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Abstract

Span-based models are one of the most straight-001
forward methods for named entity recognition002
(NER). Existing span-based NER systems shal-003
lowly aggregate the token representations to004
span representations. However, this typically005
results in significant ineffectiveness for long006
entities, a coupling between the representations007
of overlapping spans, and ultimately a perfor-008
mance degradation. In this study, we propose009
DSpERT (Deep Span Encoder Representations010
from Transformers), which comprises a stan-011
dard Transformer and a span Transformer. The012
latter uses low-layered span representations as013
queries, and aggregates the token representa-014
tions as keys and values, layer by layer from015
bottom to top. Thus, DSpERT produces span016
representations of deep semantics.017

With weight initialization from pretrained lan-018
guage models, DSpERT achieves performance019
higher than or competitive with recent state-of-020
the-art systems on six NER benchmarks.1 Ex-021
perimental results verify the importance of the022
depth for span representations, and show that023
DSpERT performs particularly well on long-024
span entities and nested structures. Further, the025
deep span representations are well structured026
and easily separable in the feature space.027

1 Introduction028

As a fundamental information extraction task,029

named entity recognition (NER) requires predict-030

ing a set of entities from a piece of text. Thus,031

the model has to distinguish the entity spans (i.e.,032

positive examples) from the non-entity spans (i.e.,033

negative examples). In this view, it is natural to034

enumerate all possible spans and classify them into035

the entity categories (including an extra non-entity036

category). This is exactly the core idea of span-037

based approaches (Sohrab and Miwa, 2018; Eberts038

and Ulges, 2020; Yu et al., 2020).039

1Our code will be publicly released.

Analogously to how representation learning mat- 040

ters to image classification (Katiyar and Cardie, 041

2018; Bengio et al., 2013; Chen et al., 2020), it 042

should be crucial to construct good span repre- 043

sentations for span-based NER. However, exist- 044

ing models typically build span representations 045

by shallowly aggregating the top/last token repre- 046

sentations, e.g., pooling over the sequence dimen- 047

sion (Sohrab and Miwa, 2018; Eberts and Ulges, 048

2020; Shen et al., 2021), or integrating the start- 049

ing and ending tokens (Yu et al., 2020; Li et al., 050

2020c). In that case, the token representations have 051

not been fully interacted before they are fed into the 052

classifier, which impairs the capability of capturing 053

the information of long spans. If the spans overlap, 054

the resulting span representations are technically 055

coupled because of the shared tokens. This causes 056

the representations less distinguishable from the 057

ones of overlapping spans in nested structures. 058

Inspired by (probably) the most sophisticated 059

implementation of attention mechanism — Trans- 060

former and BERT (Vaswani et al., 2017; Devlin 061

et al., 2019), we propose DSpERT, which stands 062

for Deep Span Encoder Representations from 063

Transformers. It consists of a standard Transformer 064

and a span Transformer; the latter uses low-layered 065

span representations as queries, and token represen- 066

tations within the corresponding span as keys and 067

values, and thus aggregates token representations 068

layer by layer from bottom to top. Such multi- 069

layered Transformer-style aggregation promisingly 070

produces deep span representations of rich seman- 071

tics, analogously to how BERT yields highly con- 072

textualized token representations. 073

With weight initialization from pretrained lan- 074

guage models (PLMs), DSpERT performs compa- 075

rably to recent state-of-the-art (SOTA) NER sys- 076

tems on six well-known benchmarks. Experimental 077

results clearly verify the importance of the depth 078

for the span representations. In addition, DSpERT 079

achieves particularly amplified performance im- 080
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provements against its shallow counterparts2 on081

long-span entities and nested structures.082

Different from most related work which focuses083

on the decoder designs (Yu et al., 2020; Li et al.,084

2020b; Shen et al., 2021; Li et al., 2022), we make085

an effort to optimize the span representations, but086

employ a simple and standard neural classifier for087

decoding. This exposes the pre-logit representa-088

tions that directly determine the entity prediction089

results, and thus allows further representation anal-090

ysis widely employed in a broader machine learn-091

ing community (Van der Maaten and Hinton, 2008;092

Krizhevsky et al., 2012). This sheds light on neu-093

ral NER systems towards higher robustness and094

interpretability (Ouchi et al., 2020).095

2 Related Work096

The NER research had been long-term focused on097

recognizing flat entities. After the introduction of098

linear-chain conditional random field (Collobert099

et al., 2011), neural sequence tagging models be-100

came the de facto standard solution for flat NER101

tasks (Huang et al., 2015; Lample et al., 2016; Ma102

and Hovy, 2016; Chiu and Nichols, 2016; Zhang103

and Yang, 2018).104

Recent studies pay much more attention to105

nested NER, which a plain sequence tagging model106

struggles with (Ju et al., 2018). This stimulates a107

number of novel NER system designs beyond the108

sequence tagging framework. Hypergraph-based109

methods extend sequence tagging by allowing mul-110

tiple tags for each token and multiple tag transi-111

tions between adjacent tokens, which is compatible112

with nested structures (Lu and Roth, 2015; Katiyar113

and Cardie, 2018). Span-based models enumerate114

candidate spans and classify them into entity cate-115

gories (Sohrab and Miwa, 2018; Eberts and Ulges,116

2020; Yu et al., 2020). Li et al. (2020b) refor-117

mulates nested NER as a reading comprehension118

task. Shen et al. (2021, 2022) borrow the methods119

from image object detection to solve nested NER.120

Yan et al. (2021) propose a generative approach,121

which encodes the ground-truth entity set as a se-122

quence, and thus reformulates NER as a sequence-123

to-sequence task. Li et al. (2022) describe the entity124

set by word-word relation, and solve nested NER125

by word-word relation classification.126

2In this paper, unless otherwise specified, we use “shal-
low” to refer to models that construct span representations by
shallowly aggregating (typically top) token representations,
although the token representations could be “deep”.

The span-based models are probably the most 127

straightforward among these approaches. However, 128

existing span-based models typically build span 129

representations by shallowly aggregating the top 130

token representations from a standard text encoder. 131

Here, the shallow aggregation could be pooling 132

over the sequence dimension (Eberts and Ulges, 133

2020; Shen et al., 2021), integrating the starting 134

and ending token representations (Yu et al., 2020; 135

Li et al., 2020c), or a concatenation of these re- 136

sults (Sohrab and Miwa, 2018). Apparently, shal- 137

low aggregation may be too simple to capture the 138

information embedded in long spans; and if the 139

spans overlap, the resulting span representations 140

are technically coupled because of the shared to- 141

kens. These ultimately lead to a performance degra- 142

dation. 143

Our DSpERT addresses this issue by multi- 144

layered and bottom-to-top construction of span rep- 145

resentations. Empirical results show that such deep 146

span representations outperform the shallow coun- 147

terpart qualitatively and quantitatively. 148

3 Methods 149

Deep Token Representations. Given a T -length 150

sequence passed into an L-layered d-dimensional 151

Transformer encoder (Vaswani et al., 2017), the 152

initial token embeddings, together with the poten- 153

tial positional and segmentation embeddings (e.g., 154

BERT; Devlin et al., 2019), are denoted as H0 ∈ 155

RT×d. Thus, the l-th (l = 1, 2, . . . , L) token repre- 156

sentations are: 157

Hl = TrBlock(Hl−1,Hl−1,Hl−1), (1) 158

where TrBlock(Q,K,V) is a Transformer en- 159

coder block that takes Q ∈ RT×d, K ∈ RT×d, 160

V ∈ RT×d as the query, key, value inputs, respec- 161

tively. It consists of a multi-head attention module 162

and a position-wise feed-forward network (FFN), 163

both followed by a residual connection and a layer 164

normalization. Passing a same matrix, i.e., Hl−1, 165

for queries, keys and values exactly results in self- 166

attention (Vaswani et al., 2017). 167

The resulting top representations HL, computed 168

through L Transformer blocks, are believed to em- 169

brace deep, rich and contextualized semantics that 170

are useful for a wide range of tasks. Hence, in a 171

typical neural NLP modeling paradigm, only the 172

top representations HL are used for loss calcula- 173

tion and decoding (Devlin et al., 2019; Eberts and 174

Ulges, 2020; Yu et al., 2020). 175
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Figure 1: Architecture of DSpERT. It comprises: (Left) a standard L-layer Transformer encoder (e.g., BERT); and
(Right) a span Transformer encoder, where the span representations are the query inputs, and token representations
(from the Transformer encoder) are the key/value inputs. There are totally K − 1 span Transformer encoders, where
K is the maximum span size; and each has L layers. The figure specifically displays the case of span size 3; the
span of positions 1–3 is highlighted, whereas the others are in dotted lines.

Deep Span Representations. Figure 1 presents176

the architecture of DSpERT, which consists of a177

standard Transformer encoder and a span Trans-178

former encoder. In a span Transformer of size k179

(k = 2, 3, . . . ,K), the initial span representations180

S0,k ∈ R(T+k−1)×d are directly aggregated from181

the corresponding token embeddings:182

s0,ki = Aggregating(H0
[i:i+k]), (2)183

where s0,ki ∈ Rd is the i-th vector of S0,k,184

and H0
[i:i+k] = [h0

i ; . . . ;h
0
i+k−1] ∈ Rk×d is a185

slice of H0 from position i to position i + k − 1;186

Aggregating(·) is a shallowly aggregating func-187

tion, such as max-pooling. Check Appendix A for188

more details on alternative aggregating functions189

used in this study. Technically, s0,ki covers the190

token embeddings in the span (i, i+ k).191

The computation of high-layered span represen-192

tations imitates that of the standard Transformer.193

For each span Transformer block, the query is a194

low-layered span representation vector, and the195

keys and values are the aforementioned token repre- 196

sentation vectors in the positions of that very span. 197

Formally, the l-th layer span representations are: 198

s l,ki = SpanTrBlock(s l−1,k
i ,Hl−1

[i:i+k],H
l−1
[i:i+k]),

(3) 199

where SpanTrBlock(Q,K,V) shares the ex- 200

actly same structure with the corresponding Trans- 201

former block, but receives different inputs.3 More 202

specifically, for span (i, i + k), the query is the 203

span representation s l−1,k
i , and the keys and values 204

are the token representations Hl−1
[i:i+k]. Again, the 205

resulting s l,ki technically covers the token represen- 206

tations in the span (i, i+ k) on layer l − 1. 207

The top span representations SL,k are built 208

through L Transformer blocks, which are capable 209

of enriching the representations towards deep se- 210

mantics. Thus, the representations of overlapping 211

spans are decoupled, and promisingly distinguish- 212

able from each other, although they are originally 213

3In the default configuration, the weights in the span Trans-
former are independent from those in the Transformer.
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built from S0,k — those shallowly aggregated from214

token embeddings. This is conceptually analogous215

to how the BERT uses 12 or more Transformer216

blocks to produce highly contextualized represen-217

tations from the original static token embeddings.218

The top span representations are then passed to219

an entity classifier. Note that we do not construct a220

unigram span Transformer, but directly borrow the221

token representations as the span representations222

of size 1. In other words,223

SL,1 ≡ HL. (4)224

Entity Classifier. Following Dozat and Man-225

ning (2017) and Yu et al. (2020), we introduce226

a dimension-reducing FFN before feeding the span227

representations into the decoder. According to228

the preceding notations, the representation of span229

(i, j) is sL,j−i
i , thus,230

z ij = FFN(sL,j−i
i ⊕w j−i), (5)231

where w j−i ∈ Rdw is the (j − i)-th width embed-232

ding from a dedicated learnable matrix; ⊕ means233

the concatenation operation. z ij ∈ Rdz is the234

dimension-reduced span representation, which is235

then fed into a softmax layer:236

ŷ ij = softmax(Wz ij + b), (6)237

where W ∈ Rc×dz and b ∈ Rc are learnable pa-238

rameters, and ŷ ij ∈ Rc is the vector of predicted239

probabilities over entity types. Note that Eq. (6) fol-240

lows the form of a typical neural classification head,241

which receives a single vector z ij , and yields the242

predicted probabilities ŷ ij . Here, the pre-softmax243

vector Wz ij is called logits, and z ij is called pre-244

logit representation (Müller et al., 2019).245

Given the one-hot encoded ground truth y ij ∈246

Rc, the model can be trained by optimizing the247

cross entropy loss for all spans:248

L = −
∑

0≤i<j≤T

yT
ij log(ŷ ij). (7)249

4 Experiments250

4.1 Experimental Settings251

Datasets. We perform experiments on four En-252

glish nested NER datasets: ACE 20044, ACE253

20055, GENIA (Kim et al., 2003) and KBP 2017 (Ji254

et al., 2017); and two English flat NER datasets:255

CoNLL 2003 (Tjong Kim Sang and De Meulder,256

2003) and OntoNotes 56. More details on data pro-257

4https://catalog.ldc.upenn.edu/LDC2005T09.
5https://catalog.ldc.upenn.edu/LDC2006T06.
6https://catalog.ldc.upenn.edu/LDC2013T19.

cessing and descriptive statistics are reported in 258

Appendix B. 259

Implementation Details. To save space, our im- 260

plementation details are all placed in Appendix C. 261

4.2 Main Results 262

Table 1 shows the evaluation results on English 263

nested NER benchmarks. For a fair and reliable 264

comparison to previous SOTA NER systems, we 265

run DSpERT for five times on each dataset, and 266

report both the best score and the average score 267

with corresponding standard deviation. 268

With a base-sized PLM, DSpERT achieves on- 269

par or better results compared with previous SOTA 270

systems. More specifically, the best F1 scores are 271

88.31%, 87.42%, 81.90% and 87.65% on ACE 272

2004, ACE 2005, GENIA and KBP 2017, respec- 273

tively. Except for ACE 2005, these scores corre- 274

spond to 0.17%, 0.13% and 3.15% absolute im- 275

provements. 276

Table 2 presents the results on English flat NER 277

datasets. The best F1 scores are 93.70% and 278

91.76% on CoNLL 2003 and OntoNotes 5, respec- 279

tively. These scores are slightly higher than those 280

reported by previous literature. 281

Appendix D further lists the category-wise F1 282

scores; the results show that DSpERT can consis- 283

tently outperform the biaffine model, a classic and 284

strong baseline, across most entity categories. Ap- 285

pendix E provides additional experimental results 286

on Chinese NER, suggesting that the effectiveness 287

of DSpERT is generalizable across languages. 288

Overall, DSpERT shows strong and competitive 289

performance on both the nested and flat NER tasks. 290

Given the long-term extensive investigation and ex- 291

periments on these datasets by the NLP community, 292

the seemingly marginal performance improvements 293

are still notable. 294

4.3 Ablation Studies 295

We perform ablation studies on three datasets, i.e., 296

ACE 2004, GENIA and CoNLL 2003, covering flat 297

and nested, common and domain-specific corpora. 298

Depth of Span Representations. As previously 299

highlighted, our core argument is that the deep span 300

representations, which are computed throughout 301

the span Transformer blocks, embrace deep and 302

rich semantics and thus outperform the shallow 303

counterparts. 304

To validate this point, Table 3 compares 305

DSpERT to the models with a shallow setting, 306
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ACE 2004

Model Prec. Rec. F1

Li et al. (2020b) 85.05 86.32 85.98
Yu et al. (2020) 87.3 86.0 86.7
Yan et al. (2021) 87.27 86.41 86.84
Shen et al. (2021) 87.44 87.38 87.41
Li et al. (2022)‡ 87.33 87.71 87.52
Zhu and Li (2022) 88.43 87.53 87.98
Shen et al. (2022) 88.48 87.81 88.14

DSpERT† 88.29 88.32 88.31
DSpERT‡ 87.90 88.21 88.05±0.18

ACE 2005

Model Prec. Rec. F1

Li et al. (2020b) 87.16 86.59 86.88
Yu et al. (2020) 85.2 85.6 85.4
Yan et al. (2021) 83.16 86.38 84.74
Shen et al. (2021) 86.09 87.27 86.67
Li et al. (2022)‡ 85.03 88.62 86.79
Zhu and Li (2022) 86.25 88.07 87.15
Shen et al. (2022) 86.27 88.60 87.42

DSpERT† 87.01 87.84 87.42
DSpERT‡ 85.73 88.19 86.93±0.49

GENIA

Model Prec. Rec. F1

Yu et al. (2020)* 81.8 79.3 80.5
Yan et al. (2021) 78.87 79.6 79.23
Shen et al. (2021)* 80.19 80.89 80.54
Li et al. (2022)‡ 83.10 79.76 81.39
Shen et al. (2022)* 83.24 80.35 81.77

DSpERT† 82.31 81.49 81.90
DSpERT‡ 81.72 81.21 81.46±0.25

KBP 2017

Model Prec. Rec. F1

Li et al. (2020b) 82.33 77.61 80.97
Shen et al. (2021) 85.46 82.67 84.05
Shen et al. (2022) 85.67 83.37 84.50

DSpERT† 87.37 87.93 87.65
DSpERT‡ 87.00 87.33 87.16±0.50

Table 1: Results of English nested entity recognition. *
means that the model is trained with both the training
and development splits. † means the best score; ‡ means
the average score of multiple independent runs; the sub-
script number is the corresponding standard deviation.

where the span representations are aggregated307

from the top token representations by max-pooling,308

mean-pooling, multiplicative attention or additive309

attention (See Appendix A for details). All the310

models are trained with the same recipe used in our311

main experiments. It shows that the 12-layer deep312

span representations achieve higher performance313

than its shallow counterparts equipped with any314

potential aggregating function, across all datasets.315

CoNLL 2003

Model Prec. Rec. F1

Peters et al. (2018)‡ – – 92.22±0.10
Devlin et al. (2019) – – 92.8
Li et al. (2020b) 92.33 94.61 93.04
Yu et al. (2020)* 93.7 93.3 93.5
Yan et al. (2021)* 92.61 93.87 93.24
Li et al. (2022)‡ 92.71 93.44 93.07
Zhu and Li (2022) 93.61 93.68 93.65
Shen et al. (2022)* 93.29 92.46 92.87

DSpERT† 93.48 93.93 93.70
DSpERT‡ 93.39 93.88 93.64±0.06

OntoNotes 5

Model Prec. Rec. F1

Li et al. (2020b) 92.98 89.95 91.11
Yu et al. (2020) 91.1 91.5 91.3
Yan et al. (2021) 89.99 90.77 90.38
Li et al. (2022)‡ 90.03 90.97 90.50
Zhu and Li (2022) 91.75 91.74 91.74
Shen et al. (2022) 91.43 90.73 90.96

DSpERT† 91.46 92.05 91.76
DSpERT‡ 90.87 91.25 91.06±0.26

Table 2: Results of English flat entity recognition. *
means that the model is trained with both the training
and development splits. † means the best score; ‡ means
the average score of multiple independent runs; the sub-
script number is the corresponding standard deviation.

Depth ACE04 GENIA CoNLL03

Shallow agg. (i.e., depth = 0)
w/ max-pooling 82.22±0.64 79.44±0.20 92.99±0.32
w/ mean-pooling 80.90±0.28 73.83±0.42 91.97±0.14
w/ mul. attention 84.38±0.58 76.54±2.70 93.21±0.16
w/ add. attention 83.73±0.52 76.23±3.27 93.05±0.04

DSpERT
depth = 2 87.87±0.13 80.66±0.36 93.30±0.09
depth = 4 87.88±0.41 80.88±0.39 93.38±0.08
depth = 6 87.81±0.13 81.01±0.22 93.40±0.13
depth = 8 88.00±0.22 81.13±0.25 93.48±0.08
depth = 10 88.00±0.21 81.12±0.14 93.51±0.10
depth = 12 88.05±0.18 81.46±0.25 93.64±0.06

Table 3: The effect of depth. The underlined specifica-
tion is the one used in our main experiments. All the
results are average scores of five independent runs, with
subscript standard deviations.

We further run DSpERT with L̃ (L̃ < L) span 316

Transformer blocks, where the initial aggregation 317

happens at the (L− L̃)-th layer and the span Trans- 318

former corresponds to the top/last L̃ Transformer 319

blocks. These models may be thought of as in- 320

termediate configurations between fully deep span 321

representations and fully shallow ones. As dis- 322

played in Table 3, the F1 score in general experi- 323

ences a monotonically increasing trend when depth 324
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Figure 2: F1 scores on spans of different lengths. All the results are average scores of five independent runs.
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Figure 3: F1 scores on spans with different nested structures. “Nested” means the spans that are nested inside a
ground-truth entity which covers other ground-truth entities; “Covering” means the spans that cover a ground-truth
entity which is nested inside other ground-truth entities; “Both” means the spans that are both “Nested” and
“Covering”; “Flat” means the spans that are neither “Nested” nor “Covering”. All the results are average scores of
five independent runs.

L̃ increases from 2 to 12; this pattern holds for all325

three datasets. These results further strengthen our326

argument that the depth positively contributes to327

the quality of span representations.328

Appendix F provides extensive ablation studies329

evaluating other components.330

4.4 Effect on Long-Span Entities331

The recognition of long-span entities is a long-tail332

and challenging problem. Taking ACE 2004 as333

an example, the ground-truth entities longer than334

10 tokens only account for 2.8%, and the maxi-335

mum length reaches 57. Empirical evidence also336

illustrates that existing NER models show relatively337

weak performance on long entities (e.g., Shen et al.,338

2021; Yuan et al., 2022).339

Figure 2 presents the F1 scores grouped by dif-340

ferent span lengths. In general, the models based341

on shallow span representations perform relatively342

well on the short entities, but struggle for the long343

ones. However, DSpERT show much higher F1344

scores on the long entities, without any perfor-345

mance sacrifice on the short ones. For ACE 2004,346

DSpERT outperforms its shallow counterpart by 347

2%–12% absolute F1 score on spans shorter than 348

10, while this difference exceeds 30% for spans 349

longer than 10. Similar patterns are observed on 350

GENIA and CoNLL 2003. 351

Conceptually, a longer span contains more infor- 352

mation, so it would be more difficult to be encoded 353

into a fixed-length vector, i.e., the span represen- 354

tation. According to our experimental results, the 355

shallow aggregation fails to fully preserve the se- 356

mantics in the original token representations, es- 357

pecially for long spans. The DSpERT, however, 358

allows complicated interactions between tokens 359

through multiple layers; in particular, longer spans 360

experience more interactions. This mechanism am- 361

plifies the performance gain on long entities. 362

4.5 Effect on Nested Structures 363

Even in nested NER datasets, the nested entities are 364

less than the flat ones (See Table 5). To deliberately 365

investigate the performance on nested entities, we 366

look into two subsets of spans that are directly 367

related to nested structures: (1) Nested: the spans 368

6



that are nested inside a ground-truth entity which369

covers other ground-truth entities; (2) Covering:370

the spans that cover a ground-truth entity which is371

nested inside other ground-truth entities.372

Figure 3 depicts the F1 scores grouped by dif-373

ferent nested structures. Consistent to a common374

expectation, nested structures create significant375

difficulties for entity recognition. Compared to376

the flat ones, a shallow span-based model encoun-377

ters a substantial performance degradation on the378

nested structures, especially on the spans in both379

the Nested and Covering subsets. On the other380

hand, our deep span representations perform much381

well. For ACE 2004, DSpERT presents 2% higher382

absolute F1 score than the shallow model on flat383

spans, but achieves about 40% higher score on384

spans in both the Nested and Covering subsets. The385

experiments on GENIA report similar results, al-386

though the difference in performance gain becomes387

less substantial.388

As previously emphasized, shallowly aggregated389

span representations are technically coupled if the390

spans overlap. This explains why such models391

perform poorly on nested structures. Our model392

addresses this issue by deep and multi-layered con-393

struction of span representations. Implied by the394

experimental results, deep span representations are395

less coupled and more easily separable for overlap-396

ping spans.397

5 Analysis of Pre-Logit Representations398

5.1 ℓ2-Norm and Cosine Similarity399

We calculate the ℓ2-norm and cosine similarity of400

the span representations, i.e., z ij in Eq. (6). As401

presented in Table 4, the deep span representa-402

tions have larger ℓ2-norm than those of the shallow403

counterpart. Although the variance of represen-404

tations inevitably shrinks during the aggregating405

process from the perspective of statistics, this re-406

sult implies that deep span representations are less407

restricted and thus able to flexibly represent rich se-408

mantics. In addition, the deep span representations409

are associated with higher within-class similarities410

and lower between-class similarities, suggesting411

that the representations are more tightly clustered412

within each category, but more separable between413

categories. Apparently, this nature contributes to414

the high classification performance.415

We further investigate the pre-logit weight, i.e.,416

W in Eq. (6). First, the trained DSpERT has a pre-417

logit weight with a smaller ℓ2-norm. According418

to a common understanding of neural networks, 419

smaller norm implies that the model is simpler and 420

thus more generalizable. 421

Second, as indicated by Müller et al. (2019), a 422

typical neural classification head can be regarded 423

as a template-matching mechanism, where each 424

row vector of W is a template.7 Under this inter- 425

pretation, each template “stands for” the overall 426

direction of the span representations of the corre- 427

sponding category in the feature space. As shown 428

in Table 4, the absolute cosine values between the 429

templates of DSpERT are fairly small. In other 430

words, the templates are approximately orthogonal, 431

which suggests that different entity categories are 432

uncorrelated and separately occupy distinctive sub- 433

areas in the feature space. This pattern, however, is 434

not present for the shallow models. 435

5.2 Visualization 436

Figure 4 visualizes the span representations 437

dimension-reduced by principal component anal- 438

ysis (PCA). The results are quite impressive. The 439

representations by shallow aggregation are scat- 440

tered over the plane. Although they are largely 441

clustered by categories, the boundaries are mixed 442

and ambiguous. In contrast, the deep span represen- 443

tations group by relatively clear and tight clusters, 444

corresponding to the ground-truth categories. Ex- 445

cept for some outliers, each pair of the clusters can 446

be easily separable in this projected plane. This is 447

also consistent to the aforementioned finding that 448

deep span representations have high within-class 449

similarities but low between-class similarities. 450

6 Discussion and Conclusion 451

Neural NLP models have been rigidly adhere to 452

the paradigm where an encoder produces token- 453

level representations, and a task-specific decoder 454

receives these representations, computes the loss 455

and yields the outputs (Collobert et al., 2011). This 456

design works well on most, if not all, NLP tasks; 457

and it may also deserve a credit for facilitating NLP 458

pretraining (Peters et al., 2018; Devlin et al., 2019), 459

since such common structure in advance bridges 460

the pretraining and downstream phases. 461

However, this paradigm may be sub-optimal for 462

specific tasks. In span-based NER (or information 463

extraction from a broader perspective), the smallest 464

7Conceptually, if vector z ij is most matched/correlated
with the k-th row vector of W, then the k-th logit will be most
activated. Refer to Müller et al. (2019) for more details.
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ACE 2004 GENIA CoNLL 2003

Shallow Deep Shallow Deep Shallow Deep

Pre-logit representations
ℓ2-norm 9.58±0.17 14.55±0.33↑ 9.89±0.18 11.69±0.52↑ 9.08±0.17 13.49±0.50↑
Cosine within pos class 0.70±0.02 0.80±0.01↑ 0.78±0.01 0.83±0.01↑ 0.79±0.01 0.88±0.00↑
Cosine between pos vs. pos 0.45±0.02 0.37±0.01↓ 0.54±0.02 0.29±0.01↓ 0.35±0.02 0.32±0.01↓
Cosine between pos vs. neg 0.48±0.03 0.35±0.03↓ 0.55±0.01 0.35±0.02↓ 0.39±0.01 0.37±0.02↓

Pre-logit weight/templates W
ℓ2-norm 1.93±0.28 1.57±0.03↓ 1.84±0.08 1.39±0.02↓ 1.71±0.04 1.39±0.01↓
Abs cosine 0.17±0.12 0.10±0.06↓ 0.31±0.11 0.10±0.10↓ 0.23±0.08 0.05±0.03↓
Abs cosine between pos vs. pos 0.13±0.10 0.10±0.07↓ 0.27±0.11 0.10±0.11↓ 0.17±0.04 0.05±0.04↓
Abs cosine between pos vs. neg 0.31±0.06 0.10±0.05↓ 0.40±0.06 0.09±0.04↓ 0.32±0.04 0.05±0.03↓

Table 4: ℓ2-norm and cosine similarity of pre-logit representations and templates. “pos” means the positive types
(i.e., entity types); “neg” means the negative type (i.e., non-entity type). ↑/↓ indicates that DSpERT presents a
metric higher/lower than its shallow counterpart. All the metrics are first averaged within each experiment, and then
averaged over five independent experiments, reported with subscript standard deviations.
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Figure 4: PCA visualization of pre-logit span representations of entities in the testing set.

modeling unit should be spans instead of tokens;465

and thus the span representations should be crucial.466

This originally motivates our DSpERT. In addition,467

DSpERT also successfully shows how to exploit468

the pretrained weights beyond the original Trans-469

former structure, i.e., adapting the weights from470

computing token representations for span represen-471

tations. We believe that adding span representation472

learning in the pretraining stage will further con-473

tribute positively. 474

In conclusion, deep and span-specific represen- 475

tations can significantly boost span-based neural 476

NER models. Our DSpERT achieves SOTA results 477

on six well-known NER benchmarks; the model 478

presents pronounced effect on long-span entities 479

and nested structures. Further analysis shows that 480

the resulting deep span representations are well 481

structured and easily separable in the feature space. 482
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7 Limitations483

To some extent, DSpERT pursues performance and484

interpretability over computational efficiency. The485

major computational cost of a Transformer encoder486

is on the multihead attention module and FFN.487

For a T -length input and a d-dimensional Trans-488

former encoder, the per-layer complexities of the489

multihead attention and FFN are of order O(T 2d)490

and O(Td2), respectively. When the maximum491

span size K ≪ T , our span Transformer brings492

additional O(K2Td) complexity on the attention493

module, and O(KTd2) complexity on the FFN.494

Empirically, training a DSpERT consumes about495

five times the time for a shallow model of a same496

scale. However, this issue can be mitigated if we497

use fewer layers for the span Transformer (Subsec-498

tion 4.3).499

As noted, we empirically choose the maximum500

span size K such that it covers most entities in501

the training and development splits. From the per-502

spective of F1 score, this heuristic works well, and503

DSpERT performs favourably on long-span entities504

as long as they are covered. However, the entities505

with extreme lengths beyond K will be theoreti-506

cally irretrievable.507
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A (Shallowly) Aggregating Functions 758

Given token representations H ∈ RT×d, a model 759

can shallowly aggregate them in corresponding po- 760

sitions to construct span representations. Formally, 761

the span representation of (i, j) can be built by: 762

Max-pooling. Applying max-pooling to H[i:j] 763

over the first dimension. 764

Mean-pooling. Applying mean-pooling to H[i:j] 765

over the first dimension. 766

Multiplicative Attention. Computing 767

softmax
(
uT tanh

(
WHT

[i:j]

))
H[i:j], 768

where W and u are learnable parameters. 769

Additive Attention. Computing 770

softmax
(
uT tanh

(
W

(
H[i:j] ⊕ v

)T))
H[i:j], 771

where W, u and v are learnable parameters; ⊕ 772

means concatenation over the second dimension, 773

and vector v should be repeated for j − i times 774

before the concatenation. 775

In general, either multiplicative or additive at- 776

tention computes normalized weights over the se- 777

quence dimension of span (i, j), where the weights 778

are dependent on the values of H[i:j]; and then ap- 779

plies the weights to H[i:j], resulting in weighted 780

average values. 781

B Datasets 782

ACE 2004 and ACE 2005 are two English 783

nested NER datasets, either of which contains 784

seven entity types, i.e., Person, Organization, 785

Facility, Location, Geo-political Entity, Vehicle, 786

Weapon. Our data processing and splits follow Lu 787

and Roth (2015). 788

GENIA (Kim et al., 2003) is a nested NER cor- 789

pus on English biological articles. Our data pro- 790

cessing follows Lu and Roth (2015), resulting in 791

five entity types (DNA, RNA, Protein, Cell line, 792

Cell type); data splits follow Yan et al. (2021) and 793

Li et al. (2022). 794

KBP 2017 (Ji et al., 2017) is an English nested 795

NER corpus including text from news, discussion 796

forum, web blog, tweets and scientific literature. 797

It contains five entity categories, i.e., Person, Geo- 798

political Entity, Organization, Location, and Facil- 799

ity. Our data processing and splits follow Lin et al. 800

(2019) and Shen et al. (2022). 801
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ACE04 ACE05 GENIA KBP17 CoNLL03 OntoNotes 5

#Sent.

All 8,507 9,341 18,546 15,358 22,137 76,714
Train 6,799 7,336 15,023 10,546 14,987 59,924
Dev. 829 958 1,669 545 3,466 8,528
Test 879 1,047 1,854 4,267 3,684 8,262

#Type 7 7 5 5 4 18
#Token 173,796 176,575 471,264 300,345 302,811 1,388,955
#Entity 27,749 30,931 56,046 45,714 35,089 104,151
#Nested 7,832 7,460 5,431 7,479 – –

Table 5: Descriptive statistics of datasets. #Sent. denotes the number of sentences; #Type denotes the number of
entity types; #Token denotes the number of tokens; #Entity denotes the number of entities; #Nested denotes the
number of entities that are nested in other entities.

ACE04 ACE05 GENIA KBP17 CoNLL03 OntoNotes 5

PLM RoBERTa-base
Maximum span size 25 25 18 16 10 16
Initial aggregation Max Max Max Max Max Max
LSTM hidden size 400 400 400 400 400 400
LSTM layers 1 1 1 1 1 1
FFN hidden size 300 300 300 300 300 300
FFN layers 1 1 1 1 1 1
Boundary smoothing ε 0.1 0.1 0.1 0.1 0.1 0.1
Number of epochs 50 50 30 50 50 30
Learning rate

Pretrained weights 2e-5 2e-5 4e-5 2e-5 2e-5 2e-5
Other weights 2e-3 2e-3 2e-3 2e-3 2e-3 2e-3

Batch size 48 48 16 48 48 16

Number of parameters (M) 212.9 (w/o weight sharing); or 126.3 (w/ weight sharing)
Training time (hours on A6000) 13.9 15.0 8.3 16.2 3.3 15.3

Table 6: Hyperparameters and computational costs of main experiments.

CoNLL 2003 (Tjong Kim Sang and De Meulder,802

2003) is an English flat NER benchmark with four803

entity types, i.e., Person, Organization, Location804

and Miscellaneous. We use the original data splits805

for experiments.806

OntoNotes 5 is a large-scale English flat NER807

benchmark, which has 18 entity types. Our data808

processing and splits follow Pradhan et al. (2013).809

Table 5 presents the descriptive statistics of the810

datasets.811

C Implementation Details812

Hyperparameters. We choose RoBERTa (Liu813

et al., 2019) as the PLM to initialize the weights814

in the Transformer blocks and span Transformer815

blocks. The PLMs used in our main experiments816

are all of the base size (768 hidden size, 12 layers).817

For span Transformer blocks, the maximum span818

size K is specifically determined for each dataset.819

In general, a larger K would improve the recall820

performance (entities longer than K will never be821

recalled), but significantly increase the computa-822

tion cost. We empirically choose K such that it 823

covers most entities in the training and develop- 824

ment splits. For example, most entities are short 825

in CoNLL 2003, so we use K = 10; while entities 826

are relatively long in ACE 2004 and ACE 2005, so 827

we use K = 25. We use max-pooling as the initial 828

aggregating function. 829

We find it beneficial to additionally include a 830

BiLSTM (Hochreiter and Schmidhuber, 1997) be- 831

fore passing the span representations to the entity 832

classifier. The BiLSTM has one layer and 400 hid- 833

den states, with dropout rate of 0.5. In the entity 834

classifier, the FFN has one layer and 300 hidden 835

states, with dropout rate of 0.4, and the activation is 836

ReLU (Krizhevsky et al., 2012). In addition, bound- 837

ary smoothing (Zhu and Li, 2022) with ε = 0.1 is 838

applied to loss computation. 839

We train the models by the AdamW opti- 840

mizer (Loshchilov and Hutter, 2018) for 50 epochs 841

with the batch size of 48. Gradients are clipped at 842

ℓ2-norm of 5 (Pascanu et al., 2013). The learning 843

rates are 2e-5 and 2e-3 for pretrained weights and 844

randomly initialized weights, respectively; a sched- 845
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uler of linear warmup is applied in the first 20%846

steps followed by linear decay. For some datasets,847

a few hyperparameters are further tuned and thus848

slightly different from the above ones.849

The experiments are run on NVIDIA RTX850

A6000 GPUs. More details on the hyperparameters851

and computational costs are reported in Table 6.852

Evaluation. An entity is considered correctly rec-853

ognized if its predicted type and boundaries exactly854

match the ground truth.855

The model checkpoint with the best F1 score856

throughout the training process on the development857

split is used for evaluation. The evaluation metrics858

are micro precision rate, recall rate and F1 score859

on the testing split. Unless otherwise noted, we860

run each experiment for five times and report the861

average metrics with corresponding standard devi-862

ations.863

D Categorical Results864

Table 7 lists the category-specific results on ACE865

2004, GENIA and CoNLL 2003. As a strong base-866

line, the classic biaffine model (Yu et al., 2020)867

is re-implemented with PLM and hyperparame-868

ters consistent with our DSpERT; note that our869

re-implementation achieves higher performances870

than the scores reported in the original paper. The871

categorical results show that DSpERT outperforms872

the biaffine model across almost all the categories873

of the three datasets, except for Geo-political Entity874

and Vehicle from ACE 2004.875

E Results on Chinese NER876

Table 8 shows the experimental results on two Chi-877

nese flat NER datasets: Weibo NER (Peng and878

Dredze, 2015) and Resume NER (Zhang and Yang,879

2018). DSpERT achieves 72.64% and 96.72% best880

F1 scores on the two benchmarks; they are also881

quite close to the recently reported SOTA results.882

F Additional Ablation Studies883

Weight Sharing. As described, the span Trans-884

former shares the same structure with the Trans-885

former, but their weights are independent and sepa-886

rately initialized from the PLM. A straightforward887

idea is to tie the corresponding weights between888

these two modules, which can reduce the model889

parameters and conceptually performs as a regular-890

ization technique.891

ACE 2004

Biaffine DSpERT ∆

PER 91.35±0.10 91.50±0.16 +0.14
ORG 82.49±0.54 83.59±0.33 +1.10
FAC 71.18±1.30 72.28±1.43 +1.10
LOC 73.38±1.55 75.22±0.86 +1.84
GPE 89.30±0.36 89.16±0.44 -0.15
VEH 87.18±2.66 84.35±3.58 -2.83
WEA 70.87±4.18 79.88±1.41 +9.00

Overall 87.64±0.19 88.05±0.18 +0.41

GENIA

Biaffine DSpERT ∆

DNA 77.50±0.44 77.75±0.56 +0.26
RNA 83.75±0.68 85.02±1.31 +1.27

Protein 84.00±0.36 84.57±0.26 +0.57
Cell Line 74.60±0.48 76.39±0.96 +1.79
Cell Type 75.89±0.46 76.10±0.48 +0.22

Overall 80.93±0.24 81.46±0.25 +0.53

CoNLL 2003

Biaffine DSpERT ∆

PER 96.74±0.23 96.94±0.11 +0.20
ORG 92.92±0.13 93.09±0.14 +0.17
LOC 94.83±0.18 94.96±0.13 +0.12
MISC 83.83±0.28 84.52±0.56 +0.69

Overall 93.37±0.10 93.64±0.06 +0.27

Table 7: Categorical F1 scores by biaffine model and
DSpERT. All the results are average scores of five inde-
pendent runs, with subscript standard deviations.

Table 9 presents the results. Sharing the weights 892

results in higher F1 score on ACE 2004, but lower 893

results on GENIA and CoNLL 2003; the perfor- 894

mance differences are largely insignificant. In ad- 895

dition to the performance, weight sharing has very 896

limited effect on reducing training and inference 897

cost — both the forward and backward compu- 898

tations remain almost unchanged. However, it 899

does effectively halve the parameter number; hence, 900

weight sharing would be a preferred option when 901

the storage space is limited. 902

Initial Aggregation Functions. We test differ- 903

ent functions for initial aggregation in the span 904

Transformer. As shown in Table 10, max-pooling 905

outperforms all other alternatives, although the per- 906

formance differences are limited. This result is 907

different from that in the shallow setting, where 908

max-pooling underperforms multiplicative and ad- 909

ditive attentions (Table 3). 910

One possible explanation is that, the span Trans- 911

former blocks with weights initialized from the 912

PLM have already performed very sophisticated 913
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Weibo NER

Model Prec. Rec. F1

Ma et al. (2020) – – 70.50
Li et al. (2020a) – – 68.55
Wu et al. (2021) – – 70.43
Li et al. (2022)‡ 70.84 73.87 72.32
Zhu and Li (2022) 70.16 75.36 72.66

DSpERT† 74.56 70.81 72.64
DSpERT‡ 71.09 71.58 71.30±0.86

Resume NER

Model Prec. Rec. F1

Ma et al. (2020) 96.08 96.13 96.11
Li et al. (2020a) – – 95.86
Wu et al. (2021) – – 95.98
Li et al. (2022)‡ 96.96 96.35 96.65
Zhu and Li (2022) 96.63 96.69 96.66

DSpERT† 96.69 96.75 96.72
DSpERT‡ 96.44 96.58 96.51±0.17

Table 8: Results of Chinese flat entity recognition.
† means the best score; ‡ means the average score of
multiple independent runs; the subscript number is the
corresponding standard deviation.

Weight Sharing ACE04 GENIA CoNLL03

× 88.05±0.18 81.46±0.25 93.64±0.06
✓ 88.11±0.23 81.19±0.26 93.43±0.17

Table 9: The effect of weight sharing. The underlined
specification is the one used in our main experiments.
All the results are average scores of five independent
runs, with subscript standard deviations.

multi-head attentions through multiple layers, so914

one extra attention layer with randomly initialized915

weights cannot take positive effect further, or even916

plagues the model. Max-pooling, on the other hand,917

is parameter-free and thus more advantageous in918

this case.919

Pretrained Language Models. Table 10 also920

lists the results by alternative PLMs. In general,921

BERT-base and BERT-large (Devlin et al., 2019)922

underperforms RoBERTa-base (Liu et al., 2019),923

while RoBERTa-large can further improve the per-924

formance by 0.54, 0.52 and 0.06 percentage F1925

scores on ACE 2004, GENIA and CoNLL 2003,926

respectively. These results are consistent with927

Zhu and Li (2022), confirming the superiority of928

RoBERTa in NER tasks.929

Since GENIA is a biological corpus, some930

previous studies use BioBERT on this bench-931

mark (Shen et al., 2021, 2022). We also test932

BioBERT with DSpERT on GENIA. The results933

ACE04 GENIA CoNLL03

Initial agg.
w/ max-pooling 88.05±0.18 81.46±0.25 93.64±0.06

w/ mean-pooling 87.77±0.31 81.31±0.14 93.58±0.11
w/ mul. attention 87.67±0.29 81.36±0.17 93.55±0.09
w/ add. attention 87.90±0.11 81.20±0.12 93.56±0.12

PLM
w/ RoBERTa-b 88.05±0.18 81.46±0.25 93.64±0.06
w/ RoBERTa-l 88.59±0.27 81.98±0.41 93.70±0.12
w/ BERT-b 86.38±0.20 79.13±0.16 91.90±0.08
w/ BERT-l 87.73±0.30 79.27±0.20 92.79±0.14
w/ BioBERT-b 81.52±0.26
w/ BioBERT-l 81.78±0.26

Others
w/o BiLSTM 87.71±0.05 81.29±0.33 93.42±0.11
w/o BS 87.66±0.26 81.02±0.27 93.45±0.17

Table 10: Results of ablation studies. “b” and “l” mean
the PLM sizes of base and large, respectively; for
large PLM, span Transformer has 12 layers. “BS”
means boundary smoothing. The underlined specifi-
cation is the one used in our main experiments. All the
results are average scores of five independent runs, with
subscript standard deviations.

show that BioBERT can achieve performance com- 934

petitive to RoBERTa. 935

BiLSTM and Boundary Smoothing. As pre- 936

sented in Table 10, removing the BiLSTM layer 937

will result in a drop of 0.2–0.4 percentage F1 scores. 938

In addition, replacing boundary smoothing (Zhu 939

and Li, 2022) with the standard cross entropy loss 940

will reduce the F1 scores by similar magnitudes. 941
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