
Clustering Time Series Data with Gaussian Mixture
Embeddings in a Graph Autoencoder Framework

Amirabbas Afzali1⋆[0009−0006−1965−5367], Hesam Hosseini1⋆[0009−0003−6234−7675],
Mohammadamin Mirzai1[0009−0001−5028−5281], and

Arash Amini1[0000−0002−7082−9581]

1Department of Electrical Engineering, Sharif University of Technology, Iran,
{amir.afzali82, hesam.hosseini , mohammad.mirzaii138,

aamini} @sharif.edu

Abstract. Time series data analysis is prevalent across various domains, includ-
ing finance, healthcare, and environmental monitoring. Traditional time series
clustering methods often struggle to capture the complex temporal dependen-
cies inherent in such data. In this paper, we propose the Variational Mixture
Graph Autoencoder (VMGAE), a graph-based approach for time series cluster-
ing that leverages the structural advantages of graphs to capture enriched data
relationships and produces Gaussian mixture embeddings for improved separa-
bility. Comparisons with baseline methods are included with experimental re-
sults 1, demonstrating that our method significantly outperforms state-of-the-art
time-series clustering techniques. We further validate our method on real-world
financial data, highlighting its practical applications in finance. By uncovering
community structures in stock markets, our method provides deeper insights into
stock relationships, benefiting market prediction, portfolio optimization, and risk
management.

Keywords: Graph Neural Network, Gaussian mixture embeddings, Time series
clustering, Finance.

1 Introduction

Time series is commonly referred to a sequence of data points collected or recorded at
successive time instances, usually at uniform intervals. For instance, in finance, time
series data might include daily closing prices of a stock over a year [37]. In healthcare,
it could be the EEG signal of a person’s brain in a specific time interval [39], and in
environmental monitoring, it might involve hourly temperature readings [56].

Numerous studies have been conducted on time series analysis, encompassing var-
ious tasks such as forecasting [43], classification [17], clustering [1], anomaly detec-
tion [38], visualization [10], pattern recognition [27], and trend analysis [31].

Time series clustering is a powerful method for grouping similar time series data
points based on their characteristics, especially when there is no prior knowledge of the

⋆ Equal contribution. Author ordering is determined by coin flip.
1 Code available at: https://github.com/Sam-the-first/VMGAE

https://github.com/Sam-the-first/VMGAE

2 A. Afzali et al.

data structure [26]. It has diverse applications, such as stock market forecasting, where
it is used for feature extraction to predict stock movements, helping investors anticipate
market behavior and enhance model predictions [2]. In portfolio optimization, clus-
tering identifies stocks with similar traits, fostering diversification and reducing risks.
Additionally, it supports risk management by predicting market volatility using algo-
rithms like Kernel K-Means and Gaussian Mixture Models [4] and contributes to fraud
detection by flagging anomalies that deviate from typical cluster patterns [5].

Despite its practical significance, unsupervised time series clustering faces notable
challenges. Time series data often vary significantly in their critical properties, features,
temporal scales, and dimensionality across different domains. Real-world data further
complicate this process by introducing issues such as temporal gaps and high-frequency
noise [15]. To address these challenges, researchers have developed methods focusing
on three main aspects: 1) time series similarity measures [25, 41], 2) discriminative
representation learning [19, 29, 53], and 3) clustering mechanisms [23, 34]. These ad-
vancements aim to enhance the reliability and applicability of time series clustering in
complex, real-world scenarios.

In this paper, we leverage all these aspects by constructing a graph from time series
data using dynamic time wrapping (DTW) [36] to capture the relationships between
individual time series. By exploiting a specialized graph autoencoder, we can also learn
how to embed each node properly. This embedding not only represents the unique fea-
tures of each data point but also captures shared features from nodes similar to the data
point. To the best of our knowledge, this is the first work that employs graph autoen-
coder architecture for time series clustering.

The novel contributions of this work can be summarized as follows:

– We propose a new framework for time series clustering. This approach uses a
graphical structure to capture more detailed information about data relationships.
Turning a time series dataset into graphs can effectively capture both temporal and
relational dependencies.

– We introduce a specialized graph autoencoder, named Variational Mixture Graph
Autoencoder (VMGAE), that generates a Mixture of Gaussian (MoG) embeddings.
This allows the separation of data through a Gaussian Mixture Model (GMM) in the
embedding space, enhancing clustering performance and providing a more precise
representation of time series data.

– We conducted a comprehensive comparison of our method against strong baselines,
demonstrating significant improvements over the state-of-the-art. Additionally, we
evaluated the practicality of our approach using real-world financial data.

2 Related Work

Time series data clustering has been a significant area of research for decades, leading to
various algorithms. Classical clustering algorithms like k-means and spectral clustering
can be executed on raw time series data, while some methods use modified versions
of classical methods. K-shape [34], assigns data to clusters based on their distance to
centroids and updates the centroids like k-means, but instead uses cross-correlation for

Clustering Time Series Data with Gaussian Mixture Embeddings 3

distance measurement. KSC([49]) uses k-means for clustering by adopting a pairwise
scaling distance measure and computing the spectral norm of a matrix for centroid
computation.

Another approach is to use shapelets to extract discriminative features from time
series data, as demonstrated in [44], [53], [23], and [52]. The main challenge in these
methods is identifying suitable shapelets for the shapelet transform process, which ex-
tracts meaningful features from raw data to perform clustering. R-clustering method
[19] employs random convolutional kernels for feature extraction, which are then used
for clustering. Additionally, [41] implements a hierarchical clustering algorithm that
uses Granger causality [8] as the distance measure, fusing pairs of data to create new
time series and continuing the clustering process. STCN [28] uses an RNN-based model
to forecast time series data, employs pseudo labels for its classifier, and utilizes the
learned features for clustering. Since our method leverages both the autoencoder ar-
chitecture and a graph-based approach for clustering time series data, we will review
autoencoder-based methods and graph-based techniques separately.

2.1 Autoencoder-based methods

Autoencoders have demonstrated empirical success in clustering by using their learned
latent features as data representations. For instance, DEC [48] adds a KL-divergence
term between two distributions to its loss function, alongside the reconstruction error
loss, to make the latent space more suitable for clustering. DTC [32] introduces a new
form of distribution for the KL-divergence term, applying this method to trajectory
clustering. Another method, DCEC [12], incorporates a convolutional neural network
as its autoencoder within the DEC method for image clustering. VaDE [18] adds a
KL-divergence term between the Mixture-of-Gaussians prior and the posterior to the
reconstruction loss. This is done using the embeddings of data points in the latent space
of a variational autoencoder and a prior GMM distribution. In the domain of time series
clustering, DTCR [29] trains an autoencoder model with the addition of k-means loss
on the latent space and employs fake data generation and a discriminator to classify
real and fake data, enhancing the encoder’s capabilities. Also, TMRC [22] proposes a
representation learning method called temporal multi-features representation learning
(TMRL) to capture various temporal patterns embedded in time-series data and ensem-
bles these features for time-series clustering.

2.2 Graph-based methods

Graphs have significantly enhanced the capabilities of deep learning methods in var-
ious tasks. Variational Graph Autoencoder (VGAE) [21] utilizes GCN [20] for link
prediction and node classification tasks. Specifically, graphs have also found significant
applications in the time series domain. Recent works such as [40], [3], and [50] use
graph-based methods for time series forecasting, while [51] and [47] apply them for
classification. Additionally, [54], [7], and [14] utilize graph-based models for anomaly
detection in time series data. Graphs have also been employed for time series data clus-
tering [25].

4 A. Afzali et al.

One of the critical challenges in graph-based methods for the time series domain
is constructing the adjacency matrix. Several methods address this issue by introduc-
ing metrics to compute the similarity or distance between two time series samples.
The Granger causality method [8] leverages the causal effect of a pattern in one time
series sample on another to measure similarity between samples. The Dynamic Time
Warping (DTW) method [36] minimizes the effects of shifting and distortion in time
by allowing the elastic transformation of time series to compute the distance between
two samples. There are many extensions of the DTW method, such as ACDTW [24],
which uses a penalty function to reduce many-to-one and one-to-many matching, and
shapeDTW [55], which represents each temporal point by a shape descriptor that en-
codes structural information of local subsequences around that point and uses DTW to
align two sequences of descriptors.

The similarity between two time series can be used directly as the edge representa-
tion, but the distance needs to be processed for use in the adjacency matrix. One method
is to apply a threshold on distances to predict whether an edge exists between two nodes
in a binary graph [25].

3 Problem Definition and Framework

3.1 Notation

In the following sections, we denote the training dataset as D = {d1, . . . , dn}, where di
represents the i-th time series, and n is the size of the training dataset. The length of the
i-th time series is denoted by li. Each time series di belongs to a cluster ci, where ci ∈
{1, . . . ,K}, and K is the number of clusters. Furthermore, we define c = [c1, . . . , cn]

⊤

as the vector of the corresponding clusters for all time series in D.
Additionally, a graph is represented as G = {V,E,X}, where V = {vi}ni=1 is the

set of nodes, and each edge ei,j = ⟨vi, vj⟩ ∈ E represents a connection between nodes
vi and vj . The structure of the graph is described by an adjacency matrix A, where
Ai,j = 1 if ei,j ∈ E, and Ai,j = 0 otherwise. The feature vector xi ∈ X corresponds
to the content attributes of node vi, which, in our context, is equivalent to the time series
di.

Given the graph G, our objective is to map each node vi ∈ V to a low-dimensional
vector zi ∈ Rh. This mapping is formally defined as:

f : (A,X) 7→ Z,

where the i-th row of the matrix Z ∈ Rn×h is denoted by z⊤i . Here, h is the dimen-
sionality of the embedding space. The matrix Z, which contains these embeddings, is
designed to preserve both the structural information of the graph, captured by A and
the content features represented by X.

3.2 Overall Framework

Our goal is to represent a time series dataset as a graph G = {V,E,X}, where each
node corresponds to a time series. We aim to learn a robust embedding for each node in

Clustering Time Series Data with Gaussian Mixture Embeddings 5

µ

log σA

ÂG

WDTW

D = {d1, . . . , dn}

Lrecon

Lreg

Z σ(ZZT)

σ̃, µ̃,
π

Fig. 1: The general architecture of the Variational Mixture Graph Autoencoder (VM-
GAE). The dataset D consists of multiple time series data, and Weighted Dynamic
Time Warping (WDTW) is used to compute distances that form the adjacency matrix
A, representing connections in the graph G. The mean µ and log standard deviation
logσ are computed for the variational latent space, creating node embeddings Z. These
embeddings undergo transformation to reconstruct the adjacency matrix Â, with the re-
construction loss Lrecon enforcing fidelity to A. The regularization loss Lreg applies to
the mixture model parameters σ̃, µ̃,π, enhancing the latent space structure.

this graph to perform clustering. To achieve this, we first construct the graph. Next, we
apply an unsupervised graph representation learning approach within an autoencoder
framework, enhanced for clustering, to process the entire graph and learn effective node
embeddings Z.
Graph Construction. Each time series is represented as a node in the graph construc-
tion phase. The distance matrix S, calculated using the Dynamic Time Warping (DTW)
method, captures the alignment between time series of varying lengths. We then apply
our novel transformation to convert these distances into similarity scores, which de-
termine the graph’s structure A. This approach ensures that the graph reflects the true
underlying relationships in the data, preserving important temporal patterns.
Learning Representation via a Graph Structure. After constructing the graph, we
leverage a specialized autoencoder framework to learn embeddings for each node. This
unsupervised method compresses the graph’s information into a lower-dimensional rep-
resentation Z. Our approach ensures that the resulting embeddings are informative, gen-
eralizable, and discriminative, making them particularly effective for clustering tasks.
Figure 1 provides a comprehensive overview of our method.

4 Methodology

This section describes the steps taken to represent a time series dataset as a graph and
how we use this graph structure to learn meaningful embeddings for clustering.

6 A. Afzali et al.

4.1 Graph Construction

For graph construction, we use a variant of DTW called Weighted Dynamic Time Warp-
ing (WDTW) and a constraint to limit the window size of the wrapping path. The dis-
tance between two sequences X = (x1, x2, . . . , xN) and Y = (y1, y2, . . . , yM) with a
weight funtion w and a window size W is computed as follows:

WDTW (X,Y) = min
π

 ∑
(i,j)∈π

w[|i− j|] · dinner(xi, yj)

 , (1)

subject to the constraint:

|i− j| ≤ W, (2)

where π is a warping path that aligns the sequences X and Y , dinner(xi, yj) is the dis-
tance between elements xi and yj . This could be any customized distance. For sim-
plicity, we use Euclidean distance. w[|i − j|] is a weight function that depends on the
absolute difference between indices i and j, and W is the window size that limits the
maximum allowable shift between indices.

The weight function w[n] should be a monotonic function of n, as it penalizes align-
ments where the indices are farther apart, favoring closer alignments. For simplicity, we
set w[n] = γ · n, where γ is a positive hyperparameter.

Given the training dataset D = {d1, . . . , dn}, we construct a distance matrix S,
where Sij represents WDTW (di, dj) with fixed parameters γ and W . Next, we pro-
pose a novel transformation approach to convert the distance matrix S into a similarity
matrix. By fixing the density rate α =

#{Aij=1}
n2 , we compute a threshold δ to construct

an adjacency matrix A, where Aij = 1 if Sij < δ and Aij = 0 otherwise. The key dif-
ference compared to previous work [25] is that, instead of fixing δ, we fix α and use it
to compute the corresponding δ for each dataset. This is important because the optimal
threshold δ may vary across datasets, while the optimal α is much more stable. Figure
2 presents a sample graph constructed using this method. While the current representa-
tion demonstrates good separation, further refinement can be achieved with the use of
VMGAE.

4.2 Learning Representation via a Graph Structure

Graph Convolutional Autoencoder. In our unsupervised setting, we utilize a graph
convolutional autoencoder architecture to embed a graph G = {V,E,X} into a low-
dimensional space. Specifically, we derive an embedding zi ∈ Z for the i-th node of the
graph. This approach presents two key challenges: 1) How can both the graph structure
A and node features X be effectively integrated within the encoder? 2) What specific
information should the decoder reconstruct?

Graph Convolutional Layer. To effectively capture both the structural information
A and node features X in a unified framework, we employ graph convolutional network
(GCN) [20]. Graph convolutional operator extends the convolution operation to graph
data in the spectral domain and applies a layer-wise transformation using a specialized

Clustering Time Series Data with Gaussian Mixture Embeddings 7

Fig. 2: Graph visualizations of the Symbols dataset, illustrating effective data separa-
tion. Different colors correspond to distinct labels.

convolutional function. Each layer of the graph convolutional network can be expressed
as follows:

Z(l+1) = ϕ
(
D̃− 1

2 ÃD̃− 1
2Z(l)W(l)

)
, (3)

where Ã = A + I and D̃ii =
∑

j Ãij . Here, I represents the identity matrix and ϕ is
an activation function like ReLU ϕ(x) = max(0, x) . Also, Z(l) denotes the input at the
l-th layer, and Z(l+1) is the output after the convolution operation. Initially, Z0 = X,
where X ∈ Rn×m represents the input features of the graph with n nodes and m
features. The matrix W(l) contains the parameters to be learned. Additionally, in this
work, we denote each convolutional layer with activation function ϕ as fϕ(Z

(l),A |
W(l)).

In addition to this convolutional layer, several other variants suitable for node-level
tasks have been proposed [6, 9, 13, 45]. In Appendix F.2, we compare the effects of dif-
ferent convolutional layers on the performance of our method.

Encoder Model G(X,A). The encoder of VMGAE is defined by an inference model:

q(Z|X,A) =

n∏
i=1

q(zi|X,A), (4)

q(zi|X,A) = N (zi|µi, diag(σ2
i)). (5)

Here, µi and logσi are constructed using a two-layer convolutional network, where the
weights W(0) in the first layer are shared:

Z(1) = fRelu(X,A|W(0)), (6){
µ = flinear(Z

(1),A|Wµ
(1)),

logσ = flinear(Z
(1),A|Wσ

(1)).
(7)

8 A. Afzali et al.

The encoder model G(X,A) encodes both graph structure and node features into a
latent representation Z = q(Z|X,A). According to the reparameterization trick, zi is
obtained by:

zi = µi + σi ◦ ϵ, (8)

where ϵ ∼ N (0, I), ◦ is element-wise multiplication.

Decoder Model D(Z,A). Decoder model is given by an inner product between latent
variables:

p(A | Z) =
n∏

i=1

n∏
j=1

p(Aij | zi, zj), (9)

and the conditional probability is usually modeled as:

p(Aij = 1 | zi, zj) = σ(z⊤i zj), (10)

where σ(·) is the logistic sigmoid function.
Thus, the embedding Z and the reconstructed graph Â can be presented as follows:

Â = σ(ZZ⊤), here Z = q(Z | X,A) (9)

Learning Algorithm. In VMGAE, our objective is to maximize the log-likelihood of
the data points, log p(A). Based on the decoder model The joint probability p(A,Z, c)
can be factorized as:

p(A,Z, c) = p(A | Z)p(Z | c)p(c). (11)

The log-likelihood can be expressed as:

log p(A) = log

∫
Z

∑
c

p(A,Z, c) dZ

≥ Eq(Z,c|X,A)

[
log

p(A,Z, c)

q(Z, c | X,A)

]
(12)

= LELBO(X,A). (13)

The inequality in Equation 12 is derived from Jensen’s inequality. Instead of maximiz-
ing the log-likelihood directly, we aim to maximize its Evidence Lower Bound (ELBO),
and using the factorization in Equation 11, it can be rewritten as follows:

LELBO(X,A) = Eq(Z,c|X,A)[log p(A,Z, c)− log q(Z, c|X,A)]

= Eq(Z,c|X,A) [log p(A|Z) + log p(Z|c) + log p(c)]

− Eq(Z,c|X,A) [log q(Z|X,A) + log q(c|X,A)] , (14)

where the last line is obtained under the assumption of a mean-field distribution for
q(Z, c|X,A).

Similar to the approach in [18], a mixture of Gaussian latent variables is used to
learn the following distributions:

Clustering Time Series Data with Gaussian Mixture Embeddings 9

p(ci) = Cat(ci | π) (15)

p(zi | ci). = N
(
zi | µ̃ci

, σ̃2
ciI
)
. (16)

By assuming a mean-field distribution, the joint probability p(c) and p(Z | c) can be
factorized as:

p(c) =

n∏
i=1

Cat(ci | π), (17)

p(Z | c) =
n∏

i=1

N
(
zi | µ̃ci

, σ̃2
ciI
)
, (18)

where πk is the prior distribution of cluster k hence
∑

k πk = 1, Cat(· | π) is the
categorical distribution parametrized by π. Also µci Moreover, σ2

ci are the mean and
the variance of the Gaussian distribution corresponding to cluster ci, I is an identity
matrix.

Using Monte Carlo estimation for the expected value calculation in full-batch mode
and substituting the assumptions from Equations 17 and 18 into Equation 14, the ob-
jective function can be expressed as:

LELBO (X,A) =

1

n

n∑
i=1

[
1

n

(n∑
j=1

Aij log Âij + (1−Aij) log(1− Âij)

)

− 1

2

K∑
ci=1

q(ci | X,A)

H∑
h=1

(
log σ̃2

cih +
σ2

h

σ̃2
cih

+

(
µh − µ̃cih

)2
σ̃2

cih

)

+

K∑
ci=1

q(ci | X,A) log
πci

q(ci | X,A)
+

1

2

H∑
h=1

(
1 + logσ2

h

)]
. (19)

The first term represents the standard reconstruction loss, while the second and third
terms act as regularizers, encouraging the model to generate a Gaussian mixture embed-
ding. A detailed derivation of Equation 19 is provided in Appendix A.

The next question is how to compute q(ci | X,A). According to the derivations in
Appendix B, the ELBO can be rewritten as:

LELBO(X,A) = Eq(Z,c|X,A)

[
log

p(A,Z, c)

q(Z, c | X,A)

]
= Eq(Z|X,A)

[
log

p(A | Z)p(Z)
q(Z | X,A)

]
−

n∑
i=1

∫
zi

q(zi | X,A)DKL(q(ci | X,A)∥p(ci | zi))dzi. (20)

10 A. Afzali et al.

In the equation above, the first term is independent of c, and the second term is non-
negative. Therefore, similar to the approach in [18], to maximize LELBO(X,A), we
assume DKL(q(ci|X,A)∥p(ci|zi)) to be zero. Consequently, the following equation
can be used to compute q(ci|X,A) in VMGAE:

q(ci | X,A) = p(ci | zi) ≡
p(ci)p(zi | ci)∑K

c′=1 p (c
′) p (zi | c′)

. (21)

While the learned distribution can be directly used for clustering, we have empirically
found that refitting a GMM on the learned representation q(Z|X,A) significantly im-
proves clustering performance.

Additionally, in our experiments, we introduce a weight parameter λ for the second
component of the loss function, allowing us to balance the contribution of each term in
the final loss function:

LVMGAE(X,A) = Lrecon(A) + λ · Lreg(X,A), (22)

where Lrecon(A) represents the reconstruction loss on the adjacency matrix A:

Lrecon(A) = − 1

n2

n∑
i,j=1

(
Aij log Âij + (1−Aij) log(1− Âij)

)
, (23)

and the regularizer term Lreg(X,A) is defined as follows:

Lreg(X,A) =
1

n

n∑
i=1

[
1

2

K∑
ci=1

q(ci | X,A)

H∑
h=1

(
log σ̃2

cih +
σ2

h

σ̃2
cih

+

(
µh − µ̃cih

)2
σ̃2

cih

)
−

K∑
ci=1

q(ci | X,A) log
πci

q(ci | X,A)

+
1

2

H∑
h=1

(
1 + logσ2

h

))]
. (24)

Compared to vanilla GAE and VGAE, our method introduces only a few additional
parameters µ̃, σ̃, and π, which need to be learned. However, this does not significantly
increase the computational overhead. Initializing these parameters using a GMM proves
effective. In practice, performing a few epochs of pretraining with GAE—e.g., using
only the reconstruction loss—followed by fitting a GMM on the latent embeddings is
sufficient to achieve a strong initialization.

Finally, we summarize the complete set of steps involved in our proposed method
in Algorithm 1.

5 Experiments

5.1 Experimental Setup and Datasets

We employed 19 datasets from the UCR time series classification archive [16] for our
clustering experiments, with specific details provided in Table 1 and Table 2. Our net-
works were implemented and tested using PyTorch [35], Torch_Geometric [11], and

Clustering Time Series Data with Gaussian Mixture Embeddings 11

Algorithm 1: VMGAE Training Procedure
Input: Time series dataset D
Parameters: Hyperparameters {W,γ, λ, α}, Pre-training iterations Tpre, Training iterations T
Output: Clustering results
1: Compute the distance matrix S using WDTW (Eq. (1)).
2: Convert the distance matrix S into an adjacency matrix A.
3: Initialize GAE with random weights.
4: for t = 1 to Tpre do
5: Pre-train the GAE by minimizing Lrecon(A) (Eq. (23)).
6: end for
7: Fit a GMM to the latent representations Z from the GAE.
8: Initialize parameters µ̃, σ̃, and π using the fitted GMM.
9: for t = 1 to T do

10: Train VMGAE by minimizing LVMGAE(X,A) (Eq. (22)).
11: end for
12: Fit a final GMM on the learned latent representations Z.
13: return Clustering results based on the final GMM.

executed on an A100 GPU (40G). VMGAE was trained with a learning rate of 1e−4

for 500 epochs in full-batch mode, using the Adam optimizer for optimization. Dropout
with p = 0.01 was applied to prevent overfitting. A significant advantage of our method
is that we can leverage the latent distribution to tune hyperparameters (as illustrated in
Figure 4 in Appendix E) . The hyperparameters γ, λ, W , and α were tuned by visu-
alizing the latent distribution of the training set for each dataset separately. During the
testing phase, these hyperparameters were fixed, and the final results were evaluated.
The details of the datasets used, the sensitivity of hyperparameters, and the evaluation
metrics are provided in Appendices C, F.1, and D, respectively.

5.2 Quantitative Analysis

The performance of VMGAE was benchmarked against several time series clustering
methods to evaluate its clustering capabilities thoroughly. The results presented in Ta-
bles 1 and 2 are sourced from the original papers, except R-Clustering [19], where
results were obtained by running the authors’ publicly available code. Both tables high-
light the best result for each dataset in bold.

As shown in Table 1, VMGAE delivers superior performance, achieving the low-
est average rank of 3.1579, the highest average NMI score of 0.6553, and surpassing
state-of-the-art (SOTA) methods on seven datasets. Similarly, Table 2 highlights VM-
GAE’s strong results based on the Rand Index (RI) metric, with the lowest average rank
of 2.6842, the highest average RI of 0.8605, and outperforming SOTA across seven
datasets. Notably, on specific datasets such as TwoPatterns, SonyAIBORobotSurface,
and TwoLeadECG, the SOTA results were significantly exceeded, with NMI improve-
ments of 0.5089, 0.2212, and 0.1815, and RI improvements of 0.1471, 0.0991, and
0.0169, respectively.

Further extensive qualitative analysis of our method is provided in Appendix E.

12 A. Afzali et al.

Dataset K-means SC KSC K-shape u-shaplet USSL DTCR STCN R-clust TMRC VMGAE

Beef 0.2925 0.4063 0.3828 0.3338 0.3413 0.3338 0.5473 0.5432 0.2475 0.7424 0.5237
Car 0.2540 0.3349 0.2719 0.3771 0.3655 0.4650 0.5021 0.5701 0.5390 0.3917 0.6193
DiatomSizeReduction 0.9300 0.8387 1.0000 1.0000 0.4849 1.0000 0.9418 1.0000 0.6154 0.6324 0.8882
Dist.Phal.Outl.AgeGroup 0.1880 0.3474 0.3331 0.2911 0.2577 0.3846 0.4553 0.5037 0.4343 0.3298 0.4400
ECG200 0.1403 0.1350 0.1403 0.3682 0.1323 0.3776 0.3691 0.4316 0.1561 0.3763 0.3643
ECGFiveDays 0.0002 0.0005 0.0682 0.0002 0.1498 0.6502 0.8056 0.3582 0.0173 0.2758 0.8378
Meat 0.2510 0.2732 0.2846 0.2254 0.2716 0.9085 0.9653 0.9393 0.6420 0.7980 1.0000
Mid.Phal.TW 0.4134 0.4952 0.4486 0.5229 0.4065 0.9202 0.5503 0.6169 0.4138 0.4802 0.4409
OSULeaf 0.0208 0.0814 0.0421 0.0126 0.0203 0.3353 0.2599 0.3544 0.4453 0.3012 0.3739
Plane 0.8598 0.9295 0.9218 0.9642 1.0000 1.0000 0.9296 0.9615 0.9892 0.8917 0.9678
Prox.Phal.Outl.AgeGroup 0.0635 0.4222 0.0682 0.0110 0.0332 0.6813 0.5581 0.6317 0.5665 0.5731 0.5639
SonyAIBORobotSurface 0.6112 0.2564 0.6129 0.7107 0.5803 0.5597 0.6634 0.6112 0.6620 0.2300 0.9319
SwedishLeaf 0.0168 0.0698 0.0073 0.1041 0.3456 0.9186 0.6663 0.6106 0.7151 0.5099 0.5886
Symbols 0.7780 0.7855 0.8264 0.6366 0.8691 0.8821 0.8989 0.8940 0.8775 0.8159 0.8996
ToeSegmentation1 0.0022 0.0353 0.0202 0.3073 0.3073 0.3351 0.3115 0.3671 0.0179 1.0000 0.3081
TwoPatterns 0.4696 0.4622 0.4705 0.3949 0.2979 0.4911 0.4713 0.4110 0.3181 0.1347 1.0000
TwoLeadECG 0.0000 0.0031 0.0011 0.0000 0.0529 0.5471 0.4614 0.6911 0.4966 0.0287 0.8726
Wafer 0.0010 0.0010 0.0010 0.0010 0.0010 0.0492 0.0228 0.2089 0.0000 0.5019 0.2136
WordSynonyms 0.5435 0.4236 0.4874 0.4154 0.3933 0.4984 0.5448 0.3947 0.8885 0.4210 0.5812

AVG Rank 8.7894 7.6316 7.1053 7.4739 8.1053 3.4736 3.7368 3.4210 5.8947 6.0000 3.1579
AVG NMI 0.3071 0.3316 0.3362 0.3513 0.3321 0.5967 0.5749 0.5841 0.4759 0.4965 0.6553
Best 0 0 1 1 1 5 0 3 2 3 7

Table 1: Normalized Mutual Information (NMI) comparisons on 19 time series datasets

Dataset K-means SC KSC K-shape u-shaplet USSL DTCR STCN R-Clust TMRC VMGAE

Beef 0.6713 0.6206 0.7057 0.5402 0.6966 0.6966 0.8046 0.7471 0.6703 0.8229 0.7862
Car 0.6345 0.6621 0.6898 0.7028 0.6418 0.7345 0.7501 0.7372 0.7507 0.7322 0.8045
DiatomSizeReduction 0.9583 0.9254 1.0000 1.0000 0.7083 1.0000 0.9682 0.9921 0.8140 0.8539 0.9719
Dist.Phal.Outl.AgeGroup 0.6171 0.7278 0.6535 0.6020 0.6273 0.6650 0.7825 0.7825 0.7425 0.6477 0.6827
ECG200 0.6315 0.5078 0.6315 0.7018 0.5758 0.7285 0.6648 0.7018 0.6206 0.7424 0.7862
ECGFiveDays 0.4783 0.4994 0.5257 0.5020 0.5968 0.8340 0.9638 0.6504 0.0173 0.6492 0.9523
Meat 0.6595 0.7197 0.6723 0.6575 0.6742 0.7740 0.9763 0.9186 0.8341 0.8847 1.0000
Mid.Phal.TW 0.0983 0.8052 0.8187 0.6213 0.7920 0.7920 0.8638 0.8625 0.7915 0.6850 0.8132
OSULeaf 0.5615 0.7314 0.5714 0.5538 0.5525 0.6551 0.7739 0.7615 0.8067 0.7644 0.7798
Plane 0.9081 0.9333 0.9603 0.9901 1.0000 1.0000 0.9549 0.9663 0.9973 0.9472 0.9868
Prox.Phal.Outl.AgeGroup 0.5288 0.7791 0.5305 0.5617 0.5206 0.7939 0.8091 0.8379 0.8021 0.8189 0.8147
SonyAIBORobotSurface 0.7721 0.5082 0.7726 0.8084 0.7639 0.8105 0.8769 0.7356 0.8843 0.6529 0.9834
SwedishLeaf 0.4987 0.6897 0.4923 0.5333 0.6154 0.8547 0.9223 0.8872 0.9302 0.8537 0.8825
Symbols 0.8810 0.8959 0.8982 0.8373 0.9603 0.9200 0.9168 0.9088 0.9821 0.9088 0.9677
ToeSegmentation1 0.4873 0.4996 0.5000 0.6143 0.5873 0.6718 0.5659 0.8177 0.5112 1.0000 0.6712
TwoPatterns 0.8529 0.6297 0.8585 0.8046 0.7757 0.8318 0.6984 0.7619 0.7273 0.6295 1.0000
TwoLeadECG 0.5476 0.5018 0.5464 0.8246 0.5404 0.8628 0.7114 0.9486 0.7984 0.5873 0.9655
Wafer 0.4925 0.5336 0.4925 0.4925 0.4925 0.8246 0.7338 0.8433 0.5349 0.9082 0.5853
WordSynonyms 0.8775 0.8647 0.8727 0.7844 0.8230 0.8540 0.8984 0.8748 0.8995 0.8875 0.9168

AVG Rank 8.7368 8.3684 6.8947 7.5263 7.7895 4.4739 4.0000 3.9474 5.2105 5.5263 2.6842
AVG RI 0.6398 0.6860 0.6943 0.6911 0.6812 0.8054 0.8229 0.8282 0.7428 0.7882 0.8605
Best 0 0 1 1 1 2 3 2 3 3 7

Table 2: Rand Index (RI) comparisons on 19 time series datasets

Clustering Time Series Data with Gaussian Mixture Embeddings 13

2020 2021 2022 2023 2024

2

0

2
C

lu
st

er
 1

2020 2021 2022 2023 2024
2

1

0

1

2

C
lu

st
er

 2

2020 2021 2022 2023 2024

2

0

2

4

C
lu

st
er

 3

2020 2021 2022 2023 2024
4

2

0

2

C
lu

st
er

 4

2020 2021 2022 2023 2024

2

0

2

C
lu

st
er

 5

(a)

2020 2021 2022 2023 2024
2

1

0

1

C
lu

st
er

 1

2020 2021 2022 2023 2024

1

0

1

C
lu

st
er

 2

2020 2021 2022 2023 2024
2

1

0

1

2

C
lu

st
er

 3

2020 2021 2022 2023 2024

2

0

C
lu

st
er

 4

2020 2021 2022 2023 2024

1

0

1

2
C

lu
st

er
 5

(b)

Fig. 3: (a) Clustering results of the normalized closing prices for the top 50 U.S. stocks,
grouped into five clusters. (b) The average normalized closing price for each cluster
shows distinct patterns across the clusters.

5.3 Application in Finance

Understanding stock market dynamics in finance is essential for making informed in-
vestment decisions. Detecting patterns and communities within this complex network
of stocks helps gain insights into market behavior and make better investment choices.

In this section, we demonstrate the effectiveness of our approach by applying it to
real-world stock market data and evaluating the quality of the resulting clusters. We
selected the top 50 publicly traded U.S. stocks listed on NASDAQ, NYSE, and NYSE
American, ranked by market capitalization. The input time series for our model consists
of daily normalized closing prices from January 1, 2020, to October 4, 2024. We set the
number of clusters to 5 based on the Elbow Method [42]. The results are displayed in
Figure 3a, with the average for each cluster shown in Figure 3b, highlighting distinct
discriminative patterns.

6 Conclusion

In this work, we introduce a novel method for clustering time series data by leveraging
graph structures, achieving strong performance across various datasets. Our approach
transforms time series data into graph representations using Weighted Dynamic Time

14 A. Afzali et al.

Warping, enabling the capture of temporal dependencies and structural relationships.
We then apply the proposed Variational Mixture Graph Autoencoder (VMGAE) to
generate a Gaussian mixture latent space, improving data separation and clustering ac-
curacy. Extensive experiments demonstrate the effectiveness of our method, including
sensitivity analysis on hyperparameters and the evaluation of different convolutional
layer architectures. Furthermore, we applied our method to real-world financial data,
uncovering community structures in stock markets and showcasing its potential bene-
fits for market prediction, portfolio optimization, and risk management. These findings
highlight the versatility and practical applications of VMGAE in addressing time series
clustering challenges.

Appendix

A. Derivation of ELBO for VMGAE

The Evidence Lower Bound (ELBO) for VMGAE is defined as follows:

log p(A) = log

∫
Z

∑
c

p(A,Z, c)

= log

∫
Z

∑
c

[
p(A,Z, c)q(Z, c|X,A)

q(Z, c|X,A)

]
≥ Eq(Z,c|X,A)[log

p(A,Z, c)
q(Z, c|X,A)

]

= LELBO(X,A), (25)

where X refers to the feature matrix (or time series matrix in our case), and A represents
the adjacency matrix. Jensen’s inequality is applied to arrive at this bound.

The expanded form of LELBO(X,A) using 11 is given by :

LELBO(X,A) = Eq(Z,c|X,A)[log p(A,Z, c)− log q(Z, c|X,A)]

= Eq(Z,c|X,A)[log p(A|Z)︸ ︷︷ ︸
(I)

+ log p(Z|c)︸ ︷︷ ︸
(II)

+ log p(c)︸ ︷︷ ︸
(III)

]

− Eq(Z,c|X,A)[log q(Z|X,A)︸ ︷︷ ︸
(IV)

+ log q(c|X,A)︸ ︷︷ ︸
(V)

]. (26)

Next, we compute the expectations over the various terms in the ELBO.

Term (I):

Eq(Z,c|X,A)[log p(A|Z)] = 1

n2

n∑
i=1

n∑
j=1

log p(Aij |zi, zj)

=
1

n2

n∑
i=1

n∑
j=1

Aij log Âij + (1−Aij) log(1− Âij).

Clustering Time Series Data with Gaussian Mixture Embeddings 15

Term (II):

Eq(Z,c|X,A)[log p(Z | c)]

=

n∑
i=1

∫
zi

K∑
ci=1

q(ci | X,A)q(zi | X,A) log p(zi | ci)dzi

=

n∑
i=1

K∑
ci=1

q(ci | X,A)

∫
zi

N
(
zi | µi,σi

2I
)
logN

(
zi | µ̃ci

, σ̃2
ciI
)
dzi, (27)

According to appendix B [18], we have:

Eq(Z,c|X,A)[log p(Z | c)]

= −
n∑

i=1

K∑
ci=1

q(ci | X,A)

[
H

2
log(2π)

+
1

2

(
H∑

h=1

log σ̃2
cih +

H∑
h=1

σ2
h

σ̃2
cih

+

H∑
h=1

(
µh − µ̃cih

)2
σ̃2

cih

)]
. (28)

Term (III):

Eq(Z,c|X,A)[log p(c)] =

=

n∑
i=1

∫
zi

q(zi | X,A)

K∑
ci=1

q(ci | X,A) logπcidzi

=

n∑
i=1

K∑
ci=1

q(ci | X,A) logπci . (29)

Term (IV):

Eq(Z,c|X,A)[log q(Z | X,A)]

=
n∑

i=1

∫
zi

K∑
ci=1

q(ci | X,A)q(zi | X,A) log q(zi | X,A)dzi

=

∫
z

N
(
z;µ,σ2I

)
logN

(
z;µ,σ2I

)
dz

= −H

2
log(2π)− 1

2

H∑
h=1

(
1 + logσ2

h

)
. (30)

Term (V):

16 A. Afzali et al.

Eq(Z,c|X,A)[log q(c | X,A)]

=

n∑
i=1

∫
zi

K∑
ci=1

q(zi | X,A)q(ci | X,A) log q(ci | X,A)dzi

=

n∑
i=1

∫
zi

q(zi | X,A)

K∑
ci=1

q(ci | X,A) log q(ci | X)dzi

=

n∑
i=1

K∑
ci=1

q(ci | X,A) log q(ci | X,A). (31)

By putting all terms together, we will have:

LELBO (X,A) =
1

n2

n∑
i=1

n∑
j=1

Aij log Âij + (1−Aij) log(1− Âij)

− 1

2

n∑
i=1

K∑
ci=1

q(ci | X,A)

H∑
h=1

(
log σ̃2

cih +
σ2

h

σ̃2
cih

+

(
µh − µ̃cih

)2
σ̃2

cih

)
+

n∑
i=1

K∑
ci=1

q(ci | X,A) log
πci

q(ci | X,A)

+
1

2

H∑
h=1

(
1 + logσ2

h

)
. (32)

B. Derivation of q(ci|X,A)

An important point is how to calculate q(ci | X,A). We can reformat the ELBO into
the following form:

LELBO(X,A) = Eq(Z,c|X,A)

[
log

p(A,Z, c)

q(Z, c | X,A)

]
= Eq(Z,c|X,A)

[
log

p(A | Z)p(c | Z)p(Z)
q(Z | X,A)q(c | X,A)

]
= Eq(Z,c|X,A)

[
log

p(A | Z)p(Z)
q(Z | X,A)

+ log
p(c | Z)

q(c | X,A)

]
= Eq(Z|X,A)

[
log

p(A | Z)p(Z)
q(Z | X,A)

]
−

n∑
i=1

∫
zi

q(zi | X,A)
∑
ci

q(ci | X,A) log
q(ci | X,A)

p(ci | zi)
dzi

= Eq(Z|X,A)

[
log

p(A | Z)p(Z)
q(Z | X,A)

]
−

n∑
i=1

∫
zi

q(zi | X,A)DKL(q(ci | X,A)∥p(ci | zi))dzi. (33)

Clustering Time Series Data with Gaussian Mixture Embeddings 17

In the Equation above, the first term is not dependent on c and the second is non-
negative. Hence, to maximize LELBO (X,A), DKL(q(ci | X,A)∥p(ci | zi)) ≡ 0
should be satisfied. As a result, we use the following Equation to compute q(ci | X,A)
in VMGAE:

q(ci | X,A) = p(ci | zi) ≡
p(ci)p(zi | ci)∑K

c′=1 p (c
′) p (zi | c′)

.

C. Datasets

We conducted our clustering experiments using 19 datasets from the UCR Time Series
Classification Archive [16], a widely recognized benchmark for time series analysis.
The details of these datasets are presented in Table 3.

No. Name Train/Test Length Classes

1 Beef 30/30 470 5
2 Car 60/60 577 4
3 DiatomSizeReduction 16/306 345 4
4 Dist.Phal.Outl.AgeGroup 400/139 80 3
5 ECG200 100/100 96 2
6 ECGFiveDays 23/861 136 2
7 Meat 60/60 448 3
8 Mid.Phal.TW 399/154 80 6
9 OSULeaf 200/242 427 6
10 Plane 105/105 144 7
11 Prox.Phal.Outl.AgeGroup 400/205 80 3
12 SonyAIBORobotSurface 20/601 70 2
13 SwedishLeaf 500/625 128 15
14 Symbols 25/995 398 6
15 ToeSegmentation1 40/228 277 2
16 TwoPatterns 1000/4000 128 4
17 TwoLeadECG 23/1139 82 2
18 Wafer 1000/6164 152 2
19 WordSynonyms 267/638 270 25

Table 3: Statistics of the 19 datasets from the UCR benchmark used in our experiments.

D. Evaluation Metrics

We evaluate the clustering performance in our analysis using two well-established met-
rics: the Rand Index (RI) and Normalized Mutual Information (NMI). The Rand In-
dex, which quantifies the agreement between the predicted and actual clustering assign-
ments, is computed as follows:

18 A. Afzali et al.

16 8 0 8 16 24

15

10

5

0

5

10
Class 1
Class 2
Class 3
Class 4

(a)
8 4 0 4 8

20

10

0

10

20

(b)
30 20 10 0 10 20

16

8

0

8

16

24

(c)

Fig. 4: The visualizations with t-SNE on the dataset DiatomSizeReduction. The colors
of the points indicate the actual labels. (a) epoch 0, (b) epoch 10, (c) epoch 100.

RI =
TP + TN

TP + FP + FN + TN
. (34)

In this expression, TP (True Positive) denotes the number of pairs of time series
correctly classified into the same cluster, while TN (True Negative) refers to the num-
ber of pairs accurately assigned to different clusters. Conversely, FP (False Positive)
captures the number of pairs incorrectly grouped into the same cluster, and FN (False
Negative) accounts for pairs that should be clustered together but are mistakenly sepa-
rated.

The NMI score is defined as:

NMI =

∑K
i=1

∑K
j=1 Nij log

(
n·Nij

|Gi|·|Pj |

)
√(∑K

i=1 |Gi| log
(

|Gi|
n

))
·
(∑M

j=1 |Pj | log
(

|Pj |
n

)) , (35)

where Nij represents the number of time series that are common between the i-th
ground truth cluster Gi and the j-th predicted cluster Pj . | · | is the number of time
series in the cluster. The variables K and n in Equations 34 and 35 are defined as pre-
viously explained in the section Notation.

E. Qualitative Analysis

We further present visualizations of the evolving clusters during training on the Di-
atomSizeReduction in Figure 4. These clusters are mapped from the latent space repre-
sentations Z to a 2D space using t-SNE [30]. The t-SNE plots illustrate how the latent
representations become increasingly well-separated as training progresses, reflecting
VMGAE’s capacity to learn distinct clusters from the time series data.

Clustering Time Series Data with Gaussian Mixture Embeddings 19

Dataset Car Meat SonyAIBORobotSurface1

α 0.025 0.05 0.075 0.1 0.025 0.05 0.075 0.1 0.025 0.05 0.075 0.1

NMI 0.4906 0.5634 0.6193 0.4884 1.0000 1.0000 1.0000 0.8996 0.8524 0.9182 0.9319 0.9089
RI 0.7322 0.7813 0.8045 0.7559 1.0000 1.0000 1.0000 0.9570 0.9544 0.9801 0.9834 0.9769

(a) Impact of hyperparameter α

Dataset Car Meat SonyAIBORobotSurface1

λ 0.1 0.01 0.001 0.0001 0.1 0.01 0.001 0.0001 0.1 0.01 0.001 0.0001

NMI 0.4421 0.6088 0.6193 0.6193 1.0000 1.0000 1.0000 1.0000 0.9298 0.9319 0.9298 0.9298
RI 0.7384 0.7920 0.8045 0.8045 1.0000 1.0000 1.0000 1.0000 0.9834 0.9834 0.9834 0.9834

(b) Impact of hyperparameter λ

Dataset Car Meat SonyAIBORobotSurface1

γ 0.2 0.4 0.7 1.0 0.2 0.4 0.7 1.0 0.2 0.4 0.7 1.0

NMI 0.5308 0.6193 0.5483 0.4895 1.0000 1.0000 1.0000 1.0000 0.9319 0.9190 0.9427 0.9427
RI 0.7751 0.8045 0.7853 0.7661 1.0000 1.0000 1.0000 1.0000 0.9834 0.9801 0.9867 0.9867

(c) Impact of hyperparameter γ

Table 4: The tables show the impact of different hyperparameters on the NMI and RI
metrics for 3 different datasets.

F. Ablation Study

F.1. Hyperparameter Sensitivity Analysis

In this section, we analyze the impact and sensitivity of the hyperparameters γ, λ, and α
on our method. To assess the sensitivity of each hyperparameter, the other hyperparam-
eters were kept fixed at their optimal values, as shown in Table 4. The hyperparameter
values γ = 0.7 and γ = 1.0 yield better metric results for the SonyAIBORobotSurface1
dataset compared to γ = 0.2, which was used to report the results in Tables 1 and 2.
This improvement was not evident through the visualization process. As shown in the
table, for some datasets like Meat, the model is not sensitive to the hyperparameter val-
ues, whereas for other datasets, such as Car, the model shows some sensitivity to the
hyperparameter values.

F.2. Impact of Convolutional Layer Variants

Several advanced graph convolutional layers have been developed to enhance infor-
mation propagation in graph neural networks, each with distinct methods and advan-
tages. One well-known type of convolutional layer is the Graph Attention Network
(GAT) [45]. GAT layers introduce attention mechanisms to graph convolutions, en-
abling the model to assign different importance to neighboring nodes rather than treat-
ing them uniformly. Specifically, the GAT layer computes attention coefficients αij

based on node features, which are then used to aggregate information from neighboring

20 A. Afzali et al.

nodes. The process of each GAT layer is expressed as follows:

Z
(l+1)
i = ϕ

 ∑
j∈N (i)

αijW
(l)Z

(l)
j

 , (36)

where N (i) denotes the neighbors of node i, and ϕ is an activation function. The atten-
tion mechanism allows GAT layers to dynamically adjust the influence of neighboring
nodes, leading to more flexible and potentially more accurate embeddings.

Another variant is SAGEConv [13], which stands for Sample and Aggregation Con-
volution. This layer generalizes GCNs by allowing for aggregating features from a sam-
pled set of neighbors instead of using all neighbors. Various aggregation operators like
mean aggregator, LSTM aggregator, and polling aggregator can perform the aggrega-
tion process. The final formula is given by :

Z
(l+1)
i = ϕ

(
W

(l)
1 Z

(l)
i +W

(l)
2 AGGREGATE({Z(l)

j : j ∈ N (i)})
)
, (37)

where AGGREGATE is a function that combines the features of the neighbors.
ChebConv [6] is another robust convolutional layer that utilizes a recursive process

to produce Zj
i ’s and aggregate them by some learnable parameters. The ChebConv

whole operation is given by:

Z
(1)
i = Xi

Z
(2)
i = L̃.Xi

Z
(k)
i = 2L̃.Zk−1

i − Zk−2
i

X̃i =

K∑
k=0

ΘkZ
k
i , (38)

where Tk(L) denotes the Chebyshev polynomial of order k, and L is the graph Lapla-
cian.

Similarly, SGConv [46], or Simplifying Graph Convolution, provides an efficient
alternative that simplifies the graph convolution operation while maintaining good per-
formance. The operation can be expressed as:

Zi = Softmax
(
SkxiΘ

)
, (39)

where S is the normalized adjacency matrix and k is a fixed number and Θ is the
laearnable parameter matrix.

Finally, TAGConv [9], or Adaptive Graph Convolution, adapts the convolution op-
eration based on the local graph structure. It computes the convolution by taking into
account the varying degrees of nodes:

Zi =

K∑
k=0

AkXiWk, (40)

Clustering Time Series Data with Gaussian Mixture Embeddings 21

where A is the normalized adjacency matrix and W ’s are learnable parameters.
we examines how different convolutional layers affect the model’s ability to learn

node embeddings and perform clustering. In the main results shown in Tables 1 and 2,
we used Graph Convolutional Network (GCN) layers. Here, we test other types of con-
volutional layers and compare their effects on the model’s performance across different
datasets. The results of these comparisons are shown in Table 5.

Conv. Layer Beef Car Dist. Age Group

NMI RI NMI RI NMI RI

GCN 0.5237 0.7862 0.6193 0.8045 0.4400 0.6827
GAT 0.4926 0.7463 0.4165 0.6548 0.4322 0.7426

SAGEConv 0.4907 0.7429 0.4499 0.7119 0.4637 0.7492
ChebConv 0.2789 0.7152 0.1683 0.6534 0.3243 0.5933
SGConv 0.4673 0.7418 0.4900 0.7402 0.4363 0.7405

TAGConv 0.4907 0.7429 0.4304 0.7122 0.3876 0.7218

Table 5: Performance comparison of different convolutional layers on clustering across
datasets (Beef, Car, Distinct Age Group), evaluated using Normalized Mutual Informa-
tion (NMI) and Rand Index (RI).

VMGAE ARGA VGAE GAE

NMI 0.459 0.450 0.436 0.429

Table 6: NMI Comparisons on cora data-set

F.3. Versatility of VMGAE: Application to Graph Datasets

While our primary contribution focuses on applying VMGAE to time series data trans-
formed into graph representations, it is important to highlight the versatility of our
method, which can be effectively applied to any graph input. The architecture is de-
signed to learn meaningful latent representations across diverse graph datasets.

To demonstrate this, we employed the Cora dataset, a benchmark graph dataset
comprising scientific publications grouped into distinct categories, with citation rela-
tionships forming the edges between nodes. Each node corresponds to a publication,
and the edges represent citation links. This dataset is commonly used in graph-based
machine-learning tasks due to its structured graph topology and rich node features.

Our experiments on the Cora dataset further validate the flexibility of our VMGAE
architecture. For this evaluation, the learning rate was set to 1e−5 the λ parameter was

22 A. Afzali et al.

set to 0.001, the model was trained for 500 epochs, and dropout was applied with a
rate of 0.01. Table 6 provides a comparison of NMI scores between VMGAE and other
recognized graph-based methods such as GAE, VGAE [21], and ARGA [33].

References

1. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering–a decade review.
Information systems 53, 16–38 (2015)

2. Babu, M.S., Geethanjali, N., Satyanarayana, B.: Clustering approach to stock market predic-
tion. International Journal of Advanced Networking and Applications 3(4), 1281 (2012)

3. Cao, D., Wang, Y., Duan, J., Zhang, C., Zhu, X., Huang, C., Tong, Y., Xu, B., Bai, J., Tong,
J., et al.: Spectral temporal graph neural network for multivariate time-series forecasting.
Advances in neural information processing systems 33, 17766–17778 (2020)

4. Chaudhuri, T.D., Ghosh, I.: Using clustering method to understand indian stock market
volatility. arXiv preprint arXiv:1604.05015 (2016)

5. Close, L., Kashef, R.: Combining artificial immune system and clustering analysis: A stock
market anomaly detection model. Journal of Intelligent Learning Systems and Applications
12(04), 83–108 (2020)

6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs
with fast localized spectral filtering (2017), https://arxiv.org/abs/1606.09375

7. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time
series. In: Proceedings of the AAAI conference on artificial intelligence. vol. 35, pp. 4027–
4035 (2021)

8. Ding, M., Chen, Y., Bressler, S.L.: Granger causality: basic theory and application to neuro-
science. Handbook of time series analysis: recent theoretical developments and applications
pp. 437–460 (2006)

9. Du, J., Zhang, S., Wu, G., Moura, J.M.F., Kar, S.: Topology adaptive graph convolutional
networks (2018), https://arxiv.org/abs/1710.10370

10. Fang, Y., Xu, H., Jiang, J.: A survey of time series data visualization research. In: IOP Confer-
ence Series: Materials Science and Engineering. vol. 782, p. 022013. IOP Publishing (2020)

11. Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch geometric. In: ICLR
Workshop on Representation Learning on Graphs and Manifolds (2019)

12. Guo, X., Liu, X., Zhu, E., Yin, J.: Deep clustering with convolutional autoencoders. In:
Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou,
China, November 14-18, 2017, Proceedings, Part II 24. pp. 373–382. Springer (2017)

13. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs
(2018), https://arxiv.org/abs/1706.02216

14. Han, S., Woo, S.S.: Learning sparse latent graph representations for anomaly detection in
multivariate time series. In: Proceedings of the 28th ACM SIGKDD Conference on knowl-
edge discovery and data mining. pp. 2977–2986 (2022)

15. Hird, J.N., McDermid, G.J.: Noise reduction of ndvi time series: An empirical comparison
of selected techniques. Remote Sensing of Environment 113(1), 248–258 (2009)

16. Huang, X., Ye, Y., Xiong, L., Lau, R.Y., Jiang, N., Wang, S.: Time series k-means:
A new k-means type smooth subspace clustering for time series data. Information Sci-
ences 367-368, 1–13 (2016). https://doi.org/https://doi.org/10.1016/j.ins.2016.05.040, https:
//www.sciencedirect.com/science/article/pii/S0020025516303796

17. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learning for
time series classification: a review. Data mining and knowledge discovery 33(4), 917–963
(2019)

https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1710.10370
https://arxiv.org/abs/1706.02216
https://doi.org/https://doi.org/10.1016/j.ins.2016.05.040
https://doi.org/https://doi.org/10.1016/j.ins.2016.05.040
https://www.sciencedirect.com/science/article/pii/S0020025516303796
https://www.sciencedirect.com/science/article/pii/S0020025516303796

Clustering Time Series Data with Gaussian Mixture Embeddings 23

18. Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational deep embedding: An unsuper-
vised and generative approach to clustering. arXiv preprint arXiv:1611.05148 (2016)

19. Jorge, M.B., Rubén, C.: Time series clustering with random convolutional kernels. Data Min-
ing and Knowledge Discovery pp. 1–27 (2024)

20. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907 (2016)

21. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308
(2016)

22. Lee, J., Kim, D., Sim, S.: Temporal multi-features representation learning-based clustering
for time-series data. IEEE Access (2024)

23. Li, G., Choi, B., Xu, J., Bhowmick, S.S., Mah, D.N.y., Wong, G.L.H.: Autoshape: An
autoencoder-shapelet approach for time series clustering. arXiv preprint arXiv:2208.04313
(2022)

24. Li, H., Liu, J., Yang, Z., Liu, R.W., Wu, K., Wan, Y.: Adaptively constrained dynamic
time warping for time series classification and clustering. Information Sciences 534, 97–116
(2020)

25. Li, P., Boubrahimi, S.F., Hamdi, S.M.: Graph-based clustering for time series data. In: 2021
IEEE International Conference on Big Data (Big Data). pp. 4464–4467. IEEE (2021)

26. Liao, T.W.: Clustering of time series data—a survey. Pattern recognition 38(11), 1857–1874
(2005)

27. Lin, J., Williamson, S., Borne, K., DeBarr, D.: Pattern recognition in time series. Advances
in machine learning and data mining for astronomy 1(617-645), 3 (2012)

28. Ma, Q., Li, S., Zhuang, W., Wang, J., Zeng, D.: Self-supervised time series clustering with
model-based dynamics. IEEE Transactions on Neural Networks and Learning Systems 32(9),
3942–3955 (2020)

29. Ma, Q., Zheng, J., Li, S., Cottrell, G.W.: Learning representations for time series clustering.
Advances in neural information processing systems 32 (2019)

30. van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of Machine Learning
Research 9(86), 2579–2605 (2008), http://jmlr.org/papers/v9/vandermaaten08a.html

31. Mudelsee, M.: Trend analysis of climate time series: A review of methods. Earth-science
reviews 190, 310–322 (2019)

32. Olive, X., Basora, L., Viry, B., Alligier, R.: Deep trajectory clustering with autoencoders. In:
ICRAT 2020, 9th International Conference for Research in Air Transportation (2020)

33. Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially regularized graph
autoencoder for graph embedding (2019), https://arxiv.org/abs/1802.04407

34. Paparrizos, J., Gravano, L.: k-shape: Efficient and accurate clustering of time series. In: Pro-
ceedings of the 2015 ACM SIGMOD international conference on management of data. pp.
1855–1870 (2015)

35. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Processing Systems 32, 8024–8035 (2019)

36. Sakoe, H.: Dynamic programming algorithm optimization for spoken word recognition.
IEEE Transactions on Acoustics, Speech, and Signal Processing 26, 159–165 (1978), https:
//api.semanticscholar.org/CorpusID:17900407

37. Shah, D., Isah, H., Zulkernine, F.: Stock market analysis: A review and taxonomy of predic-
tion techniques. International Journal of Financial Studies 7(2), 26 (2019)

38. Shaukat, K., Alam, T.M., Luo, S., Shabbir, S., Hameed, I.A., Li, J., Abbas, S.K., Javed, U.:
A review of time-series anomaly detection techniques: A step to future perspectives. In: Ad-
vances in Information and Communication: Proceedings of the 2021 Future of Information
and Communication Conference (FICC), Volume 1. pp. 865–877. Springer (2021)

http://jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/1802.04407
https://api.semanticscholar.org/CorpusID:17900407
https://api.semanticscholar.org/CorpusID:17900407

24 A. Afzali et al.

39. Siuly, S., Li, Y., Zhang, Y.: Eeg signal analysis and classification. IEEE Trans Neural Syst
Rehabilit Eng 11, 141–144 (2016)

40. Song, C., Lin, Y., Guo, S., Wan, H.: Spatial-temporal synchronous graph convolutional net-
works: A new framework for spatial-temporal network data forecasting. In: Proceedings of
the AAAI conference on artificial intelligence. vol. 34, pp. 914–921 (2020)

41. Tan, S.Y., Saha, H., Jacoby, M., Henze, G., Sarkar, S.: Granger causality based hierarchical
time series clustering for state estimation. IFAC-PapersOnLine 53(2), 524–529 (2020)

42. Thorndike, R.L.: Who belongs in the family? Psychometrika 18(4), 267–276 (1953)
43. Torres, J.F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., Troncoso, A.: Deep learning for

time series forecasting: a survey. Big Data 9(1), 3–21 (2021)
44. Ulanova, L., Begum, N., Keogh, E.: Scalable clustering of time series with u-shapelets. In:

Proceedings of the 2015 SIAM international conference on data mining. pp. 900–908. SIAM
(2015)

45. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention
networks (2018), https://arxiv.org/abs/1710.10903

46. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.Q.: Simplifying graph convolu-
tional networks. In: Proceedings of the 36th International Conference on Machine Learning.
pp. 6861–6871 (2019)

47. Xi, W., Jain, A., Zhang, L., Lin, J.: Lb-simtsc: An efficient similarity-aware graph neural net-
work for semi-supervised time series classification. arXiv preprint arXiv:2301.04838 (2023)

48. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In:
International conference on machine learning. pp. 478–487. PMLR (2016)

49. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Proceedings of the
fourth ACM international conference on Web search and data mining. pp. 177–186 (2011)

50. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: A deep learning
framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

51. Zha, D., Lai, K.H., Zhou, K., Hu, X.: Towards similarity-aware time-series classification.
In: Proceedings of the 2022 SIAM International Conference on Data Mining (SDM). pp.
199–207. SIAM (2022)

52. Zhang, Q., Wu, J., Yang, H., Tian, Y., Zhang, C.: Unsupervised feature learning from time
series. In: IJCAI. pp. 2322–2328. New York, USA (2016)

53. Zhang, Q., Wu, J., Zhang, P., Long, G., Zhang, C.: Salient subsequence learning for time se-
ries clustering. IEEE transactions on pattern analysis and machine intelligence 41(9), 2193–
2207 (2018)

54. Zhao, H., Wang, Y., Duan, J., Huang, C., Cao, D., Tong, Y., Xu, B., Bai, J., Tong, J., Zhang,
Q.: Multivariate time-series anomaly detection via graph attention network. In: 2020 IEEE
international conference on data mining (ICDM). pp. 841–850. IEEE (2020)

55. Zhao, J., Itti, L.: shapedtw: Shape dynamic time warping. Pattern Recognition 74, 171–184
(2018)

56. Zhao, J., Zhu, N., Lu, S.: Productivity model in hot and humid environment based on heat
tolerance time analysis. Building and environment 44(11), 2202–2207 (2009)

https://arxiv.org/abs/1710.10903

	Clustering Time Series Data with Gaussian Mixture Embeddings in a Graph Autoencoder Framework

