the theoretical universality guarantees of Zaheer et al. (2017),
while enabling a wider range of solutions based on continuous encoding and decoding functions.

Figure 1: LAF functions with randomly generated parameters

It should be emphasized at this point that the primary purpose of LAF is not to provide a uniform
representation of different standard aggregators as displayed in Table 1, but to enable a continuum of
intermediate and hybrid aggregators. Figure 1 shows the graphs of 4 different randomly generated
LAF functions over the unit square [0, 1] × [0, 1], i.e., evaluated over sets of size 2. Parameters
α, . . . , γ were randomly sampled in the interval [0, 1]; parameters b, d, f, h are randomly sampled
from the integers 0, . . . , 5, and a, c, e, g are obtained as 1/i with i a random integer from 0, . . . , 5.
The figure illustrates the rich repertoire of aggregation functions with different qualitative behaviors
already for non-extreme parameter values.

2.1 LAF ARCHITECTURE

LAF can be easily used as a module of a larger architecture suitable for learning on sets. Sev-
eral LAF units can be combined as shown in Figure 2, to capture different aspects of the in-
put set, which can be in general a set of vectors x = {x1, . . . , xN} where xi ∈ Rd. Note
that multiple aggregators are also used in related frameworks such as DeepSets (Zaheer et al.,
2017) or Graph Neural Networks (Veličković et al., 2018; Corso et al., 2020). A module with
r LAF units takes as input d-dimensional vectors and produces a vector of size r × d as out-
put. Each LAF unit performs an element-wise aggregation of the vectors in the set such that
Lk,j = LAF({xi,j , . . . , xN,j};αk, βk, γk, δk, ak, bk, ck, dk) for k = 1, . . . , r and j = 1, . . . , d.
The output vector can be then fed into the next layer.

3 RELATED WORK

Several studies address the problem of aggregating data over sets. Sum-decomposition strategies
have been used in (Zaheer et al., 2017) for points cloud classification and set expansion tasks and
in (Santoro et al., 2017) for question answering and dynamic physical systems computation. Max,
sum and average are standard aggregation functions for node neighborhoods in graph neural net-
works (Hamilton et al., 2017; Kipf & Welling, 2017; Xu et al., 2019; Veličković et al., 2018). Zaheer
et al. (2017) first proved universal representation results for these standard aggregators when com-
bined with learned mappings over inputs and results of the aggregation. However, Wagstaff et al.
(2019) showed that these universality results are of little practical use, as they either require highly
discontinuous mappings that would be extremely difficult to learn, or a latent dimension that is at
least the size of the maximum number of input elements.

Uninorms (Yager & Rybalov, 1996) are a class of aggregation functions in fuzzy logic that can
behave in a conjunctive, disjunctive or averaging manner depending on a parameter called neutral
element. Melnikov & Hüllermeier (2016) proposed to learn fuzzy aggregators by adjusting these
learnable parameters, showing promising results on combining reviewers scores on papers into an
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Figure 2: End-to-end LAF architecture.

overall decision of acceptance or reject. Despite the advantage of incorporating different behaviours
in one single function, uninorms present discontinuities in the regions between aggregators, mak-
ing them not amenable to be utilized in fully differentiable frameworks. Furthermore the range of
possible behaviours is restricted to those commonly used in the context of fuzzy-logic.

The need for considering multiple candidate aggregators is advocated in a very recent work that
was developed in parallel with our framework (Corso et al., 2020). The resulting architecture,
termed Principal Neighborhood Aggregation (PNA) combines multiple standard aggregators, in-
cluding most of the ones we consider in the LAF framework, adjusting their outputs with degree
scalers. However, the underlying philosophy is rather different. PNA aims at learning to select the
appropriate aggregator(s) from a pool of candidates, while LAF explores a continuous space of ag-
gregators that includes standard ones as extreme cases. Our experimental evaluation shows that PNA
has troubles in learning aggregators that generalize over set sizes, despite having them in the pool
of candidates, likely because of the quasi-combinatorial structure of its search space. On the other
hand, LAF can successfully learn even the higher moment aggregators and consistently outperforms
PNA.

Closely connected, but somewhat complementary to aggregation operators are attention mecha-
nisms (Bahdanau et al., 2015; Vaswani et al., 2017). They have been explored to manipulate set data
in Lee et al. (2019) and in the context of multi-instance learning (Ilse et al., 2018). Attention operates
at the level of set elements, and aims at a transformation (weighting) of their representations such as
to optimize a subsequent weighted sum-aggregation. While the objectives of attention-based frame-
works and LAF partially overlap, they are functionally quite different. Exploring combinations of
LAF with attention mechanisms is a possible subject of future work.

4 EXPERIMENTS

In this section, we present and discuss experimental results showing the potential of the LAF frame-
work on both synthetic and real-world tasks1. Synthetic experiments are aimed at showing the ability
of LAF to learn a wide range of aggregators and its ability to generalize over set sizes (i.e., having
test-set sets whose cardinality exceeds the cardinality of the training-set sets), something that alter-
native architectures based on predefined aggregators fail to achieve. We use DeepSets, PNA, and
LSTM as representatives of these architectures. The LSTM architecture corresponds to a version
of DeepSets where the aggregation function is replaced by a LSTM layer. Experiments on diverse
tasks including point cloud classification, text concept set retrieval and graph properties prediction
are aimed at showing the potential of the framework on real-world applications.

1The source code is now available in the supplementary material
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4.1 EXPERIMENTS ON SCALARS
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Figure 3: Test performances for the synthetic experiment with integer scalars on increasing test
set size. The x axis of the figures represents the maximum test set cardinality, whereas the y axis
depicts the MAE error. The dot, star, diamond and triangle symbols denote LAF, DeepSets, PNA,
and LSTM respectively.

This section shows the learning capacity of the LAF framework to learn simple and complex ag-
gregation functions where constituents of the sets are simple numerical values. In this setting we
consider sets made of scalar integer values. The training set is constructed as follows: for each set,
we initially sample its cardinality K from a uniform distribution taking values in {2,M}, and then
we uniformly sample K integers in 0, . . . , 9. For the training set we use M = 10. We construct
several test sets for different values of M (M = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50). This implies
that models need to generalize to larger set sizes. Contrarily to the training set, each test set is con-
structed in order to diversify the target labels it contains, so as to avoid degenerate behaviours for
large set sizes (e.g., maximum constantly equal to 9). Each synthetic dataset is composed of 100,000
sets for training, 20,000 set for validating and 100,000 for testing.

The number of aggregation units is set as follows. The model contains nine LAF (Equation 2) units,
whose parameters {ak, . . . , hk}, k = 1, . . . , 9 are initialized according to a uniform sampling in
[0, 1] as those parameters must be positive, whereas the coefficients {α, . . . , δ} are initialized with
a Gaussian distribution with zero mean and standard deviation of 0.01 to cover also negative values.
The positivity constraint for parameters {a, b, ..., h} is enforced by projection during the optimiza-
tion process. The remaining parameters can take on negative values. DeepSets also uses nine units:
three max units, three sum units, and three mean units and PNA uses seven units: mean, max, sum,
standard deviation, variance, skewness and kurtosis. Preliminary experiments showed that expand-
ing the set of aggregators for PNA with higher order moments only leads to worse performance.
Each set of integers is fed into an embedding layer (followed by a sigmoid) before performing the
aggregation function. DeepSets and PNA do need an embedding layer (otherwise they would have
no parameters to be tuned). Although LAF does not need an embedding layer, we used it in all mod-
els to make the comparison more uniform. The architecture details are reported in the supplementary
material. We use the Mean Absolute Error (MAE) as a loss function to calculate the prediction error.

Figure 3 shows the trend of the MAE error for the three methods for increasing test set sizes, for
different types of target aggregators. As expected, DeepSets manages to learn the identity function
and thus correctly models aggregators like sum, max and mean. Even if LAF needs to adjust its
parameters in order to properly aggregate the data, its performance are competitive with those of
DeepSets. When moving to more complex aggregators like inverse count, median or moments of
different orders, DeepSets fails to learn the latent representation. One the other hand, the perfor-
mance of LAF is very stable for growing set sizes. While having in principle at its disposal most
of the target aggregators (including higher order moment) PNA badly overfits over the cardinality
of sets in the training set in all cases (remember that the training set contains sets of cardinality at
most 10). The reason why LAF substantially outperforms PNA on large set sizes could be explained
in terms of a greater flexibility to adapt to the learnt representation. Indeed, LAF parameters can
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Figure 4: Test performances for the synthetic experiment on MNIST digits on increasing test set size.
The x axis of the figures represents the maximum test set cardinality, whereas the y axis depicts the
MAE error. The dot, star, diamond and traingle symbols denote LAF, DeepSets, PNA and LSTM
respectively.

adjust the laf function to be compliant with the latent representation even if the input mapping fails
to learn the identity. On the other hand, having a bunch of fixed, hard-coded aggregators, PNA needs
to be able to both learn the identity mapping and select the correct aggregator among the candidates.
Finally, LSTM exhibits generally poor results when compared to the other methods, particularly in
the case of the count and the sum.

4.2 MNIST DIGITS

In this section, we modify the previous experimental setting to process MNIST images of digits. The
dataset is the same as in the experiment on scalars, but integers are replaced by randomly sampling
MNIST images for the same digits. Instances for the training and test sets are drawn from the
MNIST training and test sets, respectively. This experiment aims to demonstrate the ability of LAF
to learn from more complex representations of the data by plugging it into end-to-end differentiable
architectures. Contrarily to the model of the previous section, here we use three dense layers for
learning picture representations before performing the aggregation function. The architecture details
are reported in the supplementary material.

Figure 4 shows the comparison of LAF, DeepSets, PNA, and LSTM in this setting. Results are
quite similar to those achieved in the scalar setting, indicating that LAF is capable of effectively
backpropagating information so as to drive the learning of an appropriate latent representation, while
DeepSets, PNA, and LSTM suffer from the same problems seen in aggregating scalars.

Furthermore, Figure 5 provides a qualitative evaluation of the predictions of the LAF, DeepSets,
and PNA methods on a representative subset of the target aggregators. The images illustrate the
correlation between the true labels and the predictions. LAF predictions are distributed over the
diagonal line, with no clear bias. On the other hand, DeepSets and PNA perform generally worse
than LAF, exhibiting higher variances. In particular, for inverse count and kurtosis, DeepSets and
PNA predictions are condensed in a specific area, suggesting an overfitting on the training set.

4.3 POINT CLOUD

In order to evaluate LAF on real-world dataset, we consider point cloud classification, a prototype
task for set-wise prediction. Therefore, we run experimental comparisons on the ModelNet40 (Wu
et al., 2015) dataset, which consists of 9,843 training and 2,468 test point clouds of objects dis-
tributed over 40 classes. The dataset is preprocessed following the same procedure described by Za-
heer et al. (2017). We create point clouds of 100 and 1,000 three-dimensional points by adopting
the point-cloud library’s sampling routine developed by Rusu & Cousins (2011) and normalizing
each set of points to have zero mean (along each axis) and unit (global) variance. We refer with
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Figure 5: Scatter plots of the MNIST experiment comparing true (x axis) and predicted (y axis)
values with 50 as maximum test set size. The target aggregations are max (up-left), inverse count
(up-right), median (bottom-left) and kurtosis (bottom-right).

P100 and P1000 to the two datasets. For all the settings, we consider the same architecture and
hyper-parameters of the DeepSets permutation invariant model described by Zaheer et al. (2017).
For LAF, we replace the original aggregation function (max) used in DeepSets with 10 LAF units,
while for PNA we use the concatenation of max, min, mean, and standard deviation, as proposed by
the authors. For PNA we do not consider any scaler, as the cardinalities of the sets are fixed.

Results in Table 2 show that LAF produces an advantage in the lower resolution dataset (i.e. on
P100), while it obtains comparable (and slightly more stable) performances in the higher resolution
one (i.e. on P1000). These results suggest that having predefined aggregators is not necessarily an
optimal choice in real world cases, and that the flexibility of LAF in modeling diverse aggregation
functions can boost performance and stability.

Table 2: Results on the Point Cloud classification task. Accuracies with standard deviations (calcu-
lated on 5 runs) for the ModelNet40 dataset.

METHOD P100 P1000

DEEPSETS 82.0±2.0% 87.0±1.0%
PNA 82.9±0.7% 86.4±0.6%
LSTM 78.7±1.1% 82.2±1.7%
LAF 84.0±0.6% 87.0±0.5%

4.4 SET EXPANSION

Following the experimental setup of DeepSets, we also considered the Set Expansion task. In this
task the aim is to augment a set of objects of the same class with other similar objects, as explained
in (Zaheer et al., 2017). The model learns to predict a score for an object given a query set and
decide whether to add the object to the existing set. Specifically, Zaheer et al. (2017) consider
the specific application of set expansion to text concept retrieval. The idea is to retrieve words
that belong to a particular concept, giving as input set a set of words having the same concept. We
employ the same model and hyper-parameters of the original publication, where we replace the sum-
decomposition aggregation with LAF units for our methods and the min, max, mean, and standard
deviation aggregators for PNA.

We trained our model on sets constructed from a vocabulary of different size, namely LDA-1K,
LDA-3K and LDA-5K. Table 3 shows the results of LAF, DeepSets and PNA on different evaluation
metrics. We report the retrieval metrics recall@K, median rank and mean reciprocal rank. We also
report the results on other methods the authors compared to in the original paper. More details on the
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Table 3: Results on Text Concept Set Retrieval on LDA-1k, LDA-3k, and LDA-5k. Bold values
denote the best performance for each metric.

METHOD

LDA-1k (VOCAB = 17k) LDA-3k (VOCAB = 38k) LDA-5k (VOCAB = 61k)
RECALL(%)

MRR MED.
RECALL(%)

MRR MED.
RECALL(%)

MRR MED.@10 @100 @1K @10 @100 @1K @10 @100 @1K

RANDOM 0.06 0.6 5.9 0.001 8520 0.02 0.2 2.6 0.000 28635 0.01 0.2 1.6 0.000 30600
BAYES SET 1.69 11.9 37.2 0.007 2848 2.01 14.5 36.5 0.008 3234 1.75 12.5 34.5 0.007 3590
W2V NEAR 6.00 28.1 54.7 0.021 641 4.80 21.2 43.2 0.016 2054 4.03 16.7 35.2 0.013 6900
NN-MAX 4.78 22.5 53.1 0.023 779 5.30 24.9 54.8 0.025 672 4.72 21.4 47.0 0.022 1320
NN-SUM-CON 4.58 19.8 48.5 0.021 1110 5.81 27.2 60.0 0.027 453 4.87 23.5 53.9 0.022 731
NN-MAX-CON 3.36 16.9 46.6 0.018 1250 5.61 25.7 57.5 0.026 570 4.72 22.0 51.8 0.022 877
DEEPSETS 5.53 24.2 54.3 0.025 696 6.04 28.5 60.7 0.027 426 5.54 26.1 55.5 0.026 616

DEEPSETS∗ 5.89 26.0 55.3 0.026 619 7.56 28.5 64.0 0.035 349 6.49 27.9 56.9 0.030 536
PNA 5.56 24.7 53.2 0.027 753 7.04 27.2 58.7 0.028 502 5.47 23.8 52.4 0.025 807
LSTM 4.29 21.5 52.6 0.022 690 5.56 25.7 58.8 0.026 830 4.87 23.8 55.0 0.022 672
LAF 6.51 26.6 54.5 0.030 650 8.14 32.3 62.8 0.037 339 6.71 28.3 56.9 0.031 523

other methods in the table can be found in the original publication. Briefly, Random samples a word
uniformly from the vocabulary; Bayes Set (Ghahramani & Heller, 2006); w2v-Near computes the
nearest neighbors in the word2vec (Mikolov et al., 2013) space; NN-max uses a similar architecture
as our DeepSets but uses max pooling to compute the set feature, as opposed to sum pooling; NN-
max-con uses max pooling on set elements but concatenates this pooled representation with that of
query for a final set feature; NN-sum-con is similar to NN-max-con but uses sum pooling followed
by concatenation with query representation. For the sake of fairness, we have rerun DeepSets using
the current implementation from the authors (indicated as DeepSet∗ in Table 3), exhibiting better
results than the ones reported in the original paper. Nonetheless, LAF outperforms all other methods
in most cases, especially on LDA-3K and LDA-5K.

4.5 MULTI-TASK GRAPH PROPERTIES

Corso et al. (2020) defines a benchmark consisting of 6 classical graph theory tasks on artificially
generated graphs from a wide range of popular graph types like Erdos-Renyi, Barabasi-Albert or
star-shaped graphs. Three of the tasks are defined for nodes, while the other three for whole graphs.
The node tasks are the single-source shortest-path lengths (N1), the eccentricity (N2) and the Lapla-
cian features (N3). The graph tasks are graph connectivity (G1), diameter (G2), and the spectral
radius (G3). For more details about the experimental settings please refer to Corso et al. (2020).

Table 4: Results on the Multi-task graph properties prediction benchmark. Results are expressed in
log 10 of mean squared error.

METHOD N1 N2 N3 G1 G2 G3

BASELINE -1.87 -1.50 -1.60 -0.62 -1.30 -1.41
GIN -2.00 -1.90 -1.60 -1.61 -2.17 -2.66
GCN -2.16 -1.89 -1.60 -1.69 -2.14 -2.79
GAT -2.34 -2.09 -1.60 -2.44 -2.40 -2.70
MPNN (MAX) -2.33 -2.26 -2.37 -1.82 -2.69 -3.52
MPNN (SUM) -2.36 -2.16 -2.59 -2.54 -2.67 -2.87
PNA (NO SCALERS) -2.54 -2.42 -2.94 -2.61 -2.82 -3.29
PNA -2.89 -2.89 -3.77 -2.61 -3.04 -3.57

LAF -2.13 -2.20 -1.67 -2.35 -2.77 -3.63

We compare LAF against PNA by simply replacing the original PNA aggregators and scalers with
100 LAF units (see Equation 2). Table 4 shows that albeit these datasets were designed to highlight
the features of the PNA architecture, that outperforms a wide range of alternative graph neural net-
work approaches LAF produces competitive results, outperforming state-of-the-art GNN approaches
like GIN (Xu et al., 2019), GCN (Kipf & Welling, 2017) and GAT (Veličković et al., 2018) and even
improving over PNA on spectral radius prediction.
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5 CONCLUSIONS

The theoretical underpinnings for sum aggregation as a universal framework for defining set func-
tions do not necessarily provide a template for practical solutions. Therefore we introduced LAF,
a framework for learning aggregation functions that make use of a parametric aggregator to ef-
fectively explore a rich space of possible aggregations. LAF defines a new class of aggregation
functions, which include as special cases widely used aggregators, and also has the ability to learn
complex functions such as higher-order moments. We empirically showed the generalization ability
of our method on synthetic settings as well as real-world datasets, providing comparisons with state-
of-the-art sum-decomposition approaches and recently introduced techniques. The flexibility of our
model is a crucial aspect for potential practical use in many deep learning architectures, due to its
ability to be easily plugged into and learned in end-to-end architectures. The portability of LAF
opens a new range of possible applications for aggregation functions in machine learning methods,
and future research in this direction can enhance the expressivity of many architectures and models
that deal with unstructured data.
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