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Abstract

It is crucial for large language models (LLMs)
to follow instructions that involve multiple
constraints. However, many soft constraints
are semantically related and difficult to verify
through automated methods. These constraints
remain a significant challenge for LLMs. To
enhance the ability of LLMs to follow soft con-
straints, we initially design a pipeline to obtain
high-quality outputs automatically. Addition-
ally, to fully utilize the acquired data, we intro-
duce a progressive training paradigm based on
curriculum learning. We experimentally evalu-
ate the effectiveness of our methods in improv-
ing LLMs’ soft constraint following ability and
analyze the factors driving the improvements.
To support further research, we will release the
code and data associated with this study.

1 Introduction

In the application of LLMs, generating responses
that accurately satisfy user requests, known as in-
struction following ability, is of paramount impor-
tance (Lou et al., 2024). The capability of LLMs
plays a critical role in aligning LLMs with human
preferences, ensuring the reliability and helpful-
ness of the model’s outputs (Wang et al., 2023b;
Song et al., 2024).

It is a significant challenge for LLMs to fol-
low instructions with multiple constraints (Jiang
et al., 2023b; Qin et al., 2024). Existing work on
improving the ability of LLMs to follow multi-
ple constraints mainly focuses on hard constraints,
which are typically based on structured data or
fixed-format requirements (He et al., 2024a). These
constraints can be explicitly expressed as specific
rules and directly verified through programming
methods (Zhou et al., 2023a). For example, Python
can parse JSON to verify hard constraints. How-
ever, hard constraints fail to adequately capture the
complexity in real-world scenarios shown in Fig. 1.
Instructions in real-world applications often con-
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H Write me some advice on how to stay healthy. The tone should be encouraging.

QEnd with the statement: a good day. All letters in the answer are lowercase. 8

5 And the situation is you're a personal coach with the goal of helping an office
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Figure 1: In real-world scenarios, user instructions con-
tain many soft constraints, posing challenges for LLMs.
H and S denote hard constraints and soft constraints,
respectively.

tain semantic-level limitations, which can be cate-
gorized as soft constraints. Soft constraints include
restrictions related to content (Liang et al., 2024;
Zhang et al., 2023), specific backgrounds (Shana-
han et al., 2023; Liu et al., 2023), and stylistic
objectives (Sigurgeirsson and King, 2024; Mukher-
jee et al., 2024). They are both widespread and
critically important. A variety of tasks involve soft
constraints, such as open-ended question answer-
ing (Zhuang et al., 2023), role-playing (Shanahan
et al., 2023), and suggestion generation (Baek et al.,
2024). As shown in Fig. 1, following soft con-
straints is challenging for LLMs.

However, following soft constraints is a non-
trivial task. First, existing research on soft
constraints in LLMs mainly focuses on evalua-
tion (Chen et al., 2024a; Qin et al., 2024) rather
than improving their following. Also, as shown
in Fig. 1, soft constraints are ambiguous and chal-
lenging for LLMs in real applications (Wang et al.,
2024). They depend on subjective interpretations
and specific contexts. Unlike hard constraints,
they cannot be assessed with fixed rules or scripts.
Soft constraint evaluation often relies on prompt-
ing LLMs, which involves various biases (Wang
et al., 2023a). The inherent difficulty makes it more
challenging for LLMs to generalize from hard to
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Figure 2: The framework of our study. We first design a pipeline that automates the construction of datasets with
high-quality outputs for soft constraint following. Then, we propose a method to utilize positive and negative
samples generated during the pipeline. Finally, we introduce a new training paradigm that leverages curriculum
learning to enhance LLMs’ soft constraint following ability. CL denotes curriculum Learning.

soft constraints (He et al., 2024a). Moreover, many
studies utilize advanced models, such as GPT-4, to
generate responses (Xu et al., 2023; Chiang et al.,
2023). Soft constraints also present significant chal-
lenges for these advanced models. On the Fol-
lowBench benchmark (Jiang et al., 2023b), GPT-
4 demonstrates a hard satisfaction rate of merely
74.4%, making the assurance of high-quality train-
ing data difficult. However, many studies show
that the quality of training data is more important
than its quantity (Zhou et al., 2024; Li et al., 2023a).
Therefore, designing a more effective data construc-
tion pipeline is crucial.

In this work, we systematically investigate strate-
gies to enhance the ability of LLMs to follow in-
structions with soft constraints, with the framework
shown in Fig. 2. When more constraints are added
to the instruction, LLMs’ outputs may not fully
follow certain constraints. This inconsistency can
hurt the quality of data. To address this, we in-
corporate Judger to rank the outputs based on the
extent of adherence to the instructions to obtain
high-quality outputs. To fully utilize both positive
and negative outputs during the ranking process, we
leverage the preference learning algorithm Direct
Preference Optimization (DPO) (Rafailov et al.,
2024) as the training method. Subsequently, we

propose a novel training paradigm that constructs
a curriculum based on the number of constraints
in the instruction. In this framework, the model
progressively learns how to make preference judg-
ments, beginning with easier cases and moving
towards more challenging ones. Our methods im-
prove the model’s soft constraint following ability
while maintaining general capabilities.

Our contributions are summarized as follows: (1)
We design a pipeline that automates the construc-
tion of datasets with high-quality outputs for soft
constraint following. We also propose a method
that utilizes positive and negative samples gener-
ated during the pipeline. (2) We introduce a new
training paradigm that leverages curriculum learn-
ing to enhance LLMs’ soft constraint following
ability. (3) We conduct extensive experiments to
validate the effectiveness of our methods and ana-
lyze the reasons for the performance improvement.

2 Related Work

Soft Constraint Following Existing research on
soft constraint following largely concentrates on
evaluating the ability of LLMs to follow these con-
straints by constructing benchmarks (Jiang et al.,
2023b; Qin et al., 2024). These benchmarks typ-
ically include a variety of fine-grained constraint



types (Zhang et al., 2024), and the results from test-
ing LLMs on these benchmarks suggest that LLMs
often struggle to follow these constraints (He et al.,
2024b). Despite this, there is a notable paucity of
research aimed at improving LLMs’ capacity to
comply with soft constraints, especially for soft
constraints. Soft constraints can be categorized
into several types: (1) Content soft constraints in-
volve restrictions on the scope or depth of the re-
sponses (Zhou et al., 2023b; Ashok and Poczos,
2024). (2) Situation soft constraints refer to the
background limitations of the responses (Wang
et al., 2023c¢; Shao et al., 2023). (3) Style soft con-
straints limit the manner or tone of expressions (Tao
et al., 2024; Pu et al., 2024). Some works directly
utilize responses generated by GPT-4 to construct
datasets (Sun et al., 2024; Peng et al., 2023). How-
ever, the responses to instructions with soft con-
straints are often unreliable. Different from these,
our study focuses on how to construct datasets with
high-quality outputs for improving LLMs’ soft con-
straint following ability.

Curriculum Learning Curriculum learning is
a training strategy that mimics the learning pro-
cess of humans by advancing from simpler to
more complex tasks (Soviany et al., 2022; Wang
et al., 2021). Current research on LLMs’ cur-
riculum learning can be broadly categorized into
two primary paradigms: (1) Learning Based on
Data Difficulty: This approach involves construct-
ing curricula by ranking data according to vari-
ous evaluation metrics. Metrics such as sequence
length (Pouransari et al., 2024), perplexity (Liu
et al., 2024) have been employed to guide this pro-
cess. LLMs can also construct curricula through
advanced planning (Ryu et al., 2024). (2) Learn-
ing Based on Task Difficulty: This paradigm fo-
cuses on modifying the training tasks (Chen et al.,
2024b) or adjusting the training objectives (Zhao
et al., 2024b; Lee et al., 2024). However, our work
organizes the curriculum based on the number of
constraints in the instructions.

3 Method

In this section, we provide a detailed explanation of
how to obtain high-quality data and how to leverage
this data by establishing a new training paradigm.
The pipeline is shown in Fig. 2.

3.1 High-quality Data Construction

We first synthesize multi-constraint instructions
and then utilize Judger to rank the LLM’s outputs
of these instructions, enhancing the reliability of
the dataset.

3.1.1 Multi-Constraint Instruction Synthesis

To generate complex instructions, we initially
gather seed instructions from three commonly uti-
lized datasets. Next, these instructions are rewritten
to integrate multiple constraints.

We begin by collecting seed instructions from
Open Assistant (Kopf et al., 2024), which includes
instructions generated by users interacting with
chatbots. We select rank 0 instructions and those
from the first turn of conversations. Next, we gather
175 manually created instructions from the Self-
Instruct (Wang et al., 2022a). The third source is
Super-Natural (Wang et al., 2022b), from which
we select 318 instructions after filtering out tasks
with simple outputs. These three sources together
provide a total of 1,500 seed instructions, offering
a broad range of coverage across diverse tasks.

Subsequently, we construct soft constraints and
integrate them into the seed instructions. Initially,
we categorize the soft constraints into three types:
content, situation, and style. Using an advanced
model, we generate soft constraints based on these
categories. Next, we randomly select 3 to 5 con-
straints for each seed instruction. For the soft con-
straints, GPT-4 is employed to generate correspond-
ing descriptions. While descriptions are selected
from a predefined list for the hard ones. Finally,
we add only one constraint to the instruction at a
time, ensuring that each instruction reflects a dif-
ferent level of difficulty. This approach contrasts
with previous methods, which typically add all con-
straints at once, often making it challenging for
the model to learn how to follow each constraint
independently (He et al., 2024a). The construction
process is detailed in the Appx. A.1.

Specifically, for seed instruction Iy, we itera-
tively add constraints to form the instruction set
I ={L,I,...,I,}, where n ranges from 3 to 5.
I, represents the instruction with n constraints.

3.1.2 Judger for Ranking Responses

Existing works in dataset construction rely on ad-
vanced models to directly generate the outputs (Sun
et al., 2024). However, even GPT-4 is struggling
to follow the instructions with complex constraints,
especially when the instructions contain soft con-



straints which are more intractable (Jiang et al.,
2023b; Qin et al., 2024). To address this, we design
a pipeline to construct datasets with high-quality
outputs for soft constraints following. This pipeline
consists of two steps: progressively construction
and Judger reordering.

When all constraints are added into the instruc-
tion at once, it is difficult for large models to ef-
fectively follow each constraint individually. This
approach is not conducive to improve the model’s
constraint following ability. To address this, we
employ a method of incrementally adding one con-
straint at a time and performing step-by-step rea-
soning to obtain the dataset. Specifically, for each
multi-constraint instruction [, we use GPT-4 to
generate the corresponding output O = LLM(1}).
After performing inference on all the instructions
in the instruction set I, we obtain the output set
O ={01,09,...,0,}, where each response cor-
responds to a multi-constraint instruction.

Given that LLMs may not follow all constraints
when responding to multi-constraint instructions,
we introduce Judger to rank the outputs based on
their following of the instructions, thereby obtain-
ing high-quality outputs . Specifically, when a new
constraint is added into the instruction I _; to form
I, , the model’s response O may not fully follow
some constraints in /. To ensure high-quality out-
puts, we use Judger to rank the new output O with
the previous winner output O,,, , that more fol-
lows I to determine which one better follows
the current instruction I:

Ouw,, O, = Judger(Iy, Oy, _,,0r), 1<k<n.

In each ranking, we can obtain winner output
O.,, which follows the current instruction I, bet-
ter and the loser output O;, which follows less.
Finally, after completing all n rankings, we ob-
tain the winner set Oy, = {Oyy,, Ows, - -, Ow, }»
which consists of the outputs that most follow their
respective instructions, and the loser set O; =
{0y,01,,...,0;, }, which contains the outputs
that less follow.

The prompt used and cases are detailed in the
Appx. A.2.

3.2 Curriculum-based Training Paradigm

In §3.1.2, we use Judger to obtain the positive
set O,, and the negative set O;. Supervised Fine-
Tuning (SFT) (Ouyang et al., 2022) only uses the
positive samples to train the model. However, the

negative samples also contain valuable supervision
information. Hence, we adopt reinforcement learn-
ing (Rafailov et al., 2024) to leverage both the pos-
itive and negative sets. Moreover, we develop a
training paradigm based on curriculum learning to
enhance the training process.

Given the positive set and the negative set, we
can construct the training dataset with k triplets:
(U1, Ouwy» O, 2, Oy Opy), ooy (g, Oy, Opy).
In each triplet, the output from O,, is preferred
than the output from O;. To model this preference
relationship, we apply Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2024) as the training
method.

Additionally, in the DPO training process, the
model is required to learn preference judgments.
As the number of constraints in the instruction in-
creases, the complexity of judgments also rises. In-
spired by curriculum learning (Bengio et al., 2009),
we propose a curriculum learning training approach
for preference learning, where the training dataset
is organized in ascending order based on the num-
ber of constraints in the instructions.

Specifically, for the k-th curriculum, the train-
ing dataset Dy, contains the triplet (I, O, , Oy, ).
The constraint set C}, contains & constraints in [j:
Dy, = {(Ix,Ou,,0y,) | |Cx| = k}. The com-
plete training dataset D is obtained by combining
training datasets for all curriculums in sequence:
D=DiUDyUD3UD4U Ds.

Based on the preference data and the curriculum-
based training paradigm, the loss function of DPO
training can be defined as follows:

7o (Owy, 1)

Lppo (75 mrer) = — E(1, 04, ,0; )~D |logo | Blog
* Uk Owy,» lk) Wref(owkuk)

79Oy k) )}
s Tret (Ot 1)

where g represents the current model, and 7y.s
denotes the reference model.

To ensure training stability (Xu et al., 2024), we
add the SFT loss into the DPO loss function:

—pBlo.

Lppro = Lppo + Lspr

where SFT loss is as follows:

Lsrr(mo) = —E(1,,0,,)~D108 T(Ow, | I1)]

3.3 Dataset Statistics
3.3.1 Diversity

To show the diversity of our dataset, we analyze
the verb-noun structure of data. As shown in Fig. 3,



FollowBench (HSR) IFEval
Model BaseModel

L2 L3 L4 L5 Avg [SIP [SII [L]JP [LJI Avg
GPT4 (Achiam et al., 2023)* GPT 847 756 70.8 739 619 734 769 836 793 854 813
GPT3.5-turbo* GPT 80.3 68.0 68.6 61.1 532 662 - - - - -
Llama-3.1-70B-Instruct (Dubey et al., 2024) LLaMA3 752 69.6 63.1 659 57.1 662 82.1 87.8 854 90.0 863
Qwen2-72B-Instruct (Yang et al., 2024) Qwen 679 56.6 478 422 353 500 77.1 844 804 869 822
WizardLM-v1.2-13B (Xu et al., 2023)* LLaMA2 68.8 64.1 53.1 408 358 525 436 544 484 59.1 514
Conifer-13B (Sun et al., 2024) LLaMA2 60.5 53.6 484 407 31.7 470 429 530 475 574 502
Vicuna-13B-v1.5 (Chiang et al., 2023)* LLaMA2 712 60.2 49.6 406 340 51.1 431 536 466 580 503
Conifer-7B-SFT (Sun et al., 2024) Mistral 543 495 493 408 305 449 458 57.1 508 62.0 539
Conifer-7B-DPO (Sun et al., 2024) Mistral 603 53.6 48.0 47.1 410 500 481 59.1 523 633 557
Mistral-7B-Instruct-v0.3pasg Mistral 58.7 509 485 375 276 446 470 580 52.1 627 550
Mistral-7B-Instruct-v0.3spr Mistral 58.7 524 425 372 356 453 568 678 606 713 64.1
Mistral-7B-Instruct-v0.3ppo-Judger+CL Mistral 61.2 525 475 382 339 467 514 628 59.0 692 60.6
Llama-3-8B-Instructpasg LLaMA3 678 545 466 506 39.1 517 675 761 72.8 809 743
Llama-3-8B-Instructspr LLaMA3 693 59.0 50.1 448 320 510 688 766 712 787 738
Llama-3-8B-Instructppos+Jjudger+CL LLaMA3 70.8 546 556 516 379 541 725 80.1 78.0 845 788

Table 1: The overall performance on FollowBench and IFEval. We use boldface for the best results and underline
for the second-best results among the models ranging from 7B to 13B parameter sizes. * indicates that the results

are directly sourced from the original benchmarks.

Data Qualit
Method ata Quality

Nums. Cons. Pair. Open.

Conifer (Sun et al., 2024) 13600 H/S  x v

Suri (Pham et al., 2024) 10000 S X v
AutoIF (Dong et al., 2024) - H v X
Complex to Simple (He et al., 2024a) 1467 H v v
Ours 17043 H/S V v

Table 2: Detailed comparison of relevant works. Ours
represents our dataset construction approach. "Nums.’,
’Cons.’, ’Pair.’, and ’Open.” denote the number of sam-
ples, constraint types, whether to perform pairwise com-
parison, and whether the data is open-source.

we illustrate the top 15 verbs in the inner circle
and their 3 most frequent direct noun objects in the
outer circle. This structure visually highlights the
variety of actions and their corresponding contexts
present in the instructions. The result reveals the
instructions encompass a diverse set of linguistic
patterns. This diversity of our dataset is crucial for
enhancing the model’s ability to generalize across
various types of constraints.

3.3.2 Comparison with Other Works

As shown in Tab. 2, we compare our dataset con-
struction approach with other related works. In
terms of size, our dataset contains more samples
compared to others which are open-source. From
the perspective of constraint categories, our dataset
includes both soft and hard constraints. Compared
to datasets that only contain soft or hard constraints,
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Figure 3: Verb-noun structure of multi-constraint in-
structions.

this broader scope better facilitates the model’s abil-
ity to learn complex constraints. Regarding pair-
wise com- parison, we use Judger for comparisons
of the outputs, which improves the quality of the
dataset.

4 Experiments

We conduct extensive experiments to evaluate the
effectiveness of our proposed method, focusing on
soft constraint following ability and generalization
performance.

4.1 Experiment Setup

Models. @ We conduct experiments on two
widely recognized base LLMs, Llama-3-8B-
Instruct (Dubey et al., 2024) and Mistral-7B-
Instruct-v0.3 (Jiang et al., 2023a), both of which



demonstrate exceptional performance among mod-
els within the parameter range of 7B to 8B. Within
our experimental framework (§3), we compare
three approaches: (1) BASE directly utilizes the
original model to generate outputs. (2) SFT ap-
plies supervised fine-tuning on LL.Ms using con-
structed data (§3.1.1). (3) DPO+Judger+CL uti-
lizes Judger to produce high-quality training data,
in accordance with training the model using DPO
based on curriculum learning.(§3.1.2,§3.2).

For baseline comparisons, we select a range of

open-source and proprietary LLMs. Among the
proprietary models, we include GPT-4 (Achiam
et al., 2023) and GPT-3.5-turbo. Additionally, we
compare our approach with several open-source
LLMs, including models specifically trained to im-
prove general instruction-following abilities, such
as Vicuna-13B-v1.5 (Chiang et al., 2023). We also
include models focused on enhancing the ability
to follow soft instructions, such as WizardLM-
v1.2-13B (Xu et al., 2023) and the Conifer se-
ries (Sun et al., 2024). We also compare our
models against two 70B-sized models, Llama-3.1-
70B-Instruct (Dubey et al., 2024) and Qwen2-72B-
Instruct (Yang et al., 2024), which are among the
most powerful models.
Evaluation Benchmarks. IFEval (Zhou et al.,
2023a) is a benchmark designed to assess the ad-
herence to hard constraints. It defines 25 distinct
types of verifiable instructions and generates ap-
proximately 500 prompts, each containing between
1 and 3 constraints. These hard constraints are ex-
plicit and unambiguous, enabling programmatic
validation of compliance. FollowBench (Jiang
et al., 2023b), is a benchmark that evaluates the
ability of models to follow both soft and hard con-
straints across multiple levels of granularity, of-
fering a comprehensive assessment of instruction-
following capabilities.

4.2 Main Results

As shown in Tab. 1, our method significantly en-
hances the model’s ability to follow soft constraints,
even outperforming the capabilities of larger mod-
els. Specifically, when the models are trained using
the DPO+Judger+CL method, a significant perfor-
mance improvement is observed across both bench-
marks, particularly on IFEval. The model’s perfor-
mance improvement is particularly significant on
complex tasks, especially at the L4-L5 difficulty
levels in FollowBench. Specifically, Mistral-7B-
Instruct-v0.3 shows an average improvement of

Model BaseModel LC Win Rate
GPT-4-0613* GPT 30.2
GPT-3.5-Turbo-0613* GPT 224
Llama-3.1-70B-Instruct-Turbo* LLaMA3 39.3
WizardLM-13B-v1.2* LLaMA2 14.5
Vicuna-13B-v1.5* LLaMA2 10.5
Conifer-7B-DPO* Mistral 17.1
Llama-3-8B-Instructgasg LLaMA3 21.6
Llama-3-8B-Instructppo+judger+cr. LLaMA3 22.0

Table 3: Evaluation on the AlpacaEval2.0 for general
LLM instruction-following ability. * indicates that the
results are directly sourced from the original leader-
boards.

3.5% at the L4-LS5 difficulty levels.

In comparison to models designed to enhance the
ability to follow complex instructions, our model
demonstrates superior performance on both bench-
marks. Specifically, although the performance of
Mistral-7B-Instruct-v0.3 on Followench is lower
than Conifer-7B-SFT, its performance surpasses
the Conifer model on both benchmarks after train-
ing. Moreover, our training paradigm effectively
enhances the instruction-following ability of LLMs,
even when working with models of smaller param-
eter sizes. Specifically, compared with models in
the 13B category, the performance of Llama-3-8B-
Instruct is initially weaker than that of WizardLM-
v1.2-13B on FollowBench. But after training, its
performance surpasses the 13B model on both
benchmarks.

After supervised fine-tuning on the constructed
instruction-response pairs, the performance of
the Llama-3-8B-Instruct model decreases on both
benchmarks. This decline can be attributed to the
fact that the Llama-3-8B-Instruct model incorpo-
rates various specialized training techniques during
its initial training.

4.3 Generalization Experiments

Besides the ability to follow soft constraints, we
also assess the model’s general instruction follow-
ing abilities on AlpacaEval (Li et al., 2023b). To
avoid the length bias that AlpacaEval may corre-
late with response lengths, we use the AlpacaEval
2.0 (Zhao et al., 2024a) to evaluate the general
instruction following.

In our evaluation process, we first perform su-
pervised fine-tuning on the model, followed by
DPO training using the proposed training paradigm.



FollowBench (HSR) IFEval
Model
L1-L3 L4-L5 Avg Avg
BASE 56.3 44.9 51.7 74.3
SFT 59.5 38.4 51.0 738
SFT+Judger 57.3 44.8 52.3 75.4
DPO+Judger 58.8 44.6 53.1 80.7

DPO+Judger+CL 60.3 44.8 54.1 78.8

Table 4: Ablation study results on FollowBench and
IFEval.

Specifically, we use precomputed outputs of GPT-
4 Turbo on AlpacaEval as reference outputs and
employ GPT-40 as evaluators. As shown in the
Tab. 3, our method leads to a significant improve-
ment in the model’s general instruction-following
ability, outperforming both models of comparable
parameter scales and even larger models.

4.4 Ablation Studies

In this section, we conduct ablation experiments to
assess the impact of Judger, as described in §3.1.2,
and the curriculum-based training paradigm, out-
lined in §3.2, on the model’s ability to follow in-
structions. The Llama-3-8B-Instruct model is used
as the base model, and evaluations are conducted
on the IFEval and FollowBench benchmarks.

As shown in Tab. 4, using the constructed data
directly for SFT without Judger adjustments under-
performs the full method on both benchmarks, even
resulting in a slight performance decline relative
to the base model. It is evident that performance
decreases significantly at the L4-L5 levels of Fol-
lowBench. This observation suggests that Judger
plays a critical role in ranking responses to more
challenging instructions. In contrast, the model
trained with DPO outperforms the SFT baseline,
especially on IFEval, further emphasizing the ef-
fectiveness of the DPO training approach over SFT
in constraint following tasks. However, it still falls
short of the performance of the full method.

Additionally, the results indicate that randomly
organizing DPO training data leads to a decrease
in performance. In contrast, our curriculum-based
approach where training data is organized based
on the number of constraints in the instructions
learning leads to a significant improvement in the
model’s ability to follow instructions, particularly
those at higher difficulty levels in L4-L5 levels of
FollowBench. These findings strongly validate the
necessity of Judger for constructing high-quality

== DPO-+judger+CL
BASE

801
701
60 -

50+

HSR

40

301

20

10

example mixed content situation format style

Figure 4: Results across various constraint categories in
FollowBench.

Ranking Method  Kendall Tau Distance
0.847
0.862

Position Consistency
0.743
0.794

w/o Judger

w/ Judger

Table 5: Results on Judger’s effectiveness in aligning
data with human preferences

DPO training data and the proposed curriculum
learning paradigm for enhancing the model’s ability
to follow complex instructions.

4.5 Analysis
4.5.1 Category Analysis

In this section, we analyze the model’s perfor-
mance across different types of constraints. Specifi-
cally, we compare the performance of Llama-3-8B-
Instructgasg and Llama-3-8B-Instructppo+judger+CL
on FollowBench. FollowBench encompasses five
different constraint categories: Content, Situation,
Style, Format, and Example. Each category con-
sists of instructions from various tasks, incorporat-
ing both soft and hard constraints. Additionally,
FollowBench defines Mixed Constraints as a com-
position of multiple constraint categories, simulat-
ing complex real-world scenarios. As shown in
Fig. 4, the model’s performance improves in Style
with soft constraints, and Example with hard con-
straints. For categories that contain both soft and
hard constraints, the model’s performance slightly
decreases. However, the trained model demon-
strates a significant improvement over the base
model on Mixed Constraints, suggesting a notable
enhancement in the model’s ability to handle com-
plex constraints in real-world scenarios.

4.5.2 The Role of Judger

In this section, we investigate the factors contribut-
ing to the effectiveness of the Judger in construct-
ing high-quality outputs. Judger ranks the outputs
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Figure 5: Results of the model on FollowBench and
IFEval across different training stages in curriculum
learning

to better alignment with human preferences. To
examine the underlying effectiveness of the Judger,
we conduct an experiment designed to evaluate
whether it facilitates this alignment.

Specifically, we randomly select 100 output sets
from the construction process in §3.1.1, each con-
taining 3 to 5 outputs. These outputs are manually
annotated with the correct rankings, which serve as
the reference standard for comparison. We evaluate
the rankings in three distinct scenarios: (1) sequen-
tial rankings, (2) rankings adjusted by Judger, and
(3) rankings annotated by human experts.

To assess the similarity between these rankings,
we employ two complementary metrics. The first
is the Kendall Tau distance, a statistical measure
that quantifies the number of discordant pairs be-
tween two sequences, thereby reflecting the extent
of their relative order differences. In addition, we
introduce the position consistency metric, which
quantifies the proportion of elements that occupy
the same relative positions across both rankings.
This metric provides a direct evaluation of the align-
ment between rankings at each specific position.
The results, presented in Tab. 5, demonstrate that
the rankings adjusted by the Judger exhibit greater
alignment with human-annotated rankings when
compared to sequential rankings. This finding sug-
gests that Judger enhances the quality of the train-
ing data by improving its consistency with human
judgments, thus making the preference data more
reliable for training.

4.5.3 The Role of Curriculum Learning

In this section, we analyze the effects of the
curriculum-based training paradigm at different
stages of the training process. Specifically, we
examine the performance of Llama-3-8B-Instruct
with the full method across three training stages,
each corresponding to a different level of curricu-
lum learning difficulty. StageO represents infer-
ence conducted using the base model, while Stage3
and Stage5 represent the stages where the model

completes the curriculum with 3 constraints and 5
constraints, respectively.

As shown in Fig. 5, our proposed training
paradigm progressively enhances the model’s in-
struction following capability across various train-
ing stages. Specifically, after three stages of cur-
riculum learning, the model trained in Stage3
demonstrates superior performance compared to
the base model across tasks L1-L3. In contrast, the
model’s performance at L4-L5 in Stage3 is lower
than Stage(. The possible reason is that Stage3
may not have adequately prepared for the complex-
ity of L4-L5. The gap between these difficulty
levels could have led to the initial performance
drop. Subsequentially, when the model progresses
to Stage5, after learning all courses, performance
improves significantly at these levels. The results
on IFEval further support this conclusion, showing
that Stage5 achieves the highest average perfor-
mance across all stages, with a notable peak at
[L]L In contrast, StageO demonstrates the lowest
average performance across all indicators. By ini-
tially focusing on simpler preference learning and
gradually progressing to more complex one, the
model’s ability to adhere to instructions improves
incrementally. This progression enables the model
to achieve better performance on increasingly diffi-
cult instruction following tasks.

5 Conclusion

In this paper, we systematically study how to im-
prove LLMs’ overall ability to follow instructions
with soft constraints. Initially, we design a pipeline
to automate the construction of datasets with high-
quality outputs for soft constraint following. Based
on the pipeline, we introduce a method utilizing
positive and negative samples generated during the
pipeline. Moreover, we propose a new training
paradigm that leverages curriculum learning to en-
hance LLMs’ constraint following ability. Our ex-
periments show that our methods enhance models’
ability to follow soft constraints effectively while
maintaining general capabilities.

6 Limitations

We discuss the limitations of our study as follows.
First, we improve the model’s ability to following
complex constraints, thereby improving its overall
instruction following capability. However, even
when the model’s output meets all the specified
constraints, it may still struggle to fully comply



with complex instructions due to limitations in rea-
soning capacity or the knowledge it masters. Addi-
tionally, we need to define constraints with greater
precision to more accurately capture the complexity
of real-world scenarios.
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A Details of Data

A.1 Details of Soft Constraints

The three categories of soft constraints that we
define are as follows:

* Soft Constraints in Content: Content soft
constraints refer to limitations associated with
the data itself. These constraints govern the
elements of information, the logical relation-
ships between them, and the scope of top-
ics that need to be covered in the response.
When multiple content soft constraints are
imposed, the model is required to not only
generate comprehensive and coherent content
but also ensure that the response aligns with
the specific logical definitions and boundaries
outlined by the instruction. This presents a
significant challenge, as it demands both the
integration of diverse elements and the main-
tenance of internal consistency. To address
this challenge, we define the following tasks
for constructing and applying content soft con-
straints:

1. Inclusion of Key Elements: The re-
sponse must incorporate the key points
specified in the instruction. This requires
the model to effectively extract and inte-
grate relevant information, ensuring that
the essential components are included
without omitting critical details.

. Topic Focus: The model must narrow
the discussion to a specific subtopic,
avoiding broad generalizations or irrele-
vant tangents. This task emphasizes the
importance of maintaining focus and pre-
cision within the scope defined by the
instruction.

. Strict Structure: The generated content
must adhere to a predefined structure,
such as being organized into coherent



paragraphs, utilizing subheadings, or fol-
lowing a specific format. This task im-
poses a higher demand on the model’s
ability to generate well-organized and
structured outputs, aligning with the re-
quired presentation structure.

We provide the prompt template for construct-
ing the Content Soft Constraint in Tab. 7.

Soft Constraints in Situation: Situation soft
constraints are those related to the context
within which the response is situated. These
constraints require the response to be adjusted
according to the context or assumptions speci-
fied in the instruction, ensuring that the con-
tent is appropriate to the given background.
Such adjustments may involve factors like a
particular time or location, the assumption of
a specific role, or drawing conclusions based
on certain premises. The response must dy-
namically adapt to situational changes and
maintain consistency with the contextual ele-
ments. The tasks defined by these constraints
can be categorized as follows:

1. Role-Playing: The response must be
framed from the perspective of a spe-
cific role or persona, ensuring alignment
with the contextual expectations associ-
ated with that role.

Decision Support: The response should

provide advice or recommendations that

support decision-making within a partic-
ular context.

. Storytelling: The response should con-
struct a narrative that is situated within
a defined time, location, or background,
maintaining coherence with the provided
contextual elements.

We provide the prompt template for construct-
ing the Situation Soft Constraint in Tab. 8.

Soft Constraints in Style: Style soft con-
straints pertain to the mode of expression, en-
compassing factors such as the formality or
informality of tone, the level of conciseness in
language, and the emotional tenor. These con-
straints require the response to adjust its style
in accordance with the given requirements,
adapting to different linguistic contexts. The
following task types are defined under this
category:

12

. Tone Requirement: The generated con-
tent must adopt a specific tone, such as
formal, humorous, or otherwise defined.

. Language Complexity Control: The
complexity of the language used must ad-
here to specific standards, such as main-
taining conciseness and clarity or em-
ploying academic expressions.

Emotional Expression: The response
must convey a particular emotion, such
as positivity or sadness, as dictated by
the context.

We provide the prompt template for construct-
ing the Style Soft Constraint in Tab. 9.

A.2 Details of Judger Ranking

We provide the prompt of Judger ranking in Tab. 10
and examples of how the Judger ranks responses in
Tab. 6.

B Details of Experiments

B.1 Training hyperparameters

We train Mistral-7B-Instruct-v0.3 and Llama-3-
8B-Instruct using LLaMA-Factory (Zheng et al.,
2024) on 4 NVIDIA A100 80GB GPUs, applying
LoRA (Hu et al., 2021) for efficient training. The
lora target is set to all, and both models use the
following training parameters, with training run-
ning for 3 epochs. The per device train batch size
is set to 1, and gradient accumulation steps is set
to 8. The warm-up ratio is set to 0.1. For SFT,
Mistral-7B-Instruct-v0.3 is trained with a learning
rate 5.0e-7 , while the learning rate of Llama-3-8B-
Instruct is 1.0e-4. For DPO, the learning rate is set
to 5.0e-6, with a beta value of 0.1.

B.2 Full Results on FollowBench

We present the full results on FollowBench in-
cludng the Hard Satisfaction Rate (HSR) metric
and Soft Satisfaction Rate (SSR) metric in Tab. 11.
As shown in Fig. 6 and Fig. 7, we also illustrate
the average HSR and SSR scores of Llama-3-8B-
Instruct on different constraint categories in Fol-
lowBench.



Judger Ranking Case

Instruction

Please write a brief description of quantum physics, ensuring that the terms
"wave function" and "superposition state" are included. Avoid using overly com-
plex formulas. Keep the response under 100 words.Ensure that this description
is easy to understand.

Model Reponses

Output (a) : Quantum physics studies the behavior of tiny particles. The *wave
function* describes a particle’s state, while *superposition state* means a
particle can exist in multiple states at once.

Output (b) : Quantum physics studies the behavior of tiny particles. In the
quantum world, particles don’t have fixed positions or states; they can be in
many states at once, and only take a definite state when measured.

Judger Output

[[A]]. From the perspective of constraint adherence, Output (a) is better. It
clearly includes both required terms, "wave function" and "superposition state,"
and explains them in a simple and concise way. The response stays under
100 words and avoids complex formulas, making it easy to understand.Output
(b), on the other hand, doesn’t mention "wave function" and its explanation of
"many states" is less clear, making it less aligned with the instruction.

Table 6: The case for Judger ranking outputs.
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Prompt Template for Content Soft Constraint

You are an Instruction Rewriting Expert. You need
to rewrite #Given Instruction# based on #Rewriting
Requirement#, in order to obtain a #Rewritten
Instruction#. Basically, #Rewritten Instruction#
should adhere to the following guidelines:

1. Your rewriting cannot omit the non-text parts such
as the table and code in #Given Instruction#.

2. #Rewritten Instruction# must be reasonable and
must be understood and responded to by humans.

3. You should try your best not to make the
#Rewritten Instruction# become verbose, #Rewritten
Instruction# can only add 10 to 20 words into #Given
Instruction#.

/* The Given Instruction */

{Given Instruction}

/* Rewriting Requirement */

Please add one proper content constraint to the
#Given Instruction#. The content constraints include
but are not limited to:

1. Information Inclusion: The response must include
the key points mentioned in the instruction.

2. Topic Focus: The discussion should be focused on
a specific subtopic, avoiding generalizations.

3. Strict Structure: The generated content must
follow a specific structure.

4. Clarity of Purpose: The response should clearly
align with the goal or purpose outlined in the
instruction.

5. Detail Depth: The response should offer sufficient
detail without oversimplifying.

Table 7: The prompt template for constructing the Con-

tent Soft Constraint.

Prompt Template for Situation Soft Constraint

You are an Instruction Rewriting Expert. You need
to rewrite #Given Instruction# based on #Rewriting
Requirement#, in order to obtain a #Rewritten In-
struction#. Basically, #Rewritten Instruction# should
adhere to the following guidelines: 1. Your rewriting
cannot omit the non-text parts such as the table and
code in #Given Instruction#. 2. #Rewritten Instruc-
tion# must be reasonable and must be understood and
responded to by humans. 3. You should try your
best not to make the #Rewritten Instruction# become
verbose, #Rewritten Instruction# can only add 10 to
20 words into #Given Instruction#. /* The Given In-
struction */

{Given Instruction}

/* Rewriting Requirement */

Please add one proper situation constraint to the
#Given Instruction#. The situation constraints in-
clude but are not limited to: 1.Specify a Role: Clearly
define the role or persona the response should adopt.
2.Decision Support: Offer advice that aids decision-
making within a particular context or situation. 3.In-
troduce a Conflict or Challenge: Present a specific
problem, conflict, or challenge that needs to be re-
solved. 4.Introduce Time Constraints: Set a time
limit for completing specific actions or tasks. 5.Con-
textual Storytelling: Require the response to include
a story or narrative based on a defined time, location,
or background.

Table 8: The prompt template for constructing the Situ-
ation Soft Constraint.

Prompt Template for Style Soft Constraint

You are an Instruction Rewriting Expert. You need
to rewrite #Given Instruction# based on #Rewriting
Requirement#, in order to obtain a #Rewritten In-
struction#. Basically, #Rewritten Instruction# should
adhere to the following guidelines: 1. Your rewriting
cannot omit the non-text parts such as the table and
code in #Given Instruction#. 2. #Rewritten Instruc-
tion# must be reasonable and must be understood and
responded to by humans. 3. You should try your
best not to make the #Rewritten Instruction# become
verbose, #Rewritten Instruction# can only add 10 to
20 words into #Given Instruction#. /* The Given In-
struction */

{Given Instruction}

/* Rewriting Requirement */

Please add one proper style constraint to the #Given
Instruction#. The style constraints include but are
not limited to: 1. Tone Requirement: The response
must adopt a specific tone. 2. Language Complexity
Control: The complexity of the language used must
meet specific standards. 3. Emotional Tone Expres-
sion: The response must convey a specific emotion.
4. Precision of Expression: The response should be
concise and direct, avoiding ambiguity or verbosity.
5. Rhetorical Devices: The response may employ
rhetorical devices to enhance its expressive power.

Table 9: The prompt template for constructing the Style
Soft Constraint.
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Prompt Template for Judger

You are a helpful assistant who reviews a debate
between two other assistants in evaluating the quality
of the outputs for a given instruction.

The two assistants, Assistant (a) and Assistant (b),
are given an instruction, Output (a) and Output (b).
They are asked to select the Output (a) or Output (b)
that is better for the given instruction. Output (a) and
Output (b) are generated by two different Al chatbots
respectively.

Assistant (a) and Assistant (b) have conflicting
evaluations. Your goal is to review their evaluations
and give your final decision on which output is better.
Here are some rules of the evaluation:

(1) You should prioritize evaluating whether the
output honestly/precisely/closely executes the
instruction, then consider its helpfulness, accuracy,
level of detail, harmlessness, etc.

(2) Outputs should NOT contain more/less than what
the instruction asks for, as such outputs do NOT
precisely execute the instruction.

(3) You should avoid any potential bias and your
judgment should be as objective as possible. For
example, the order in which the outputs were
presented should NOT affect your judgment, as
Output (a) and Output (b) are **equally likely** to
be the better.

Output your final verdict by strictly following this
format: "[[A]]" if Output (a) is better, "[[B]]" if
Output (b) is better, and "[[C]]" for a tie.

{Given instruction}

{question}

/* The Start of Output (a) */

{answer of assistant a}

/* The Start of Output (b) */

{answer of assistant b}

Table 10: The prompt template for Judger to rank the
responses.



FollowBench (HSR) FollowBench (SSR)

Model BaseModel

L1 L2 L3 L4 L5 Avg L1 L2 L3 L4 L5 Avg
GPT4 (Achiam et al., 2023)* GPT 847 1756 708 739 619 734 847 770 753 770 723 772
GPT3.5-turbo* GPT 80.3 68.0 686 61.1 532 662 803 712 742 69.6 67.1 725
Llama-3.1-70B-Instruct (Dubey et al., 2024) LLaMA3 752 69.6 63.1 659 57.1 662 747 712 693 643 572 673
Qwen2-72B-Instruct (Yang et al., 2024) Qwen 67.9 56.6 478 422 353 500 780 717 693 651 656 699
WizardLM-v1.2-13B (Xu et al., 2023)* LLaMA2 688 64.1 53.1 408 358 525 688 657 61.8 534 539 607
Conifer-13B (Sun et al., 2024) LLaMA2 60.5 536 484 40.7 317 470 60.5 583 582 539 51.1 564
Vicuna-13B-v1.5 (Chiang et al., 2023)* LLaMA2 712 60.2 49.6 406 340 51.1 712 648 599 545 53.6 60.8
Conifer-7B-SFT (Sun et al., 2024) Mistral 543 495 493 408 305 449 539 57.6 537 545 497 539
Conifer-7B-DPO (Sun et al., 2024) Mistral 60.3 536 480 471 41.0 500 603 557 557 559 533 562
Mistral-7B-Instruct-v0.3pasE Mistral 58.7 509 485 375 276 446 780 717 693 651 656 699
Mistral-7B-Instruct-v0.3spr Mistral 58.7 524 425 372 356 453 828 705 722 669 710 72.7
Mistral-7B-Instruct-v0.3ppo+Judger+CL Mistral 61.2 525 475 382 339 467 780 717 693 651 656 699
Llama-3-8B-Instructgasg LLaMA3 678 545 46.6 50.6 39.1 517 809 721 673 701 671 715
Llama-3-8B-Instructsgr LLaMA3 693 59.0 50.1 448 320 51.0 826 750 697 711 620 72.1
Llama-3-8B-Instructppo+Jjudger+CL LLaMA3 708 54.6 55.6 51.6 379 541 818 664 752 69.1 688 723

Table 11: Full results on FollowBench. We use boldface for the best results and underline for the second-best results
among the models ranging from 7B to 13B parameter sizes. * indicates that the results are directly sourced from the
original benchmarks.
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—— BASE
DPO+Jjudger+CL
—— Llama-3.1-70B-Instruct

LLaMA HSR

Figure 6: Average HSR results for LLaMA models across various constraint categories in FollowBench.

—— BASE
DPO+Jjudger+CL
—— Llama-3.1-70B-Instruct

LLaMA SSR

Figure 7: Average SSR results for LLaMA models across various constraint categories in FollowBench.
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