

Deep Span Representations for Named Entity Recognition

Anonymous ACL submission

Abstract

Span-based models are one of the most straightforward methods for named entity recognition (NER). Existing span-based NER systems shallowly aggregate the token representations to span representations. However, this typically results in significant ineffectiveness for long entities, a coupling between the representations of overlapping spans, and ultimately a performance degradation. In this study, we propose DSpERT (**D**eep **S**pan **E**ncoder **R**epresentations from **T**ransformers), which comprises a standard Transformer and a span Transformer. The latter uses low-layered span representations as queries, and aggregates the token representations as keys and values, layer by layer from bottom to top. Thus, DSpERT produces span representations of deep semantics.

With weight initialization from pretrained language models, DSpERT achieves performance higher than or competitive with recent state-of-the-art systems on six NER benchmarks.¹ Experimental results verify the importance of the depth for span representations, and show that DSpERT performs particularly well on long-span entities and nested structures. Further, the deep span representations are well structured and easily separable in the feature space.

1 Introduction

As a fundamental information extraction task, named entity recognition (NER) requires predicting a set of entities from a piece of text. Thus, the model has to distinguish the entity spans (i.e., positive examples) from the non-entity spans (i.e., negative examples). In this view, it is natural to enumerate all possible spans and classify them into the entity categories (including an extra non-entity category). This is exactly the core idea of span-based approaches (Sohrab and Miwa, 2018; Eberts and Ulges, 2020; Yu et al., 2020).

¹Our code will be publicly released.

Analogously to how representation learning matters to image classification (Katiyar and Cardie, 2018; Bengio et al., 2013; Chen et al., 2020), it should be crucial to construct good span representations for span-based NER. However, existing models typically build span representations by shallowly aggregating the top/last token representations, e.g., pooling over the sequence dimension (Sohrab and Miwa, 2018; Eberts and Ulges, 2020; Shen et al., 2021), or integrating the starting and ending tokens (Yu et al., 2020; Li et al., 2020c). In that case, the token representations have not been fully interacted before they are fed into the classifier, which impairs the capability of capturing the information of long spans. If the spans overlap, the resulting span representations are technically coupled because of the shared tokens. This causes the representations less distinguishable from the ones of overlapping spans in nested structures.

Inspired by (probably) the most sophisticated implementation of attention mechanism — Transformer and BERT (Vaswani et al., 2017; Devlin et al., 2019), we propose DSpERT, which stands for **D**eep **S**pan **E**ncoder **R**epresentations from **T**ransformers. It consists of a standard Transformer and a *span Transformer*; the latter uses low-layered span representations as queries, and token representations within the corresponding span as keys and values, and thus aggregates token representations layer by layer from bottom to top. Such multi-layered Transformer-style aggregation promisingly produces *deep span representations* of rich semantics, analogously to how BERT yields highly contextualized token representations.

With weight initialization from pretrained language models (PLMs), DSpERT performs comparably to recent state-of-the-art (SOTA) NER systems on six well-known benchmarks. Experimental results clearly verify the importance of the depth for the span representations. In addition, DSpERT achieves particularly amplified performance im-

081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
provements against its shallow counterparts² on
long-span entities and nested structures.

083
084
085
086
087
088
089
090
091
092
093
094
095
Different from most related work which focuses
on the decoder designs (Yu et al., 2020; Li et al.,
2020b; Shen et al., 2021; Li et al., 2022), we make
an effort to optimize the span representations, but
employ a simple and standard neural classifier for
decoding. This exposes the *pre-logit representations*
that directly determine the entity prediction
results, and thus allows further representation analysis
widely employed in a broader machine learning
community (Van der Maaten and Hinton, 2008;
Krizhevsky et al., 2012). This sheds light on neural
NER systems towards higher robustness and
interpretability (Ouchi et al., 2020).

096 2 Related Work

097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
The NER research had been long-term focused on
recognizing flat entities. After the introduction of
linear-chain conditional random field (Collobert
et al., 2011), neural sequence tagging models be-
came the *de facto* standard solution for flat NER
tasks (Huang et al., 2015; Lample et al., 2016; Ma
and Hovy, 2016; Chiu and Nichols, 2016; Zhang
and Yang, 2018).

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
Recent studies pay much more attention to
nested NER, which a plain sequence tagging model
struggles with (Ju et al., 2018). This stimulates a
number of novel NER system designs beyond the
sequence tagging framework. Hypergraph-based
methods extend sequence tagging by allowing mul-
tiple tags for each token and multiple tag transi-
tions between adjacent tokens, which is compatible
with nested structures (Lu and Roth, 2015; Katiyar
and Cardie, 2018). Span-based models enumerate
candidate spans and classify them into entity cate-
gories (Sohrab and Miwa, 2018; Eberts and Ulges,
2020; Yu et al., 2020). Li et al. (2020b) reformulates
nested NER as a reading comprehension task. Shen et al. (2021, 2022) borrow the methods
from image object detection to solve nested NER.
Yan et al. (2021) propose a generative approach,
which encodes the ground-truth entity set as a se-
quence, and thus reformulates NER as a sequence-
to-sequence task. Li et al. (2022) describe the entity
set by word-word relation, and solve nested NER
by word-word relation classification.

²In this paper, unless otherwise specified, we use “shallow” to refer to models that construct span representations by shallowly aggregating (typically top) token representations, although the token representations could be “deep”.

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
The span-based models are probably the most
straightforward among these approaches. However,
existing span-based models typically build span
representations by shallowly aggregating the top
token representations from a standard text encoder.
Here, the shallow aggregation could be pooling
over the sequence dimension (Eberts and Ulges,
2020; Shen et al., 2021), integrating the starting
and ending token representations (Yu et al., 2020;
Li et al., 2020c), or a concatenation of these re-
sults (Sohrab and Miwa, 2018). Apparently, shal-
low aggregation may be too simple to capture the
information embedded in long spans; and if the
spans overlap, the resulting span representations
are technically coupled because of the shared to-
kens. These ultimately lead to a performance degra-
dation.

144
145
146
147
148
Our DSpERT addresses this issue by multi-
layered and bottom-to-top construction of span rep-
resentations. Empirical results show that such deep
span representations outperform the shallow counter-
part qualitatively and quantitatively.

149 3 Methods

150
151
152
153
154
155
156
157
Deep Token Representations. Given a T -length
sequence passed into an L -layered d -dimensional
Transformer encoder (Vaswani et al., 2017), the
initial token embeddings, together with the poten-
tial positional and segmentation embeddings (e.g.,
BERT; Devlin et al., 2019), are denoted as $\mathbf{H}^0 \in \mathbb{R}^{T \times d}$. Thus, the l -th ($l = 1, 2, \dots, L$) token repre-
sentations are:

$$\mathbf{H}^l = \text{TrBlock}(\mathbf{H}^{l-1}, \mathbf{H}^{l-1}, \mathbf{H}^{l-1}), \quad (1)$$

158
159
160
161
162
163
164
165
166
167
where $\text{TrBlock}(\mathbf{Q}, \mathbf{K}, \mathbf{V})$ is a Transformer en-
coder block that takes $\mathbf{Q} \in \mathbb{R}^{T \times d}$, $\mathbf{K} \in \mathbb{R}^{T \times d}$,
 $\mathbf{V} \in \mathbb{R}^{T \times d}$ as the query, key, value inputs, respec-
tively. It consists of a multi-head attention module
and a position-wise feed-forward network (FFN),
both followed by a residual connection and a layer
normalization. Passing a same matrix, i.e., \mathbf{H}^{l-1} ,
for queries, keys and values exactly results in self-
attention (Vaswani et al., 2017).

168
169
170
171
172
173
174
175
The resulting top representations \mathbf{H}^L , computed
through L Transformer blocks, are believed to em-
brace deep, rich and contextualized semantics that
are useful for a wide range of tasks. Hence, in a
typical neural NLP modeling paradigm, only the
top representations \mathbf{H}^L are used for loss calcula-
tion and decoding (Devlin et al., 2019; Eberts and
Ulges, 2020; Yu et al., 2020).

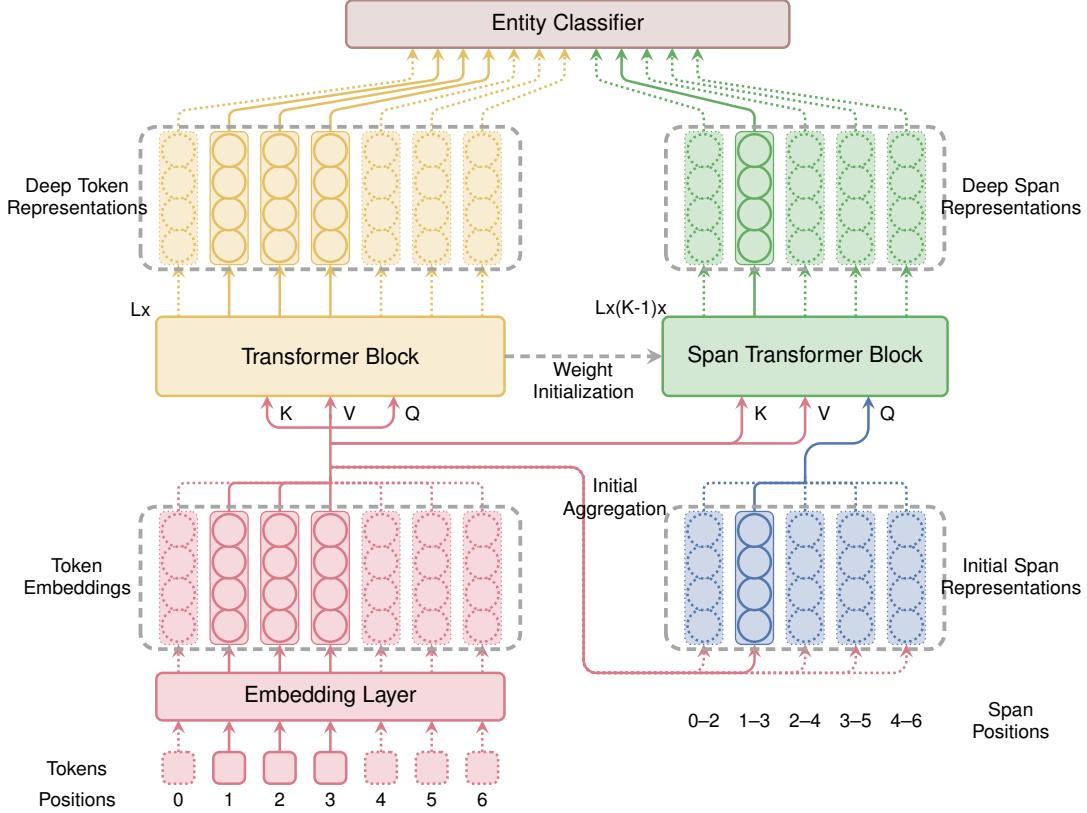


Figure 1: Architecture of DSpERT. It comprises: (*Left*) a standard L -layer Transformer encoder (e.g., BERT); and (*Right*) a span Transformer encoder, where the span representations are the query inputs, and token representations (from the Transformer encoder) are the key/value inputs. There are totally $K - 1$ span Transformer encoders, where K is the maximum span size; and each has L layers. The figure specifically displays the case of span size 3; the span of positions 1–3 is highlighted, whereas the others are in dotted lines.

Deep Span Representations. Figure 1 presents the architecture of DSpERT, which consists of a standard Transformer encoder and a *span Transformer encoder*. In a span Transformer of size k ($k = 2, 3, \dots, K$), the initial span representations $\mathbf{S}^{0,k} \in \mathbb{R}^{(T+k-1) \times d}$ are directly aggregated from the corresponding token embeddings:

$$\mathbf{s}_i^{0,k} = \text{Aggregating}(\mathbf{H}_{[i:i+k]}^0), \quad (2)$$

where $\mathbf{s}_i^{0,k} \in \mathbb{R}^d$ is the i -th vector of $\mathbf{S}^{0,k}$, and $\mathbf{H}_{[i:i+k]}^0 = [\mathbf{h}_i^0; \dots; \mathbf{h}_{i+k-1}^0] \in \mathbb{R}^{k \times d}$ is a slice of \mathbf{H}^0 from position i to position $i + k - 1$; $\text{Aggregating}(\cdot)$ is a shallowly aggregating function, such as max-pooling. Check Appendix A for more details on alternative aggregating functions used in this study. Technically, $\mathbf{s}_i^{0,k}$ covers the token embeddings in the span $(i, i + k)$.

The computation of high-layered span representations imitates that of the standard Transformer. For each span Transformer block, the query is a low-layered span representation vector, and the

keys and values are the aforementioned token representation vectors in the positions of that very span. Formally, the l -th layer span representations are:

$$\mathbf{s}_i^{l,k} = \text{SpanTrBlock}(\mathbf{s}_i^{l-1,k}, \mathbf{H}_{[i:i+k]}^{l-1}, \mathbf{H}_{[i:i+k]}^{l-1}), \quad (3)$$

where $\text{SpanTrBlock}(\mathbf{Q}, \mathbf{K}, \mathbf{V})$ shares the exactly same structure with the corresponding Transformer block, but receives different inputs.³ More specifically, for span $(i, i + k)$, the query is the span representation $\mathbf{s}_i^{l-1,k}$, and the keys and values are the token representations $\mathbf{H}_{[i:i+k]}^{l-1}$. Again, the resulting $\mathbf{s}_i^{l,k}$ technically covers the token representations in the span $(i, i + k)$ on layer $l - 1$.

The top span representations $\mathbf{S}^{L,k}$ are built through L Transformer blocks, which are capable of enriching the representations towards deep semantics. Thus, the representations of overlapping spans are decoupled, and promisingly distinguishable from each other, although they are originally

³In the default configuration, the weights in the span Transformer are independent from those in the Transformer.

214 built from $\mathbf{S}^{0,k}$ — those shallowly aggregated from
 215 token embeddings. This is conceptually analogous
 216 to how the BERT uses 12 or more Transformer
 217 blocks to produce highly contextualized represen-
 218 tations from the original static token embeddings.

219 The top span representations are then passed to
 220 an entity classifier. Note that we do not construct a
 221 unigram span Transformer, but directly borrow the
 222 token representations as the span representations
 223 of size 1. In other words,

$$224 \mathbf{S}^{L,1} \equiv \mathbf{H}^L. \quad (4)$$

225 **Entity Classifier.** Following Dozat and Man-
 226 ning (2017) and Yu et al. (2020), we introduce
 227 a dimension-reducing FFN before feeding the span
 228 representations into the decoder. According to
 229 the preceding notations, the representation of span
 230 (i, j) is $\mathbf{s}_i^{L,j-i}$, thus,

$$231 \mathbf{z}_{ij} = \text{FFN}(\mathbf{s}_i^{L,j-i} \oplus \mathbf{w}_{j-i}), \quad (5)$$

232 where $\mathbf{w}_{j-i} \in \mathbb{R}^{d_w}$ is the $(j-i)$ -th width embed-
 233 ding from a dedicated learnable matrix; \oplus means
 234 the concatenation operation. $\mathbf{z}_{ij} \in \mathbb{R}^{d_z}$ is the
 235 dimension-reduced span representation, which is
 236 then fed into a softmax layer:

$$237 \hat{\mathbf{y}}_{ij} = \text{softmax}(\mathbf{W}\mathbf{z}_{ij} + \mathbf{b}), \quad (6)$$

238 where $\mathbf{W} \in \mathbb{R}^{c \times d_z}$ and $\mathbf{b} \in \mathbb{R}^c$ are learnable
 239 parameters, and $\hat{\mathbf{y}}_{ij} \in \mathbb{R}^c$ is the vector of predicted
 240 probabilities over entity types. Note that Eq. (6) fol-
 241 lows the form of a typical neural classification head,
 242 which receives a single vector \mathbf{z}_{ij} , and yields the
 243 predicted probabilities $\hat{\mathbf{y}}_{ij}$. Here, the pre-softmax
 244 vector $\mathbf{W}\mathbf{z}_{ij}$ is called *logits*, and \mathbf{z}_{ij} is called *pre-*
 245 *logit representation* (Müller et al., 2019).

246 Given the one-hot encoded ground truth $\mathbf{y}_{ij} \in$
 247 \mathbb{R}^c , the model can be trained by optimizing the
 248 cross entropy loss for all spans:

$$249 \mathcal{L} = - \sum_{0 \leq i < j \leq T} \mathbf{y}_{ij}^\top \log(\hat{\mathbf{y}}_{ij}). \quad (7)$$

250 4 Experiments

251 4.1 Experimental Settings

252 **Datasets.** We perform experiments on four En-
 253 glish nested NER datasets: ACE 2004⁴, ACE
 254 2005⁵, GENIA (Kim et al., 2003) and KBP 2017 (Ji
 255 et al., 2017); and two English flat NER datasets:
 256 CONLL 2003 (Tjong Kim Sang and De Meulder,
 257 2003) and OntoNotes 5⁶. More details on data pro-

⁴<https://catalog.ldc.upenn.edu/LDC2005T09>.

⁵<https://catalog.ldc.upenn.edu/LDC2006T06>.

⁶<https://catalog.ldc.upenn.edu/LDC2013T19>.

258 cessing and descriptive statistics are reported in
 259 Appendix B.

260 **Implementation Details.** To save space, our im-
 261 plementation details are all placed in Appendix C.

262 4.2 Main Results

263 Table 1 shows the evaluation results on English
 264 nested NER benchmarks. For a fair and reliable
 265 comparison to previous SOTA NER systems, we
 266 run DSpERT for five times on each dataset, and
 267 report both the best score and the average score
 268 with corresponding standard deviation.

269 With a base-sized PLM, DSpERT achieves on-
 270 par or better results compared with previous SOTA
 271 systems. More specifically, the best F_1 scores are
 272 88.31%, 87.42%, 81.90% and 87.65% on ACE
 273 2004, ACE 2005, GENIA and KBP 2017, respec-
 274 tively. Except for ACE 2005, these scores corre-
 275 spond to 0.17%, 0.13% and 3.15% absolute im-
 276 provements.

277 Table 2 presents the results on English flat NER
 278 datasets. The best F_1 scores are 93.70% and
 279 91.76% on CoNLL 2003 and OntoNotes 5, respec-
 280 tively. These scores are slightly higher than those
 281 reported by previous literature.

282 Appendix D further lists the category-wise F_1
 283 scores; the results show that DSpERT can con-
 284 sistently outperform the biaffine model, a classic and
 285 strong baseline, across most entity categories. Ap-
 286 pendix E provides additional experimental results
 287 on Chinese NER, suggesting that the effectiveness
 288 of DSpERT is generalizable across languages.

289 Overall, DSpERT shows strong and competitive
 290 performance on both the nested and flat NER tasks.
 291 Given the long-term extensive investigation and ex-
 292 periments on these datasets by the NLP community,
 293 the seemingly marginal performance improvements
 294 are still notable.

295 4.3 Ablation Studies

296 We perform ablation studies on three datasets, i.e.,
 297 ACE 2004, GENIA and CoNLL 2003, covering flat
 298 and nested, common and domain-specific corpora.

299 **Depth of Span Representations.** As previously
 300 highlighted, our core argument is that the deep span
 301 representations, which are computed throughout
 302 the span Transformer blocks, embrace deep and
 303 rich semantics and thus outperform the shallow
 304 counterparts.

305 To validate this point, Table 3 compares
 306 DSpERT to the models with a shallow setting,

ACE 2004			
Model	Prec.	Rec.	F1
Li et al. (2020b)	85.05	86.32	85.98
Yu et al. (2020)	87.3	86.0	86.7
Yan et al. (2021)	87.27	86.41	86.84
Shen et al. (2021)	87.44	87.38	87.41
Li et al. (2022)‡	87.33	87.71	87.52
Zhu and Li (2022)	88.43	87.53	87.98
Shen et al. (2022)	88.48	87.81	88.14
DSpERT†	88.29	88.32	88.31
DSpERT‡	87.90	88.21	88.05 _{±0.18}

ACE 2005			
Model	Prec.	Rec.	F1
Li et al. (2020b)	87.16	86.59	86.88
Yu et al. (2020)	85.2	85.6	85.4
Yan et al. (2021)	83.16	86.38	84.74
Shen et al. (2021)	86.09	87.27	86.67
Li et al. (2022)‡	85.03	88.62	86.79
Zhu and Li (2022)	86.25	88.07	87.15
Shen et al. (2022)	86.27	88.60	87.42
DSpERT†	87.01	87.84	87.42
DSpERT‡	85.73	88.19	86.93 _{±0.49}

GENIA			
Model	Prec.	Rec.	F1
Yu et al. (2020)*	81.8	79.3	80.5
Yan et al. (2021)	78.87	79.6	79.23
Shen et al. (2021)*	80.19	80.89	80.54
Li et al. (2022)‡	83.10	79.76	81.39
Shen et al. (2022)*	83.24	80.35	81.77
DSpERT†	82.31	81.49	81.90
DSpERT‡	81.72	81.21	81.46 _{±0.25}

KBP 2017			
Model	Prec.	Rec.	F1
Li et al. (2020b)	82.33	77.61	80.97
Shen et al. (2021)	85.46	82.67	84.05
Shen et al. (2022)	85.67	83.37	84.50
DSpERT†	87.37	87.93	87.65
DSpERT‡	87.00	87.33	87.16 _{±0.50}

Table 1: Results of English nested entity recognition. * means that the model is trained with both the training and development splits. † means the best score; ‡ means the average score of multiple independent runs; the subscript number is the corresponding standard deviation.

where the span representations are aggregated from the top token representations by max-pooling, mean-pooling, multiplicative attention or additive attention (See Appendix A for details). All the models are trained with the same recipe used in our main experiments. It shows that the 12-layer deep span representations achieve higher performance than its shallow counterparts equipped with any potential aggregating function, across all datasets.

CoNLL 2003			
Model	Prec.	Rec.	F1
Peters et al. (2018)‡	–	–	92.22 _{±0.10}
Devlin et al. (2019)	–	–	92.8
Li et al. (2020b)	92.33	94.61	93.04
Yu et al. (2020)*	93.7	93.3	93.5
Yan et al. (2021)*	92.61	93.87	93.24
Li et al. (2022)‡	92.71	93.44	93.07
Zhu and Li (2022)	93.61	93.68	93.65
Shen et al. (2022)*	93.29	92.46	92.87
DSpERT†	93.48	93.93	93.70
DSpERT‡	93.39	93.88	93.64 _{±0.06}

OntoNotes 5			
Model	Prec.	Rec.	F1
Li et al. (2020b)	92.98	89.95	91.11
Yu et al. (2020)	91.1	91.5	91.3
Yan et al. (2021)	89.99	90.77	90.38
Li et al. (2022)‡	90.03	90.97	90.50
Zhu and Li (2022)	91.75	91.74	91.74
Shen et al. (2022)	91.43	90.73	90.96
DSpERT†	91.46	92.05	91.76
DSpERT‡	90.87	91.25	91.06 _{±0.26}

Table 2: Results of English flat entity recognition. * means that the model is trained with both the training and development splits. † means the best score; ‡ means the average score of multiple independent runs; the subscript number is the corresponding standard deviation.

Depth	ACE04	GENIA	CoNLL03
Shallow agg. (i.e., depth = 0)			
w/ max-pooling	82.22 _{±0.64}	79.44 _{±0.20}	92.99 _{±0.32}
w/ mean-pooling	80.90 _{±0.28}	73.83 _{±0.42}	91.97 _{±0.14}
w/ mul. attention	84.38 _{±0.58}	76.54 _{±2.70}	93.21 _{±0.16}
w/ add. attention	83.73 _{±0.52}	76.23 _{±3.27}	93.05 _{±0.04}
DSpERT			
depth = 2	87.87 _{±0.13}	80.66 _{±0.36}	93.30 _{±0.09}
depth = 4	87.88 _{±0.41}	80.88 _{±0.39}	93.38 _{±0.08}
depth = 6	87.81 _{±0.13}	81.01 _{±0.22}	93.40 _{±0.13}
depth = 8	88.00 _{±0.22}	81.13 _{±0.25}	93.48 _{±0.08}
depth = 10	88.00 _{±0.21}	81.12 _{±0.14}	93.51 _{±0.10}
depth = 12	88.05_{±0.18}	81.46_{±0.25}	93.64_{±0.06}

Table 3: The effect of depth. The underlined specification is the one used in our main experiments. All the results are average scores of five independent runs, with subscript standard deviations.

We further run DSpERT with \tilde{L} ($\tilde{L} < L$) span Transformer blocks, where the initial aggregation happens at the $(L - \tilde{L})$ -th layer and the span Transformer corresponds to the top/last \tilde{L} Transformer blocks. These models may be thought of as intermediate configurations between fully deep span representations and fully shallow ones. As displayed in Table 3, the F_1 score in general experiences a monotonically increasing trend when depth

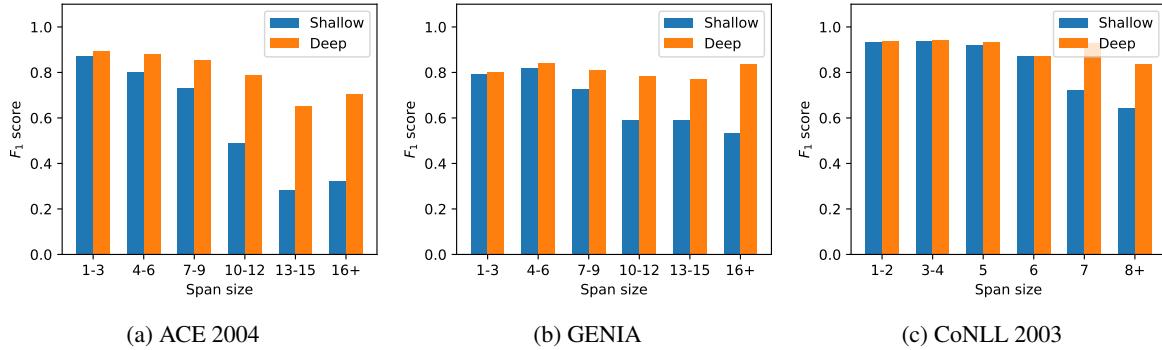


Figure 2: F_1 scores on spans of different lengths. All the results are average scores of five independent runs.

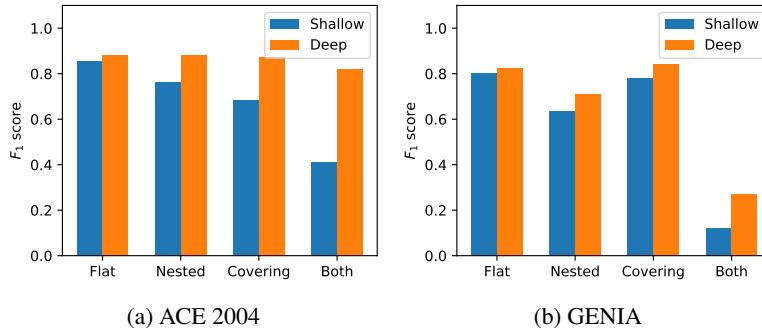


Figure 3: F_1 scores on spans with different nested structures. “Nested” means the spans that are nested inside a ground-truth entity which covers other ground-truth entities; “Covering” means the spans that cover a ground-truth entity which is nested inside other ground-truth entities; “Both” means the spans that are both “Nested” and “Covering”; “Flat” means the spans that are neither “Nested” nor “Covering”. All the results are average scores of five independent runs.

\tilde{L} increases from 2 to 12; this pattern holds for all three datasets. These results further strengthen our argument that the depth positively contributes to the quality of span representations.

Appendix F provides extensive ablation studies evaluating other components.

4.4 Effect on Long-Span Entities

The recognition of long-span entities is a long-tail and challenging problem. Taking ACE 2004 as an example, the ground-truth entities longer than 10 tokens only account for 2.8%, and the maximum length reaches 57. Empirical evidence also illustrates that existing NER models show relatively weak performance on long entities (e.g., Shen et al., 2021; Yuan et al., 2022).

Figure 2 presents the F_1 scores grouped by different span lengths. In general, the models based on shallow span representations perform relatively well on the short entities, but struggle for the long ones. However, DSpERT show much higher F_1 scores on the long entities, without any performance sacrifice on the short ones. For ACE 2004,

DSpERT outperforms its shallow counterpart by 2%–12% absolute F_1 score on spans shorter than 10, while this difference exceeds 30% for spans longer than 10. Similar patterns are observed on GENIA and CoNLL 2003.

Conceptually, a longer span contains more information, so it would be more difficult to be encoded into a fixed-length vector, i.e., the span representation. According to our experimental results, the shallow aggregation fails to fully preserve the semantics in the original token representations, especially for long spans. The DSpERT, however, allows complicated interactions between tokens through multiple layers; in particular, longer spans experience more interactions. This mechanism amplifies the performance gain on long entities.

4.5 Effect on Nested Structures

Even in nested NER datasets, the nested entities are less than the flat ones (See Table 5). To deliberately investigate the performance on nested entities, we look into two subsets of spans that are directly related to nested structures: (1) *Nested*: the spans

369 that are nested inside a ground-truth entity which
370 covers other ground-truth entities; (2) *Covering*:
371 the spans that cover a ground-truth entity which is
372 nested inside other ground-truth entities.

373 Figure 3 depicts the F_1 scores grouped by different nested structures. Consistent to a common
374 expectation, nested structures create significant
375 difficulties for entity recognition. Compared to
376 the flat ones, a shallow span-based model encoun-
377 ters a substantial performance degradation on the
378 nested structures, especially on the spans in both
379 the *Nested* and *Covering* subsets. On the other
380 hand, our deep span representations perform much
381 well. For ACE 2004, DSpERT presents 2% higher
382 absolute F_1 score than the shallow model on flat
383 spans, but achieves about 40% higher score on
384 spans in both the *Nested* and *Covering* subsets. The
385 experiments on GENIA report similar results, al-
386 though the difference in performance gain becomes
387 less substantial.

388 As previously emphasized, shallowly aggregated
389 span representations are technically coupled if the
390 spans overlap. This explains why such models
391 perform poorly on nested structures. Our model
392 addresses this issue by deep and multi-layered
393 construction of span representations. Implied by the
394 experimental results, deep span representations are
395 less coupled and more easily separable for overlap-
396 ping spans.

398 5 Analysis of Pre-Logit Representations

399 5.1 ℓ_2 -Norm and Cosine Similarity

400 We calculate the ℓ_2 -norm and cosine similarity of
401 the span representations, i.e., z_{ij} in Eq. (6). As
402 presented in Table 4, the deep span representations
403 have larger ℓ_2 -norm than those of the shallow
404 counterpart. Although the variance of represen-
405 tations inevitably shrinks during the aggregating
406 process from the perspective of statistics, this re-
407 sult implies that deep span representations are less
408 restricted and thus able to flexibly represent rich
409 semantics. In addition, the deep span representations
410 are associated with higher within-class similarities
411 and lower between-class similarities, suggesting
412 that the representations are more tightly clustered
413 within each category, but more separable between
414 categories. Apparently, this nature contributes to
415 the high classification performance.

416 We further investigate the pre-logit weight, i.e.,
417 \mathbf{W} in Eq. (6). First, the trained DSpERT has a pre-
418 logit weight with a smaller ℓ_2 -norm. According

419 to a common understanding of neural networks,
420 smaller norm implies that the model is simpler and
421 thus more generalizable.

422 Second, as indicated by Müller et al. (2019), a
423 typical neural classification head can be regarded
424 as a *template-matching* mechanism, where each
425 row vector of \mathbf{W} is a *template*.⁷ Under this inter-
426 pretation, each template “stands for” the overall
427 direction of the span representations of the corre-
428 sponding category in the feature space. As shown
429 in Table 4, the absolute cosine values between the
430 templates of DSpERT are fairly small. In other
431 words, the templates are approximately orthogonal,
432 which suggests that different entity categories are
433 uncorrelated and separately occupy distinctive sub-
434 areas in the feature space. This pattern, however, is
435 not present for the shallow models.

436 5.2 Visualization

437 Figure 4 visualizes the span representations
438 dimension-reduced by principal component anal-
439 ysis (PCA). The results are quite impressive. The
440 representations by shallow aggregation are scat-
441 tered over the plane. Although they are largely
442 clustered by categories, the boundaries are mixed
443 and ambiguous. In contrast, the deep span represen-
444 tations group by relatively clear and tight clusters,
445 corresponding to the ground-truth categories. Ex-
446 cept for some outliers, each pair of the clusters can
447 be easily separable in this projected plane. This is
448 also consistent to the aforementioned finding that
449 deep span representations have high within-class
450 similarities but low between-class similarities.

451 6 Discussion and Conclusion

452 Neural NLP models have been rigidly adhere to
453 the paradigm where an encoder produces token-
454 level representations, and a task-specific decoder
455 receives these representations, computes the loss
456 and yields the outputs (Collobert et al., 2011). This
457 design works well on most, if not all, NLP tasks;
458 and it may also deserve a credit for facilitating NLP
459 pretraining (Peters et al., 2018; Devlin et al., 2019),
460 since such common structure in advance bridges
461 the pretraining and downstream phases.

462 However, this paradigm may be sub-optimal for
463 specific tasks. In span-based NER (or information
464 extraction from a broader perspective), the smallest

465 ⁷Conceptually, if vector z_{ij} is most matched/correlated
466 with the k -th row vector of \mathbf{W} , then the k -th logit will be most
467 activated. Refer to Müller et al. (2019) for more details.

	ACE 2004		GENIA		CoNLL 2003	
	Shallow	Deep	Shallow	Deep	Shallow	Deep
Pre-logit representations						
ℓ_2 -norm	9.58 \pm 0.17	14.55 \pm 0.33 \uparrow	9.89 \pm 0.18	11.69 \pm 0.52 \uparrow	9.08 \pm 0.17	13.49 \pm 0.50 \uparrow
Cosine within pos class	0.70 \pm 0.02	0.80 \pm 0.01 \uparrow	0.78 \pm 0.01	0.83 \pm 0.01 \uparrow	0.79 \pm 0.01	0.88 \pm 0.00 \uparrow
Cosine between pos vs. pos	0.45 \pm 0.02	0.37 \pm 0.01 \downarrow	0.54 \pm 0.02	0.29 \pm 0.01 \downarrow	0.35 \pm 0.02	0.32 \pm 0.01 \downarrow
Cosine between pos vs. neg	0.48 \pm 0.03	0.35 \pm 0.03 \downarrow	0.55 \pm 0.01	0.35 \pm 0.02 \downarrow	0.39 \pm 0.01	0.37 \pm 0.02 \downarrow
Pre-logit weight/templates \mathbf{W}						
ℓ_2 -norm	1.93 \pm 0.28	1.57 \pm 0.03 \downarrow	1.84 \pm 0.08	1.39 \pm 0.02 \downarrow	1.71 \pm 0.04	1.39 \pm 0.01 \downarrow
Abs cosine	0.17 \pm 0.12	0.10 \pm 0.06 \downarrow	0.31 \pm 0.11	0.10 \pm 0.10 \downarrow	0.23 \pm 0.08	0.05 \pm 0.03 \downarrow
Abs cosine between pos vs. pos	0.13 \pm 0.10	0.10 \pm 0.07 \downarrow	0.27 \pm 0.11	0.10 \pm 0.11 \downarrow	0.17 \pm 0.04	0.05 \pm 0.04 \downarrow
Abs cosine between pos vs. neg	0.31 \pm 0.06	0.10 \pm 0.05 \downarrow	0.40 \pm 0.06	0.09 \pm 0.04 \downarrow	0.32 \pm 0.04	0.05 \pm 0.03 \downarrow

Table 4: ℓ_2 -norm and cosine similarity of pre-logit representations and templates. “pos” means the positive types (i.e., entity types); “neg” means the negative type (i.e., non-entity type). \uparrow/\downarrow indicates that DSpERT presents a metric higher/lower than its shallow counterpart. All the metrics are first averaged within each experiment, and then averaged over five independent experiments, reported with subscript standard deviations.

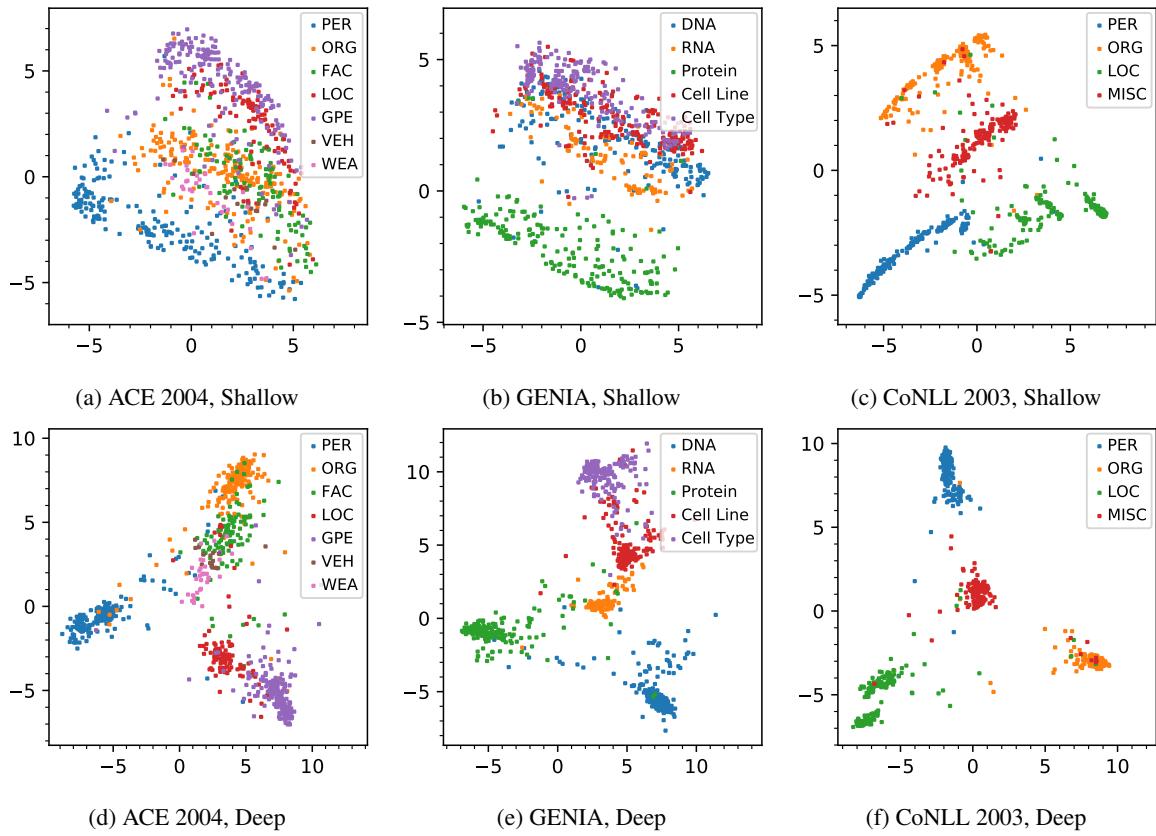


Figure 4: PCA visualization of pre-logit span representations of entities in the testing set.

modeling unit should be spans instead of tokens; and thus the span representations should be crucial. This originally motivates our DSpERT. In addition, DSpERT also successfully shows how to exploit the pretrained weights beyond the original Transformer structure, i.e., adapting the weights from computing token representations for span representations. We believe that adding span representation learning in the pretraining stage will further con-

tribute positively.

In conclusion, deep and span-specific representations can significantly boost span-based neural NER models. Our DSpERT achieves SOTA results on six well-known NER benchmarks; the model presents pronounced effect on long-span entities and nested structures. Further analysis shows that the resulting deep span representations are well structured and easily separable in the feature space.

483 7 Limitations

484 To some extent, DS_pERT pursues performance and
485 interpretability over computational efficiency. The
486 major computational cost of a Transformer encoder
487 is on the multihead attention module and FFN.
488 For a T -length input and a d -dimensional Trans-
489 former encoder, the per-layer complexities of the
490 multihead attention and FFN are of order $O(T^2d)$
491 and $O(Td^2)$, respectively. When the maximum
492 span size $K \ll T$, our span Transformer brings
493 additional $O(K^2Td)$ complexity on the attention
494 module, and $O(KTd^2)$ complexity on the FFN.
495 Empirically, training a DS_pERT consumes about
496 five times the time for a shallow model of a same
497 scale. However, this issue can be mitigated if we
498 use fewer layers for the span Transformer (Subsec-
499 tion 4.3).

500 As noted, we empirically choose the maximum
501 span size K such that it covers most entities in
502 the training and development splits. From the per-
503 spective of F_1 score, this heuristic works well, and
504 DS_pERT performs favourably on long-span entities
505 as long as they are covered. However, the entities
506 with extreme lengths beyond K will be theoreti-
507 cally irretrievable.

508 References

509 Yoshua Bengio, Aaron Courville, and Pascal Vincent.
510 2013. Representation learning: A review and new
511 perspectives. *IEEE Transactions on Pattern Analysis
512 and Machine Intelligence*, 35(8):1798–1828.

513 Ting Chen, Simon Kornblith, Mohammad Norouzi, and
514 Geoffrey Hinton. 2020. A simple framework for
515 contrastive learning of visual representations. In *Inter-
516 national Conference on Machine Learning*, pages
517 1597–1607. PMLR.

518 Jason P.C. Chiu and Eric Nichols. 2016. *Named entity
519 recognition with bidirectional LSTM-CNNs*. *Trans-
520 actions of the Association for Computational Linguis-
521 tics*, 4:357–370.

522 Ronan Collobert, Jason Weston, Léon Bottou, Michael
523 Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
524 2011. Natural language processing (almost) from
525 scratch. *Journal of Machine Learning Research*,
526 12(ARTICLE):2493–2537.

527 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
528 Kristina Toutanova. 2019. *BERT: Pre-training of
529 deep bidirectional transformers for language under-
530 standing*. In *Proceedings of the 2019 Conference of
531 the North American Chapter of the Association for
532 Computational Linguistics: Human Language Tech-
533 nologies, Volume 1 (Long and Short Papers)*, pages

4171–4186, Minneapolis, Minnesota. Association for
534 Computational Linguistics. 535

536 Timothy Dozat and Christopher D Manning. 2017.
537 *Deep biaffine attention for neural dependency pars-
538 ing*. In *Proceedings of 5th International Conference
539 on Learning Representations*. OpenReview.net.

540 Markus Eberts and Adrian Ulges. 2020. *Span-based
541 joint entity and relation extraction with Transformer
542 pre-training*. In *Proceedings of the 24th European
543 Conference on Artificial Intelligence*, Santiago de
544 Compostela, Spain.

545 Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
546 short-term memory. *Neural Computation*, 9(8):1735–
547 1780.

548 Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
549 tional lstm-crf models for sequence tagging. *arXiv
550 preprint arXiv:1508.01991*.

551 Heng Ji, Xiaoman Pan, Boliang Zhang, Joel Nothman,
552 James Mayfield, Paul McNamee, and Cash Costello.
553 2017. *Overview of TAC-KBP2017 13 languages en-
554 tity discovery and linking*. In *Proceedings of the
555 2017 Text Analysis Conference*, Gaithersburg, Mary-
556 land, USA. NIST.

557 Meizhi Ju, Makoto Miwa, and Sophia Ananiadou. 2018.
558 *A neural layered model for nested named entity rec-
559 ognition*. In *Proceedings of the 2018 Conference of
560 the North American Chapter of the Association for
561 Computational Linguistics: Human Language Tech-
562 nologies, Volume 1 (Long Papers)*, pages 1446–1459,
563 New Orleans, Louisiana. Association for Computa-
564 tional Linguistics.

565 Arzoo Katiyar and Claire Cardie. 2018. *Nested named
566 entity recognition revisited*. In *Proceedings of the
567 2018 Conference of the North American Chapter of
568 the Association for Computational Linguistics: Hu-
569 man Language Technologies, Volume 1 (Long Pa-
570 pers)*, pages 861–871, New Orleans, Louisiana. As-
571 sociation for Computational Linguistics.

572 J-D Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi
573 Tsujii. 2003. GENIA corpus – a semantically an-
574 notated corpus for bio-textmining. *Bioinformatics*,
575 19(suppl_1):i180–i182.

576 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
577 ton. 2012. *Imagenet classification with deep con-
578 volutional neural networks*. In *Advances in Neural
579 Information Processing Systems*, volume 25.

580 Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
581 ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
582 *Neural architectures for named entity recognition*.
583 In *Proceedings of the 2016 Conference of the North
584 American Chapter of the Association for Computa-
585 tional Linguistics: Human Language Technologies*,
586 pages 260–270, San Diego, California. Association
587 for Computational Linguistics.

588	Jingye Li, Hao Fei, Jiang Liu, Shengqiong Wu, Meishan Zhang, Chong Teng, Donghong Ji, and Fei Li. 2022. Unified named entity recognition as word-word relation classification. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> .	645
589		646
590		647
591		648
592		649
593	Xiaonan Li, Hang Yan, Xipeng Qiu, and Xuanjing Huang. 2020a. FLAT: Chinese NER using flat-lattice transformer . In <i>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</i> , pages 6836–6842, Online. Association for Computational Linguistics.	650
594		651
595		652
596		
597		
598		
599	Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong Han, Fei Wu, and Jiwei Li. 2020b. A unified MRC framework for named entity recognition . In <i>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</i> , pages 5849–5859, Online. Association for Computational Linguistics.	653
600		654
601		655
602		656
603		
604		
605	Yangming Li, Shuming Shi, et al. 2020c. Empirical analysis of unlabeled entity problem in named entity recognition. In <i>International Conference on Learning Representations</i> .	657
606		658
607		659
608		660
609	Hongyu Lin, Yaojie Lu, Xianpei Han, and Le Sun. 2019. Sequence-to-nuggets: Nested entity mention detection via anchor-region networks . In <i>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</i> , pages 5182–5192, Florence, Italy. Association for Computational Linguistics.	661
610		662
611		
612		
613		
614		
615	Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A robustly optimized BERT pretraining approach . <i>arXiv preprint arXiv:1907.11692</i> .	663
616		664
617		665
618		666
619		667
620	Ilya Loshchilov and Frank Hutter. 2018. Decoupled weight decay regularization. In <i>International Conference on Learning Representations</i> .	668
621		669
622		670
623	Wei Lu and Dan Roth. 2015. Joint mention extraction and classification with mention hypergraphs . In <i>Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing</i> , pages 857–867, Lisbon, Portugal. Association for Computational Linguistics.	671
624		
625		
626		
627		
628		
629	Ruotian Ma, Minlong Peng, Qi Zhang, Zhongyu Wei, and Xuanjing Huang. 2020. Simplify the usage of lexicon in Chinese NER . In <i>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</i> , pages 5951–5960, Online. Association for Computational Linguistics.	672
630		673
631		674
632		675
633		676
634		677
635	Xuezhe Ma and Eduard Hovy. 2016. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF . In <i>Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</i> , pages 1064–1074, Berlin, Germany. Association for Computational Linguistics.	678
636		
637		
638		
639		
640		
641	Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. 2019. When does label smoothing help? In <i>Advances in Neural Information Processing Systems</i> , volume 32. Curran Associates, Inc.	696
642		697
643		698
644		699
645	Hiroki Ouchi, Jun Suzuki, Sosuke Kobayashi, Sho Yokoi, Tatsuki Kurabayashi, Ryuto Konno, and Kentaro Inui. 2020. Instance-based learning of span representations: A case study through named entity recognition . In <i>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</i> , pages 6452–6459, Online. Association for Computational Linguistics.	700
646		701
647		
648		
649		
650		
651		
652		
653	Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training recurrent neural networks. In <i>International Conference on Machine Learning</i> , pages 1310–1318. PMLR.	653
654		654
655		655
656		656
657	Nanyun Peng and Mark Dredze. 2015. Named entity recognition for Chinese social media with jointly trained embeddings . In <i>Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing</i> , pages 548–554, Lisbon, Portugal. Association for Computational Linguistics.	657
658		658
659		659
660		660
661		661
662		662
663	Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations . In <i>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)</i> , pages 2227–2237, New Orleans, Louisiana. Association for Computational Linguistics.	663
664		664
665		665
666		666
667		667
668		668
669		669
670		670
671		671
672	Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Hwee Tou Ng, Anders Björkelund, Olga Uryupina, Yuchen Zhang, and Zhi Zhong. 2013. Towards robust linguistic analysis using OntoNotes . In <i>Proceedings of the Seventeenth Conference on Computational Natural Language Learning</i> , pages 143–152, Sofia, Bulgaria. Association for Computational Linguistics.	672
673		673
674		674
675		675
676		676
677		677
678		678
679	Yongliang Shen, Xinyin Ma, Zeqi Tan, Shuai Zhang, Wen Wang, and Weiming Lu. 2021. Locate and label: A two-stage identifier for nested named entity recognition . In <i>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</i> , pages 2782–2794, Online. Association for Computational Linguistics.	679
680		680
681		681
682		682
683		683
684		684
685		685
686		686
687		687
688	Yongliang Shen, Xiaobin Wang, Zeqi Tan, Guangwei Xu, Pengjun Xie, Fei Huang, Weiming Lu, and Yuetong Zhuang. 2022. Parallel instance query network for named entity recognition . In <i>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</i> , pages 947–961, Dublin, Ireland. Association for Computational Linguistics.	688
689		689
690		690
691		691
692		692
693		693
694		694
695		695
696	Mohammad Golam Sohrab and Makoto Miwa. 2018. Deep exhaustive model for nested named entity recognition . In <i>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</i> , pages 2843–2849, Brussels, Belgium. Association for Computational Linguistics.	696
697		697
698		698
699		699
700		700
701		701

702 Erik F. Tjong Kim Sang and Fien De Meulder.
703 2003. *Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition*. In
704 *Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003*, pages 142–
705 147.

708 Laurens Van der Maaten and Geoffrey Hinton. 2008.
709 Visualizing data using t-SNE. *Journal of Machine
710 Learning Research*, 9(11).

711 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
712 Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
713 Kaiser, and Illia Polosukhin. 2017. *Attention is all
714 you need*. In *Advances in Neural Information Processing
715 Systems*, pages 5998–6008.

716 Shuang Wu, Xiaoning Song, and Zhenhua Feng. 2021.
717 **MECT: Multi-metadata embedding based cross-
718 transformer for Chinese named entity recognition**.
719 In *Proceedings of the 59th Annual Meeting of the
720 Association for Computational Linguistics and the
721 11th International Joint Conference on Natural Lan-
722 guage Processing (Volume 1: Long Papers)*, pages
723 1529–1539, Online. Association for Computational
724 Linguistics.

725 Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng
726 Zhang, and Xipeng Qiu. 2021. *A unified generative
727 framework for various NER subtasks*. In *Proceedings
728 of the 59th Annual Meeting of the Association for
729 Computational Linguistics and the 11th International
730 Joint Conference on Natural Language Processing
731 (Volume 1: Long Papers)*, pages 5808–5822, Online.
732 Association for Computational Linguistics.

733 Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
734 **Named entity recognition as dependency parsing**. In
735 *Proceedings of the 58th Annual Meeting of the Asso-
736 ciation for Computational Linguistics*, pages 6470–
737 6476, Online. Association for Computational Lin-
738 guistics.

739 Zheng Yuan, Chuanqi Tan, Songfang Huang, and Fei
740 Huang. 2022. *Fusing heterogeneous factors with
741 triaffine mechanism for nested named entity recog-
742 nition*. In *Findings of the Association for Compu-
743 tational Linguistics: ACL 2022*, pages 3174–3186,
744 Dublin, Ireland. Association for Computational Lin-
745 guistics.

746 Yue Zhang and Jie Yang. 2018. *Chinese NER using
747 lattice LSTM*. In *Proceedings of the 56th Annual
748 Meeting of the Association for Computational Lin-
749 guistics (Volume 1: Long Papers)*, pages 1554–1564,
750 Melbourne, Australia. Association for Computational
751 Linguistics.

752 Enwei Zhu and Jinpeng Li. 2022. *Boundary smooth-
753 ing for named entity recognition*. In *Proceedings
754 of the 60th Annual Meeting of the Association for
755 Computational Linguistics (Volume 1: Long Papers)*,
756 pages 7096–7108, Dublin, Ireland. Association for
757 Computational Linguistics.

A (Shallowly) Aggregating Functions

758 Given token representations $\mathbf{H} \in \mathbb{R}^{T \times d}$, a model
759 can shallowly aggregate them in corresponding po-
760 sitions to construct span representations. Formally,
761 the span representation of (i, j) can be built by:
762

763 **Max-pooling.** Applying max-pooling to $\mathbf{H}_{[i:j]}$
764 over the first dimension.

765 **Mean-pooling.** Applying mean-pooling to $\mathbf{H}_{[i:j]}$
766 over the first dimension.

767 **Multiplicative Attention.** Computing

$$\text{softmax} \left(\mathbf{u}^\top \tanh \left(\mathbf{W} \mathbf{H}_{[i:j]}^\top \right) \right) \mathbf{H}_{[i:j]},$$

768 where \mathbf{W} and \mathbf{u} are learnable parameters.

769 **Additive Attention.** Computing

$$\text{softmax} \left(\mathbf{u}^\top \tanh \left(\mathbf{W} (\mathbf{H}_{[i:j]} \oplus \mathbf{v})^\top \right) \right) \mathbf{H}_{[i:j]},$$

770 where \mathbf{W} , \mathbf{u} and \mathbf{v} are learnable parameters; \oplus
771 means concatenation over the second dimension,
772 and vector \mathbf{v} should be repeated for $j - i$ times
773 before the concatenation.

774 In general, either multiplicative or additive at-
775 tention computes normalized weights over the se-
776 quence dimension of span (i, j) , where the weights
777 are dependent on the values of $\mathbf{H}_{[i:j]}$; and then ap-
778 plies the weights to $\mathbf{H}_{[i:j]}$, resulting in weighted
779 average values.

B Datasets

780 **ACE 2004 and ACE 2005** are two English
781 nested NER datasets, either of which contains
782 seven entity types, i.e., Person, Organization,
783 Facility, Location, Geo-political Entity, Vehicle,
784 Weapon. Our data processing and splits follow [Lu
785 and Roth \(2015\)](#).

786 **GENIA** ([Kim et al., 2003](#)) is a nested NER cor-
787 pus on English biological articles. Our data pro-
788 cessing follows [Lu and Roth \(2015\)](#), resulting in
789 five entity types (DNA, RNA, Protein, Cell line,
790 Cell type); data splits follow [Yan et al. \(2021\)](#) and
791 [Li et al. \(2022\)](#).

792 **KBP 2017** ([Ji et al., 2017](#)) is an English nested
793 NER corpus including text from news, discussion
794 forum, web blog, tweets and scientific literature.
795 It contains five entity categories, i.e., Person, Geo-
796 political Entity, Organization, Location, and Facil-
797 ity. Our data processing and splits follow [Lin et al.
798 \(2019\)](#) and [Shen et al. \(2022\)](#).

	ACE04	ACE05	GENIA	KBP17	CoNLL03	OntoNotes 5
#Sent.	All	8,507	9,341	18,546	15,358	22,137
	Train	6,799	7,336	15,023	10,546	14,987
	Dev.	829	958	1,669	545	3,466
	Test	879	1,047	1,854	4,267	3,684
#Type		7	7	5	5	4
#Token		173,796	176,575	471,264	300,345	302,811
#Entity		27,749	30,931	56,046	45,714	35,089
#Nested		7,832	7,460	5,431	7,479	—

Table 5: Descriptive statistics of datasets. #Sent. denotes the number of sentences; #Type denotes the number of entity types; #Token denotes the number of tokens; #Entity denotes the number of entities; #Nested denotes the number of entities that are nested in other entities.

	ACE04	ACE05	GENIA	KBP17	CoNLL03	OntoNotes 5
PLM						
Maximum span size	25	25	18	16	10	16
Initial aggregation	Max	Max	Max	Max	Max	Max
LSTM hidden size	400	400	400	400	400	400
LSTM layers	1	1	1	1	1	1
FFN hidden size	300	300	300	300	300	300
FFN layers	1	1	1	1	1	1
Boundary smoothing ϵ	0.1	0.1	0.1	0.1	0.1	0.1
Number of epochs	50	50	30	50	50	30
Learning rate						
Pretrained weights	2e-5	2e-5	4e-5	2e-5	2e-5	2e-5
Other weights	2e-3	2e-3	2e-3	2e-3	2e-3	2e-3
Batch size	48	48	16	48	48	16
Number of parameters (M)	212.9 (w/o weight sharing); or 126.3 (w/ weight sharing)					
Training time (hours on A6000)	13.9	15.0	8.3	16.2	3.3	15.3

Table 6: Hyperparameters and computational costs of main experiments.

CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003) is an English flat NER benchmark with four entity types, i.e., Person, Organization, Location and Miscellaneous. We use the original data splits for experiments.

OntoNotes 5 is a large-scale English flat NER benchmark, which has 18 entity types. Our data processing and splits follow Pradhan et al. (2013).

Table 5 presents the descriptive statistics of the datasets.

C Implementation Details

Hyperparameters. We choose RoBERTa (Liu et al., 2019) as the PLM to initialize the weights in the Transformer blocks and span Transformer blocks. The PLMs used in our main experiments are all of the base size (768 hidden size, 12 layers).

For span Transformer blocks, the maximum span size K is specifically determined for each dataset. In general, a larger K would improve the recall performance (entities longer than K will never be recalled), but significantly increase the computa-

tion cost. We empirically choose K such that it covers most entities in the training and development splits. For example, most entities are short in CoNLL 2003, so we use $K = 10$; while entities are relatively long in ACE 2004 and ACE 2005, so we use $K = 25$. We use max-pooling as the initial aggregating function.

We find it beneficial to additionally include a BiLSTM (Hochreiter and Schmidhuber, 1997) before passing the span representations to the entity classifier. The BiLSTM has one layer and 400 hidden states, with dropout rate of 0.5. In the entity classifier, the FFN has one layer and 300 hidden states, with dropout rate of 0.4, and the activation is ReLU (Krizhevsky et al., 2012). In addition, boundary smoothing (Zhu and Li, 2022) with $\epsilon = 0.1$ is applied to loss computation.

We train the models by the AdamW optimizer (Loshchilov and Hutter, 2018) for 50 epochs with the batch size of 48. Gradients are clipped at ℓ_2 -norm of 5 (Pascanu et al., 2013). The learning rates are 2e-5 and 2e-3 for pretrained weights and randomly initialized weights, respectively; a sched-

uler of linear warmup is applied in the first 20% steps followed by linear decay. For some datasets, a few hyperparameters are further tuned and thus slightly different from the above ones.

The experiments are run on NVIDIA RTX A6000 GPUs. More details on the hyperparameters and computational costs are reported in Table 6.

Evaluation. An entity is considered correctly recognized if its predicted type and boundaries exactly match the ground truth.

The model checkpoint with the best F_1 score throughout the training process on the development split is used for evaluation. The evaluation metrics are micro precision rate, recall rate and F_1 score on the testing split. Unless otherwise noted, we run each experiment for five times and report the average metrics with corresponding standard deviations.

D Categorical Results

Table 7 lists the category-specific results on ACE 2004, GENIA and CoNLL 2003. As a strong baseline, the classic biaffine model (Yu et al., 2020) is re-implemented with PLM and hyperparameters consistent with our DSpERT; note that our re-implementation achieves higher performances than the scores reported in the original paper. The categorical results show that DSpERT outperforms the biaffine model across almost all the categories of the three datasets, except for Geo-political Entity and Vehicle from ACE 2004.

E Results on Chinese NER

Table 8 shows the experimental results on two Chinese flat NER datasets: Weibo NER (Peng and Dredze, 2015) and Resume NER (Zhang and Yang, 2018). DSpERT achieves 72.64% and 96.72% best F_1 scores on the two benchmarks; they are also quite close to the recently reported SOTA results.

F Additional Ablation Studies

Weight Sharing. As described, the span Transformer shares the same structure with the Transformer, but their weights are independent and separately initialized from the PLM. A straightforward idea is to tie the corresponding weights between these two modules, which can reduce the model parameters and conceptually performs as a regularization technique.

ACE 2004			
	Biaffine	DSpERT	Δ
PER	91.35 \pm 0.10	91.50 \pm 0.16	+0.14
ORG	82.49 \pm 0.54	83.59 \pm 0.33	+1.10
FAC	71.18 \pm 1.30	72.28 \pm 1.43	+1.10
LOC	73.38 \pm 1.55	75.22 \pm 0.86	+1.84
GPE	89.30 \pm 0.36	89.16 \pm 0.44	-0.15
VEH	87.18 \pm 2.66	84.35 \pm 3.58	-2.83
WEA	70.87 \pm 4.18	79.88 \pm 1.41	+9.00
Overall	87.64 \pm 0.19	88.05 \pm 0.18	+0.41
GENIA			
	Biaffine	DSpERT	Δ
DNA	77.50 \pm 0.44	77.75 \pm 0.56	+0.26
RNA	83.75 \pm 0.68	85.02 \pm 1.31	+1.27
Protein	84.00 \pm 0.36	84.57 \pm 0.26	+0.57
Cell Line	74.60 \pm 0.48	76.39 \pm 0.96	+1.79
Cell Type	75.89 \pm 0.46	76.10 \pm 0.48	+0.22
Overall	80.93 \pm 0.24	81.46 \pm 0.25	+0.53
CoNLL 2003			
	Biaffine	DSpERT	Δ
PER	96.74 \pm 0.23	96.94 \pm 0.11	+0.20
ORG	92.92 \pm 0.13	93.09 \pm 0.14	+0.17
LOC	94.83 \pm 0.18	94.96 \pm 0.13	+0.12
MISC	83.83 \pm 0.28	84.52 \pm 0.56	+0.69
Overall	93.37 \pm 0.10	93.64 \pm 0.06	+0.27

Table 7: Categorical F_1 scores by biaffine model and DSpERT. All the results are average scores of five independent runs, with subscript standard deviations.

Table 9 presents the results. Sharing the weights results in higher F_1 score on ACE 2004, but lower results on GENIA and CoNLL 2003; the performance differences are largely insignificant. In addition to the performance, weight sharing has very limited effect on reducing training and inference cost — both the forward and backward computations remain almost unchanged. However, it does effectively halve the parameter number; hence, weight sharing would be a preferred option when the storage space is limited.

Initial Aggregation Functions. We test different functions for initial aggregation in the span Transformer. As shown in Table 10, max-pooling outperforms all other alternatives, although the performance differences are limited. This result is different from that in the shallow setting, where max-pooling underperforms multiplicative and additive attentions (Table 3).

One possible explanation is that, the span Transformer blocks with weights initialized from the PLM have already performed very sophisticated

Weibo NER			
Model	Prec.	Rec.	F1
Ma et al. (2020)	–	–	70.50
Li et al. (2020a)	–	–	68.55
Wu et al. (2021)	–	–	70.43
Li et al. (2022)‡	70.84	73.87	72.32
Zhu and Li (2022)	70.16	75.36	72.66
DSpERT†	74.56	70.81	72.64
DSpERT‡	71.09	71.58	71.30 _{±0.86}
Resume NER			
Model	Prec.	Rec.	F1
Ma et al. (2020)	96.08	96.13	96.11
Li et al. (2020a)	–	–	95.86
Wu et al. (2021)	–	–	95.98
Li et al. (2022)‡	96.96	96.35	96.65
Zhu and Li (2022)	96.63	96.69	96.66
DSpERT†	96.69	96.75	96.72
DSpERT‡	96.44	96.58	96.51 _{±0.17}

Table 8: Results of Chinese flat entity recognition. † means the best score; ‡ means the average score of multiple independent runs; the subscript number is the corresponding standard deviation.

Weight Sharing	ACE04	GENIA	CoNLL03
✗	88.05 _{±0.18}	81.46 _{±0.25}	93.64 _{±0.06}
✓	88.11 _{±0.23}	81.19 _{±0.26}	93.43 _{±0.17}

Table 9: The effect of weight sharing. The underlined specification is the one used in our main experiments. All the results are average scores of five independent runs, with subscript standard deviations.

multi-head attentions through multiple layers, so one extra attention layer with randomly initialized weights cannot take positive effect further, or even plagues the model. Max-pooling, on the other hand, is parameter-free and thus more advantageous in this case.

Pretrained Language Models. Table 10 also lists the results by alternative PLMs. In general, BERT-base and BERT-large (Devlin et al., 2019) underperforms RoBERTa-base (Liu et al., 2019), while RoBERTa-large can further improve the performance by 0.54, 0.52 and 0.06 percentage F_1 scores on ACE 2004, GENIA and CoNLL 2003, respectively. These results are consistent with Zhu and Li (2022), confirming the superiority of RoBERTa in NER tasks.

Since GENIA is a biological corpus, some previous studies use BioBERT on this benchmark (Shen et al., 2021, 2022). We also test BioBERT with DSpERT on GENIA. The results

	ACE04	GENIA	CoNLL03
Initial agg.			
w/ max-pooling	88.05 _{±0.18}	81.46 _{±0.25}	93.64 _{±0.06}
w/ mean-pooling	87.77 _{±0.31}	81.31 _{±0.14}	93.58 _{±0.11}
w/ mul. attention	87.67 _{±0.29}	81.36 _{±0.17}	93.55 _{±0.09}
w/ add. attention	87.90 _{±0.11}	81.20 _{±0.12}	93.56 _{±0.12}
PLM			
w/ RoBERTa-b	88.05 _{±0.18}	81.46 _{±0.25}	93.64 _{±0.06}
w/ RoBERTa-l	88.59 _{±0.27}	81.98 _{±0.41}	93.70 _{±0.12}
w/ BERT-b	86.38 _{±0.20}	79.13 _{±0.16}	91.90 _{±0.08}
w/ BERT-l	87.73 _{±0.30}	79.27 _{±0.20}	92.79 _{±0.14}
w/ BioBERT-b		81.52 _{±0.26}	
w/ BioBERT-l		81.78 _{±0.26}	
Others			
w/o BiLSTM	87.71 _{±0.05}	81.29 _{±0.33}	93.42 _{±0.11}
w/o BS	87.66 _{±0.26}	81.02 _{±0.27}	93.45 _{±0.17}

Table 10: Results of ablation studies. “b” and “l” mean the PLM sizes of base and large, respectively; for large PLM, span Transformer has 12 layers. “BS” means boundary smoothing. The underlined specification is the one used in our main experiments. All the results are average scores of five independent runs, with subscript standard deviations.

show that BioBERT can achieve performance competitive to RoBERTa.

BiLSTM and Boundary Smoothing. As presented in Table 10, removing the BiLSTM layer will result in a drop of 0.2–0.4 percentage F_1 scores. In addition, replacing boundary smoothing (Zhu and Li, 2022) with the standard cross entropy loss will reduce the F_1 scores by similar magnitudes.