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Abstract

It is crucial for large language models (LLMs)001
to follow instructions that involve multiple002
constraints. However, many soft constraints003
are semantically related and difficult to verify004
through automated methods. These constraints005
remain a significant challenge for LLMs. To006
enhance the ability of LLMs to follow soft con-007
straints, we initially design a pipeline to obtain008
high-quality outputs automatically. Addition-009
ally, to fully utilize the acquired data, we intro-010
duce a progressive training paradigm based on011
curriculum learning. We experimentally evalu-012
ate the effectiveness of our methods in improv-013
ing LLMs’ soft constraint following ability and014
analyze the factors driving the improvements.015
To support further research, we will release the016
code and data associated with this study.017

1 Introduction018

In the application of LLMs, generating responses019

that accurately satisfy user requests, known as in-020

struction following ability, is of paramount impor-021

tance (Lou et al., 2024). The capability of LLMs022

plays a critical role in aligning LLMs with human023

preferences, ensuring the reliability and helpful-024

ness of the model’s outputs (Wang et al., 2023b;025

Song et al., 2024).026

It is a significant challenge for LLMs to fol-027

low instructions with multiple constraints (Jiang028

et al., 2023b; Qin et al., 2024). Existing work on029

improving the ability of LLMs to follow multi-030

ple constraints mainly focuses on hard constraints,031

which are typically based on structured data or032

fixed-format requirements (He et al., 2024a). These033

constraints can be explicitly expressed as specific034

rules and directly verified through programming035

methods (Zhou et al., 2023a). For example, Python036

can parse JSON to verify hard constraints. How-037

ever, hard constraints fail to adequately capture the038

complexity in real-world scenarios shown in Fig. 1.039

Instructions in real-world applications often con-040
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Figure 1: In real-world scenarios, user instructions con-
tain many soft constraints, posing challenges for LLMs.
H and S denote hard constraints and soft constraints,
respectively.

tain semantic-level limitations, which can be cate- 041

gorized as soft constraints. Soft constraints include 042

restrictions related to content (Liang et al., 2024; 043

Zhang et al., 2023), specific backgrounds (Shana- 044

han et al., 2023; Liu et al., 2023), and stylistic 045

objectives (Sigurgeirsson and King, 2024; Mukher- 046

jee et al., 2024). They are both widespread and 047

critically important. A variety of tasks involve soft 048

constraints, such as open-ended question answer- 049

ing (Zhuang et al., 2023), role-playing (Shanahan 050

et al., 2023), and suggestion generation (Baek et al., 051

2024). As shown in Fig. 1, following soft con- 052

straints is challenging for LLMs. 053

However, following soft constraints is a non- 054

trivial task. First, existing research on soft 055

constraints in LLMs mainly focuses on evalua- 056

tion (Chen et al., 2024a; Qin et al., 2024) rather 057

than improving their following. Also, as shown 058

in Fig. 1, soft constraints are ambiguous and chal- 059

lenging for LLMs in real applications (Wang et al., 060

2024). They depend on subjective interpretations 061

and specific contexts. Unlike hard constraints, 062

they cannot be assessed with fixed rules or scripts. 063

Soft constraint evaluation often relies on prompt- 064

ing LLMs, which involves various biases (Wang 065

et al., 2023a). The inherent difficulty makes it more 066

challenging for LLMs to generalize from hard to 067
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Write a story. Include a cat named Whiskers. The story takes place in the 
autumn. Describe the cat playing with a dog named Buddy. The story 
ends with discovering a mysterious treasure.
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Figure 2: The framework of our study. We first design a pipeline that automates the construction of datasets with
high-quality outputs for soft constraint following. Then, we propose a method to utilize positive and negative
samples generated during the pipeline. Finally, we introduce a new training paradigm that leverages curriculum
learning to enhance LLMs’ soft constraint following ability. CL denotes curriculum Learning.

soft constraints (He et al., 2024a). Moreover, many068

studies utilize advanced models, such as GPT-4, to069

generate responses (Xu et al., 2023; Chiang et al.,070

2023). Soft constraints also present significant chal-071

lenges for these advanced models. On the Fol-072

lowBench benchmark (Jiang et al., 2023b), GPT-073

4 demonstrates a hard satisfaction rate of merely074

74.4%, making the assurance of high-quality train-075

ing data difficult. However, many studies show076

that the quality of training data is more important077

than its quantity (Zhou et al., 2024; Li et al., 2023a).078

Therefore, designing a more effective data construc-079

tion pipeline is crucial.080

In this work, we systematically investigate strate-081

gies to enhance the ability of LLMs to follow in-082

structions with soft constraints, with the framework083

shown in Fig. 2. When more constraints are added084

to the instruction, LLMs’ outputs may not fully085

follow certain constraints. This inconsistency can086

hurt the quality of data. To address this, we in-087

corporate Judger to rank the outputs based on the088

extent of adherence to the instructions to obtain089

high-quality outputs. To fully utilize both positive090

and negative outputs during the ranking process, we091

leverage the preference learning algorithm Direct092

Preference Optimization (DPO) (Rafailov et al.,093

2024) as the training method. Subsequently, we094

propose a novel training paradigm that constructs 095

a curriculum based on the number of constraints 096

in the instruction. In this framework, the model 097

progressively learns how to make preference judg- 098

ments, beginning with easier cases and moving 099

towards more challenging ones. Our methods im- 100

prove the model’s soft constraint following ability 101

while maintaining general capabilities. 102

Our contributions are summarized as follows: (1) 103

We design a pipeline that automates the construc- 104

tion of datasets with high-quality outputs for soft 105

constraint following. We also propose a method 106

that utilizes positive and negative samples gener- 107

ated during the pipeline. (2) We introduce a new 108

training paradigm that leverages curriculum learn- 109

ing to enhance LLMs’ soft constraint following 110

ability. (3) We conduct extensive experiments to 111

validate the effectiveness of our methods and ana- 112

lyze the reasons for the performance improvement. 113

2 Related Work 114

Soft Constraint Following Existing research on 115

soft constraint following largely concentrates on 116

evaluating the ability of LLMs to follow these con- 117

straints by constructing benchmarks (Jiang et al., 118

2023b; Qin et al., 2024). These benchmarks typ- 119

ically include a variety of fine-grained constraint 120
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types (Zhang et al., 2024), and the results from test-121

ing LLMs on these benchmarks suggest that LLMs122

often struggle to follow these constraints (He et al.,123

2024b). Despite this, there is a notable paucity of124

research aimed at improving LLMs’ capacity to125

comply with soft constraints, especially for soft126

constraints. Soft constraints can be categorized127

into several types: (1) Content soft constraints in-128

volve restrictions on the scope or depth of the re-129

sponses (Zhou et al., 2023b; Ashok and Poczos,130

2024). (2) Situation soft constraints refer to the131

background limitations of the responses (Wang132

et al., 2023c; Shao et al., 2023). (3) Style soft con-133

straints limit the manner or tone of expressions (Tao134

et al., 2024; Pu et al., 2024). Some works directly135

utilize responses generated by GPT-4 to construct136

datasets (Sun et al., 2024; Peng et al., 2023). How-137

ever, the responses to instructions with soft con-138

straints are often unreliable. Different from these,139

our study focuses on how to construct datasets with140

high-quality outputs for improving LLMs’ soft con-141

straint following ability.142

Curriculum Learning Curriculum learning is143

a training strategy that mimics the learning pro-144

cess of humans by advancing from simpler to145

more complex tasks (Soviany et al., 2022; Wang146

et al., 2021). Current research on LLMs’ cur-147

riculum learning can be broadly categorized into148

two primary paradigms: (1) Learning Based on149

Data Difficulty: This approach involves construct-150

ing curricula by ranking data according to vari-151

ous evaluation metrics. Metrics such as sequence152

length (Pouransari et al., 2024), perplexity (Liu153

et al., 2024) have been employed to guide this pro-154

cess. LLMs can also construct curricula through155

advanced planning (Ryu et al., 2024). (2) Learn-156

ing Based on Task Difficulty: This paradigm fo-157

cuses on modifying the training tasks (Chen et al.,158

2024b) or adjusting the training objectives (Zhao159

et al., 2024b; Lee et al., 2024). However, our work160

organizes the curriculum based on the number of161

constraints in the instructions.162

3 Method163

In this section, we provide a detailed explanation of164

how to obtain high-quality data and how to leverage165

this data by establishing a new training paradigm.166

The pipeline is shown in Fig. 2.167

3.1 High-quality Data Construction 168

We first synthesize multi-constraint instructions 169

and then utilize Judger to rank the LLM’s outputs 170

of these instructions, enhancing the reliability of 171

the dataset. 172

3.1.1 Multi-Constraint Instruction Synthesis 173

To generate complex instructions, we initially 174

gather seed instructions from three commonly uti- 175

lized datasets. Next, these instructions are rewritten 176

to integrate multiple constraints. 177

We begin by collecting seed instructions from 178

Open Assistant (Köpf et al., 2024), which includes 179

instructions generated by users interacting with 180

chatbots. We select rank 0 instructions and those 181

from the first turn of conversations. Next, we gather 182

175 manually created instructions from the Self- 183

Instruct (Wang et al., 2022a). The third source is 184

Super-Natural (Wang et al., 2022b), from which 185

we select 318 instructions after filtering out tasks 186

with simple outputs. These three sources together 187

provide a total of 1,500 seed instructions, offering 188

a broad range of coverage across diverse tasks. 189

Subsequently, we construct soft constraints and 190

integrate them into the seed instructions. Initially, 191

we categorize the soft constraints into three types: 192

content, situation, and style. Using an advanced 193

model, we generate soft constraints based on these 194

categories. Next, we randomly select 3 to 5 con- 195

straints for each seed instruction. For the soft con- 196

straints, GPT-4 is employed to generate correspond- 197

ing descriptions. While descriptions are selected 198

from a predefined list for the hard ones. Finally, 199

we add only one constraint to the instruction at a 200

time, ensuring that each instruction reflects a dif- 201

ferent level of difficulty. This approach contrasts 202

with previous methods, which typically add all con- 203

straints at once, often making it challenging for 204

the model to learn how to follow each constraint 205

independently (He et al., 2024a). The construction 206

process is detailed in the Appx. A.1. 207

Specifically, for seed instruction I0, we itera- 208

tively add constraints to form the instruction set 209

I = {I1, I2, . . . , In}, where n ranges from 3 to 5. 210

In represents the instruction with n constraints. 211

3.1.2 Judger for Ranking Responses 212

Existing works in dataset construction rely on ad- 213

vanced models to directly generate the outputs (Sun 214

et al., 2024). However, even GPT-4 is struggling 215

to follow the instructions with complex constraints, 216

especially when the instructions contain soft con- 217
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straints which are more intractable (Jiang et al.,218

2023b; Qin et al., 2024). To address this, we design219

a pipeline to construct datasets with high-quality220

outputs for soft constraints following. This pipeline221

consists of two steps: progressively construction222

and Judger reordering.223

When all constraints are added into the instruc-224

tion at once, it is difficult for large models to ef-225

fectively follow each constraint individually. This226

approach is not conducive to improve the model’s227

constraint following ability. To address this, we228

employ a method of incrementally adding one con-229

straint at a time and performing step-by-step rea-230

soning to obtain the dataset. Specifically, for each231

multi-constraint instruction Ik, we use GPT-4 to232

generate the corresponding output Ok = LLM(Ik).233

After performing inference on all the instructions234

in the instruction set I , we obtain the output set235

O = {O1, O2, . . . , On}, where each response cor-236

responds to a multi-constraint instruction.237

Given that LLMs may not follow all constraints238

when responding to multi-constraint instructions,239

we introduce Judger to rank the outputs based on240

their following of the instructions, thereby obtain-241

ing high-quality outputs . Specifically, when a new242

constraint is added into the instruction Ik−1 to form243

Ik , the model’s response Ok may not fully follow244

some constraints in Ik. To ensure high-quality out-245

puts, we use Judger to rank the new output Ok with246

the previous winner output Owk−1
that more fol-247

lows Ik−1 to determine which one better follows248

the current instruction Ik:249

Owk
, Olk = Judger(Ik, Owk−1

, Ok), 1 ≤ k ≤ n.250

In each ranking, we can obtain winner output251

Owk
which follows the current instruction Ik bet-252

ter and the loser output Olk which follows less.253

Finally, after completing all n rankings, we ob-254

tain the winner set Ow = {Ow1 , Ow2 , . . . , Own},255

which consists of the outputs that most follow their256

respective instructions, and the loser set Ol =257

{Ol1 , Ol2 , . . . , Oln}, which contains the outputs258

that less follow.259

The prompt used and cases are detailed in the260

Appx. A.2.261

3.2 Curriculum-based Training Paradigm262

In §3.1.2, we use Judger to obtain the positive263

set Ow and the negative set Ol. Supervised Fine-264

Tuning (SFT) (Ouyang et al., 2022) only uses the265

positive samples to train the model. However, the266

negative samples also contain valuable supervision 267

information. Hence, we adopt reinforcement learn- 268

ing (Rafailov et al., 2024) to leverage both the pos- 269

itive and negative sets. Moreover, we develop a 270

training paradigm based on curriculum learning to 271

enhance the training process. 272

Given the positive set and the negative set, we 273

can construct the training dataset with k triplets: 274

(I1, Ow1 , Ol1), (I2, Ow2 , Ol2), . . . , (Ik, Owk
, Olk ). 275

In each triplet, the output from Ow is preferred 276

than the output from Ol. To model this preference 277

relationship, we apply Direct Preference Optimiza- 278

tion (DPO) (Rafailov et al., 2024) as the training 279

method. 280

Additionally, in the DPO training process, the 281

model is required to learn preference judgments. 282

As the number of constraints in the instruction in- 283

creases, the complexity of judgments also rises. In- 284

spired by curriculum learning (Bengio et al., 2009), 285

we propose a curriculum learning training approach 286

for preference learning, where the training dataset 287

is organized in ascending order based on the num- 288

ber of constraints in the instructions. 289

Specifically, for the k-th curriculum, the train- 290

ing dataset Dk contains the triplet (Ik, Owk
, Olk). 291

The constraint set Ck contains k constraints in Ik: 292

Dk = {(Ik, Owk
, Olk) | |Ck| = k}. The com- 293

plete training dataset D is obtained by combining 294

training datasets for all curriculums in sequence: 295

D = D1 ∪D2 ∪D3 ∪D4 ∪D5. 296

Based on the preference data and the curriculum- 297

based training paradigm, the loss function of DPO 298

training can be defined as follows: 299

LDPO(πθ ;πref) = − E(Ik,Owk
,Olk

)∼D

[
log σ

(
β log

πθ(Owk
|Ik)

πref(Owk
|Ik)

−β log
πθ(Olk

|Ik)

πref(Olk
|Ik)

)] 300

where πθ represents the current model, and πref 301

denotes the reference model. 302

To ensure training stability (Xu et al., 2024), we 303

add the SFT loss into the DPO loss function: 304

LDPO = LDPO + LSFT 305

where SFT loss is as follows: 306

LSFT(πθ) = −E(Ik,Owk
)∼D[log πθ(Owk

|Ik)] 307

3.3 Dataset Statistics 308

3.3.1 Diversity 309

To show the diversity of our dataset, we analyze 310

the verb-noun structure of data. As shown in Fig. 3, 311
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Model BaseModel
FollowBench (HSR) IFEval

L1 L2 L3 L4 L5 Avg [S]P [S]I [L]P [L]I Avg

GPT4 (Achiam et al., 2023)∗ GPT 84.7 75.6 70.8 73.9 61.9 73.4 76.9 83.6 79.3 85.4 81.3

GPT3.5-turbo∗ GPT 80.3 68.0 68.6 61.1 53.2 66.2 - - - - -

Llama-3.1-70B-Instruct (Dubey et al., 2024) LLaMA3 75.2 69.6 63.1 65.9 57.1 66.2 82.1 87.8 85.4 90.0 86.3

Qwen2-72B-Instruct (Yang et al., 2024) Qwen 67.9 56.6 47.8 42.2 35.3 50.0 77.1 84.4 80.4 86.9 82.2

WizardLM-v1.2-13B (Xu et al., 2023)∗ LLaMA2 68.8 64.1 53.1 40.8 35.8 52.5 43.6 54.4 48.4 59.1 51.4

Conifer-13B (Sun et al., 2024) LLaMA2 60.5 53.6 48.4 40.7 31.7 47.0 42.9 53.0 47.5 57.4 50.2

Vicuna-13B-v1.5 (Chiang et al., 2023)∗ LLaMA2 71.2 60.2 49.6 40.6 34.0 51.1 43.1 53.6 46.6 58.0 50.3

Conifer-7B-SFT (Sun et al., 2024) Mistral 54.3 49.5 49.3 40.8 30.5 44.9 45.8 57.1 50.8 62.0 53.9

Conifer-7B-DPO (Sun et al., 2024) Mistral 60.3 53.6 48.0 47.1 41.0 50.0 48.1 59.1 52.3 63.3 55.7

Mistral-7B-Instruct-v0.3BASE Mistral 58.7 50.9 48.5 37.5 27.6 44.6 47.0 58.0 52.1 62.7 55.0

Mistral-7B-Instruct-v0.3SFT Mistral 58.7 52.4 42.5 37.2 35.6 45.3 56.8 67.8 60.6 71.3 64.1

Mistral-7B-Instruct-v0.3DPO+Judger+CL Mistral 61.2 52.5 47.5 38.2 33.9 46.7 51.4 62.8 59.0 69.2 60.6

Llama-3-8B-InstructBASE LLaMA3 67.8 54.5 46.6 50.6 39.1 51.7 67.5 76.1 72.8 80.9 74.3

Llama-3-8B-InstructSFT LLaMA3 69.3 59.0 50.1 44.8 32.0 51.0 68.8 76.6 71.2 78.7 73.8

Llama-3-8B-InstructDPO+Judger+CL LLaMA3 70.8 54.6 55.6 51.6 37.9 54.1 72.5 80.1 78.0 84.5 78.8

Table 1: The overall performance on FollowBench and IFEval. We use boldface for the best results and underline
for the second-best results among the models ranging from 7B to 13B parameter sizes. ∗ indicates that the results
are directly sourced from the original benchmarks.

Method
Data Quality

Nums. Cons. Pair. Open.

Conifer (Sun et al., 2024) 13600 H/S × ✓

Suri (Pham et al., 2024) 10000 S × ✓

AutoIF (Dong et al., 2024) - H ✓ ×

Complex to Simple (He et al., 2024a) 1467 H ✓ ✓

Ours 17043 H/S ✓ ✓

Table 2: Detailed comparison of relevant works. Ours
represents our dataset construction approach. ’Nums.’,
’Cons.’, ’Pair.’, and ’Open.’ denote the number of sam-
ples, constraint types, whether to perform pairwise com-
parison, and whether the data is open-source.

we illustrate the top 15 verbs in the inner circle312

and their 3 most frequent direct noun objects in the313

outer circle. This structure visually highlights the314

variety of actions and their corresponding contexts315

present in the instructions. The result reveals the316

instructions encompass a diverse set of linguistic317

patterns. This diversity of our dataset is crucial for318

enhancing the model’s ability to generalize across319

various types of constraints.320

3.3.2 Comparison with Other Works321

As shown in Tab. 2, we compare our dataset con-322

struction approach with other related works. In323

terms of size, our dataset contains more samples324

compared to others which are open-source. From325

the perspective of constraint categories, our dataset326

includes both soft and hard constraints. Compared327

to datasets that only contain soft or hard constraints,328
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Figure 3: Verb-noun structure of multi-constraint in-
structions.

this broader scope better facilitates the model’s abil- 329

ity to learn complex constraints. Regarding pair- 330

wise com- parison, we use Judger for comparisons 331

of the outputs, which improves the quality of the 332

dataset. 333

4 Experiments 334

We conduct extensive experiments to evaluate the 335

effectiveness of our proposed method, focusing on 336

soft constraint following ability and generalization 337

performance. 338

4.1 Experiment Setup 339

Models. We conduct experiments on two 340

widely recognized base LLMs, Llama-3-8B- 341

Instruct (Dubey et al., 2024) and Mistral-7B- 342

Instruct-v0.3 (Jiang et al., 2023a), both of which 343
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demonstrate exceptional performance among mod-344

els within the parameter range of 7B to 8B. Within345

our experimental framework (§3), we compare346

three approaches: (1) BASE directly utilizes the347

original model to generate outputs. (2) SFT ap-348

plies supervised fine-tuning on LLMs using con-349

structed data (§3.1.1). (3) DPO+Judger+CL uti-350

lizes Judger to produce high-quality training data,351

in accordance with training the model using DPO352

based on curriculum learning.(§3.1.2,§3.2).353

For baseline comparisons, we select a range of354

open-source and proprietary LLMs. Among the355

proprietary models, we include GPT-4 (Achiam356

et al., 2023) and GPT-3.5-turbo. Additionally, we357

compare our approach with several open-source358

LLMs, including models specifically trained to im-359

prove general instruction-following abilities, such360

as Vicuna-13B-v1.5 (Chiang et al., 2023). We also361

include models focused on enhancing the ability362

to follow soft instructions, such as WizardLM-363

v1.2-13B (Xu et al., 2023) and the Conifer se-364

ries (Sun et al., 2024). We also compare our365

models against two 70B-sized models, Llama-3.1-366

70B-Instruct (Dubey et al., 2024) and Qwen2-72B-367

Instruct (Yang et al., 2024), which are among the368

most powerful models.369

Evaluation Benchmarks. IFEval (Zhou et al.,370

2023a) is a benchmark designed to assess the ad-371

herence to hard constraints. It defines 25 distinct372

types of verifiable instructions and generates ap-373

proximately 500 prompts, each containing between374

1 and 3 constraints. These hard constraints are ex-375

plicit and unambiguous, enabling programmatic376

validation of compliance. FollowBench (Jiang377

et al., 2023b), is a benchmark that evaluates the378

ability of models to follow both soft and hard con-379

straints across multiple levels of granularity, of-380

fering a comprehensive assessment of instruction-381

following capabilities.382

4.2 Main Results383

As shown in Tab. 1, our method significantly en-384

hances the model’s ability to follow soft constraints,385

even outperforming the capabilities of larger mod-386

els. Specifically, when the models are trained using387

the DPO+Judger+CL method, a significant perfor-388

mance improvement is observed across both bench-389

marks, particularly on IFEval. The model’s perfor-390

mance improvement is particularly significant on391

complex tasks, especially at the L4-L5 difficulty392

levels in FollowBench. Specifically, Mistral-7B-393

Instruct-v0.3 shows an average improvement of394

Model BaseModel LC Win Rate

GPT-4-0613∗ GPT 30.2

GPT-3.5-Turbo-0613∗ GPT 22.4

Llama-3.1-70B-Instruct-Turbo∗ LLaMA3 39.3

WizardLM-13B-v1.2∗ LLaMA2 14.5

Vicuna-13B-v1.5∗ LLaMA2 10.5

Conifer-7B-DPO∗ Mistral 17.1

Llama-3-8B-InstructBASE LLaMA3 21.6

Llama-3-8B-InstructDPO+Judger+CL LLaMA3 22.0

Table 3: Evaluation on the AlpacaEval2.0 for general
LLM instruction-following ability. ∗ indicates that the
results are directly sourced from the original leader-
boards.

3.5% at the L4-L5 difficulty levels. 395

In comparison to models designed to enhance the 396

ability to follow complex instructions, our model 397

demonstrates superior performance on both bench- 398

marks. Specifically, although the performance of 399

Mistral-7B-Instruct-v0.3 on Followench is lower 400

than Conifer-7B-SFT, its performance surpasses 401

the Conifer model on both benchmarks after train- 402

ing. Moreover, our training paradigm effectively 403

enhances the instruction-following ability of LLMs, 404

even when working with models of smaller param- 405

eter sizes. Specifically, compared with models in 406

the 13B category, the performance of Llama-3-8B- 407

Instruct is initially weaker than that of WizardLM- 408

v1.2-13B on FollowBench. But after training, its 409

performance surpasses the 13B model on both 410

benchmarks. 411

After supervised fine-tuning on the constructed 412

instruction-response pairs, the performance of 413

the Llama-3-8B-Instruct model decreases on both 414

benchmarks. This decline can be attributed to the 415

fact that the Llama-3-8B-Instruct model incorpo- 416

rates various specialized training techniques during 417

its initial training. 418

4.3 Generalization Experiments 419

Besides the ability to follow soft constraints, we 420

also assess the model’s general instruction follow- 421

ing abilities on AlpacaEval (Li et al., 2023b). To 422

avoid the length bias that AlpacaEval may corre- 423

late with response lengths, we use the AlpacaEval 424

2.0 (Zhao et al., 2024a) to evaluate the general 425

instruction following. 426

In our evaluation process, we first perform su- 427

pervised fine-tuning on the model, followed by 428

DPO training using the proposed training paradigm. 429
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Model
FollowBench (HSR) IFEval

L1 - L3 L4 - L5 Avg Avg

BASE 56.3 44.9 51.7 74.3

SFT 59.5 38.4 51.0 73.8

SFT+Judger 57.3 44.8 52.3 75.4

DPO+Judger 58.8 44.6 53.1 80.7

DPO+Judger+CL 60.3 44.8 54.1 78.8

Table 4: Ablation study results on FollowBench and
IFEval.

Specifically, we use precomputed outputs of GPT-430

4 Turbo on AlpacaEval as reference outputs and431

employ GPT-4o as evaluators. As shown in the432

Tab. 3, our method leads to a significant improve-433

ment in the model’s general instruction-following434

ability, outperforming both models of comparable435

parameter scales and even larger models.436

4.4 Ablation Studies437

In this section, we conduct ablation experiments to438

assess the impact of Judger, as described in §3.1.2,439

and the curriculum-based training paradigm, out-440

lined in §3.2, on the model’s ability to follow in-441

structions. The Llama-3-8B-Instruct model is used442

as the base model, and evaluations are conducted443

on the IFEval and FollowBench benchmarks.444

As shown in Tab. 4, using the constructed data445

directly for SFT without Judger adjustments under-446

performs the full method on both benchmarks, even447

resulting in a slight performance decline relative448

to the base model. It is evident that performance449

decreases significantly at the L4-L5 levels of Fol-450

lowBench. This observation suggests that Judger451

plays a critical role in ranking responses to more452

challenging instructions. In contrast, the model453

trained with DPO outperforms the SFT baseline,454

especially on IFEval, further emphasizing the ef-455

fectiveness of the DPO training approach over SFT456

in constraint following tasks. However, it still falls457

short of the performance of the full method.458

Additionally, the results indicate that randomly459

organizing DPO training data leads to a decrease460

in performance. In contrast, our curriculum-based461

approach where training data is organized based462

on the number of constraints in the instructions463

learning leads to a significant improvement in the464

model’s ability to follow instructions, particularly465

those at higher difficulty levels in L4-L5 levels of466

FollowBench. These findings strongly validate the467

necessity of Judger for constructing high-quality468

example mixed content situation format style
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Figure 4: Results across various constraint categories in
FollowBench.

Ranking Method Kendall Tau Distance Position Consistency

w/o Judger 0.847 0.743

w/ Judger 0.862 0.794

Table 5: Results on Judger’s effectiveness in aligning
data with human preferences

DPO training data and the proposed curriculum 469

learning paradigm for enhancing the model’s ability 470

to follow complex instructions. 471

4.5 Analysis 472

4.5.1 Category Analysis 473

In this section, we analyze the model’s perfor- 474

mance across different types of constraints. Specifi- 475

cally, we compare the performance of Llama-3-8B- 476

InstructBASE and Llama-3-8B-InstructDPO+Judger+CL 477

on FollowBench. FollowBench encompasses five 478

different constraint categories: Content, Situation, 479

Style, Format, and Example. Each category con- 480

sists of instructions from various tasks, incorporat- 481

ing both soft and hard constraints. Additionally, 482

FollowBench defines Mixed Constraints as a com- 483

position of multiple constraint categories, simulat- 484

ing complex real-world scenarios. As shown in 485

Fig. 4, the model’s performance improves in Style 486

with soft constraints, and Example with hard con- 487

straints. For categories that contain both soft and 488

hard constraints, the model’s performance slightly 489

decreases. However, the trained model demon- 490

strates a significant improvement over the base 491

model on Mixed Constraints, suggesting a notable 492

enhancement in the model’s ability to handle com- 493

plex constraints in real-world scenarios. 494

4.5.2 The Role of Judger 495

In this section, we investigate the factors contribut- 496

ing to the effectiveness of the Judger in construct- 497

ing high-quality outputs. Judger ranks the outputs 498
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Figure 5: Results of the model on FollowBench and
IFEval across different training stages in curriculum
learning

to better alignment with human preferences. To499

examine the underlying effectiveness of the Judger,500

we conduct an experiment designed to evaluate501

whether it facilitates this alignment.502

Specifically, we randomly select 100 output sets503

from the construction process in §3.1.1, each con-504

taining 3 to 5 outputs. These outputs are manually505

annotated with the correct rankings, which serve as506

the reference standard for comparison. We evaluate507

the rankings in three distinct scenarios: (1) sequen-508

tial rankings, (2) rankings adjusted by Judger, and509

(3) rankings annotated by human experts.510

To assess the similarity between these rankings,511

we employ two complementary metrics. The first512

is the Kendall Tau distance, a statistical measure513

that quantifies the number of discordant pairs be-514

tween two sequences, thereby reflecting the extent515

of their relative order differences. In addition, we516

introduce the position consistency metric, which517

quantifies the proportion of elements that occupy518

the same relative positions across both rankings.519

This metric provides a direct evaluation of the align-520

ment between rankings at each specific position.521

The results, presented in Tab. 5, demonstrate that522

the rankings adjusted by the Judger exhibit greater523

alignment with human-annotated rankings when524

compared to sequential rankings. This finding sug-525

gests that Judger enhances the quality of the train-526

ing data by improving its consistency with human527

judgments, thus making the preference data more528

reliable for training.529

4.5.3 The Role of Curriculum Learning530

In this section, we analyze the effects of the531

curriculum-based training paradigm at different532

stages of the training process. Specifically, we533

examine the performance of Llama-3-8B-Instruct534

with the full method across three training stages,535

each corresponding to a different level of curricu-536

lum learning difficulty. Stage0 represents infer-537

ence conducted using the base model, while Stage3538

and Stage5 represent the stages where the model539

completes the curriculum with 3 constraints and 5 540

constraints, respectively. 541

As shown in Fig. 5, our proposed training 542

paradigm progressively enhances the model’s in- 543

struction following capability across various train- 544

ing stages. Specifically, after three stages of cur- 545

riculum learning, the model trained in Stage3 546

demonstrates superior performance compared to 547

the base model across tasks L1-L3. In contrast, the 548

model’s performance at L4-L5 in Stage3 is lower 549

than Stage0. The possible reason is that Stage3 550

may not have adequately prepared for the complex- 551

ity of L4-L5. The gap between these difficulty 552

levels could have led to the initial performance 553

drop. Subsequentially, when the model progresses 554

to Stage5, after learning all courses, performance 555

improves significantly at these levels. The results 556

on IFEval further support this conclusion, showing 557

that Stage5 achieves the highest average perfor- 558

mance across all stages, with a notable peak at 559

[L]I. In contrast, Stage0 demonstrates the lowest 560

average performance across all indicators. By ini- 561

tially focusing on simpler preference learning and 562

gradually progressing to more complex one, the 563

model’s ability to adhere to instructions improves 564

incrementally. This progression enables the model 565

to achieve better performance on increasingly diffi- 566

cult instruction following tasks. 567

5 Conclusion 568

In this paper, we systematically study how to im- 569

prove LLMs’ overall ability to follow instructions 570

with soft constraints. Initially, we design a pipeline 571

to automate the construction of datasets with high- 572

quality outputs for soft constraint following. Based 573

on the pipeline, we introduce a method utilizing 574

positive and negative samples generated during the 575

pipeline. Moreover, we propose a new training 576

paradigm that leverages curriculum learning to en- 577

hance LLMs’ constraint following ability. Our ex- 578

periments show that our methods enhance models’ 579

ability to follow soft constraints effectively while 580

maintaining general capabilities. 581

6 Limitations 582

We discuss the limitations of our study as follows. 583

First, we improve the model’s ability to following 584

complex constraints, thereby improving its overall 585

instruction following capability. However, even 586

when the model’s output meets all the specified 587

constraints, it may still struggle to fully comply 588
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with complex instructions due to limitations in rea-589

soning capacity or the knowledge it masters. Addi-590

tionally, we need to define constraints with greater591

precision to more accurately capture the complexity592

of real-world scenarios.593
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A Details of Data 868

A.1 Details of Soft Constraints 869

The three categories of soft constraints that we 870

define are as follows: 871

• Soft Constraints in Content: Content soft 872

constraints refer to limitations associated with 873

the data itself. These constraints govern the 874

elements of information, the logical relation- 875

ships between them, and the scope of top- 876

ics that need to be covered in the response. 877

When multiple content soft constraints are 878

imposed, the model is required to not only 879

generate comprehensive and coherent content 880

but also ensure that the response aligns with 881

the specific logical definitions and boundaries 882

outlined by the instruction. This presents a 883

significant challenge, as it demands both the 884

integration of diverse elements and the main- 885

tenance of internal consistency. To address 886

this challenge, we define the following tasks 887

for constructing and applying content soft con- 888

straints: 889

1. Inclusion of Key Elements: The re- 890

sponse must incorporate the key points 891

specified in the instruction. This requires 892

the model to effectively extract and inte- 893

grate relevant information, ensuring that 894

the essential components are included 895

without omitting critical details. 896

2. Topic Focus: The model must narrow 897

the discussion to a specific subtopic, 898

avoiding broad generalizations or irrele- 899

vant tangents. This task emphasizes the 900

importance of maintaining focus and pre- 901

cision within the scope defined by the 902

instruction. 903

3. Strict Structure: The generated content 904

must adhere to a predefined structure, 905

such as being organized into coherent 906

11



paragraphs, utilizing subheadings, or fol-907

lowing a specific format. This task im-908

poses a higher demand on the model’s909

ability to generate well-organized and910

structured outputs, aligning with the re-911

quired presentation structure.912

We provide the prompt template for construct-913

ing the Content Soft Constraint in Tab. 7.914

• Soft Constraints in Situation: Situation soft915

constraints are those related to the context916

within which the response is situated. These917

constraints require the response to be adjusted918

according to the context or assumptions speci-919

fied in the instruction, ensuring that the con-920

tent is appropriate to the given background.921

Such adjustments may involve factors like a922

particular time or location, the assumption of923

a specific role, or drawing conclusions based924

on certain premises. The response must dy-925

namically adapt to situational changes and926

maintain consistency with the contextual ele-927

ments. The tasks defined by these constraints928

can be categorized as follows:929

1. Role-Playing: The response must be930

framed from the perspective of a spe-931

cific role or persona, ensuring alignment932

with the contextual expectations associ-933

ated with that role.934

2. Decision Support: The response should935

provide advice or recommendations that936

support decision-making within a partic-937

ular context.938

3. Storytelling: The response should con-939

struct a narrative that is situated within940

a defined time, location, or background,941

maintaining coherence with the provided942

contextual elements.943

We provide the prompt template for construct-944

ing the Situation Soft Constraint in Tab. 8.945

• Soft Constraints in Style: Style soft con-946

straints pertain to the mode of expression, en-947

compassing factors such as the formality or948

informality of tone, the level of conciseness in949

language, and the emotional tenor. These con-950

straints require the response to adjust its style951

in accordance with the given requirements,952

adapting to different linguistic contexts. The953

following task types are defined under this954

category:955

1. Tone Requirement: The generated con- 956

tent must adopt a specific tone, such as 957

formal, humorous, or otherwise defined. 958

2. Language Complexity Control: The 959

complexity of the language used must ad- 960

here to specific standards, such as main- 961

taining conciseness and clarity or em- 962

ploying academic expressions. 963

3. Emotional Expression: The response 964

must convey a particular emotion, such 965

as positivity or sadness, as dictated by 966

the context. 967

We provide the prompt template for construct- 968

ing the Style Soft Constraint in Tab. 9. 969

A.2 Details of Judger Ranking 970

We provide the prompt of Judger ranking in Tab. 10 971

and examples of how the Judger ranks responses in 972

Tab. 6. 973

B Details of Experiments 974

B.1 Training hyperparameters 975

We train Mistral-7B-Instruct-v0.3 and Llama-3- 976

8B-Instruct using LLaMA-Factory (Zheng et al., 977

2024) on 4 NVIDIA A100 80GB GPUs, applying 978

LoRA (Hu et al., 2021) for efficient training. The 979

lora target is set to all, and both models use the 980

following training parameters, with training run- 981

ning for 3 epochs. The per device train batch size 982

is set to 1, and gradient accumulation steps is set 983

to 8. The warm-up ratio is set to 0.1. For SFT, 984

Mistral-7B-Instruct-v0.3 is trained with a learning 985

rate 5.0e-7 , while the learning rate of Llama-3-8B- 986

Instruct is 1.0e-4. For DPO, the learning rate is set 987

to 5.0e-6, with a beta value of 0.1. 988

B.2 Full Results on FollowBench 989

We present the full results on FollowBench in- 990

cludng the Hard Satisfaction Rate (HSR) metric 991

and Soft Satisfaction Rate (SSR) metric in Tab. 11. 992

As shown in Fig. 6 and Fig. 7, we also illustrate 993

the average HSR and SSR scores of Llama-3-8B- 994

Instruct on different constraint categories in Fol- 995

lowBench. 996
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Judger Ranking Case

Instruction Please write a brief description of quantum physics, ensuring that the terms
"wave function" and "superposition state" are included. Avoid using overly com-
plex formulas. Keep the response under 100 words.Ensure that this description
is easy to understand.

Model Reponses
Output (a) : Quantum physics studies the behavior of tiny particles. The *wave
function* describes a particle’s state, while *superposition state* means a
particle can exist in multiple states at once.

Output (b) : Quantum physics studies the behavior of tiny particles. In the
quantum world, particles don’t have fixed positions or states; they can be in
many states at once, and only take a definite state when measured.

Judger Output [[A]]. From the perspective of constraint adherence, Output (a) is better. It
clearly includes both required terms, "wave function" and "superposition state,"
and explains them in a simple and concise way. The response stays under
100 words and avoids complex formulas, making it easy to understand.Output
(b), on the other hand, doesn’t mention "wave function" and its explanation of
"many states" is less clear, making it less aligned with the instruction.

Table 6: The case for Judger ranking outputs.
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Prompt Template for Content Soft Constraint

You are an Instruction Rewriting Expert. You need
to rewrite #Given Instruction# based on #Rewriting
Requirement#, in order to obtain a #Rewritten
Instruction#. Basically, #Rewritten Instruction#
should adhere to the following guidelines:
1. Your rewriting cannot omit the non-text parts such
as the table and code in #Given Instruction#.
2. #Rewritten Instruction# must be reasonable and
must be understood and responded to by humans.
3. You should try your best not to make the
#Rewritten Instruction# become verbose, #Rewritten
Instruction# can only add 10 to 20 words into #Given
Instruction#.
/* The Given Instruction */
{Given Instruction}
/* Rewriting Requirement */
Please add one proper content constraint to the
#Given Instruction#. The content constraints include
but are not limited to:
1. Information Inclusion: The response must include
the key points mentioned in the instruction.
2. Topic Focus: The discussion should be focused on
a specific subtopic, avoiding generalizations.
3. Strict Structure: The generated content must
follow a specific structure.
4. Clarity of Purpose: The response should clearly
align with the goal or purpose outlined in the
instruction.
5. Detail Depth: The response should offer sufficient
detail without oversimplifying.

Table 7: The prompt template for constructing the Con-
tent Soft Constraint.

Prompt Template for Situation Soft Constraint

You are an Instruction Rewriting Expert. You need
to rewrite #Given Instruction# based on #Rewriting
Requirement#, in order to obtain a #Rewritten In-
struction#. Basically, #Rewritten Instruction# should
adhere to the following guidelines: 1. Your rewriting
cannot omit the non-text parts such as the table and
code in #Given Instruction#. 2. #Rewritten Instruc-
tion# must be reasonable and must be understood and
responded to by humans. 3. You should try your
best not to make the #Rewritten Instruction# become
verbose, #Rewritten Instruction# can only add 10 to
20 words into #Given Instruction#. /* The Given In-
struction */
{Given Instruction}
/* Rewriting Requirement */
Please add one proper situation constraint to the
#Given Instruction#. The situation constraints in-
clude but are not limited to: 1.Specify a Role: Clearly
define the role or persona the response should adopt.
2.Decision Support: Offer advice that aids decision-
making within a particular context or situation. 3.In-
troduce a Conflict or Challenge: Present a specific
problem, conflict, or challenge that needs to be re-
solved. 4.Introduce Time Constraints: Set a time
limit for completing specific actions or tasks. 5.Con-
textual Storytelling: Require the response to include
a story or narrative based on a defined time, location,
or background.

Table 8: The prompt template for constructing the Situ-
ation Soft Constraint.

Prompt Template for Style Soft Constraint

You are an Instruction Rewriting Expert. You need
to rewrite #Given Instruction# based on #Rewriting
Requirement#, in order to obtain a #Rewritten In-
struction#. Basically, #Rewritten Instruction# should
adhere to the following guidelines: 1. Your rewriting
cannot omit the non-text parts such as the table and
code in #Given Instruction#. 2. #Rewritten Instruc-
tion# must be reasonable and must be understood and
responded to by humans. 3. You should try your
best not to make the #Rewritten Instruction# become
verbose, #Rewritten Instruction# can only add 10 to
20 words into #Given Instruction#. /* The Given In-
struction */
{Given Instruction}
/* Rewriting Requirement */
Please add one proper style constraint to the #Given
Instruction#. The style constraints include but are
not limited to: 1. Tone Requirement: The response
must adopt a specific tone. 2. Language Complexity
Control: The complexity of the language used must
meet specific standards. 3. Emotional Tone Expres-
sion: The response must convey a specific emotion.
4. Precision of Expression: The response should be
concise and direct, avoiding ambiguity or verbosity.
5. Rhetorical Devices: The response may employ
rhetorical devices to enhance its expressive power.

Table 9: The prompt template for constructing the Style
Soft Constraint.
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Prompt Template for Judger

You are a helpful assistant who reviews a debate
between two other assistants in evaluating the quality
of the outputs for a given instruction.
The two assistants, Assistant (a) and Assistant (b),
are given an instruction, Output (a) and Output (b).
They are asked to select the Output (a) or Output (b)
that is better for the given instruction. Output (a) and
Output (b) are generated by two different AI chatbots
respectively.
Assistant (a) and Assistant (b) have conflicting
evaluations. Your goal is to review their evaluations
and give your final decision on which output is better.
Here are some rules of the evaluation:
(1) You should prioritize evaluating whether the
output honestly/precisely/closely executes the
instruction, then consider its helpfulness, accuracy,
level of detail, harmlessness, etc.
(2) Outputs should NOT contain more/less than what
the instruction asks for, as such outputs do NOT
precisely execute the instruction.
(3) You should avoid any potential bias and your
judgment should be as objective as possible. For
example, the order in which the outputs were
presented should NOT affect your judgment, as
Output (a) and Output (b) are **equally likely** to
be the better.
Output your final verdict by strictly following this
format: "[[A]]" if Output (a) is better, "[[B]]" if
Output (b) is better, and "[[C]]" for a tie.
{Given instruction}
{question}
/* The Start of Output (a) */
{answer of assistant a}
/* The Start of Output (b) */
{answer of assistant b}

Table 10: The prompt template for Judger to rank the
responses.
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Model BaseModel
FollowBench (HSR) FollowBench (SSR)

L1 L2 L3 L4 L5 Avg L1 L2 L3 L4 L5 Avg

GPT4 (Achiam et al., 2023)∗ GPT 84.7 75.6 70.8 73.9 61.9 73.4 84.7 77.0 75.3 77.0 72.3 77.2

GPT3.5-turbo∗ GPT 80.3 68.0 68.6 61.1 53.2 66.2 80.3 71.2 74.2 69.6 67.1 72.5

Llama-3.1-70B-Instruct (Dubey et al., 2024) LLaMA3 75.2 69.6 63.1 65.9 57.1 66.2 74.7 71.2 69.3 64.3 57.2 67.3

Qwen2-72B-Instruct (Yang et al., 2024) Qwen 67.9 56.6 47.8 42.2 35.3 50.0 78.0 71.7 69.3 65.1 65.6 69.9

WizardLM-v1.2-13B (Xu et al., 2023)∗ LLaMA2 68.8 64.1 53.1 40.8 35.8 52.5 68.8 65.7 61.8 53.4 53.9 60.7

Conifer-13B (Sun et al., 2024) LLaMA2 60.5 53.6 48.4 40.7 31.7 47.0 60.5 58.3 58.2 53.9 51.1 56.4

Vicuna-13B-v1.5 (Chiang et al., 2023)∗ LLaMA2 71.2 60.2 49.6 40.6 34.0 51.1 71.2 64.8 59.9 54.5 53.6 60.8

Conifer-7B-SFT (Sun et al., 2024) Mistral 54.3 49.5 49.3 40.8 30.5 44.9 53.9 57.6 53.7 54.5 49.7 53.9

Conifer-7B-DPO (Sun et al., 2024) Mistral 60.3 53.6 48.0 47.1 41.0 50.0 60.3 55.7 55.7 55.9 53.3 56.2

Mistral-7B-Instruct-v0.3BASE Mistral 58.7 50.9 48.5 37.5 27.6 44.6 78.0 71.7 69.3 65.1 65.6 69.9

Mistral-7B-Instruct-v0.3SFT Mistral 58.7 52.4 42.5 37.2 35.6 45.3 82.8 70.5 72.2 66.9 71.0 72.7
Mistral-7B-Instruct-v0.3DPO+Judger+CL Mistral 61.2 52.5 47.5 38.2 33.9 46.7 78.0 71.7 69.3 65.1 65.6 69.9

Llama-3-8B-InstructBASE LLaMA3 67.8 54.5 46.6 50.6 39.1 51.7 80.9 72.1 67.3 70.1 67.1 71.5

Llama-3-8B-InstructSFT LLaMA3 69.3 59.0 50.1 44.8 32.0 51.0 82.6 75.0 69.7 71.1 62.0 72.1

Llama-3-8B-InstructDPO+Judger+CL LLaMA3 70.8 54.6 55.6 51.6 37.9 54.1 81.8 66.4 75.2 69.1 68.8 72.3

Table 11: Full results on FollowBench. We use boldface for the best results and underline for the second-best results
among the models ranging from 7B to 13B parameter sizes. ∗ indicates that the results are directly sourced from the
original benchmarks.
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Figure 6: Average HSR results for LLaMA models across various constraint categories in FollowBench.
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Figure 7: Average SSR results for LLaMA models across various constraint categories in FollowBench.
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