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Abstract: We study the problem of learning a range of vision-based manipulation
tasks from a large offline dataset of robot interaction. In order to accomplish this,
humans need easy and effective ways of specifying tasks to the robot. Goal images
are one popular form of task specification, as they are already grounded in the
robot’s observation space. However, goal images also have a number of drawbacks:
they are inconvenient for humans to provide, they can over-specify the desired
behavior leading to a sparse reward signal, or under-specify task information in
the case of non-goal reaching tasks. Natural language provides a convenient and
flexible alternative for task specification, but comes with the challenge of ground-
ing language in the robot’s observation space. To scalably learn this grounding
we propose to leverage offline robot datasets (including highly sub-optimal, au-
tonomously collected data) with crowd-sourced natural language labels. With this
data, we learn a simple classifier which predicts if a change in state completes
a language instruction. This provides a language-conditioned reward function
that can then be used for offline multi-task RL. In our experiments, we find that
on language-conditioned manipulation tasks our approach outperforms both goal-
image specifications and language conditioned imitation techniques by more than
25%, and is able to perform visuomotor tasks from natural language, such as “open
the right drawer” and “move the stapler”, on a Franka Emika Panda robot.
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1 Introduction

“Open the left drawer”

“Move the stapler”

“Open the right drawer”

Language-Conditioned Task Completion

Offline Robot 
Data

Crowd-Sourced 
Annotation

“Push the small gray stapler 
around on top of the black desk”

Figure 1: We learn language-conditioned visuomotor
policies using sub-optimal offline data, crowd-sourced an-
notation, and pre-trained language models, enabling a real
robot to complete language-specified tasks while being
robust to complex rephrasings of the task description.

We are motivated by the goal of generalist
robots which can be commanded to complete
a diverse range of manipulation tasks. Doing
so requires humans to be able to effectively
specify tasks for the robot to solve. One pop-
ular approach to task specification is through
goal-states, which by definition are grounded
in the robot’s observation space, making them
a natural choice for self-supervised techniques
[1, 2, 3, 4]. However, goal-state specification
comes with a number of drawbacks, includ-
ing (a) human effort required in generating a
goal state to provide the robot, (b) task over-
specification resulting in a sparse reward sig-
nal (e.g. a goal image for the task of push-
ing a single object also specifies positions of
all other objects and the robot itself), and (c)
task under-specification (e.g. moving to the
right indefinitely). Natural language presents
a promising alternative form of specification,
providing an easy way for humans to commu-
nicate tasks. Moreover, natural language can
flexibly represent non-goal reaching tasks and
tasks with varying degrees of specificity, such
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as grasping any marker from a desk with several markers, while a single goal image could only
capture one instance of success. To this end, we study the problem of learning language-conditioned
visuomotor manipulation skills from offline datasets of robotic interaction.

Despite the abundant benefits of being able to command robots with natural language, such agents
have remained out of reach. A major challenge in acquiring such agents is that the language
instructions need to be grounded in the agent’s high-dimensional observation space. Learning this
grounding is difficult, and requires diverse interaction data paired with language annotations. Recent
works have made progress towards learning such grounding by annotating data collected by humans
[5, 6, 7]; however, collecting many human teleoperated trajectories on real robots can be costly and
time consuming, and is thus difficult to scale to a broad set of language conditioned behaviors.

Our key insight is that a practical and scalable way to ground language is to combine autonomously-
collected offline datasets of robotic interaction with post-hoc crowd-sourced natural language labels.
Unlike prior work, we do not assume this data comes from a human expert or contains optimal actions,
allowing the agent to leverage a wide range of data sources such as autonomous exploration data (e.g.
random, scripted, intrinsically motivated), replay buffers of trained RL agents, human expert data
(e.g. demonstrations, human play), and data without action labels. Given such pre-collected data, we
can then use crowd-sourcing to scalably label trajectories with natural language labels describing
the behaviors in the data. To learn from this sub-optimal data with noisy annotations, we learn a
classifier which takes as input a natural language instruction and an initial and final image, and
predicts whether or not the transition completes the instruction. This learned classifier can then be
used as a language-conditioned reward for offline RL to learn language-conditioned behaviors.

Concretely, in this work we propose to learn language conditioned skills from vision using sub-
optimal, autonomously-collected offline data and crowd-sourced annotations (See Figure 1). We
present a simple technique to learn language-conditioned rewards from this data, which we call
Language-conditioned Offline Reward Learning (LOReL), and combine it with visual model-
predictive control to complete language conditioned tasks (See Figure 2). In our experiments in
simulation, we observe that even with data collected by a random policy our proposed method solves
language-conditioned object manipulation tasks 25% more effectively than language conditioned
imitation learning techniques, as well as ⇠ 30% more effectively than goal-image conditioned com-
parisons which over-specify the task. Additionally, we observe that by virtue of leveraging pretrained
language models our learned reward is capable of generalizing from scripted language instructions to
unseen natural language zero-shot, suggesting that knowledge in pretrained language models can
enable more efficient learning of grounded language as observed in prior work [6, 8]. Finally, we
leverage an existing real robot dataset of sub-optimal data, label the dataset using crowd-sourcing,
and use it to complete five visuomotor tasks specified by natural language, such as “open the right
drawer” or “move the stapler” on a real Franka Emika Panda robot.

2 Related Work
There is a rich literature of work which studies interactive agents, and grounding their behaviors in
language [9, 10, 11, 12]. Many prior works have studied this problem in the context of instruction
following, where an agent aims to complete a task specified by formal language/programs [13, 14, 15,
16, 17, 18] or natural language [10, 11, 19, 20, 21, 22]. While these approaches have been largely
studied in simulated spatial games [19, 23, 24, 25] or in object-directed visual navigation in simulated
robots [26, 27, 28, 29, 30, 31, 25] some of which include high-level object interaction [32], in this
work we focus on the domain of learning control for vision-based robotic manipulation.

Early works have approached instruction following with strategies like semantic parsing mapped
to motion primitives or pre-defined actions to execute tasks in virtual domains [33, 34, 35, 36] and
on mobile robots [37, 38]. Like our approach these methods don’t require expert demonstrations;
however unlike these approaches, we directly learn robotic control from images and natural language
instructions, and don’t assume any predefined motion primitives. More recently, end-to-end deep
learning has been used to condition agents on natural language instructions [39, 26, 40, 29, 41, 6,
7, 42], which are then trained under an imitation and/or reinforcement learning objective. In the
reinforcement learning setting, works have adopted a range of strategies, from language-conditioned
reinforcement learning while leveraging environment rewards [23, 43, 44, 45, 46, 47] to using
language as a reward bonus to densify the environment reward and aid in exploration [48, 49, 50, 51,
52]. In contrast, we do not assume any environment provided reward signal, and rather aim to learn
effective language-conditioned rewards from annotated data of interaction.
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Figure 2: Language-conditioned Offline Reward Learning (LOReL). We propose a technique to learn
language-conditioned behavior from offline datasets of robot interaction (left). To do so, we crowd-source
natural language annotations describing the behavior in the offline data, and use it to learn a language-conditioned
reward function (middle). We then combine this reward and a learned visual dynamics model through model
predictive control to complete language specified tasks form vision on a real robot (right).

Numerous prior works have also studied learning language conditioned rewards online from demon-
strations or examples of successful completion of tasks and language annotations [5, 24, 41, 51].
These works then use the learned reward to optimize policies through online RL, often using the
agents own online experience to train the reward [24, 53]. While these works also learn language-
conditioned rewards, and in some cases also use discriminative techniques to learn the reward [24, 51],
running language-conditioned online RL on a physical robot can be prohibitively time consuming.
Our work aims to learn language-conditioned behaviors from entirely offline datasets (which may be
highly sub-optimal), making it feasible to learn language-conditioned behaviors on real robots.

Other works have studied using offline data in the form of demonstrations [7] or human teleoperated
trajectories (i.e. “play data”) [6], to learn language-conditioned robotic agents in simulation. Most
related is Lynch and Sermanet [6] who also use crowd-sourcing to annotate play data with natural
language instructions. Critically, these works treat the offline data as near optimal, to the extent that
behavior cloning techniques can be used to learn language-conditioned policies. Unlike these works,
we don’t make any assumptions about the optimality of the actions in the collected data, allowing
the agent to learn from broader offline datasets, including autonomously collected data, which can
be considerably easier to collect at scale on a real robot than human tele-operation data [54, 55].
Moreover, we observe in Section 5.1 that our proposed approach outperforms imitation learning
techniques on such data, and in Section 5.3 that our method is effective on a real robot.

Many prior works have studied how robots can learn to complete a wide range of tasks from vision.
While many approaches have been taken to task-specification, including task IDs [56, 57], robot and
human demonstrations [58, 59, 60], and meta-learning from rewards [61], a common approach is goal-
conditioned learning [62, 63, 2, 1], where an agent learns to reach particular goal states or distributions
[64]. Many approaches have been applied to this domain, ranging from goal-conditioned model-
free learning [2, 65, 57, 66] with goal relabeling [63], model-based planning with a learned visual
dynamics model [67, 68], to methods which combine the both [69]. Unlike these works, the focus of
this work is multi-task visuomotor learning from natural language specifications. Furthermore, we
find in Section 5.1 that using our language-conditioned reward we can more effectively complete
tasks than leveraging a goal image specification, while requiring less human effort to specify the task.

3 Preliminaries

In this work we consider an interactive agent which aims to complete K tasks {Tk}K1 ⇢ T where T
denotes the space of all tasks. For each task Ti 2 T the agent operates in a Markov decision process
MDP M = (S,A, p,Ri, T ) where S is the state space (in our case RGB images), A is the robot’s
action space, p(st+1|st, at) is the robot environment’s stochastic dynamics, Ri : S ⇥ S ! {0, 1}
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indicates the binary reward at state s for completing task Ti from initial state s0, and T is the episode
horizon. Lastly, let L denote the set of all natural language, and let Li ⇢ L denote the set of language
instructions which describe task i. Note that there can exist many instructions l 2 Li which describe
a task Ti (e.g. “pick up the blue marker” and “grasp and lift the blue marker”), and any particular
instruction l 2 L can describe multiple tasks (e.g. “pick up the marker” can describe the task of
picking up the blue marker or the green marker).

In this work we assume that the true reward function Ri for each task Ti is unobserved, and must
be inferred from natural language. Concretely, we assume access to an offline dataset D of N

trajectories, where each trajectory ⌧n is a tuple containing a sequence of states and actions, and a
single natural language instruction ⌧n = ([(s0, a0), (s1, a1), ..., (sT )], ln). We assume that ln 2 Li

for at least one task Ti 2 T for which Ri(s0, sT ) = 1. Note Ti does not need to be in {Tk}K1 ,
meaning the offline data/annotations can consist of tasks unrelated to the robot’s target tasks (e.g.
“doing nothing”). Our goal then is to learn a parametrized reward model R✓ : S ⇥ S ⇥ L ! [0, 1]
which conditioned on a language instruction l, initial state s0, and state s infers the true reward
function Ri(s0, s) for some task Ti for which l 2 Li. Given R✓, we aim to instantiate a stochastic
language-conditioned policy ⇡ : S⇥S⇥L ! A, which conditioned on a natural language instruction
l produces actions to maximize the expected sum of rewards

P
T

t=0 Ri(s0, st) for the inferred task Ti.
Note that this formulation captures tasks that are reflected in a change of state, but not tasks which
are path dependent (e.g. “close the drawer slowly”).

4 Language-conditioned Offline Reward Learning (LOReL)
Now we describe how we go about learning our parametrized language-conditioned reward R✓

from D, as well as how we instantiate our language-conditioned policy ⇡ to maximize the learned
reward, also shown in Figure 2. Our key idea is that while we cannot make assumptions about the
optimality of the behavior in D, we can use the the initial and final states of each trajectory and
provided language annotations to ground what changes in state correspond to successful completion
of language instructions. Then to learn control we can leverage all of the data in D to learn a global
task-agnostic model of the dynamics of the robots environment, which can be combined with the
learned reward via model-predictive control (MPC) to complete language conditioned tasks.

4.1 Learning the Reward Function

Given the provided dataset D = [⌧1, ..., ⌧N ] of N trajectories ⌧n = ([(s0, a0), (s1, a1), ..., (sT )], ln),
how might we go about learning our reward function R✓? Critically, the behavior policy which
collected this data could be sub-optimal. Therefore, we cannot assume the optimality of any particular
action taken. However, because the human provided annotations describe the task being completed in
the video, the assumption we can make about the data is that going from the start to the end of the
trajectory constitutes completion of ln. Therefore, we implement our reward function as a binary
classifier R✓(s0, s, l) which looks at the initial state s0, current state s, and language instruction l

and predicts if going from the initial state to the current state satisfies the language instruction.

Training the reward function in this manner has numerous favorable properties. First, unlike explicitly
predicting a single instance of a successful goal state for a language instruction or vice-versa, a
classifier can easily capture the many-to-many mapping that exists between language instructions
and tasks. Doing so allows it to capture the full space of successful behavior even in cases where
there exists many possible language instructions l which can describe completing a task Ti and
many possible pairs of initial and final states (s0, sT ) which can constitute successfully completing
any given instruction l. Second, by virtue of being context-dependent on the initial state, the
reward function can be used in closed loop planning to perform behaviors indefinitely without
additional specification (i.e. the reward for “move right” is relative to the agent’s current position,
so applying it iteratively will encourage the agent to continuously move right). Lastly, unlike
other works which use classifiers for single-task reward learning [70, 71, 55] on robots, a language-
conditioned reward classifier can flexibly represent many tasks with an easy to provide form of
task-specification. Concretely, we sample positive examples (s0, sT , lt) 2 ⌧n ⇠ D from the
annotated dataset which constitute successfully completing an instruction and generate negative
examples which don’t complete instructions (s00, s0T , l

0) ⇠ N also from D (described in detail in the
next sections). We then minimize the binary cross entropy loss:

J (✓) = E(s0,sT ,l)⇠D[log(R✓(s0, sT , l))) + E(s00,s
0
T ,l0)⇠N [log(1�R✓(s

0
0, s

0
T
, l

0))]. (1)
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Instruction: “Open the cabinet on the desk”

LOReL

Label = 1 Label = 0 Label = 0

s0

sT

LOReL LOReL

Figure 3: Training LOReL. We train LOReL on balanced batches of positive examples where the initial/final
image transition satisfies the language command (left), negative examples where the initial/final states satisfy a
different instruction (middle), and negative examples where the initial and final image are reversed (right).

Positive Selection. Selecting positive examples for the classifier is straightforward, as we know the
initial and final state in an episode labeled with instruction l satisfy that command. However, it is
also highly likely that there are other states near the beginning and end of the episode for which the
instruction is satisfied. Therefore we employ a noisy labeling scheme where we label any (si, sj , l)
for which i  ↵T and j � (1�↵)T as a positive. Higher values of ↵ may occasionally include false
positives, but also significantly increase the set of positives which can be used for training.

Negative Selection. First, we choose initial and final states from episodes with different language
instructions as negatives. Specifically, for language command l, we select negatives s

0
0, s

0
T

by
selecting any (s0, sT , l0) ⇠ D where l

0 6= l. Note that since there may be instructions l0 6= l which
describe the same task, this may occasionally yield false negatives, however like prior work [70, 55]
we find that we can learn an effective reward despite noisy negatives. Second, to encourage the
reward to capture temporal progress (as opposed to focusing on spurious visual features), we also
include the example (sT , s0, l) as a negative in training R✓. Ultimately, we train on balanced batches
of positive examples and both types of negative examples (See Figure 3).

Data Augmentation. Reward functions trained using classifiers have been shown to be prone to
over-fitting creating a sparse or incorrect reward signal [55]. This issue is further exacerbated by
the fact that we only have limited positive examples per episode. To combat this, we use visual data
augmentation in the form of affine transformations and color jitter as well as uniform noise in the
embedding space of language instructions to prevent classifier over-fitting.

Leveraging Pre-Trained Language Models. Finally, learning the meaning of raw natural language
while simultaneously grounding the robot’s actions using only crowd-sourced data of a few thousand
robot episodes with language annotations poses a significant challenge. Therefore we leverage a
fixed pre-trained distilBERT sentence encoder [72], to encode the natural language commands into a
fixed length vector in R768 before they go into the classifier. We find in Section 5.2 that by using the
pre-trained model we can generalize to unseen natural language commands from synthetic data.

4.2 Learning Language Conditioned Policies with Visual Model Predictive Control

Once trained, the learned reward function R✓ in principle could be used with any form of offline
reinforcement learning to learn language-conditioned policies. In this work, we aim to learn visuo-
motor control on real robots from large datasets of sub-optimal or even random offline data. Model-
based RL techniques have been particularly effective in this endeavor [67, 60], and in our case all
offline data can be used to train a single task-agnostic visual dynamics model. We then use this model
with planning to maximize the learned language-conditioned reward R✓. Specifically, we learn a
forward visual dynamics model st+1 ⇠ p✓(st, at) which is trained on the entire offline dataset D,
and does not use language annotations. We leverage off-the-shelf action-conditioned video prediction
frameworks for learning this model [73, 74], which we describe in detail in the supplement.

Given the learned dynamics model p✓ and the learned reward function R✓, we then use model
predictive control to instantiate a policy to complete language-conditioned tasks. Specifically, given
a language instruction l and initial state s0, we sample M different actions sequences of length H ,
which we feed through p✓ to get a predicted future state ŝ

m

t+H
. For each prediction we compute

the reward as R✓(s0, ŝmt+H
, l). Action sequences are optimized to maximize reward using the cross-

entropy method (CEM) [75], until the best action sequence is applied in the environment (Figure 4).
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Figure 4: Executing Language-Conditioned Policies with LOReL. To execute language-conditioned behav-
ior, we perform model predictive control with a learned visual dynamics model and LOReL. Specifically, from
the initial state we predict many future states for different action sequences (left/middle). We then rank those
sequences according to the LOReL reward for the user specified natural language instruction (middle). After
multiple iterations, the best action sequence is stepped in the environment executing the task (right).

5 Experiments
In our experiments we aim to study three main questions. (1) How does our proposed method for
learning language conditioned policies from offline data compare to both language-conditioned and
goal-image conditioned prior methods? (2) By virtue of using pre-trained language models, to what
extent can our method generalize to unseen natural language commands? (3) Can our method be used
to solve visuomotor tasks on a real robot using crowd-sourced annotations? We study experiments (1)
and (2) in simulation, and experiment (3) on a Franka Emika Panda robot positioned in front of a desk.
For qualitative results and videos, please see https://sites.google.com/view/robotlorel.

Simulated Domain

• Close the drawer
• Move the white mug up and turn 

the faucet left
• Open the drawer and turn the 

faucet right
• Do nothing
• Move the white mug right
• Move the black mug down and left

Simulated Environment Procedurally Generated 
Annotations

Figure 5: Simulated Domain/Data. We leverage a
simulated domain developed on top of Meta-World [56]
which contains a Sawyer robot interacting with a drawer,
faucet, and two mugs (left). We collect data using a
random policy, and annotate episodes with language
instructions using the environment state (right).

We study our first two experimental questions
in a simulated domain developed on top of the
Meta-World [56] environment, where a simu-
lated sawyer robot interacts on a tabletop with
a drawer, a faucet, and two mugs (see Figure 5
(left)). In this domain, we collect an offline
dataset of 50,000 episodes by running a random
policy in the environment, and label episodes
procedurally using the true environment state
yielding 2311 unique instructions (see Figure 5
(right)). After training on this data, we evaluate
on 6 seen tasks which involve (1) closing the
drawer, (2) opening the drawer, (3) turning the
faucet left and (4) right, and (5) pushing the black mug right, and (6) pushing the white mug down.
5.1 Does LOReL enable effective language-conditioned behavior compared to prior work?
In this experiment we aim to evaluate how LOReL compares to prior techniques for learning language
and goal image conditioned behavior on the 6 target tasks described previously.

Comparisons. We compare LOReL (Ours) to language-conditioned behavior-cloning (LCBC),
which imitates the behavior in the offline dataset conditioned on the language instruction label, which
is reflective of prior works that use imitation learning to learn language-conditioned behavior [6, 7].
We also compare to language-conditioned RL (LCRL), which labels the final state in each episode
as having reward 1 for the annotated language instruction and 0 elsewhere, and trains a language
conditioned-policy using offline Q learning, which reflects a fully offline version of the low-level
policy used in [43]. Furthermore, we compare to using a goal-image as the task specification instead
of language, and provide the agent with a ground truth goal-image of the object in its desired position,
with which we use either L2 pixel distance (Pixel) or LPIPS [76] similarity (LPIPS) as a planning
cost, reflective of prior work in visual MPC [67, 77]. Finally, we include an (Oracle) which uses the
ground truth dynamics model and ground truth reward indicating the upper bound on the performance
of the CEM planner, as well as the performance of a (Random) policy. All comparisons use the same
architecture and data where possible; see the supplement for further details.
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Figure 6: Comparison to Prior Work. On 6 simulated language-conditioned tasks, we find that LOReL (Ours)
outperforms language-conditioned imitation learning (LCBC) and Q-learning (LCRL) as well as goal-image
task specification (LPIPS/Pixel) by over 25%. Success rates/standard error computed over 3 seeds of 100 trials.
Results. Figure 6 shows the success rates over 3 seeds of 100 trials, ordered by legend. We observe
first that our proposed approach outperforms the next best method, language-conditioned behavior
cloning, by more than 25%. By learning a language-conditioned reward and planning over it, the
robot executes the tasks more effectively than what it observed in the data. On the other hand, because
the data is sub-optimal, language-conditioned imitation learning is only able to learn coarse directions
associated with each task, and as a result fails on tasks that require more fine-grained motion like
“turn faucet left”. Second, we observe that language-conditioned RL with a binary reward struggles
to learn at all, indicating the difficulty in jointly learning language-grounding and control. Finally,
we find that using goal-images with a pixel cost also fails, performing comparably with a random
policy. We observe that the agent tries to match the arm position in the goal instead of the interacting
with the objects, highlighting the limitation of goal-images in their tendency to over-specify the task.
Using LPIPS similarity improves performance, however is still ⇠ 30% worse than our method.
5.2 Can LOReL generalize zero-shot to unseen natural language commands?

Success Rate LOReL LOReL (-PM)

Original 56 ± 1% 40 ± 1%
Unseen Verb 51 ± 3% 33 ± 2%
Unseen Noun 51 ± 1% 39 ± 4%
Unseen Verb + Noun 47 ± 2% 17 ± 3%
Unseen Natural Language 46 ± 2% 21 ± 1%

Table 1: Generalization to Unseen Commands. We com-
pare the models ability to generalize to unseen instructions
and natural language when learning with a fixed, pre-trained
language model (LOReL), compared to training the same ar-
chitecture from scratch only on the grounded language data
(LOReL (-PM)). We see significant performance improvement
in both seen/unseen commands by using a pre-trained model.

In our second experiment, we study our
methods ability to generalize to unseen in-
structions by nature of using pre-trained
language models. Specifically, for the
six target tasks, we test our method with
a rephrased instruction, which was com-
pletely unseen during training. We evalu-
ate task performance on the Original com-
mands, on the commands with an Unseen
Verb (e.g. “turn faucet left” ! “rotate
faucet left”), on the command with an Un-
seen Noun (e.g. “move black mug right”
! “move dark cup right”), and Unseen
Verb+Noun (e.g. “close drawer” ! “shut
cabinet”). Finally, we also test on Unseen Natural Language commands collected from 9 human
volunteers who were asked to rephrase the command in a creative way, for example “turn faucet
left”! “Spin nozzle left”. The full set of unseen instructions for each task is in the supplement.

In Table 1, we see that on average when changing the verb or noun, we only see a drop in success
rate of 5%, and when changing both or using human provided natural language, we see at most a 10%
drop in success rate. Furthermore, we compare performance with and without using the pre-trained
language model, and observe that without the pre-trained language model performance is worse on
seen instructions and drops significantly more on unseen instructions (up to 23% vs 10%), suggesting
that the pre-trained language model is essential to learning and generalization, consistent with results
in prior work on language-conditioned imitation [6]. This result also suggests that the ungrounded
knowledge in large language models may enable learning language groundings from small datasets
or entirely programmatic language which can generalize to natural language.
5.3 Can LOReL be used to learn language-conditioned visuomotor skills on a real robot?
Finally, we study the efficacy of our method in learning language-conditioned behavior on a real
robot using sub-optimal offline data and crowd-sourced annotation. We consider a Franka Emika
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Panda robot mounted over an IKEA desk with two drawers and a cabinet, which can hold a range of
objects (Figure 7). The robot’s observation space consists of 4 camera viewpoints, each providing
64⇥ 64 RGB images. The robot’s action space is delta end-effector control.

Data and Annotation. We use an offline 3000 episode (150000 frame) dataset without
any modification from concurrent work [78], which trains policies for different behaviors
on the IKEA desk using online RL. As a result, our dataset consists of diverse behav-
iors, but is also sub-optimal in that it comes from the replay buffer of a learning policy
which will often not complete any task or will complete tasks in highly sub-optimal ways.

Insert pin in object
Reach item in left drawer.

close the drawer
Rub drawer handle

Do nothing
open the top left drawer

Reach to the dark green marker.
pull the drawer out
touch the tabletop

touch surface of table
Hit the rack with the marker

Crowd-sourced 
Annotations

Robot
Domain

Figure 7: Robot Domain/Data. Our real robot do-
main consists of a Franka Emika Panda mounted over
an IKEA desk (left). We crowd-source annotations de-
scribing the tasks being completed in an offline dataset
from this environment (right).

To annotate the data, we leverage crowd-
sourcing, specifically Amazon Mechanical Turk.
We ask human annotators to describe the behav-
ior, if any, that the robot is doing, and to phrase
it as a command without any pre-specified tem-
plate. We collect 6000 annotations, two per
episode, containing a total of 1699 unique in-
structions, examples of which can be seen in
Figure 7. We filter out episodes for which anno-
tators wrote the robot did nothing or indicated
they could not understand what the robot was
doing. See supplement for details about the envi-
ronment, data, tasks, distribution of annotations,
and annotator interface.

Results. We find in Table 2 that, by train-
ing LOReL on this annotated dataset and
using it for visual MPC with a learned dynamics model in this domain, the robot can
complete 5 language-conditioned skills with a 66% success rate on average across skills.
Additionally, we find that removing negative training examples with the initial/final state
flipped (LOReL (-FN)) reduces performance by 30%, suggesting that such negatives are
important for the reward to capture temporal progress and prevent over-fitting to objects.

Task (10 Trials Each) LOReL LOReL (-FN)

“Open the left drawer” 90% 30%
“Open the right drawer” 40% 0%
“Move the stapler” 50% 0%
“Reach the marker” 70% 70%
“Reach the cabinet” 80% 80%

Average over tasks 66% 36%

Table 2: Real Robot Results. Using LOReL we are
able to complete 5 language-conditioned skills on a robot
specified by language with a 66% success rate.

Finally, we test LOReL’s robustness to more
complex vocabulary and instruction length, by
replacing the commands for opening the left
drawer and moving the stapler with “Open the
small black and white drawer on the left fully”
and “Push the small gray stapler around on top
of the black desk” respectively. We find that
LOReL is still able to succeed 7/10 and 5/10
times respectively, providing evidence that it is
robust to instruction phrasing, consistent with
the results in Section 5.2.

6 Limitations and Future Work
We have presented LOReL, a technique for learning language conditioned behavior from offline data
and crowd sourced annotation that is effective for visuomotor control on real robots and is capable of
generalizing to unseen language instructions. However, a number of limitations remain. First, in its
current form LOReL can only capture tasks which are reflected in some change of state, but cannot
capture tasks which are path dependent (e.g. “move in a circle slowly”). One exciting direction for
future work to address this is to train LOReL on full video clips. Second, while in this work we have
focused on learning short-horizon skills from language, composing these skills to solve long-horizon
language-specified tasks is important for making robots useful in the real world. Data sources with
long-horizon behaviors, and more powerful planners and visual dynamics models are necessary to
enabling these longer horizon tasks. Finally, while we have presented language specification as an
alternative to goal images, goal images maintain the benefit of being self-supervised and in some
cases can be effective task specification. Unifying both forms of specification for robots would be a
valuable future direction.
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