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Abstract
The application of loss reweighting in modern deep learning presents a nuanced picture. While it fails to alter the
terminal learning phase in overparameterized deep neural networks (DNNs) trained on high-dimensional datasets,
empirical evidence consistently shows it offers significant benefits early in training. To transparently demonstrate
and analyze this phenomenon, we introduce a small-scale model (SSM). This model is specifically designed
to abstract the inherent complexities of both the DNN architecture and the input data, while maintaining key
information about the structure of imbalance within its spectral components. On the one hand, the SSM reveals
how vanilla empirical risk minimization preferentially learns to distinguish majority classes over minorities early
in training, consequently delaying minority learning. In stark contrast, reweighting restores balanced learning
dynamics, enabling the simultaneous learning of features associated with both majorities and minorities.

1. Introduction
Classification of imbalanced datasets is a pervasive challenge in practical machine learning. Most real-world datasets
exhibit classes with varying numbers of examples, where classes with significantly fewer training examples are commonly
referred to as minorities. A classical and widely adopted approach to learning from imbalanced data is reweighting, which
modifies the loss function to effectively increase the contribution of minority class examples during training. Concretely,
instead of a learning model f that minimizes vanilla empirical risk L(f) = 1

n

∑
i∈[n] ℓ (f(xi), yi), over training examples

of feature-label pairs (xi, yi), loss reweighting minimizes

LRW(f) =
1

n

∑
i∈[n]

ωyi
· ℓ(f(xi), yi), (1)

where ωyi ∝ 1/π̂yi is typically set proportional to the inverse empirical frequency1 of the class yi ∈ [k] to which example
i ∈ [n] belongs. This approach has historically been popular not only due to its simplicity but also because of its statistical
optimality: in the population limit, LRW is known to optimize for balanced accuracy, a metric that weighs class-conditional
accuracies equally rather than by their class frequencies (see Appendix A.1 for further background).

However, modern machine learning practice, particularly with large-scale deep neural networks (DNNs) and complex
high-dimensional datasets, presents a more nuanced picture regarding the statistical optimality and practical efficacy of LRW.
On one hand, empirical observations (Byrd and Lipton, 2019) and subsequent theoretical justifications (Sagawa et al., 2020;
Kini et al., 2021; Xu et al., 2021) have demonstrated that LRW often fails to substantially improve the accuracy of minority
classes over vanilla L if model training continues for a large number of iterations until convergence (further details can
be found in Appendix A.2). On the other hand, empirical evidence also suggests that LRW can improve performance over
vanilla L when model training is subjected to early stopping (Byrd and Lipton, 2019; Xu et al., 2021) Complementary to
this, emphasizing the early-training benefits of reweighting, it has also been found that it can further boost the performance
of alternative modern loss functions specifically proposed for imbalanced classification (Cao et al., 2019; Menon et al.,
2020; Kini et al., 2021; Ye et al., 2020; Li et al., 2021).

1Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada. Correspondence to: Christos
Thrampoulidis <cthrampo@ece.ubc.ca>.

Accepted at Methods and Opportunities at Small Scale (MOSS), ICML 2025, Vancouver, Canada.
1In practice, it is common setting ωyi ∝ 1/π̂γ

yi where γ ∈ (0, 1) is tuned empirically, e.g., (Cao et al., 2019; Menon et al., 2020).
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Figure 1. Confusion matrix evolution during training on imbalanced MNIST (2 majorities, 2 minorities, imbalance ratio R = 10).
Top row: model trained with reweighted loss. Bottom row: model trained with standard loss. Under standard loss (bottom), the model
exhibits staged learning dynamics: it first learns to distinguish between majority classes (green boxes) by step 40, then separates majority
from minority classes (orange boxes) by step 150, and only later distinguishes between minority classes (pink boxes) at step 183. This
progression reflects the ordering of singular values in the simplex-encoded label (SEL) matrix. In contrast, under reweighted loss (top),
the model learns class distinctions more uniformly and earlier, with balanced improvements across majorities and minorities by step 70.
Our small-scale model replicates this behavior and attributes it to reweighting effectively flattens the spectrum of the labels.

To the best of our knowledge, a clear understanding of these early-training benefits of LRW is still lacking:

Why does reweighting help early in training? How does it modify the learning dynamics to favor minorities?

The inherent complexity of DNNs and of real-world datasets makes it challenging to directly answer these questions.

Our contribution is to identify and analyze a small-scale model (SSM) that transparently demonstrates the exact impact of
reweighting on training dynamics, specifically favoring minority classes.

In Section 2, as a motivating experiment, we compare how confusion matrices evolve when training without and with
reweighting on a real dataset. This reveals the strong and rapid impact of reweighting at early training stages; see Fig. 1. In
Section 3, we introduce our SSM with the explicit goal of explaining this empirically observed behavior. With necessary
abstractions of the data, the DNN, and the loss function, and appropriate interpretations of its spectral components, our
SSM effectively replicates the empirically observed DNN behaviors related to reweighting. Finally, Section 4 leverages the
inherent simplicity of the SSM to yield a theoretical understanding of these phenomena.

2. Motivating Experiment
We empirically illustrate the different learning dynamics induced by vanilla empirical risk minimization (ERM) and loss
reweighting in an imbalanced classification setting. We construct a 4-class subset of the MNIST dataset with synthetic
imbalance: two classes are designated as majorities with 100 training samples each, and the remaining two as minorities
with 10 samples each (imbalance ratio R = 10). We train a 3-layer convolutional neural network (CNN) with embedding
dimension d = 32 under both standard cross-entropy (CE) and reweighted CE, using the Adam optimizer with learning rate
10−3 and batch size 64. For reweighting, class weights are set inversely proportional to class frequencies.

Figure 1 vividly illustrates the early benefits of loss reweighting. By tracking the confusion matrix on the training data
across iterations, we observe the following distinct learning behaviors:
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1. Vanilla ERM exhibits a clear preferential learning order favoring majorities: The model first learns to correctly
classify majority classes, then gradually learns to distinguish minority classes from majority classes, and only in later
stages begins to differentiate between various minority classes themselves.

2. Reweighting eliminates this preferential ordering, enabling earlier classification of minorities.

See Appendix B for additional experiments, including the evolution of other training and test metrics (e.g., test-time
confusion matrices and balanced accuracy) during training.

3. Small-Scale Model
3.1. Model Description

Our model abstracts the inherent complexities of both the DNN architecture and the input data by using a model of
unconstrained features (UFM). It further combines this with a simplification on the loss from cross-entropy to squared-loss.
For concreteness, we further focus on a STEP-imbalanced setting.

Architecture/data abstraction. The UFM substitutes the training embeddings hθ(xi), which are typically high-dimensional
representations generated by the last activation layer of a DNN parameterized by θ, with directly trainable vectors hi ∈ Rd.
This abstraction simultaneously bypasses the network architecture (θ) and the input data (xi). The underlying rationale is
that overparameterized DNNs are sufficiently expressive to learn data embeddings that are primarily driven by minimizing
the training loss, rather than being strictly constrained by the specific architecture. The UFM has been widely adopted and
validated, e.g., (Yang et al., 2017; Mixon et al., 2020; Fang et al., 2021; Zhu et al., 2021; Zhao et al., 2024).
Formally, we abstract the DNN as a bilinear model where the logits L ∈ Rk×n are defined as L := WH . Here,
W ∈ Rk×d represents the network’s classifiers (analogous to the last-layer weights), and H ∈ Rd×n is a matrix comprising
the trainable embeddings hi, i ∈ [n] for each example. Both W and H are parameters to be optimized during training.

Loss simplification. Instead of the cross-entropy loss, we employ the squared-loss. This simplification is a common practice
in theoretical analyses, as squared-loss generally leads to more interpretable and analytically tractable learning dynamics.
Specifically, we use squared-loss with a simplex-encoded label (SEL) matrix Z := (Ik − 1

k1k1
⊤
k )Y . This matrix is

a centered version of the one-hot encoding matrix Y ∈ {0, 1}k×n of the data. The centering accounts for the property
of cross-entropy to yield centered logits, i.e., such that 1⊤

k L = 0 (Thrampoulidis et al., 2022). Viewed this way, the
simplification to squared-loss can alternatively be considered a first-order approximation of the cross-entropy loss.

Overparameterization. To model overparameterization, within our bilinear model, we set hidden dimension d ≥ k. This
ensures model parameters exist that can perfectly interpolate the labels, meaning L = Z.

STEP-Imbalance. For concreteness, we assume k classes, where the first k/2 are majorities and the remaining k/2 are
minorities. Within each group, all classes have an equal number of examples. The number of samples in majorities is R
times the number of samples in minorities, where R is the imbalance ratio. For simplicity and without compromising the
generality of our findings, we set k = 4 for our detailed discussion. See Fig. 2(a) the 1-hot label matrix Y .
Remark 3.1. We view this model as the minimal canonical model capable of transparently justifying how reweighting
balances feature learning rates during training. It is minimal because it essentially describes the dynamics of a two-layer
linear neural network with standard basis inputs. The model is canonical in that it avoids imposing explicit assumptions on
the geometry of the abstracted input data—unlike a simpler linear model would necessitate. Instead, its abstraction is based
on assuming an overparameterized and sufficiently expressive architecture.

3.2. A key Spectral Interpretation

The SSM isolates the encoding of the imbalanced data structure within the spectral components of the SEL matrix, Z, in a
way that directly reveals how the model prioritizes learning about majorities over minorities. Let Z = UΣV ⊤ be the SVD
of the SEL matrix. It can be formally shown that Σ has k − 1 non-zero singular values, which are categorized into three
distinct levels such that the largest and smallest values each have a multiplicity of k/2− 1, while the middle value has a
multiplicity of one. These three distinct levels correspond to three groups of principal components each associated with
features that the model must separately learn to distinguish: (i) majority classes from each other (maj-maj feature), (ii)
majority classes from minority classes (maj-min feature), and (iii) minority classes from each other (min-min feature).
These features are directly encoded as singular vectors of Z.

For illustration, consider the case k = 4. Observe in Fig. 2(b) the left singular matrix U , where each column represents one
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Figure 2. Spectral analysis of the SSM with 4-class STEP-imbalance (imbalance ratio R = 10). (a) One-hot label matrix Y for
two majority(top) and two minority(bottom) classes. (b) Left singular vectors U of the SEL matrix Z = (I − 1

k
11⊤)Y separate

majority-majority (green), majority-minority (orange), and minority-minority (pink) distinctions. (c) Singular values show the ordering
of semantic importance: majority features dominate. (d) Under standard training, features are learned sequentially. (e) Reweighting
equalizes learning speeds, flattening the spectrum and enabling simultaneous semantics acquisition. (Blue is random and orange is spectral
initialization.)

of these features. We can interpret the sign of each of the k entries in a singular vector uj as an indicator of how strongly the
respective class is associated with that principal component: if uj [c] > 0 or uj [c] < 0, it signifies that class c aligns with or
opposes this component, respectively; if uj [c] = 0, the class is neutral to that component. We thus find three principal
components, corresponding to distinct features, ordered by the magnitude of their respective singular values:

1. maj-maj: The first principal component (j = 1) is neutral to minorities and distinguishes between the two majorities
(indicated by the opposing signs of u1[1] and u1[2]).

2. maj-min: The second principal component (j = 2) distinguishes between majorities and the minorities (indicated by
the opposing signs of u2[1],u2[2] and u2[3],u2[4]).

3. min-min: The last principal component (j = 3) is neutral to majorities and distinguishes between the two minorities
(indicated by the opposing signs of u3[3] and u3[4]).

3.3. Reweighting Changes the Learning Dynamics Eliminating Preferential Learning Against Minorities

We now leverage our SSM to illuminate how reweighting fundamentally alters the learning dynamics. Specifically, we
compare the training dynamics under gradient descent for vanilla ERM versus loss reweighting:

L(W ,H) :=
1

n

∑
i∈[n]

∥zi −Whi∥2 versus LRW(W ,H) :=
1

n

∑
i∈[n]

ωyi
· ∥zi −Whi∥2

where the weights ωyi
are set inversely proportional to the frequency of the respective class yi ∈ [k]. Concretely, if the class

yi of the i-th example is a majority, then ωyi ∝
√

(R+ 1)V/(2R), otherwise, for a minority class, ωyi ∝
√
(R+ 1)V/2.2

For training, we use gradient descent with small random initialization and small step-size.

Fig. 2(d) and 2(e) tracks the rates at which the singular values of the logits Lt reach their terminal values in both scenarios
(vanilla ERM vs. reweighting) across training iterations t. We observe the following about vanilla ERM versus reweighting:

1. Terminal Phase Equivalence: Due to overparameterization (d ≥ k), there is no difference in the terminal phase. In
both cases, the singular values of Lt converge to the singular values of the SEL matrix Z.

2. Preferential learning in vanilla ERM hurts minorities: With vanilla ERM (L), the model learns the three singular
values in a highly preferential order, with those corresponding to the larger singular values of Z being learned first.

3. Reweighting restores balanced Learning: In contrast, loss reweighting (LRW) eliminates this preferential ordering,
leading to all singular values being learned at approximately equal rates.

Recalling that singular values directly correspond to distinct features, our SSM thus captures the early training benefit
of reweighting: While vanilla ERM L learns maj-maj, maj-min, min-min features in that specific order (thereby
favoring majority learning and delaying minority learning until the end of training), reweighted ERM LRW learns all features

2Note that this is equivalent to using weights ωyi ∝ 1/π̂γ
yi with γ = 0.5. This particular choice of γ is motivated by our theoretical

analysis in Section 4 and, interestingly, aligns with empirical findings from prior work (Cao et al., 2019; Menon et al., 2020; Behnia
et al., 2023; Kini et al., 2021; Ye et al., 2020) who report γ = 1/2 as a robust choice in practice.
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at the same rate, thus enabling accurate classification of minorities much earlier. Note the direct one-to-one correspondence
of these behaviors to what we observed empirically in the DNN experiment presented in Section 2.

4. Analysis
By identifying a connection of the square-loss UFM with the framework of Saxe et al. (2013), we have closed-form dynamics
for gradient flow on L with appropriate spectral initialization (see Prop. C.1). Leveraging closed-form expressions for the
spectral factors of the SEL matrix, we further establish closed-form formulas for LRW in Thm. C.2. These closed-form
formulas precisely verify the three findings from the analysis presented in the previous section. In summary, although the
training trajectories for both vanilla ERM and reweighting converge to the same final values at the end of training, a critical
difference lies in the effective learning window ∆T := (Tmax − Tmin)/Tmin from time Tmin when the model learns the first
principal component until Tmax when it has learned all principal components. For vanishing initialization, we show that
∆TERM =

√
R− 1 grows uboundedly with the imbalance ratio R, whereas ∆TRW =

√
2
√
R+1√
R+1

is upper bounded by
√
2

irrespective of imbalance R. See App. C for details.

5. Future Work
Our model already rather effectively captures the early-training impacts of reweighting under overparameteration. In future
work, we aim to address limitations by extending the analysis beyond squared loss and also to test-time dynamics.
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A. Background on Loss Reweighting
A.1. Statistical Optimality in the Classical Regime

Loss reweighting is theoretically grounded, being statistically optimal in the population limit for optimizing balanced
accuracy, which weighs class-conditional accuracies equally rather than by class frequencies. Concretely, let πc be the
prior probability of class c ∈ [k] in a k-class classification dataset. The standard error of a hypothesis h is R(h) :=∑

c∈[k] πcRc(h) = Ec∼P (c),x∼P (x|c)[1[h(x) ̸= c]], where Rc(h) = Ex∼P (x|c)[1[h(x) ̸= c]] is the class-conditional error.
In practice, given n samples (xi)

n
i=1 with labels yi ∈ [k], we minimize the empirical risk

L(h) = 1

n

n∑
i=1

ℓ (h(xi), yi) , (2)

where ℓ denotes a differentiable proxy to the zero-one loss. The balanced error is Rbal(h) := 1
k

∑
c∈[k] Rc(h), with

empirical counterpart Lbal(h) =
1
k

∑
c∈[k]

1
nc

∑
i:yi=c ℓ (h(xi), c), where nc = |{i : yi = c}|. This can be rewritten as a

reweighted loss:

Lreweight(h) =
1

n

n∑
i=1

ωi · ℓ(h(xi), yi), (3)

where ωi = 1/(nyi
/n) is the inverse empirical frequency of each class. Under mild assumptions, this re-weighted loss is

statistically optimal when n → ∞ and the hypothesis space is bounded.

A.2. Nuanced Picture in the Overparameterization Regime

However, modern machine learning challenges the (classical) population analysis: neural networks operate in high-
dimensional regimes where the hypothesis-space dimension exceeds the training sample count. In such overparameterized
settings, classical methods often lose their optimality (). Indeed, several works (Byrd and Lipton, 2019; Kim and Kim, 2020)
have identified weighted cross-entropy’s failure to substantially improve balanced accuracy of well-trained overparameterized
deep neural networks on imbalanced datasets.

Investigating this behavior theoretically, Sagawa et al. (2020) and Kini et al. (2021) attribute this failure to the implicit
optimization bias of gradient-based optimizers used to minimize the loss during training. A long line of research (Gunasekar
et al., 2018b;a; Soudry et al., 2018; Ji and Telgarsky, 2019; Lyu and Li, 2019) has supported the idea that empirical risk
minimization of overparameterized networks—where many minimizers of the loss can exist—is empirically successful
precisely because first-order gradient optimizers are biased toward solutions that maximize the margin over the training data
among all train loss minimizers. Applied to weighted cross-entropy, Sagawa et al. (2020) and Kini et al. (2021) leverage
this type of analysis to demonstrate that loss reweighting has no effect on the implicit optimization bias: irrespective of the
choice of weights, when trained long enough, the configuration chosen by gradient-based optimization applied to weighted
cross-entropy is the same as vanilla cross-entropy.

Kini et al. (2021) identified that in this overparameterized regime reweighting still works, but should be done differently
than suggested by Eq. (3) and should instead be applied to the logits. See also related (Cao et al., 2019; Menon et al.,
2020; Xu et al., 2021; Welfert et al., 2024) and follow-up works e.g., (Behnia et al., 2022; 2023; Wang et al., 2021; Lai and
Muthukumar, 2024; Mor and Carmon, 2025; Wang et al., 2023; Zhai et al., 2022).

Despite being very insightful and leading to practical modifications, there are two limitations in the above implicit bias
analysis: First, the implicit optimization bias analysis provides explicit characterizations of the max-margin classifiers to
which optimizers converge only in limited settings (even for two-layer linear networks, it has not been rigorously shown
whether gradient descent converges to the global minimizer of the non-convex max-margin optimization). Second, and
perhaps more importantly, the implicit bias toward a max-margin classifier manifests very late in training: even in linear
models, convergence to the max-margin solution with gradient descent is exponentially slow (convergence can be accelerated
with normalization, but still requires many iterations).

On the other hand, it has been empirically observed that loss reweighting can actually be beneficial when either used with
early stopping or as a complementary technique to modern loss variants optimized for the overparameterized regime, leading
to empirical speed-ups and optimization boosts in early training iterations (Cao et al., 2019; Xu et al., 2021; Li et al., 2021).
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Figure 3. Training dynamics of majority vs. minority classes on an imbalanced 4-class MNIST task (R = 10, 2 majority, 2 minority). (a)
Under vanilla ERM, minority loss increases at early stage and remains higher in training, while majority loss quickly drops. (b) Under
reweighted ERM, both majority and minority losses decrease together, indicating balanced optimization. (c) Vanilla ERM results in
delayed learning for minorities, as majority accuracy increases early and minority accuracy only improves after 100 steps. (d) Reweighting
leads to a relatively synchronized accuracy gain for both groups, with minority test accuracy improving much earlier.

B. Additional Experimental Details on Motivating Example
B.1. Loss Trajectories

Figure 3 (a)-(b) shows the loss curves for minority and majority classes.

B.2. Accuracy Dynamics

Figure 3 (c)-(d) plots accuracies.

B.3. Confusion Matrix Progression on Test Data

To further illustrate the difference in generation ability between standard and reweighted training, we visualize the evolution
of test-set confusion matrices over training steps (Figure 4). Each matrix shows class-level prediction accuracy at a given
step.

These trends validate our spectral hypothesis: vanilla CE follows the ordering of singular values of the label matrix—favoring
majority-majority features—while Re-weighted flattens this spectrum and equalizes learning rates across all concept
directions.

B.4. Sensitivity to Digit Selection

We observe that the specific digits chosen as majority vs. minority classes can influence learning dynamics. For instance,
using maj = (2,3), min = (0,1) leads to unusually fast minority learning under reweighted loss—minorities are correctly
classified from the start. In contrast, reversing the roles (maj = (0,1), min = (2,3)) delays minority learning.

This asymmetry likely reflects differences in digit difficulty (e.g., 0 and 1 are easier to distinguish than 2 and 3). Importantly,
across all configurations tested, loss reweighting consistently accelerates minority learning relative to standard loss, even if
the absolute ordering varies.

C. Analysis Details
C.1. Background on Vanilla ERM

Consider the square-loss UFM:

min
W ,H

1

2

∑
i∈[n]

∥zi −Whi∥2 =
1

2
∥Z −WH∥2

 . (4)

which fits logits WH to the centered sparsity matrix Z. Although CE loss is more common in practice, we note that
square-loss has shown competitive performance to CE minimization in various settings (Hui and Belkin, 2020; Demirkaya

9



Why Loss Re-weighting Works If You Stop Early

Figure 4. Confusion matrix progression on test data under reweighted (top row) vs. standard (bottom row) cross-entropy loss. Each matrix
shows predictions across 4 classes (2 majority, 2 minority) at selected training steps. Under standard loss, the model first learns majority
classes, with minority learning delayed. Reweighting enables earlier and more balanced classification across all classes.

et al., 2020). The neural-collapse literature has extensively studied Eq. (4) primarily in the balanced case (e.g., (Mixon et al.,
2020; Han et al., 2021; Súkeník et al., 2023; Tirer and Bruna, 2022)) but recently also for imbalanced data (e.g., (Liu, 2024;
Hong and Ling, 2023)). Most works focus on global minima of regularized UFM, with less attention to unregularized cases
or training dynamics. While some landscape analyses provide partial answers about global convergence Mixon et al. (2022);
Han et al. (2021), they are limited to regularized cases and do not characterize dynamics. For example, (Han et al., 2021)’s
analysis of the ’central path’ in balanced one-hot cases—these results relies on approximations. Thus, a significant gap
remains in understanding UFM training dynamics, even for simple balanced one-hot data with square loss.

By interpreting the UFM with square loss in Eq. (4) as a two-layer linear network with orthogonal inputs, we identify a
connection to Saxe et al. (2013); Gidel et al. (2019)’s analysis, that to the best of our knowledge has thus far remained
unexplored in the neural-collapse literature. Saxe et al. (2013) provide explicit characterization of gradient descent
dynamics (with small initialization) for square-loss UFM. The key insight in adopting their results, is rewriting (4) as∑

i∈[n] ∥zi −WHei∥2 with orthogonal inputs ei ∈ Rm. This enables direct application of their result, originally stated in
(Saxe et al., 2013) and formalized in (Gidel et al., 2019). For completeness, we state this here in our setting and terminology
as a proposition below.

Proposition C.1 ((Saxe et al., 2013; Gidel et al., 2019)). Consider gradient flow (GF) dynamics for minimizing the
square-loss UFM (4). Recall the SVD Z = UΣV ⊤. Assume weight initialization

W (0) = e−δUR⊤ and H(0) = e−δRV ⊤

for some partial orthogonal matrix R ∈ Rd×r (R⊤R = Ir) and initialization scale e−δ . Then the iterates W (t),H(t) of
GF are as follows:

W (t) = U
√
Σ
√
A(t)R⊤ and H(t) = R

√
Σ
√

A(t)V ⊤ (5)

for A(t) = diag(a1(t), . . . , ar(t)) with

ai(t) =
1

1 + (σie2δ − 1)e−2σit
, i ∈ [r]. (6)

10
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Moreover, the time-rescaled factors ai(δt) converge to a step function as δ → ∞ (limit of vanishing initialization):

ai(δt) →
1

1 + σi
1[t = Ti] + 1[t > Ti], (7)

where Ti = 1/σi and 1[A] is the indicator function for event A. Thus, the i-th component is learned at time Ti inversely
proportional to σi.

Proof. After having set up the analogy of our setting to that of (Saxe et al., 2013; Gidel et al., 2019), this is a direct
application of (Gidel et al., 2019, Thm. 1). Specifically, this is made possible in our setting by: (i) interpreting the UFM with
square-loss in (4) as a two-layer linear network (ii) recognizing that the covariance of the inputs (which here are standard
basis vectors ej , j ∈ Rm) is the identity matrix, hence the (almost) orthogonality assumption (see (Saxe et al., 2013) and
(Gidel et al., 2019, Sec. 4.1)) holds.

This result requires initializing W ,H in a way that makes them aligned with the SVD factors of the SEL matrix. While
this might appear as a strong assumption, (Saxe et al., 2013; 2019) conjectured and verified experimentally that the
characterization remains qualitatively accurate under small random initialization. Our experiments with the SEL matrix
confirm this - Fig. 5 (middle row) shows the singular values of the logit matrix during training closely follow the predicted
exponential trend in Eq. (16). This reveals that dominant singular factors, corresponding to primary semantic concepts, are
learned first. In the limit t → ∞, the theorem shows convergence to:

W (t) → W∞ := U
√
ΣR⊤ and H(t) → H∞ := R

√
ΣV ⊤, . (8)

This aligns with (Thrampoulidis et al., 2022)’s regularization-path analysis of UFM with CE loss, where normalized
quantities converge as regularization goes to zero.

C.2. Controlling the rate of learning via Reweighting

Consider minimizing the following weighted version of (4):

min
W ,H

1

2

∑
i∈[n]

ωi∥zi −Whi∥22 =
1

2

∥∥∥(Z −WH)Ω1/2
∥∥∥2
F

 , (9)

where Ω = diag([ω1, . . . , ωm]) is a diagonal matrix of weights, one for each context. We consider the STEP-imbalanced
one-hot classification setting described. Concretely, let the one-hot label matrix be

Y =

[
IV/2 ⊗ 1⊤R 0V/2×V/2

0V/2×RV/2 IV/2

]
(10)

where R is the imbalance ratio and without loss of generality we assumed that the first V/2 classes are majorities and that
minorities have 1 example each. Here, the choice of 1 sample per minority is done without loss of generality and just to
maintain simplicity in the formulas. Thus, the total number of examples is n = RV/2 + V/2 = (R+ 1)V/2. Recall that
Z = (IV − 1

V 1V 1
⊤
V )Y .

Recall that Z = UΣV ⊤. Thrampoulidis et al. (2022, Lem. A.3) derives the spectral components in closed form as follows:

Σ = diag(
[√

R1V/2−1

√
(R+ 1)/2 1V/2−1

]
) (11)

U =

 F −
√

1
V 1 0

0
√

1
V 1 F

 ∈ RV×(V−1) ,

and

V ⊤ =


√

1
RF⊤ ⊗ 1⊤R 0

−
√

2
(R+1)V 1

⊤
RV/2

√
2

(R+1)V 1
⊤
V/2

0 F⊤

 ∈ R(V−1)×m .
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Figure 5. (Top) One-hot encoding matrix and SVD factors of SEL matrix for STEP-imbalanced data. (Middle) Training dynamics of GD
minimization of UFM with square loss (Eq. (4). for two initializations: (i) SVD: initialize W and H as per Thm. C.1 for δ = 8. (ii)
Rand: intialize W and H random Gaussian scaled to match the norm of SVD initialization. Dynamics with the two initialization are
shown in orange (SVD) and blue (Rand), respectively. Qualitatively the behavior is similar. With vanilla ERM, SVD factors are learned
in the order of their singular values, see Fig. 6 for a more general synthetic setting. (Bottom) Training dynamics of GD minimization
of UFM with weighted square loss (Eq. (9)) with weights as in Eq. (12). Note that thanks to the weighting all singular factors are now
learned at approximately the same rates.

Above, F ∈ RV/2×(V/2−1) is an orthonormal basis of the subspace orthogonal to 1V/2.

We now set the weights inversely proportional to the square-root of the respective class frequency, i.e. the weight
for the first RV/2 majority samples is

√
n/R =

√
(R+ 1)V/(2R), while for the minorities is

√
R times larger, i.e.,√

n =
√

(R+ 1)V/2. The relative rates of learning of majority/minority features does not change if we uniformly scale all
weights by a constant. Thus, for simplicity and without affecting our analysis, we drop the factor

√
V/2, and, in matrix

form, choose

Ω :=
√
R+ 1 · diag(

[√
1
R 1

⊤
RV/2 1⊤V/2

]
) . (12)
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Direct calculation yields the following:

V ⊤ΩV =
√
R+ 1


1
RF⊤ ⊗ 1⊤R 0

−
√

2
R(R+1)V 1

⊤
RV/2

√
2

(R+1)V 1
⊤
V/2

0 F⊤


√ 1

RF⊗ 1R −
√

2
(R+1)V 1RV/2 0

0
√

2
(R+1)V 1V/2 F



=


√

R+1
R IV/2−1 0 0

0
√
R+1√
R+1

0

0 0
√
R+ 1 IV/2−1

 =: Λ. (13)

where in the last equation, we defined the diagonal matrix Λ with entries:

λi :=


√

R+1
R i ∈ [V/2− 1]

√
R+1√
R+1

i = V/2
√
R+ 1 i = V/2 + 1, . . . , V − 1

(14)

This calculation is handy in the proof of the following theorem which is our main theoretical result. The proof shows that Λ
is the effective weight matrix applied to the spectrum of the label matrix.

Theorem C.2. Consider gradient flow (GF) dynamics for minimizing the weighted square-loss UFM (9) with weight matrix
as shown in Eq. (12) in an R-STEP-imbalanced setting. Assume same parameter initialization as in Proposition C.1, i.e.,
W (0) = e−δUR⊤ , H(0) = e−δRV ⊤, for partial orthogonal matrix R ∈ Rd×(V−1), initialization scale e−δ and SVD
Z = UΣV ⊤. Finally, consider the effective weights λi, i ∈ [V − 1] defined in Eq. (14). Then the iterates W (t),H(t) of
GF evolve as follows:

W (t) = U
√
Σ
√

B(t)R⊤ and H(t) = R
√
Σ
√

B(t)V ⊤ (15)

for B(t) = diag(β1(t), . . . , βV−1(t)) with

βi(t) =
1

1 + (σie2δ − 1)e−2σiλit
, i ∈ [V − 1]. (16)

Moreover, the time-rescaled factors βi(δt) converge to a step function as δ → ∞:

βi(δt) →
1

1 + σi
1[t = Ti] + 1[t > Ti], (17)

where Ti = 1/(σiλi). Thus, the i-th component is learned at time inversely proportional to λi · σi.

Proof. The GF updates are given by:

dW (t)

dt
= −

(
ZΩ1/2 −W (t)H(t)Ω1/2

)
Ω1/2H(t)⊤ = − (Z −W (t)H(t))ΩH(t)⊤ (18a)

dH(t)

dt
= −W (t)⊤

(
ZΩ1/2 −W (t)H(t)Ω1/2

)
Ω1/2 = −W (t)⊤ (Z −W (t)H(t))Ω (18b)

where W (0) = e−δUR⊤ and H(0) = e−δRV ⊤. As in (Saxe et al., 2013; 2019) change variables to W (t),H(t) defined
as

W (t) = UW (t)R⊤, and H(t) = RH(t)V ⊤ .

At t = 0, these matrices are diagonal and equal to e−δI by initialization assumption. Substituting these in the update
equations (18) and also using Z = UΣV ⊤, we get that

U
dW (t)

dt
R⊤ = U

(
Σ−W (t)H(t)

)
V ⊤ΩV H(t)⊤R⊤ (19a)

R
dH(t)

dt
V ⊤ = RW (t)⊤

(
Σ−W (t)H(t)

)
V ⊤Ω . (19b)

13
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Left and Right multiplying these with the partial unitary matrices U ,R,V and recalling from (13) that V ⊤ΩV = Λ (given
in (14)), we arrive at

dW (t)

dt
= −

(
Σ−W (t)H(t)

)
ΛH(t)⊤ (20a)

dH(t)

dt
= −W (t)⊤

(
Σ−W (t)H(t)

)
Λ . (20b)

At this point, recall that Λ is diagonal, and of course so is Σ. Since W ,H are initialized to be diagonal matrices, they will
remain diagonal throughout training. We thus arrive at a decoupled system of differential equations as in the unweighted
case treated by (Saxe et al., 2013; Gidel et al., 2019).

In fact, the update equations are same as in the unweighted case (compare to (Gidel et al., 2019, Eq. 39)) with the only
difference being the presence of the effective weight matrix Λ. Having reached this point, we can follow almost the exact
same steps as in the proof of (Gidel et al., 2019, Thm. 1). For brevity and because the adjustments are easy to check we
directly present the formula for the diagonal entries wi(t), hi(t) of W (t),H(t) that solve (20) (see (Gidel et al., 2019, Eq.
48)). For i ∈ [V − 1]:

wi(t) = hi(t) =

√
σie2σiλit

σie2δ − 1 + e2σiλit
=

√
σi

√
1

1 + (σie2δ − 1)e−2σiλit
=:

√
σi

√
βi(t) , (21)

where we defined
βi(t) :=

1

1 + (σie2δ − 1)e−2σiλit
, i ∈ [V − 1]

Note the similarity to the unweighted case (Eq. (16)) only here the rate at which βi(t) approaches 1 is determined by σiλi,
rather than by σi alone.

From this, we can also easily determine the limit of βi(δt) as δ → ∞ (see (Gidel et al., 2019, Eq. 64)):

βi(δt) :=
e2σiλiδt

e2σiλiδt + (σie2δ − 1)
=

e2δ(σiλit−1)

e2δ(σiλit−1) + (σi − e−2δ)

δ→∞−→ 1

1 + σi
1[t =

1

σiλi
] + 1[t >

1

σiλi
] . (22)

Combining Proposition C.1 (for vanilla ERM) with Theorem C.2 (for reweighting) we arrive at the following corollary
comparing the relative rates of learning of maj-maj, maj-min, min-min features.

Corollary C.3. Assume the spectral initialization of Prop. C.1 and Thm. C.2 with vanishing initialization. Both vanillaERM
and reweighting dynamics show a phase transition. On the one hand, Vanilla ERM learns the features in the order maj-maj,
maj-min, min-min at times 1/

√
R, 1/

√
(R+ 1)/2 and 1, respectively. On the other hand, weigthed ERM (9) learns

simultaneously the features maj-maj and min-min at time 1/
√
R+ 1 before they learn the maj-min feature, closely

after, at time
√
2/(

√
R+ 1).

Proof. This is direct consequence of the phase-transition like rates of Prop. C.1 and Thm C.2 at infinitesimal initialization.
For reweighted loss, we further compute the products λiσi of the effective weights λi in Eq. (14) and the diagonal entries σi

of Σ in (11).
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Figure 6. (Top) Support matrix and SVD factors of centered support matrix for a synthetic example. (Bottom) Training dynamics
of GD minimization of UFM with square loss (Eq. (4) for two initializations: (i) SVD: initialize W and H as per Thm. C.1 for
δ = 8. (ii) Rand: intialize W and H random Gaussian scaled to match the norm of SVD initialization. Dynamics with the two
initialization are shown in orange (SVD) and blue (Rand), respectively. Qualitatively the behavior is similar. Left: Training loss and
norms of paramteres. Middle-Left: Convergence of word and context gram-matrices and of logits to the theory predicted by Thm. C.1.
Middle-Right: Convergence of singular values of logit matrix to those of Σ (see Thm. C.1. Right: Projection of logits to subspace
orthogonal to U and V ; Logits with Rand initialization initially have non-zero projection but it becomes zero as training progresses.
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