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ABSTRACT

Mean field games (MFGs) model interactions in large-population multi-agent sys-
tems through population distributions. Traditional learning methods for MFGs are
based on fixed-point iteration (FPI), where policy updates and induced population
distributions are computed separately and sequentially. However, FPI-type methods
may suffer from inefficiency and instability due to potential oscillations caused by
this forward-backward procedure. In this work, we propose a novel perspective
that treats the policy and population as a unified parameter controlling the game dy-
namics. By applying stochastic parameter approximation to this unified parameter,
we develop SemiSGD, a simple stochastic gradient descent (SGD)-type method,
where an agent updates its policy and population estimates simultaneously and
fully asynchronously. Building on this perspective, we further apply linear function
approximation (LFA) to the unified parameter, resulting in the first population-
aware LFA (PA-LFA) for learning MFGs on continuous state-action spaces. A
comprehensive finite-time convergence analysis is provided for SemiSGD with
PA-LFA, including its convergence to the equilibrium for linear MFGs—a class
of MFGs with a linear structure concerning the population—under the standard
contractivity condition, and to a neighborhood of the equilibrium under a more
practical condition. We also characterize the approximation error for non-linear
MFGs. We validate our theoretical findings with six experiments on three MFGs.

1 INTRODUCTION

Mean field games (MFGs) (Huang et al., 2006; Lasry & Lions, 2007) offer a tractable framework for
modeling multi-agent systems with a large homogeneous population. In MFGs, the impact of other
agents on a particular agent is encapsulated by a population mass (or mean field), providing a reliable
approximation of actual interactions among agents when the number of agents is large. Consequently,
understanding the population is fundamental in MFGs, as learning these games entails considering
both the agent’s policy and the population dynamics.

Prior work on learning MFGs has mainly focused on fixed-point iteration (FPI) methods and their
variations, which is characterized by a forward-backward procedure that alternately calculate the
policy update w.r.t. a fixed population and the induced population distribution w.r.t. a fixed policy
(Guo et al., 2019; Elie et al., 2020; Perrin et al., 2020; Xie et al., 2021; Cui & Koeppl, 2021; Laurière
et al., 2022b; Anahtarci et al., 2023). However, FPI-type methods face several limitations: 1) The
policy learning and population learning in FPI-type methods typically involves distinct iterative
processes, and are implemented separately and executed sequentially, potentially increasing the
overall computational burden (Mao et al., 2022; Zaman et al., 2023). 2) Vanilla FPI methods suffer
from instability. As the policy or population is fixed while updating the other, the differences
between updates in consecutive iterations can be drastic, causing oscillations in the learning process,
a phenomenon commonly observed in practice (Cui & Koeppl, 2021). 3) Separating the forward and
backward processes prevents us from applying abundant methods developed for policy learning, such
as function approximation (Mao et al., 2022; Huang et al., 2024), to population learning.

This work delves into the rapidly growing field of online learning for MFGs (Mao et al., 2022; Angiuli
et al., 2022; Zaman et al., 2023; Yardim et al., 2023; Zhang et al., 2024a), where an online agent
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interacts with the environment and gathers observations on a Markov chain to update its policy and
population estimate. A key aspect of our approach is recognizing that the Markov chain is jointly
parameterized by both the policy and population distribution, which together define the transition
kernel. From this perspective, finding the mean field equilibrium (MFE) becomes a problem of
identifying the optimal parameter—the fixed point of the Bellman and transition operators. This
viewpoint unlocks a large toolbox of stochastic parameter approximation methods for learning MFGs,
including simple stochastic gradient descent (SGD)-type methods. Specifically, by treating the policy
and population as a unified parameter, we update both estimates fully asynchronously using the same
batch of samples, thereby eliminating the need for a forward-backward process.

Building on this perspective, we introduce another powerful technique: linear function approximation
(LFA), a widely used approach in stochastic approximation methods for policy learning on large or
continuous state-action spaces (Melo et al., 2008; Jin et al., 2020). By applying LFA to the unified
parameter—encompassing both the policy and population—we develop the first population-aware
LFA (PA-LFA) for learning MFGs on continuous state-action spaces. This is particularly significant,
as many common MFGs, such as autonomous driving (Chen et al., 2023), flocking (Perrin et al.,
2021), and crowd modeling (Lachapelle & Wolfram, 2011; Burger et al., 2013), inherently involve
continuous state-action spaces. With PA-LFA, our method enables a simple, fully online, model-free
SGD-type method for learning MFGs in these settings, supported by strong theoretical guarantees.

While elegant, treating the policy and population as a unified parameter raises several questions:
1) Updating policy and population estimates fully asynchronously creates a strong coupling between
the two, which is absent in forward-backward or multi-loop structures (Yardim et al., 2023; Zhang
et al., 2024a) or is alleviated in multi-timescale approaches (Mao et al., 2022; Angiuli et al., 2023;
Zaman et al., 2023). How can we analyze this coupling and the non-stationary Markov chain it
generates to establish convergence guarantees? 2) Empirically, our method—a simple SGD-type
method without additional stabilization mechanisms—outperforms vanilla FPI in stability and effi-
ciency (Section 7). What theoretical explanation underpins this? 3) How can we design PA-LFA for
continuous state-action spaces such that each population update maintains comparable operational
complexity to that in the finite state-action case? 4) How does PA-LFA influence convergence? Under
what conditions does it converge to an MFE, and if it doesn’t, how large is the approximation error?

Main results. With the above questions in mind, we highlight the key contributions of this work:

• We propose SemiSGD, a simple online SGD-type method for learning MFGs. We innovatively
treat the policy and the population as a unified parameter. Algorithmically, we update both
simultaneously and asynchronously using the same online observations and learning rate, thus
eliminating the forward-backward process typical of FPI methods. Theoretically, we show
that the unified parameter in SemiSGD follows a descent direction towards the MFE, whereas
neither the policy nor population alone is guaranteed to do so (Lemma 1). This gives a potential
explanation for the stability and efficiency of SemiSGD over vanilla FPI (Section 7).

• We formulate a novel framework of linear MFGs, characterizing a class of MFGs with linear
structure concerning the population measure. Linear MFGs accommodates continuous state-action
spaces and includes MFGs on finite state-action spaces as a special case. We prove that linear
MFGs enable linear parameterization of both the value function and the population measure.

• We extend the linear parameterization to develop a population-aware linear function approxima-
tion (PA-LFA) for general MFGs. SemiSGD equipped with PA-LFA is the first method to apply
LFA to the population measure in MFGs. Notably, updates in SemiSGD with PA-LFA maintain
the same operation complexity as in the finite state-action space case, highlighting the simplicity
and efficiency of our method.

• Finite-time convergence analysis is provided for SemiSGD with PA-LFA. We novelly regard the
learning process as a stochastic approximation on a non-stationary Markov chain parameterized
by the unified parameter. This perspective enables a straightforward SGD-type analysis, elegantly
handling the strong coupling between the policy and population and offering insights into the
learning dynamics of SemiSGD. We prove that, under a contractivity condition no stronger
than prior work, SemiSGD converges to the MFE. The contractivity condition can be hard to
verify in practice and potentially implies large regularization. In response, we propose a new
condition that is more practical. This condition allows general non-regularized policies, under
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which SemiSGD converges to a neighborhood centered at the MFE. In both scenarios, SemiSGD
enjoys state-of-the-art sample complexities.

• For non-linear MFGs, SemiSGD with PA-LFA converges to the projected MFE (or its neighbor-
hood). We characterize the distance between this projected MFE and the actual MFE in terms of
the intrinsic approximation error in the linear representation.

• We conduct six experiments on three MFGs to demonstrate the properties of our methods:
1) For continuous state-action spaces, PA-LFA is more efficient and accurate than discretization;
2) SemiSGD automatically stabilizes without additional mechanics, achieves a higher accuracy,
and is faster by eliminating the forward-backward procedure.

Related work. Learning MFGs has garnered increasing attention, with recent comprehensive
reviews by Laurière et al. (2022a); Cui et al. (2022). To address the instability issue of FPI, various
stabilization mechanisms have been proposed, broadly categorized into: 1) regularization (Cui
& Koeppl, 2021; Anahtarci et al., 2023); 2) fictitious play (Elie et al., 2020; Perrin et al., 2020;
Cardaliaguet & Hadikhanloo, 2017); and 3) mirror descent (Perolat et al., 2021; Xie et al., 2021;
Yardim et al., 2023; Laurière et al., 2022b). Recently, Zaman et al. (2023); Angiuli et al. (2022);
Yardim et al. (2023); Zhang et al. (2024a) developed online oracle-free methods for the population
learning in MFGs, where a population estimate is updated using online observations without requiring
an oracle to manipulate the population or directly return the population measure. Angiuli et al. (2023);
Zaman et al. (2023); Mao et al. (2022) further proposed single-loop multi-timescale schemes to
asynchronously update the policy and population estimates. On the policy learning side, Mao et al.
(2022); Huang et al. (2024) considered function approximation, though they both assume access to the
population measure rather than learning it. An extended literature review with detailed comparisons
of existing setups and methods is provided in Appendix A.

Notation. A complete list of symbols and their meanings is provided in Table 4. We denote the set
of probability measures on a space X as D(X ), and the set of signed measures asM(X ). When X
is finite with d elements, the probability simplex on it is denoted as ∆d ⊂ Rd. δx is the Dirac delta
measure at x. Without subscript, the inner product denotes the vector inner product ⟨x, y⟩ = xT y.
x ⊕ y is the direct sum of elements in linear spaces, which reduces to their concatenation (x; y)
when x and y are vectors. The norm without subscript denotes the ℓ2 norm for vectors, and ℓ2
operator norm for matrices. For (vector-valued) functions on S, the L2 inner product is defined as
⟨f, g⟩L2

=
∫
S f(s)g(s)ds, and the L1 norm is denoted as ∥f∥TV =

∫
S ∥f(s)∥1ds.

2 STOCHASTIC SEMI-GRADIENT DESCENT FOR MFGS ON FINITE
STATE-ACTION SPACES

2.1 REVISIT ONLINE LEARNING FOR MFGS ON FINITE STATE-ACTION SPACES

We consider an infinite-horizon Markov decision process (MDP) denoted by (S,A, r, P, γ), with the
state space S and action space A being finite. In MFGs, the reward function r and transition kernel
P depend on the population distribution over the state space. Specifically, for a given state-action
pair (s, a) ∈ S ×A and population distribution µ ∈ D(S), r(s, a, µ) and P (s′ | s, a, µ) denote the
reward received and the probability of transitioning to state s′ ∈ S. We consider a bounded reward
function with ∥r∥∞ ≤ R. γ is the discount factor.

An agent in an MFG aims to find a policy π, which maps a state to a distribution on the action space
determining the agent’s actions, that maximizes its expected cumulative discounted reward while
interacting with the population. We utilize a value-based approach to calculate policies and assume
access to a policy operator Γπ (Zou et al., 2019; Zhang et al., 2024a) that returns a policy based on an
(action-)value function Q : S × A → R. We write πQ := Γπ(Q). We define two operators for any
value functions Q,Q′ ∈ R|S|×|A| and population measures M,M ′ ∈ D(S):
T(Q,M)Q

′(s, a) :=E(Q,M) [r(s, a,M)+γQ′(s′, a′)] , with a′∼πQ, s′∼P (· | s, a,M) (Bellman)

P(Q,M)M
′(s′) :=E(M′,Q) [P (s

′ | s, a,M)] , with s∼M ′, a∼πQ. (Transition)

Then our learning goal, the mean field equilibrium (MFE), is defined as the fixed point of these
two operators. With an argmax policy operator, the fixed point of the Bellman operator satisfies
the Bellman optimality equation, leading to the standard MFE definition in the reward-maximizing
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setting (Laurière et al., 2022b; Angiuli et al., 2023); with a regularized policy operator, e.g., softmax,
the fixed point corresponds to the regularized MFE (Cui & Koeppl, 2021; Zaman et al., 2023). See
Appendix B.1 for more discussions on our MFE definition.
Definition 1 (Mean field equilibrium). A value function-population distribution pair (Q,M) is a
mean field equilibrium (MFE) if it satisfies Q = T(Q,M)Q and M = P(Q,M)M .

A typical FPI-type method (approximately) calculates the fixed point of the Bellman operator given
the current population distribution, i.e., the best response, and the fixed point of the transition operator
given the current value function, i.e., the induced population distribution, alternately. Under certain
contractivity conditions, FPI converges to the MFE (Guo et al., 2019).

This work focuses on model-free online learning methods for MFGs. In such methods, an agent
maintains estimates about the value function and population measure, and uses online observations
to update its estimates. For the value function, temporal difference (TD) methods (Sutton & Barto,
2018) are widely used. Given an online observation tuple O = (s, a, s′, a′) and step-size α, on-policy
TD (or SARSA (Sutton & Barto, 2018)) updates the Q-value function as follows:

Q(s, a)← Q(s, a)− αg(Q;O), with g(Q;O) := Q(s, a)− r(s, a,M)− γQ(s′, a′). (1)
For the population distribution, Monte Carlo (MC) sampling (Łatuszyński et al., 2013) is a common
choice. Given a new state sample s′ and step-size α, MC updates the population measure as follows:

M ←M − αg(M ;O), with g(M ;O) :=M − δs′ , (2)
where δs′ is the Dirac delta measure and is a one-hot vector for finite state spaces.

TD and MC updates are widely used in online learning for MFGs (Angiuli et al., 2022; Zaman et al.,
2023; Zhang et al., 2024a). Fixing the policy and population measure (i.e., fixing the Markov kernel),
TD converges to the optimal value function, and MC converges to the induced population distribution.

2.2 STOCHASTIC SEMI-GRADIENT DESCENT

Combining (1) and (2) in a single pass gives a simple SGD-type method. g in (1) and (2) is referred as
semi-gradients, as it does not represent the actual gradient of any loss function but provides a similar
descent direction to the stationary point, i.e., the zero point of g.1We term our method SemiSGD
and present it in Algorithm 1, where (Qt;Mt) denotes the concatenated representation of the value
function and population measure, as they are both vectors for finite state-action spaces. Similarly, g
represents the concatenation of the semi-gradients for the value function and population measure.

Algorithm 1: Stochastic semi-gradient descent (SemiSGD)
1 input: Initial value function Q0(= ⟨ϕ, θ0⟩), population estimate M0(= ⟨ψ, η0⟩), and state s0.
2 for t = 0, 1, . . . , T do
3 Observe at∼Γπ(Qt)[st], rt = r(st, at,Mt), st+1∼P (· | st, at,Mt), at+1∼Γπ(Qt)[st+1].
4 Update for finite MFGs: (Qt+1;Mt+1) = (Qt;Mt)− αtg((Qt;Mt); s, a, s

′, a′) ;
5 or with PA-LFA: ξt+1 = Π(ξt − αtgt(ξt)).
6 return (QT ,MT ) or ξT .

Algorithm 1 is an online, single-loop, uni-timescale method that is free from any forward-backward
process. Not only does it update the value function and population measure estimates in an SGD-like
manner, but it provides an actual descent direction through the mean-path semi-gradient, defined as
ḡ(Q,M)(·) := E(Q,M)g(·;O), whereO is the online observation tuple following the steady distribution
induced by the policy and transition kernel determined by Q and M .
Lemma 1 (Descent direction; informal). Suppose (Q∗;M∗) is an MFE. Suppose the reward function,
transition kernel, and policy operator are Lipschitz continuous with Lipschitz constant L. For any
value function Q and population measure M , with ∆Q := Q−Q∗ and ∆M :=M −M∗, we have

−
〈
∆M, ḡ(Q,M)(M)

〉
≲− ∥∆M∥2 + L∥∆M∥(∥∆Q∥+ ∥∆M∥),

−
〈
∆Q, ḡ(Q,M)(Q)

〉
≲− ∥∆Q∥2 + L∥∆Q∥(∥∆Q∥+ ∥∆M∥).

1With a slight abuse of notation, we use a single operator g to return semi-gradients throughout the paper, for
both the action-value function and population measure; it should be clear from the context and its arguments
which one it refers to.
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Due to the coupling between Q and M , neither −ḡ(Q,M)(M) nor −ḡ(Q,M)(Q) is guaranteed to be
a descent direction, no matter how small the Lipschitz constant L is. However, if L ≲ 1/2, adding
the two inequalities gives

−
〈
(Q;M)− (Q∗;M∗), ḡ(Q,M)((Q;M))

〉
≲ −∥(Q;M)− (Q∗;M∗)∥2/2.

A formal and generalized version of Lemma 1 for linear MFGs, which encompasses finite MFGs
(Example 2), is proved in Appendix H.1. We now discuss some key insights from Lemma 1.

(π∗, µ∗)

FPI-type
π0 µ0

(π∗, µ∗)

SGD-type
π0 µ0−g0(θ0);−g0(η0)

π1
µ1

π2
µ2

ξ1

ξ2

ξ3

Figure 1: Learning dynamics.

Descent direction. The concatenated semi-gradient points
to a descent direction for the concatenated estimate (Q;M),
while neither the value function nor population measure alone
is guaranteed to follow a descent direction, no matter how
small the Lipschitz constant is when far from equilibrium (i.e.,
large ∥M − M∗∥ and ∥Q − Q∗∥). This strongly suggests
treating the value function and population measure as a unified
parameter and updating them simultaneously at the same rate.
The small Lipschitz constant condition L ≲ 1/2 in the lemma,
formalized as Assumption 4 in Section 5, ensures contractivity.
Thus, while both methods converge under the contractivity
assumption, SemiSGD follows a descent direction but FPI may not, hinting the sample efficiency of
SemiSGD. See Figure 1 for an illustration.

Incremental update by design. Incrementally updating parameters or damping update steps, rather
than switching to entirely new estimates, is a common stabilization technique in learning MFGs
(Laurière et al., 2022a), used in methods like fictitious play and mirror descent (Laurière et al., 2022b).
As an SGD-type method, updates in SemiSGD are incremental by design. This, combined with the
previous point, suggests that SemiSGD enjoys automatic stabilization without needing additional
stabilization mechanisms, as confirmed by our experiments (Section 7). These two insights also offer
a potential explanation for the oscillation issues seen in FPI-type methods.

Stochastic approximation on non-stationary Markov chains. The lemma highlights that the
value function and population measure jointly shape the landscape of learning MFGs and should
be treated as a unified parameter. SemiSGD naturally fits as a stochastic approximation method on
a non-stationary Markov chain for finding the equilibrium parameter, with non-stationarity arising
from the changing transition kernel as the value function and population measure are updated. Two-
timescale approaches are used to mitigate the non-stationarity and parameter coupling (Angiuli et al.,
2023; Zaman et al., 2023; Mao et al., 2022). Using a unified parameter, our approach enables a
simpler uni-timescale scheme with a straightforward SGD-type analysis that accounts for coupling
and achieves better sample complexities (see Table 2). Moreover, for general policy operators, which
may fail the small Lipschitz constant condition, the stochastic approximation is on a rapidly changing
Markov chain (Zhang et al., 2023). Building on the results for this class of methods, we are able to,
for the first time, characterize the finite-time convergence performance of learning MFGs without a
contractivity or monotonicity condition.

3 LINEAR MEAN FIELD GAMES

We now extend our setup beyond finite state-action spaces. Viewing the value function and population
measure as a unified parameter, we can naturally extend linear MDP (Jin et al., 2020) and LFA for the
value function to handle population measures on large or continuous state spaces. Before extending
LFA to population measures in the next section, we first introduce linear MFGs, a class of MFGs
based on linear MDPs with a linear structure in the transition kernel w.r.t. the population measure.
Definition 2 (Linear mean field games). An MDP (S,A, P, r, γ) is a linear MDP (Jin et al., 2020)
with feature map ϕ : S × A → Rd1 if there exists d1 (signed) population-dependent measures
ωM = (ω

(i)
M )d1i=1 ∈M(S)d1 and an unknown population-dependent vector νM ∈ Rd1 , such that for

any state-action pair (s, a) ∈ S ×A and population distribution M ∈ D(S), we have

P (s′ | s, a,M) = ⟨ϕ(s, a), ωM (s′)⟩ , r(s, a,M) = ⟨ϕ(s, a), νM ⟩ .
A linear MFG further assumes a measure basis ψ ∈ D(S)d2 such that for any population M , there
exists an unknown matrix ΩM ∈ Rd1×d2 such that ωM = ΩMψ, indicating that P (s′ | s, a,M) =
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⟨ϕ(s, a),ΩMψ(s′)⟩. We require ϕ to be L∞ and ψ to be L∞ and L2 (thus its Gram matrix exists).
Without loss of generality, we assume sups,a ∥ϕ(s, a)∥2 ≤ 1 and sups ∥ψ(s)∥1 ≤ F .

A linear MFG assumes MDP components, the transition kernel and reward function, lie in the linear
span of known basis functions, giving a linear structure to the value function and population measure.

Proposition 1. For a linear MFG, for any population distribution M and policy π, we denote QπM
as the action-value function and µπM as the induced population measure w.r.t. the MDP determined
by M and π. Then, there exist vector parameters θ ∈ Rd1 and η ∈ Rd2 such that

QπM (s, a) = ⟨ϕ(s, a), θ⟩ , µπM (s′) = ⟨ψ(s′), η⟩ , ∀(s, a, s′) ∈ S ×A× S.

The proof of Proposition 1 is deferred to Appendix E. Remarkably, requiring that the transition kernel
being linear w.r.t. a measure basis is essential for the linear structure of the population measure. In
this paper, we reserve letters θ for the value function parameter and η for the population measure
parameter. And we denote the concatenated parameter as ξ = (η; θ). Additionally, we will use
parameters (η, θ, ξ) and their corresponding functions (Q, M , (Q,M)) interchangeably in our
analysis. For example, we say ξ ∈ Rd1+d2 is a mean field equilibrium (MFE) if its corresponding
value function Q = ⟨ϕ, θ⟩ and population measure M = ⟨ψ, η⟩ satisfy Definition 1.

Example 1 (Linear MDP plus population-independent transition kernel). MFGs with a linear MDP
and population-independent transition kernel are a trivial example of linear MFGs, where ΩM = I
for all M ∈ D(S).
Example 2 (Finite state-action space). For finite MFGs, let the feature map ϕ return the one-hot
vector of each state-action pair, i.e., ϕ(s, a) = e(s,a) ∈ R|S||A|, and the measure basis ψ return the
Dirac delta measure at each state, i.e., ψ(s′) = δs′ ∈ ∆|S|. Construct the matrix ΩM ∈ R|S||A|×|S|

such that (ΩM )(s,a),s′ = P (s′ | s, a,M). Similarly, construct the vector νM ∈ R|S||A| such that
(νM )(s,a) = r(s, a,M). Then, for any (s, a, s′) ∈ S ×A× S , we have

P (s′ | s, a,M) = eT(s,a)ΩMδs′ =
〈
e(s,a),ΩMδ(s

′)
〉
, r(s, a,M) = eT(s,a)νM =

〈
e(s,a), νM

〉
.

Example 2 implies that all the analysis for linear MFGs applies to finite MFGs (see also Appendix K).

4 SEMISGD WITH POPULATION-AWARE LINEAR FUNCTION APPROXIMATION

Proposition 1 presents the first linear parameterization of the population measure in MFGs. Applying
this to general MFGs leads to population-aware linear function approximation (PA-LFA). More
discussions on motivations of PA-LFA can be found in Appendix B.2. PA-LFA necessitates a tailored
stochastic update rule for the population measure estimate. Let M∗ be the objective population
measure and define the loss function L := 1

2∥M −M∗∥2L2
. Then, the gradient of the loss is

∇ηL = ⟨∇ηM,M −M∗⟩L2
= ⟨ψ, ⟨ψ, η⟩ −M∗⟩L2

.

As the MFE population measure M∗ is unknown, we replace it with the empirical Delta distribution
(bootstrapping), giving the semi-gradient

g(η; s′) = ⟨ψ, ⟨ψ, η⟩ − δs′⟩L2
=

∫
S
ψ(s)ψ(s)T ηds−

∫
S
ψ(s)δs′(s)ds =: Gψη − ψ(s′), (3)

where Gψ :=
∫
S ψ(s)ψ(s)

Tds is the Gram matrix of measure basis ψ.

For finite MFGs, (2) retains the updated population measure as a probability vector, which is not
necessarily the case when using (3) as the semi-gradient, due to the presence of general Gψ and ψ(s′)
that may not be an identity matrix or a probability vector. Therefore, we need to apply a projection to
the updated parameter to ensure that it remains a probability vector, giving our stochastic update rule:

ηt+1 = Π∆(ηt − αtgt(ηt)), (4)

where gt(η) := g(η; st+1) and Π∆ is the projection operator onto the probability simplex ∆d2 .
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Remark 1 (Operation complexity). The simplex projection has a worst-case complexity of O(d22)
(Condat, 2016). In semi-gradient evaluation, Gψ is a constant matrix, and thus we only need to
evaluate ψ at the next state s′ and multiply parameter with a fixed matrix, with the matrix-vector
multiplication having a complexity of O(d22). Therefore, the total worst-case operation complexity of
the update rule (4) is O(d22). Moreover, the simplex projection has an expected complexity of O(d2)
(Condat, 2016). And if Gψ has precomputed properties and/or special structures, such as being sparse
with O(d2) non-zero elements, the complexity of the semi-gradient evaluation is O(d2), giving a
total expected operation complexity of O(d2), which is the same as that of (2) for finite MFGs with a
state space of size |S| = O(d2).

Similarly, we can get the TD update rule for the value function parameter θ (Sutton & Barto, 2018):

g(θ;O) = ϕ(s, a) (⟨ϕ(s, a)− γϕ(s′, a′), θ⟩ − r) =: Gϕ(O)θ − φ(O),

whereO = (s, a, r, s′, a′), andGϕ(O) := ϕ(s, a)(ϕ(s, a)−γϕ(s′, a′))T and φ(O) := ϕ(s, a)r. The
update rule for the action-value function parameter is

θt+1 = ΠD(θt − αtgt(θt)), (5)

where we denote gt(θ) := g(θ;Ot), Ot = (st, at, rt, st+1, at+1), and ΠD is the projection operator
onto the Euclidean ball Bd1D := {θ ∈ Rd1 : ∥θ∥ ≤ D}. Similar to the population measure update, the
projection is commonly used with LFA to ensure that the value function parameter remains bounded
(Bhandari et al., 2018; Zou et al., 2019), which is automatically satisfied in finite MFGs (Appendix K).
Specifically, we need D ≥ ∥θ∗∥, where θ∗ is the MFE value function parameter.

Combining (4) and (5) gives the update rule for the unified parameter:

ξt+1 = Π(ξt − αtgt(ξt)) := Π
B
d1
D ×∆d2

(ξt − αt ((Gϕ(Ot)⊕Gψ)ξt − (φ⊕ ψ)(Ot))) . (6)

(6) updates the action-value function and population measure using the same online observations
with the same learning rate. Replacing Line 3 in Algorithm 1 with (6) gives SemiSGD with LFA.

The next section shows that SemiSGD converges to a zero point of the mean-path semi-gradient
ḡξ(ξ) := EO∼µξg(ξ;O), where µξ is the observation distribution induced by the parameter ξ. The
next proposition states that this point is an MFE, thus validating the derivation in this section.
Proposition 2 (MFE as a stationary point). For linear MFGs, ξ is an MFE if and only if ḡξ(ξ) = 0.

We prove an extended version of Proposition 2 in Appendix F, showing that the stationary point
actually corresponds to a projected MFE for general (non-linear) MFGs.

5 SAMPLE COMPLEXITY ANALYSIS

This section provides a finite-sample analysis of the convergence of SemiSGD with LFA, thus
covering finite MFGs as a special case. We denote PM (s′ | s, a) := P (s′ | s, a,M) and rM (s, a) :=
r(s, a,M) for short. For transition kernels, we define the total variation operator norm ∥P∥TV :=
supp∈M(S×A),∥p∥TV≤1

∥
∫
P (· | s, a)p(ds,da)∥TV. We now state the assumptions for the analysis.

Assumption 1 (Lipschitz MDP). The transition kernel and reward function are Lipschitz continuous
w.r.t. the population measure. That is, there exists positive constants LP and Lr such that for any
state-action pair (s, a) and population measures M1,M2, we have

∥PM1 −PM2∥TV ≤ (LP /
√
d2)∥M1−M2∥TV, ∥rM1 − rM2∥∞ ≤ (Lr/

√
d2)∥M1−M2∥TV.

Assumption 2 (Lipschitz policy operator). There exists a constant Lπ such that for any state s and
value functions Q1, Q2, we have ∥Γπ(Q1)(· | s)− Γπ(Q2)(· | s)∥TV ≤ Lπ∥Q1 −Q2∥∞.
Assumption 3 (Uniform ergodicity). The MDP is uniformly ergodic for any parameter any value
function Q and population measure M . That is, there exists constants m ≥ 1, ρ ∈ (0, 1), and µ(Q,M),
such that for any initial distribution M0 ∈ D(S), it holds that ∥µ(Q,M) − Pt(Q,M)M0∥TV ≤ mρt.

For notational convenience, we define an ergodicity constant σ := 2 + n̂ + mρn̂/(1 − ρ) with
n̂ :=

⌈
logρm

−1
⌉
, and H := (1+ γ)D+R+2F , which can be regarded as the scale of the problem.
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Assumption 4. The Lipschitz constants are sufficiently small such that 3σmax{LP , Lπ}H + Lr ≤
2w, where w ∈ (0, 1/2] is a problem-dependent constant (defined in Lemma 9 in Appendix H.1)
Remark 2. Assumption 1 is a standard regularity condition for MFGs that do not assume a blanket
contractivity assumption (Cui & Koeppl, 2021; Angiuli et al., 2023; Anahtarci et al., 2023; Yardim
et al., 2023; Huang et al., 2024). Assumption 2 ensures the smoothness of policy updates, a condition
typically met through regularization. Example policy operators satisfying Assumption 2 include
softmax (Cui & Koeppl, 2021; Zaman et al., 2020; Angiuli et al., 2023), mirror descent (Perolat et al.,
2021; Laurière et al., 2022b), and mirror ascent (Yardim et al., 2023). Assumption 3 is a standard
mixing assumption for online methods with Markovian sampling (Bhandari et al., 2018; Zou et al.,
2019; Angiuli et al., 2022; Zaman et al., 2023), ensuring that the agent’s exploration adequately covers
the state-action space. Notably, Assumption 3 is also typically satisfied by regularizing behavior
policies (Yardim et al., 2023). It is noteworthy that even earlier works using a blanket contractivity
assumption recognize that contractivity can be achieved through regularization, provided that “the
transition kernel and reward function are Lipschitz and the corresponding Lipschitz constants are
small enough” (Xie et al., 2021). Therefore, Assumption 4 is the key assumption that guarantees
the contractivity of learning dynamics. In summary, our assumptions closely align with those in
Angiuli et al. (2023); Anahtarci et al. (2023), and are not more restrictive than those in the literature
for contractive MFGs.

We can now bound the mean squared error of SemiSGD recursively, which directly gives several
finite-time error bounds.
Theorem 1 (One-step progress). Let ξ∗ = (θ∗; η∗) be an MFE parameter. Let {ξt = (θt; ηt)} be a
sequence of parameters generated by SemiSGD. Then, under Assumptions 1 to 4, we have

E∥ξt+1−ξ∗∥2≤(1−αtw)E∥ξt−ξ∗∥2+H2·O(α2
t logα

−1
t )+

max{LP ,Lπ,Lr}2H4

w
·O(α3

t log
4 α−1

t ).

Corollary 1 (Constant step-size). Given a constant step-size αt ≡ α0, we have

E∥ξT − ξ∗∥2 ≤ e−α0wT ∥ξ0 − ξ∗∥2 + w−1H2 ·O(α0 logα
−1
0 ).

Let α0 = (log T )/(wT ). Then Corollary 1 states E∥ξT − ξ∗∥2 = O
(
(H2 log2 T )/(w2T )

)
, giving

anO(ϵ−2 log2 ϵ−1) sample complexity for an ϵ-MFE (E∥ξT−ξ∗∥ ≤ ϵ). A linearly decaying step-size
sequence improves the logarithmic factor, giving a convergence rate of O

(
(H2 log T )/(w2T )

)
(see

Corollary 3). Reducing to finite MFGs, the complexity becomes Õ
(

SAR2

λ2(1−γ)4T

)
(see Corollary 4).

These results also imply the uniqueness of the MFE under the assmptions of Theorem 1. The sample
complexity is tight up to a logarithmic factor, consistent with other stochastic approximation methods,
and strictly better than existing results for learning MFGs (Table 2). See Appendix B.3 for more
discussions.

5.1 BEYOND SMALL LIPSCHITZ CONSTANTS

Assumption 4 for ensuring contractivity can be restrictive in practice. Its requirement for the policy
operator to have a small Lipschitz constant typically requires large regularization (Yardim et al., 2023;
Angiuli et al., 2023). However, this may limit the algorithm to only learning near-uniform policies
(Zhang et al., 2023), and the learned regularized MFE (Cui & Koeppl, 2021; Anahtarci et al., 2023)
may be distant from the true MFE.

On the other hand, without any contractivity or monotonicity assumption, the existence and uniqueness
of the MFE are not guaranteed. Assuming an MFE exists that satisfies Proposition 2, we can replace
Assumption 4 with an alternative assumption on the reward function and measure basis to ensure that
SemiSGD converges to a neighborhood of the MFE.
Assumption 5. The reward function and measure basis satisfy that Lr ≤ w̄/2 andR+F ≤ w̄2/(4L̄),
where L̄ := σ

√
max {d1, d2}max {LP , Lπ} and w̄ ∈ (0, w] is a problem-dependent constant.

Theorem 2 (Convergence with general policy operators). Suppose ξ∗ = (θ∗; η∗) is an MFE and
Assumptions 1 to 3 and 5 hold. Then, ξ∗ is the unique MFE and a linearly decaying step-size sequence
αt = 4/(1 + w̄t) gives

E∥ξT−ξ∗∥ ≤ O
(
D(Lr + L̄(R+ F )w̄−1)

w̄2
+

log T√
T

)
.
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Theorem 2 establishes that, SemiSGD with a general policy operator (no restriction on Lπ) converges
to a neighborhood centered at the MFE, whose radius scales with the sup norm of the reward function
(R), its variation (Lr), and the measure basis (F ). The convergence rate is not compromised. To the
best of our knowledge, this is the first theoretical convergence result for learning MFGs without a
contractivity or monotonicity assumption, although the convergence is to a region rather than a point.

As discussed in Section 2.2, with general Lipschitz constants, SemiSGD is essentially a stochastic
approximation method on a rapidly changing Markov chain. The proof of Theorem 2 utilizes results
in Zhang et al. (2023) for this class of methods and is deferred to Appendix I.
Remark 3. Assumption 4 or Assumption 5 is purely for theoretical convergence analysis. None
of them is enforced in our numerical experiments. Guided by the insights in Section 2.2, we use
near-greedy policies without regularization or additional stabilization mechanisms in our algorithm
implementation. Our numerical results demonstrate that SemiSGD with general policy operators
converges efficiently to a point.

We conclude this section by acknowledging the remaining gaps between our theoretical analysis and
practical implementation: 1) Although the condition in Theorem 2 is arguably more practical than
the small Lipschitz constants condition (Assumption 4), as it is a structural condition satisfied by
a class of MFGs, it cannot explain the empirical success of SemiSGD for general MFGs;2 2) The
convergence region bound in Theorem 2 may not be tight, and empirically the convergence region
can be significantly smaller and may even converge to a point. These gaps partially result from
our limited understanding of stochastic approximation methods on rapidly changing Markov chains
(Zhang et al., 2023) and call for further investigation into the structure of this class of methods.

6 APPROXIMATION ERROR FOR NON-LINEAR MFGS

SemiSGD with PA-LFA applies to non-linear MFGs as long as the feature map ϕ and measure basis
ψ are specified. However, for non-linear MFGs, it remains unclear: 1) What point does SemiSGD
with PA-LFA converge to? 2) What factors characterize the approximation error caused by PA-LFA?

For the first question, it turns out that the convergence point of SemiSGD with PA-LFA, i.e., the
zero point of the mean-path semi-gradient developed in Section 4, corresponds to a projected MFE
⟨θ, η⟩ defined by ⟨θ, ϕ⟩ = ΠϕTξ ⟨θ, ϕ⟩ and ⟨η, ψ⟩ = ΠψPξ ⟨η, ψ⟩, where Πϕ and Πψ are orthogonal
projection operators onto the linear spans of ϕ and ψ, respectively. The formal definitions and
proof of the statement are deferred to Appendix F. For linear MFGs, as images of T and P are
within the linear spans of ϕ and ψ (Appendix E), the projected MFE coincides with the MFE itself
(Proposition 2). The following theorem answers the second question.
Theorem 3 (Approximation error). Let ξ⋄ = (θ⋄; η⋄) be the convergence point of SemiSGD with
PA-LFA. Let (q∗, µ∗) be the actual MFE. Write P⋄ := Pξ⋄ for short, and similarly for P∗, T⋄, and T∗.
Then, Assumption 3 indicates the existence of k ∈ N such that

ϵq := ∥q∗ − ⟨ϕ, θ⋄⟩ ∥∞ ≤
(
γ +

γσRLπ
1− γ

)
ϵq +

(
Lr +

γσRLP

(1− γ)
√
d2

)
ϵµ + ∥q∗ −Πϕq∗∥∞

ϵµ := ∥µ∗ − ⟨ψ, η⋄⟩ ∥TV ≤
(
ρk +

kLP√
d2

)
ϵµ + kLπϵq + k ∥P∗ −ΠψP∗∥TV .

If the Lipschitz constants are small enough: 2Lπ(γσR + (1− γ)k) ≤ (1− γ)2 and 2(LP (γσR +
(1− γ)k) + Lr(1− γ)

√
d2) ≤ (1 + ρ− 2ρk)(1− γ)

√
d2, then

ϵq + ϵµ ≤
2

1−min {γ, ρ}
(ϵϕ + kϵψ) ,

where ϵϕ := ∥q∗ −Πϕq∗∥∞ and ϵψ := ∥P∗ −ΠψP∗∥TV are inherent approximation error induced
by the projection onto the linear spans of basis ϕ and ψ, which is independent of the algorithm.
Moreover, if ∥P∗ − P∞

∗ ∥TV = ρ (e.g., P∗ induces a reversible Markov chain), k = 1.

The proof of Theorem 3 is given in Appendix J. The approximation error of PA-LFA scales with
the inherent approximation error determined by the chosen basis, which is consistent with the
approximation error of LFA for value function (Tsitsiklis & Van Roy, 1997).

2For general MFGs, we can always scale the reward function and state space to meet the sup norm condition
in Assumption 5. However, it is unclear whether the MFE after scaling corresponds to an original MFE.
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7 NUMERICAL EXPERIMENTS

To evaluate SemiSGD with PA-LFA, we conduct six experiments on three MFG examples: speed
control (Appendix C.2), flocking (Appendix C.4), and network routing (Appendix C.6). When com-
paring with FPI-type methods, alongside vanilla online FPI, we equip FPI with entropy regularization
(ER), fictitious play (FP), and mirror descent (MD). Please refer to Appendix C for the detailed setup,
full results and analysis, and additional experiments. Here, we present some highlights of the results.

Figure 2a reports MSE curves for the speed control game. This example showcases the sample
efficiency, stability, and accuracy of SemiSGD, particularly compared to vanilla FPI. The flocking
game is highly sensitive to the reward (Appendix C.5). Large regularization may obscure the reward
signal, leading to near-constant policies and population distributions, while other methods except
SemiSGD cannot handle non-regularized policies well. Figure 2b reports exploitability curves for the
flocking game, showing that only SemiSGD can effectively learn the game with near-greedy policies.
The goal of the network routing game is to direct the traffic from the origin to the destination.
Figure 2c reports the population distribution learned by SemiSGD on this highly non-smooth game.
Figure 3 examines how the number of inner loop iterations (K) affect the convergence of FPI
(Appendix C.3): it suggests that, given the same number of total samples, reducing K monotonically
improves the convergence. Notably, when K = 1, online FPI is equivalent to SemiSGD, which
removes the forward-backward structure. Figure 4 and Table 1 compare PA-LFA with discretization
(Appendix C.7) on learned distribution and accuracy respectively, demonstrating that with a proper
choice of measure basis, PA-LFA generalizes better and achieves higher accuracy.

(a) Speed control. (b) Flocking. (c) Network routing.

Figure 2: Convergence performance of SemiSGD and FPI.

Figure 3: On # inner iterations. Figure 4: LFA & Discretization.

Dim.\Algo. Discret. PA-LFA

2 .20± .01 .17± .00
5 .21± .01 .15± .01
8 .21± .14 .11± .05
10 .27± .08 .12± .03
20 .15± .13 .07± .04
25 .18± .15 .06± .04
40 .15± .13 .10± .05
50 .16± .13 .11± .02

Table 1: MSE of LFA & Discretization

8 CONCLUSION

This work proposes a simple SGD-type method for learning MFGs, by adopting a novel perspective
that treats the value function and population measure as a unified parameter. Building on this
perspective, we present the first population-aware linear function approximation for MFGs on large
or even continuous state-action spaces, with sample and operation efficiency guarantees, as well as
approximation error characterization. Our methodology is generalizable to other dynamical systems
that can be parameterized by learnable parameters, including (finite) population games, graphon
games, policy optimization for MFGs, and evolutionary MDPs.
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A EXTENDED LITERATURE REVIEW

Table 2: Comparison of learning methods for MFGs. In algorithm structure, 1L and xL with x > 1
denote single- and multi-loop algorithms, 1TS and xTS with x > 1 denote uni- and multi-timescale
schemes, respectively. Additional mechanisms contain fictitious play (FP), mirror descent (MD),
and entropy regularization (ER). MFG structures contain contractivity and monotonicity. In learning
dynamics assumptions, (C) denotes a blanket contractivity assumption, (R) denotes regularization,
(L) denotes small Lipschitz constants condition, and (M) denotes monotonicity.

Reference
Algorithm implementations Theoretical properties

Algo.
struct.

Add.
mech.

Oracle-
free

Function approx. MFG
struct.

Dyna.
assmp.

Sample
complex.Population Policy

Guo et al. (2019) FB - - - - contract. (C) -
Elie et al. (2020) FB FP - - - mono. (M) -
Perrin et al. (2020) FB FP - - - mono. (M) -
Xie et al. (2021) FB MD - - - contract. (C) -
Cui & Koeppl (2021) FB ER - - - contract. (R) -
Laurière et al. (2022b) FB FP&MD - - - - - -
Mao et al. (2022) 1L&2TS - - - ✓ contract. (C) Õ(ϵ−5)
Angiuli et al. (2022; 2023) 1L&2TS - ✓ - - contract. (L&R) -
Anahtarci et al. (2023) FB ER - - - contract. (L&R) -
Zaman et al. (2023) 1L&2TS - ✓ - - contract. (C) O(ϵ−4)

Yardim et al. (2023) 3L MD ✓ - - contract. (R) O(ϵ−2 log2 ϵ−1)

Zhang et al. (2024a) 2L - ✓ - - contract. (C) O(ϵ−2 log2 ϵ−1)
Huang et al. (2024) FB - - - ✓ - - O(ϵ−2 log ϵ−1)
This paper 1L&1TS - ✓ ✓ ✓ contract. (L) O(ϵ−2 log ϵ−1)

There is a growing body of literature on learning MFGs, with most relevant works summarized in
Table 2. Readers can refer to Laurière et al. (2022a); Cui et al. (2022) for a comprehensive review.

We cast previous methods into the category that has a FPI-type algorithm structure, which typically
use a forward-backward (FB) structure to calculate policy evaluation/optimization and induced
population sequentially. To enable online learning and boost efficiency, several works have proposed
multi-loop (xL) algorithms to update the policy and population simultaneously in an online fashion
(Yardim et al., 2023; Zhang et al., 2024a). However, following an FPI-type structure, multi-loop
algorithms fix the policy or population in the inner loops, which is observed to be more time-
consuming and incur oscillations in the learned policies (Mao et al., 2022). In response, two-timescale
(2TS) asynchronous update schemes have been proposed in Mao et al. (2022); Angiuli et al. (2022;
2023); Zaman et al. (2020), where their “single-loop” is highlighted as a key feature. However, in a
two-timescale scheme, the policy or population updates much slower than the other to circumvent
their strong coupling, essentially resembling a FPI-type structure. Moreover, due to the existence
of a slower timescale, two-timescale methods typically have a larger sample complexity bound
(Table 2). In stark contrast, our method updates the policy and population simultaneously and fully
asynchronously, resulting in a simple single-loop and uni-timescale method, completely removing
the FPI-type structure and achieving an efficient Õ(ϵ−2) sample complexity as an SGD method.

To address the instability issue of FPI, researchers have proposed various additional mechanics
to stabilize the learning process, broadly categorized into three classes: 1) entropy regularization
(ER) (Anahtarci et al., 2023; Cui & Koeppl, 2021); 2) fictitious play (FP) (Elie et al., 2020; Perrin
et al., 2020; Cardaliaguet & Hadikhanloo, 2017); and 3) mirror descent (MD) (Perolat et al., 2021;
Xie et al., 2021; Yardim et al., 2023). Notably, MD inherently includes regularization, with entropy
regularization being a special case (Laurière et al., 2022b). In our algorithm implementation, we do
not require any additional mechanics, demonstrating the automatic stabilization of SemiSGD.

Learning MFGs necessitates learning both the policy and the population. Some claimed online
methods only learn the policy using online methods such as online reinforcement learning, but
assume an oracle for the population measure. As a result, the sample complexity results of these
works (Mao et al., 2022; Huang et al., 2024) do not capture the population learning. We follow
Zaman et al. (2023) to define an oracle-free method as one that does not assume access to an oracle
which can provide the (estimated) population measure under a given policy. Among oracle-free
methods, our work together with Angiuli et al. (2022); Zaman et al. (2023) maintain a population
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estimate using online observations of a single agent. While Yardim et al. (2023) uses the empirical
state distribution of N agents to approximate the population measure.

To deal with large state and action spaces and obtain strong theoretical guarantees, (Mao et al., 2022;
Huang et al., 2024) consider function approximation for the policy learning in MFGs. Our work
is the first to apply function approximation to the population learning, which we argue is equally
important as the policy learning for learning MFGs.

Turning to the theoretical properties of learning methods, two classes of MFG structure conditions
are commonly considered that ensure convergence: the monotonicity condition imposes a structure
on the reward function ensuring that the exploitability is a Lyapunov function (Elie et al., 2020;
Perrin et al., 2021), and the contractivity condition requires that the algorithm gives a contraction
mapping. There are many combinations of dynamics assumptions to ensure the contractivity of
the algorithm. The most straightforward one is to assume a blanket contractivity condition, which
for FPI-type methods is equivalent to require the composition of the forward-backward process to
be a contractive mapping. Assuming that the mapping from the policy to the induced population is
contractive, some works impose regularization on the policy to ensure that the mapping from the
population measure to the policy is contractive, hence making their composition contractive (Cui &
Koeppl, 2021). To further reduce the granularity of the assumptions, Yardim et al. (2023); Angiuli
et al. (2023); Anahtarci et al. (2023) inspect the environment elements. Specifically, they assume
the reward function and transition kernel are Lipschitz continuous with sufficiently small Lipschitz
constants, and impose strong regularization, to ensure the contractivity of the FPI-type algorithm.
Our assumptions closely resemble the last set of assumptions; see Table 3 for a more zoomed-in
comparison.

Table 3: Comparison of assumptions to ensure the contractivity.

Reference
Lip. const.
of kernel

Lip. const.
of reward

Reglar.
strength

Assmp. on
combination/composition Remark

Yardim et al. (2023,
Assumptions 1 and 2) Kµ ≲ 1 Lµ ρ−1 (Kµ + Lµ)ρ

−1 ≲ 1 Multiplicative

Anahtarci et al. (2023,
Assumptions 1 and 2) K1 ≲ 1 L1 ρ−1 K1 + (K1 + L1)ρ

−1 ≲ 1 Multiplicative

Angiuli et al. (2023,
Assumptions 3.2, 3.6,
and 3.7)

Lp ≲ 1 Lf ϕ (Lp + Lf )ϕ ≲ 1 Multiplicative

Our Assumptions 1,
2, and 4 LP Lr Lπ LP + Lr + Lπ ≲ 1 Additive

All related works in Table 3 have an additional assumption requiring the Lipschitz constant of the
kernel to be smaller than 1. Although we do not explicitly assume this, it is implicitly satisfied due to
the additive nature of our assumptions. Regularization is applied to the policy update in Yardim et al.
(2023); Angiuli et al. (2023) and to the reward function in Anahtarci et al. (2023). Our Assumption 2
can be satisfied by applying regularization to the policy operator, e.g., using entropy regularization
with a temperature ρ = L−1

π .

Using the notation in this work, the main difference between our assumptions and related works
in Table 3 is the assumption on the combination/composition of Lipschitz constants: other studies
require the multiplicative composition of (LP + Lr) and Lπ to be sufficiently small, while our
analysis behind Theorem 1 requires the additive combination of LP , Lr, and Lπ to be sufficiently
small. Aside from using different analysis frameworks, this difference potentially stems from the
difference in the algorithm schemes. Similar to FPI, the other studies iteratively calculate the policy
and population updates in a forward-backward manner, resulting in compositional error dynamics,
where the error scales after each inner loop or outer iteration. In contrast, our algorithm updates the
policy and population fully asynchronously in an SGD manner, resulting in additive error dynamics,
where the noise at each step is from the combined contributions of policy update noise (controlled by
Lπ) and population update noise (controlled by LP and Lr).
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B MORE DISCUSSIONS ON MOTIVATIONS

B.1 DEFINITIONS OF MFE AND POLICY OPERATORS

We now extend the discussion in Section 2 on our definition of MFE.

Standard definition of MFE using Bellman optimality equation. Our definition of MFE follows
the standard definition of defining the MFE as the fixed point of the Bellman operator and transition
operator (Laurière et al., 2022b; Cui & Koeppl, 2021; Zaman et al., 2023; Anahtarci et al., 2023).
These two fixed-point equations are also known as the “best response” condition and “consistency”
condition in the MFG literature. The standard definition of the best response condition is defined
using the Bellman optimiality equation; see e.g., Angiuli et al. (2023). Our Definition 1 recovers the
standard definition with an argmax policy operator:

Γ(argmax)
π (Q)[s] = 1 {a = argmaxa′ Q(s, a′)} .

Specifically, with an argmax policy operator, (Bellman) becomes

T(Q,M)Q
′(s, a) := E(Q,M)

[
r(s, a,M) + γmax

a′
Q′(s′, a′)

]
,

with a′ = argmax
a′

Q(s′, a′), s′∼P (· | s, a,M).

The fixed point of this operator satisfies

Q∗(s, a) = E(Q∗,M)

[
r(s, a,M) + γmax

a′
Q∗(s′, a′)

]
,

which is exactly the Bellman optimality equation. Therefore, our definition of MFE covers the
standard definition of MFE.

Regularized MFE with regularized policy operators. Our definition of MFE is more general as
it accommodates general policy operators. For example, with a softmax policy operator,

Γ(softmax)
π (Q)[s] =

Lπ exp(Q(s, a))∑
a′ Lπ exp(Q(s, a′))

,

Definition 1 exactly recovers the definition of the Boltzmann MFE (Cui & Koeppl, 2021; Zaman
et al., 2023). Notably, the above softmax policy operator satisfies Assumption 2 with Lipschitz
constant Lπ. With a general regularized policy operator, e.g., a mirror descent policy operator with
regularizer h (Perolat et al., 2021; Yardim et al., 2023),

Γ(MD)
π (Q)[s] = argmax

p∈∆A
{⟨p,Q(s, ·)⟩ − h(p)} ,

Definition 1 corresponds to the regularized MFE, which is widely studied in the MFG literature (Mao
et al., 2022; Anahtarci et al., 2023). Again, the mirror descent policy operator satisfies Assumption 2
when the regularizer h is strongly convex (Yardim et al., 2023). Regularization is a common technique
to stabilize the learning process and ensure the convergence of the FPI-type algorithm (Laurière et al.,
2022a).

B.2 MOTIVATIONS FOR PA-LFA

In the main text, we highlight that PA-LFA is a natural extension if we consider the value function
and population measure as a unified parameter controlling the dynamics. On the other hand, there are
other direct motivations for developing a function approximation method for the population learning
in MFGs.

Higher accuracy. As illustrated in Example 2, given a continuous state space, discretizing the space
gives a special linear function approximation that uses Dirac distributions as basis measures, denoted
as δ. Suggested by our analysis in Section 6, different measure bases lead to different representation
spaces of the population measure, which in turn affects the approximation accuracy of applying LFA
(Theorem 3). Therefore, if we choose a proper measure basis ψ such that

dist(µ∗, span(ψ)) < dist(µ∗, span(δ)),

or equivalently, ϵψ < ϵδ in Theorem 3, then LFA with basis ψ will have a higher accuracy than
simple grid discretization, as the former has a representation space closer to the true equilibrium.
This is validated in our experiments; see Figures 12 and 13 and Table 1.
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Incorporating prior knowledge. Continuing our comparison between LFA and grid discretization,
the latter is not appropriate for continuous or dependent distributions. For example, in our experiment
on the ring road, the population measure is a continuous distribution, meaning that a high density
in one state will lead to a high density in the neighboring states. However, discretization does not
capture this dependency. Continuous population distributions are common in real-world applications,
such as traffic flow (Chen et al., 2023), flocking (Perrin et al., 2021), and crowd dynamics (Lachapelle
& Wolfram, 2011; Burger et al., 2013). Furthermore, real-world population distributions can exhibit
complex dependency structures, such as distributions on transportation networks (Zhang et al., 2024a).
If we have prior knowledge on the dependency structure, we can choose a proper measure basis
to capture this dependency, leading to a more efficient population learning process. Figure 12 also
provides a clear illustration on this point.

Sample efficiency. As provided in Section 5, the sample complexity of SemiSGD scales with H2,
where H can be regarded as the problem scale. In Appendix K, we show that for a finite MFG the
problem scale is

H = O

(√
|S||A|R
1− γ

)
,

which scales with the state-action space size. By choosing a low dimensional LFA (d1d2 ≪ |S||A|),
we can achieve a much lower sample complexity.

Operational efficiency. Remark 1 analyzes the operation complexity of each update in SemiSGD
with PA-LFA. Specifically, when d2 ≈ |S|, the operation complexity of each update in SemiSGD
with or without PA-LFA is comparable. When d2 ≪ |S|, PA-LFA gives a significant reduction in
operation complexity of each update. Note that the total operation complexity of the algorithm =
sample (iteration) complexity × operation complexity per iteration. Thus, combining the sample
efficiency gain from PA-LFA, an even larger operational efficiency gain is achieved.

A caveat is that if the environment simulator, especially the reward function and transition kernel,
takes the full population measure as input, the operational efficiency gain in each update from
PA-LFA may be offset. However, for many real-world applications, the simulator may not need the
full population measure. For instance, for MFGs with sparse or local interaction, meaning that an
agent’s reward and transition only depend on the population density on a few states, the simulator
only needs to know the population density on these states. Linear MFGs are another example. Recall
the definition of linear MFGs (Definition 2); the transition simulator is a mapping:

P : D(S) ∋M 7→ ΩM 7→ ⟨ϕ,ΩMψ⟩ .

By Proposition 1, we know that any induced population measure of a linear MFG is within span(ψ).
Additionally, the population measure estimate maintained by our method is also within span(ψ).
Thus, the transition simulator can utilize this low-dimensional structure:

P : span(ψ) ∋M = ⟨ψ, η⟩ 7→ ΩM 7→ ⟨ϕ,ΩMψ⟩
⇒ P̂ : Rd2 ∋ η 7→ ⟨ψ, η⟩ 7→ Ω⟨ψ,η⟩ 7→

〈
ϕ,Ω⟨ψ,η⟩ψ

〉
.

That is, for any linear MFG, there exists a transition simulator P̂ that takes low-dimensional vectors
as input. This is also true for the reward function.

Nevertheless, since the sample efficiency gain always holds, PA-LFA always reduces the total
operation complexity of the algorithm.

B.3 COMPARISON OF SAMPLE COMPLEXITY

The worst-case sample complexity of SemiSGD analyzed in Section 5 is O(ϵ−2 log ϵ−1) (see also
Corollary 3). This complexity aligns with that of SGD for Lipschitz functions (Θ(ϵ−2) (Nemirovskij
& Yudin, 1983)) MCMC methods (O(ϵ−2) (Łatuszyński et al., 2013)), and is better than the state-
of-the-art complexity of TD methods (TD(0): O(ϵ−2 log2 ϵ−1) (Bhandari et al., 2018), Q-learning:
O(ϵ−2 log3 ϵ−1) (Li et al., 2024), and SARSA: O(ϵ−2 log3 ϵ−1) (Zou et al., 2019)). All these bounds
are tight up to logarithmic factors. The consistency of these complexities is not surprising as they all
belong to the class of stochastic approximation methods for a single parameter. In contrast, existing

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

methods that treat the value function and population measure as two parameters and update them
using a two-timescale scheme have a much worse sample complexity (Mao et al., 2022; Zaman et al.,
2023).

Under the contractivity assumption, oracle-free methods Yardim et al. (2023, Theorem 4.3) and
Zhang et al. (2024a, Theorem 1) have a comparable sample complexityO(ϵ−2 log2 ϵ−1) to SemiSGD.
Besides that their complexity is worse than ours up to a logarithmic factor, the source of the
logarithmic dependence is also different. Both Yardim et al. (2023); Zhang et al. (2024a) use multi-
loop FPI-type methods, with each outer loop being a contractive mapping. Due to this contraction,
both methods need only O(log ϵ−1) outer loops, with each loop having a sample complexity of
O(ϵ−2 log ϵ−1). On the other hand, SemiSGD, being a single-loop method, only needs the same
number of samples as that of one outer loops in Yardim et al. (2023); Zhang et al. (2024a). The
logarithmic dependence in SemiSGD’s sample complexity comes from the non-stationarity introduced
by the time-varying population measure estimate and behavior policy. In summary, Yardim et al.
(2023); Zhang et al. (2024a) need multiple runs of the policy evaluation/optimization and induced
population calculation procedure, with each run having the same sample complexity as SemiSGD,
which only needs one run of the stochastic approximation method.

C ADDITIONAL EXPERIMENTS

C.1 GENERAL SETUP AND REMARK

All numerical results are averaged over 10 independent runs with random initialization. 95% confi-
dence regions are reported. The following parameters are shared for all methods in this set experiments
unless otherwise specified: total number of samples T = 105, with the number of inner loop iterations
being K = 500 for FPI-type methods, constant step-size α = 10−3, policy operator Γπ = softmax
with a large inverse temperature (near-greedy).

Reference methods. We compare SemiSGD with vanilla online FPI and its variants with stabiliza-
tion mechanisms entropy regularization (ER), fictitious play (FP), and online mirror descent (MD).
For all methods, we use on-policy TD learning to learn the best response value function, and MCMC
to calculate the induced population measure. Specifically, for online FPI, we follow Zhang et al.
(2024a) to repeat the forward population calculation and backward policy evaluation alternatively; for
FP, we follow Perrin et al. (2020); Laurière et al. (2022b) to mix the historical population measures
with the current one after each induced population calculation; for MD, we follow Perolat et al.
(2021); Laurière et al. (2022b) to conduct a incremental Q-value function update after each policy
evaluation; for ER, we follow Cui & Koeppl (2021) to use the softmax policy operator with a large
temperature (also called Boltzmann policies) for the policy update. We summarize the reference
methods in Algorithm 2.

Regularization. To minimize regularization for all methods except ER, we use the softmax policy
operator with a large inverse temperature such that

log10

(
Lπ

(
max
a∈A

Q(s, a)−min
a∈A

Q(s, a)

))
≈ 2, ∀s ∈ S (7)

where we use Lπ to represent the inverse temperature, as softmax is Lipschitz continuous with
the inverse temperature being a Lipschitz constant (Gao & Pavel, 2017). This setup ensures near-
greedy policies with negligible regularization. One can verify that in our experiments, the Q-value
differences between actions are typically small, leading to a large Lπ . Consequently, the theoretical
regularization implied by Assumption 4 is not enforced in our experiments. For ER, we use a small
inverse temperature of L(ER)

π = Lπ/10
5 to implement the entropy regularization. Regularization can

significantly impact learning dynamics; see Appendix C.5 for more experiments on regularization.

We focus on two convergence performance metrics: mean squared error (MSE) of the population
distribution and exploitability of the policy.

Reference MFE and mean squared error. We compare our results with the reference MFE
distribution Mref , which is calculated by model-based FPI with FP. The model-based FPI consists of
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Algorithm 2: Reference methods
1 input: Initial value function q0, population measure µ0, and policy π0.
2 for t = 0, 1, . . . T/K do
3 Forward population calculation: µt+1 is induced by policy πt.
4 if FP then
5 µt+1 ← µ(hist) + αtµt+1.
6 µ(hist) ← µt+1.
7 Backward policy evaluation: qt+1 evaluates πt with µt+1.
8 if MD then
9 qt+1 ← q(hist) + αtqt+1.

10 q(hist) ← qt+1.
11 if ER then
12 Policy update: πt+1 = Γ

(reg.)
π (qt+1).

13 else
14 Policy update: πt+1 = Γπ(qt+1).
15 return (πT/K , µT/K).

a value iteration (Sutton & Barto, 2018) for the best responses and direct computation of the induced
population measure using the transition operator. Then, the (population measure) mean squared error
(MSE) is calculated as

MSE(M) := ∥M −Mref∥22 =
∑
s∈S

(M(s)−Mref(s))
2
.

Note that this is equivalent to the 1-Wasserstein distance between the two measures for finite state
spaces.

Exploitablity. Perrin et al. (2020) defines the exploitability of a policy as follows:

exploitability(π) := max
π′

Es∼µπV (s;π′, µπ)− Es∼µπV (s;π, µπ),

where V (s;π, µ) is the value function determined by policy π and population distribution µ. The
exploitability results in our experiments are calculated using model-based value iteration. We remark
that although exploitability is a useful metric to evaluate the performance of the learned policy, it
is an operator determined by the underlying MDP, which may not be smooth and hence does not
directly reflect the learning dynamics.

C.2 SPEED CONTROL ON A RING ROAD

We consider a speed control game on a ring road, i.e., the unit circle S1 ∼= [0, 1). At location s ∈ S1,
the representative vehicle selects a speed a, and then moves to the next location following transition
s′ = s+ a∆t (mod 1), where ∆t is the time interval between two consecutive decisions. Without
loss of generality, we assume that the speed is bounded by 1, i.e., the speed space is also [0, 1). Then
we discretize both the location space and the speed space using a granularity of ∆s = ∆a = 0.02.
Thus, both our discretized state (location) space and action (speed) space can be represented by
S = A = {0, 0.02, . . . , 0.98} ∼= [50]. By the Courant-Friedrichs-Lewy condition, we choose the
time interval to be ∆t = 0.02 ≤ ∆s/max a. The objective of a vehicle is to maintain some desired
speed while avoiding collisions with other vehicles. Thus, it needs to reduce the speed in areas with
high population density. A classic cost function for this goal is the Lighthill-Whitham-Richards
function:

r(LWR)(s, a, µ) = −1

2

((
1− µ(s)

µjam

)
− a

amax

)2

∆s,

where µjam is the jam density, and amax is the maximum speed. However, in an infinite horizon
game, this cost function induces a trivial MFE, where the equilibrium policy and population are both
constant across the state space. Therefore, we introduce a stimulus term b that varies across different
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locations:

r(s, a, µ) = −1

2

(
b(s) +

1

2

(
1− µ(s)

µjam

)
− a

amax

)2

∆s,

where the factor of one-half before the population distribution term is included to account for the
presence of the new stimulus term. This new cost function makes the MFE more complex and
corresponds to real-world situations where vehicles may have distinct desired speeds at different
locations due to environmental variations. Specifically, we choose the stimulus term as b(s) =
0.2(sin(4πs) + 2), and set µjam = 3/S and amax = 1. The discount factor is set as γ = 1−∆s =
0.98. To ensure the condition in (7), we choose a large inverse temperature of Lπ = 109 for all
methods except ER, which uses L(ER)

π = Lπ/10
5.

The convergence of model-based FPI with FP is shown in Figure 5, arguing the near-optimality of the
reference MFE.

Figure 5: Exploitablity of model-based FPI with FP.

The convergence performance is reported in Figure 6. The MSE comparison (Figure 6a) demonstrates
that SemiSGD 1) is more efficient, with a much faster convergence, 2) is more stable without any
stabilization techniques, 3) and is more accurate, with a lower MSE. The efficiency gain of SemiSGD
is partially due to its removal of the forward-backward structure typical in FPI-type methods; we will
explore more on this in Appendix C.3. Another observation is that although FPI equipped with ER
or FP stabilizes, its learned population distribution significantly deviates from the reference MFE,
evidenced by Figures 6a and 6c. This illustrates the fact that the regularized MFE may be far from the
true MFE. For the exploitability, SemiSGD seems to oscillate. However, exploitability is a function
determined by the underlying MDP, which may not be smooth. Therefore, exploitability does not
directly reflect the learning dynamics.

(a) MSE. (b) Exploitablity. (c) Learned distributions.

Figure 6: Convergence performance on speed control.

C.3 NUMBER OF INNER LOOP ITERATIONS

When implementing FPI-type methods, we choose a relatively large number of inner loop iterations
K = 500 to demonstrate the difference of a double-loop structure from a single-loop fully asyn-
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chronous structure. In this section, we explore the impact of this important hyperparameter. Notably,
when K = 1, online FPI is equivalent to SemiSGD.

Fixing the number of total samples T = 105, we vary the number of inner loop iterations K from
1 to 500 for vanilla FPI. The convergence performance is reported in Figure 7. Evident from both
the MSE and exploitability plots, reducing the number of inner loop iterations leads to a monotonic
improvement. This backs our theoretical analysis in Section 2.2 and suggests removing the forward-
backward or multi-loop structure can significantly improve the convergence performance.

(a) MSE. (b) Exploitablity.

Figure 7: Convergence performance with different numbers of inner loop iterations.

C.4 FLOCKING GAME

We consider a flocking game on a one dimensional space S = [0, 1]. We set the destination point
as sdet = 1. To form an infinite-horizon game, we connect the destination point to the starting
point sstart = 0. Similar to the speed control game Appendix C.2, at location s ∈ S, the agent
selects a speed a ∈ [0, 1], and then moves to the next location following transition s′ = s + a∆t
(mod 1). Then we discretize both the location space and the speed space using a granularity of
∆s = ∆a = 0.02 and choose the time interval to be ∆t = 0.02 ≤ ∆s/max a. The objective of an
agent is to reach the destination as fast as possible while aligning its speed with its neighbors. A cost
function for this goal is:

r(s, a, µ) = −(a2 + c(sdet − neighbor(µ, s))2)∆s,

where c is a positive constant; neighbor(µ, s) calculates the average location of the neighbors of s:

neighbor(µ, s) =

∫ s+r
s−r s

′µ(s′)ds′∫ s+r
s−r µ(s

′)ds′
,

where r is the radius of the neighborhood, and we pad the population measure with zero beyond the
boundary. Specifically, we choose c = 0.5 and r = 0.1. The discount factor is set as γ = 1−∆s =
0.98. To ensure the condition in (7), we choose a large inverse temperature of Lπ = 106 for all
methods except ER, which uses L(ER)

π = Lπ/10
5.

The convergence of model-based FPI with FP is shown in Figure 8, arguing the near-optimality of the
reference MFE.

The convergence performance is reported in Figure 9. We first want to highlight that the MFE
population distribution has a gathering behavior near the destination, and SemiSGD is the only
method that captures this behavior (see Figure 9c). Judging from the reported metric, we conclude
that other methods fails to learn the game. One possible explanation is that the flocking game is highly
sensitive to the reward function, whose supremum norm is small (R ≤ ∆s = 0.02). As a result, large
regularization obscures the reward signal, leading to a near-constant policy and population distribution.
However, other methods except SemiSGD cannot handle near-greedy policies well, leading to a
poor performance. To justify this explanation, we further explore the impact of regularization in
Appendix C.5.
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Figure 8: Exploitablity of model-based FPI with FP.

(a) MSE. (b) Exploitablity. (c) Learned distributions.

Figure 9: Convergence performance on flocking game.

C.5 REGULARIZATION

As we can see from other experiments, regularization plays a crucial role in the learning process. In
this section, we explore the impact of regularization on the convergence performance of learning the
flocking game. We impose different levels of regularization on SemiSGD, and report the convergence
performance in Figure 10. Recall that a small Lπ implies a large regularization. Consistent with
Appendix C.4, large regularization (Lπ ≤ 102) obscures the reward signal, leading to a near-constant
policy and population distribution. With a moderate regularization (Lπ = 104), SemiSGD begins to
capture the gathering behavior near the destination. And with negligible regularization (Lπ ≥ 106),
SemiSGD achieves small MSE. However, the greediness may lead to a high exploitability, as shown
in Figure 10a.

(a) Exploitablity. (b) MSE. (c) Learned distributions.

Figure 10: Convergence performance with different levels of regularization.

In summary, this experiment demonstrates the trade-off between regularization and accuracy. Regu-
larization helps stabilize the learning process, but too much regularization may smooth out important
information and drive the regularized MFE away from the true MFE.
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C.6 NETWORK ROUTING

We consider a routing game on the Sioux Falls network,3 a graph with 24 nodes and 74 directed edges.
We designate node 1 as the starting point and node 20 as the destination. To construct an infinite-
horizon game, we add a restart edge e75 from the destination back to the starting point. On each
edge, a vehicle selects its next edge to travel to. We consider a deterministic environment, meaning
that the vehicle will follow the chosen edge without any randomness. Therefore, both the state space
and the action space can be represented by the edge set, i.e., S = A = {e1, . . . , e75} ∼= [75], where
e75 is the restart edge. It is worth noting that a vehicle can only select from the outgoing edges of its
current location as its next edge.

The objective of a vehicle is to reach the destination as fast as possible. Due to congestion, a vehicle
spends a longer time on an edge with higher population distribution. Specifically, the cost (time) on a
non-restart edge is r(cong.)(s, a, µ) = −c1µ(s)21{s ̸= e75}, where c1 is a cost constant. To drive the
vehicle to the destination, we impose a reward at the restart edge: r(term.)(s, a, µ) = c21{s = e75}.
Together, we get the cost function:

r(s, a, µ) = −c1µ(s)21{s ̸= e75}︸ ︷︷ ︸
congestion cost

+ c21{s = e75}︸ ︷︷ ︸
terminal reward

.

We set c1 = 105 and c2 = 10. The other algorithmic parameters are chosen as follows: the discount
factor γ = 0.5, the initial state is uniformly sampled, the initial value function is set as all-zero, the
initial population is randomly generated.

Similarly, to satisfy (7), we choose a large inverse temperature of Lπ = 103 for all methods except ER,
which uses L(ER)

π = Lπ/10
5. The performance comparison is reported in Figure 11. We only plot the

learned population distribution by SemiSGD in Figure 11c as all methods learn similar distributions.
Notably, all methods except FPI with ER have an oscillatory behavior in the exploitability around
the same value. This is due to the highly non-smooth nature of the underlying environment and the
choice of near-greedy policies. In terms of MSE, only SemiSGD and FPI with ER achieve a low
MSE, with SemiSGD achieving the lowest error and being the most stable.

(a) Exploitablity. (b) MSE. (c) Learned population distribution.

Figure 11: Convergence performance on network routing.

C.7 PA-LFA AND GRID DISCRETIZATION

To demonstrate the effectiveness of PA-LFA, we compare it with grid discretization on the speed
control example (Appendix C.2). The reference MFE is calculated using a grid discretization with
a granularity of 1/200. We only apply LFA to the population measure estimate, as this is our main
focus. The measure basis is chosen as

ψi(s) = cfN (0)− fN (tan((s− si)π)),

where fN is probability density function of the normal distribution with zero mean and variation
v, and si is the center of the basis function. Specifically, we set c = 1.2 and v = d2/2, and evenly
distribute {si}d2i=1.

3The topology of the network is available at https://github.com/bstabler/
TransportationNetworks.
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We run SemiSGD with d2 states (grid discretization) or d2 basis functions (PA-LFA) for T = 104

steps. Recall that PA-LFA with a d2 dimensional feature space has comparable operation complexity
to grid discretization with d2 states. Other parameters are the same as the general setup. The
final MSE (accuracy) comparison is reported in Table 1. The MSE curves and learned population
distributions are shown in Figure 13 and Figure 12, respectively. As we can see, PA-LFA achieves a
better accuracy than grid discretization for all d2 ≤ 50. This is because by choosing an appropriate
measure basis, PA-LFA generalizes better than grid discretization, as the representation capacity of
spanψ is larger than the grid discretization and the representation space of ψ is closer to the MFE
population measure. This is more evident when d2 is small. As illustrated in Figure 12, with just a
few basis functions, PA-LFA can capture the general shape of the MFE population distribution much
better than grid discretization.

(a) d2 = 2. (b) d2 = 5. (c) d2 = 8. (d) d2 = 10.

(e) d2 = 20. (f) d2 = 25. (g) d2 = 40. (h) d2 = 50.

Figure 12: LFA versus discretization on learned distributions.

(a) d2 = 2. (b) d2 = 5. (c) d2 = 8. (d) d2 = 10.

(e) d2 = 20. (f) d2 = 25. (g) d2 = 40. (h) d2 = 50.

Figure 13: LFA versus discretization on MSE.

D NOTATION

Table 4 provides a summary of the symbol notation used in this paper. We introduce some supple-
mentary notation to assist analysis.
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Table 4: Notation.

Notation Definition

D(X ),M(X ) Space of probability and signed measures on space X
∆ Probability simplex
δ Dirac delta measure
a,A Action and action space
s,S State and state space
r,R Reward function and its supremum norm bound
γ Discount factor

P,P Transition kernel and operator
T Bellman operator
Q, q Action-value function
M,µ Population measure
π,Γπ Policy and policy operator
ϕ State-action feature map
ψ State measure basis
F Norm bound of ψ
d Feature/measure space dimension
ν Linear reward function parameter
ω,Ω Linear transition kernel parameter
η Population measure parameter
θ Value function parameter
ξ,Ξ Concatenated parameter and its parameter space
Π Projection operator
D Value function projection bound
H Problem scale (H = (1 + γ)D +R+ 2F )
g Semi-gradient

Gϕ, φ Temporal difference operator
G Gram matrix
L Lipschitz constant
w Contraction constant
α Step-size

m, ρ, σ, k Ergodicity constants
τ Backtracking period

Concatenation and direct sum. We consider finite-dimensional Euclidean spaces as the parameter
spaces. Thus, for any x ∈ Rd1 and y ∈ Rd2 , we denote their concatenation as (x; y) ∈ Rd1+d2 . We
sometimes write it as the general direct sum between two vectors x⊕ y ∈ Rd1 ⊕Rd2 ∼= Rd1+d2 . For
matrices and operators, we have (A⊕B)(x⊕ y) = Ax⊕By. This notation is especially useful for
handling the unified parameter ξ = θ ⊕ η (see, e.g., Lemma 7). Additionally, we use Ξ to denote the
unified parameter space Ξ := Rd1 ⊕ Rd2 .

Unprojected parameters. We denote the unprojected parameters as ξ̆, θ̆, and η̆. That is,

ξt+1 = Π(ξ̆) = Π(ξt − αtgt(ξt)).

For any parameter ξ∗ in the projected region, we have ∥ξ∗ −Π(ξ̆)∥ ≤ ∥ξ∗ − ξ̆∥.

Steady distributions. We denote µξ ∈ D(S) as the steady state distribution induced by parameter
ξ = (θ; η), i.e., by policy Γπ(θ) and transition kernel and reward function determined by population
measure parameter η. µξ is the marginal distribution of the following two steady distributions:

µ†
ξ(s, a) := µξ(s)πθ(a | s), µ‡

ξ(s, a, s
′, a′) := µξ(s)πθ(a | s)P (s′ | s, a, η)πθ(a′ | s′).

We write Eξ as the expectation over the steady distribution induced by ξ; it should be clear from the
context which steady distribution is used.
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Semi-gradients and temporal difference operators. Here we review the definition of semi-
gradients. With a slight abuse of notation, we use a single operator g to return semi-gradients for both
the action-value function and population measure. It should be clear from the argument of g which
parameter the semi-gradient is for. Specifically, with a sample tuple O = (s, a, r, s′, a′), we have

g(ξ;O) = (g(θ;O); g(η;O)) = (Gϕ(O)θ − φ(O);Gψη − ψ(s′)) ,

where Gψ is the gram matrix of the measure basis ψ, and Gϕ and φ are the temporal difference
operators defined as

Gϕ(O) = ϕ(s, a)(ϕ(s, a)− γϕ(s′, a′))T , φ(O) = ϕ(s, a)r.

Notably, Gψ is a constant matrix, and Gϕ is a Gram-like matrix that depends on the sample tuple.
Therefore, we sometimes drop the subscript ϕ inGϕ and use other subscripts to indicate its dependence
on the sample tuple. It should be clear that any G with a subscript other than ψ refers to Gϕ. When
the sample tuple is an online observation at time step t, i.e., Ot = (st, at, rt, st+1, at+1), we use
shorthand

gt(·) = g(·;Ot), Gt = Gϕ(Ot), φt = φ(Ot), ψt = ψ(Ot).

Backtracking is an analysis technique introduced to tackle rapidly changing Markov chains (Zou
et al., 2019; Zhang et al., 2023; 2024b). It considers a virtual stationary Markov chain by backtracking
a period τ , fixing the parameter ξt−τ , and then sampling the Markovian observations with the fixed
parameter. By the ergodicity of stationary Markov chains (Assumption 3), the virtual trajectory rapidly
converges to the stationary distribution induced by ξt−τ . We denote Õt as the virtual observation
tuple on this virtual trajectory at time t. When we consider the semi-gradients on this virtual trajectory,
we write out its dependence on Õt explicitly:

gt−τ (·; Õt), Gt−τ (Õt), φt−τ (Õt), ψt−τ (Õt)

with the subscript indicating the backtracking period τ .

Mean-path semi-gradients are the expectation of semi-gradients over a steady distribution induced by
a parameter:

ḡξ = Eξg(ξ;O),

where the subscript ξ indicates that the observation tuple O follows the steady distribution induced
by ξ = (θ; η). More explicitly, the states follows the steady distribution corresponding to transition
kernel P (· | ·, ·, η), and the actions follow policy Γπ(θ), and the rewards are generated by r(·, ·, η).
Similarly, we have

Ḡξ = EξGϕ(O), φ̄ξ = Eξφ(O), ψ̄ξ = Eξψ(s′).

When the parameter has a subscript ξ◦, we also use shorthand

ḡ◦ = ḡξ◦ , Ḡ◦ = Ḡξ◦ , φ̄◦ = φ̄ξ◦ , ψ̄◦ = ψ̄ξ◦ .

For example, ḡt = ḡξt and ḡ∗ = ḡξ∗ .

E PROOF OF PROPOSITION 1

Proof. By the Bellman equation, we have

QπM (s, a) = r(s, a,M) + γ

∫
S×A

QπM (s′, a′)π(a′ | s′)P (s′ | s, a,M)ds′da′

= ⟨ϕ(s, a), νM ⟩+ γ

∫
S×A

QπM (s′, a′)π(a′ | s′) ⟨ϕ(s, a),ΩMψ(s′)⟩ds′da′

=

〈
ϕ(s, a), νM + γ

∫
S×A

QπM (s′, a′)π(a′ | s′)ΩMψ(s′)ds′da′︸ ︷︷ ︸
θ

〉
.
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By the transition equation, we have

µπM (s′) =

∫
S×A

P (s′ | s, a,M)π(a | s)µπM (s)dsda

=

∫
S×A

⟨ϕ(s, a),ΩMψ(s′)⟩π(a | s)µπM (s)dsda

=

∫
S×A

〈
ψ(s′),ΩTMϕ(s, a)

〉
π(a | s)µπM (s)dsda

=

〈
ψ(s′),

∫
S×A

ΩTMϕ(s, a)π(a | s)µπM (s)dsda︸ ︷︷ ︸
η

〉
.

F PROJECTED MFE AND STATIONARY POINT

We call a value function-population measure pair a stationary point if the mean-path semi-gradient
evaluated at this point is zero. Section 5 and Appendix H show that SemiSGD converges to a
stationary point. Ideally, we want the stationary point to be an MFE (Definition 1). Proposition 1
and Appendix E show that for linear MFGs, images of T and P are within the linear spans of ϕ and
ψ, indicating the linear structure of the MFE. However, this does not hold for general (non-linear)
MFGs, hinting the discrepancy between the stationary point and the MFE for non-linear MFGs.

We define the projected MFE using the Bellman operator and transition operator composed with the
projection operators.
Definition 3 (Projected MFE). We say ξ = (θ; η) constitutes a projected MFE if

⟨ϕ, θ⟩ = ΠϕTξ ⟨ϕ, θ⟩ , ⟨ψ, η⟩ = ΠψPξ ⟨ψ, η⟩ ,
where Πϕ and Πψ are orthogonal projection operators onto the linear spans of ϕ and ψ, respectively.

It should be noted that the projection operators are determined by the inner product structure of the
function spaces. They can be explicitly expressed as

Πϕ = ϕT (⟨ϕ, ϕT ⟩◦)−1⟨ϕ, ·⟩◦,
where ϕ is the function basis and ⟨·, ·⟩◦ is the chosen inner product. Specifically, we choose the L2

inner product onM(S), giving
Πψ = ψTG−1

ψ ⟨ψ, ·⟩L2
.

For the projection acting on Tξ, we choose the inner product induced by the steady distribution µξ,
i.e., ⟨f, g⟩µξ =

∫
f(o)g(o)µ‡

ξ(do). Then, we have

ΠϕTξ = ϕT Ĝ−1
ξ ⟨ϕ, Tξ·⟩µξ ,

where Ĝξ is the Gram matrix of ϕ w.r.t. the inner product ⟨·, ·⟩µξ . Note that Ĝξ is different from the
TD operator Gϕ or Gξ defined in Appendix D, which is only Gram-like.

We are now ready to prove a generalized version of Proposition 2. Recall that for linear MFGs, the
projected MFE is the MFE itself.
Proposition 3 (Projected MFE as a stationary point). ξ is a projected MFE if and only if ḡξ(ξ) = 0.

Proof. For a parameter ξ = (θ; η), by the definition of mean-path semi-gradients, we have

ḡξ(θ) =Eξ
[
ϕ(s, a)

(
ϕT (s, a)θ − γϕT (s′, a′)θ − r(s, a, η)

)]
,

ḡξ(η) =Eξ [Gψη − ψ(s′)] ,
where the observation tuple (s, a, s′, a′) follows the steady distribution induced by ξ. On the other
hand, by the definition of the projection operators, we have

(ΠϕTξ − Id) ⟨ϕ, θ⟩ = ϕT Ĝ−1
ξ ⟨ϕ, Tξ ⟨ϕ, θ⟩⟩µξ − ϕ

T θ,
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where Id is the identity operator. Suppose ϕ is linearly independent. Then, we get

(ΠϕTξ − Id) ⟨ϕ, θ⟩ = 0 ⇐⇒ Ĝ−1
ξ ⟨ϕ, Tξ ⟨ϕ, θ⟩⟩µξ = θ

⇐⇒ ⟨ϕ, Tξ ⟨ϕ, θ⟩⟩µξ = Ĝξθ

⇐⇒
〈
ϕ,Eξ

[
r(·, ·, η) + γϕT (s′, a′)θ

]〉
µξ
− Eξ[ϕ(s, a)ϕT (s, a)]θ = 0

⇐⇒ Eξ
[
ϕ(s, a)

(
r(s, a, η) + γϕT (s′, a′)θ

)]
− Eξ[ϕ(s, a)ϕT (s, a)θ] = 0

⇐⇒ Eξ
[
ϕ(s, a)

(
ϕT (s, a)θ − γϕT (s′, a′)θ − r(s, a, η)

)]
= 0

⇐⇒ ḡξ(θ) = 0.

Similarly, for the projected transition operator, we have

(ΠψPξ − Id) ⟨ψ, η⟩ = 0 ⇐⇒ ψTG−1
ψ ⟨ψ,Pξ ⟨ψ, η⟩⟩L2 − ψT η = 0

⇐⇒ ⟨ψ,Pξ ⟨ψ, η⟩⟩L2
= Gψη

⇐⇒
∫
S2×A

ψ(s′)P (s′ | s, a, η)πθ(a | s)ψT (s)ηdsdads′ −Gψη = 0

⇐⇒ Eξ[ψ(s′)]−Gϕη = 0

⇐⇒ ḡξ(η) = 0.

Therefore, by Definition 3, ξ is a projected MFE if and only if gξ(ξ) = 0.

G PRELIMINARY LEMMAS

We present some preliminary lemmas that are used throughout the analysis.

Lemma 2 (Norm relations). For any vectors x, y, we have

• ∥x⊕ y∥1 = ∥x∥1 + ∥y∥1, ∥x⊕ y∥21 ≤ ∥y∥21 + ∥x∥21.

• ∥x⊕ y∥2 ≤ ∥x∥2 + ∥y∥2, ∥x⊕ y∥22 = ∥y∥22 + ∥x∥22.

• ∥x∥2 + ∥y∥2 ≤
√
max {d1, d2}∥x⊕ y∥2.

• ∥x⊕ y∥∞ = max {∥x∥∞, ∥y∥∞} , ∥x⊕ y∥2∞ ≤ ∥y∥2∞ + ∥x∥2∞.

• ∥x∥1∥y∥1 ≤ 1
4∥x⊕ y∥

2
1.

• ∥x∥2∥y∥2 ≤ 1
2∥x⊕ y∥

2
2.

• ∥x∥∞∥y∥∞ ≤ ∥x⊕ y∥2∞.

Proof. All relations are basic facts of norms and can be easily verified.

Lemma 3 (Gradient bounds). For any parameter ξ = (θ; η) and any observation tuple O, we have

∥g(θ;O)∥ ≤(1 + γ)∥θ∥+R,

∥g(η;O)∥ ≤F∥η∥+ F.

Moreover, suppose ∥θ∥ ≤ D and ∥η∥1 = 1. Let H := (1 + γ)D +R+ 2F . Then, we have

∥g(ξ;O)∥ ≤ H.

Proof. By definition, we have

∥g(θ;O)∥ =∥Gϕ(O)θ − φ(O)∥ ≤ ∥Gϕ(O)∥∥θ∥+ ∥φ(O)∥
≤∥ϕ(s, a)∥∥ϕ(s, a)− γϕ(s′, a′)∥∥θ∥+ ∥ϕ(s, a)∥|r(s, a, η)|
≤(1 + γ)∥θ∥+R,
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where we use the fact that ∥ϕ(s, a)∥ ≤ 1. Similarly, we have

∥g(η;O)∥ ≤ ∥g(η;O)∥1 = ∥Gψη − ψ(s′)∥1 ≤ ∥Gψ∥op∥η∥1 + ∥ψ(s′)∥1.

The operator norm of Gψ satisfies

∥Gψ∥op = sup
∥η∥1=1

∥Gψη∥1 = sup
∥η∥1=1

∥∥∥∥∫
S
ψ(s)ψT (s)ηds

∥∥∥∥
1

≤ sup
∥η∥1=1

∫
S
∥ψ(s)∥1 ⟨ψ, η⟩ds ≤ F,

where the last inequality uses the norm bound of ψ and the fact that ⟨ψ, η⟩ is a probability measure.
Therefore, we get

∥g(η;O)∥ ≤ 2F.

Then, Lemma 2 indicates that ∥g(ξ;O)∥ ≤ H given that ∥θ∥ ≤ D.

To be more general, Assumptions 1 and 2 are stated in terms of the differences of population
measures and value functions. For the ease of presentation, we will develop our results in terms of
the parameters, and state the more general results in terms of the differences of population measures
and value functions without proof. We need to first translate the Lipschitzness assumptions in terms
of the parameters. In the rest of the paper, we refer to the following lemma when we need to use the
Lipschitzness assumptions in terms of the parameters.
Lemma 4 (Lipschitzness in parameters). Assumption 1 and Assumption 2 imply that for any two
parameters ξ1 = (θ1; η1) and ξ2 = (θ2; η2), we have

∥Pη1 − Pη2∥TV ≤ LP ∥η1 − η2∥, ∥rη1 − rη2∥∞ ≤ Lr∥η1 − η2∥,
∥πθ1(· | s)− πθ2(· | s)∥TV ≤ Lπ∥θ1 − θ2∥.

Proof. The proof is straightforward noticing the fact that

∥ ⟨ψ, η⟩ ∥TV =

∫
S
|ηTψ(s)|ds =

∫
S
∥η∥1

∣∣∣∣ ηT∥η∥1ψ(s)
∣∣∣∣ds ≤ ∥η∥1 ≤√d2∥η∥,

and
∥ ⟨ϕ, θ⟩ ∥∞ = ∥θTϕ(s, a)∥∞ ≤ ∥∥θ∥∥ϕ(s, a)∥∥∞ ≤ ∥θ∥.

Lemma 5 (Lipschitz steady distributions). For any two steady distributions µ‡
ξ1

and µ‡
ξ2

induced by
parameters ξ1 = (θ1; η1) and ξ2 = (θ2; η2), we have

∥µ‡
ξ1
− µ‡

ξ2
∥TV ≤ σL (∥θ1 − θ2∥+ ∥η1 − η2∥) ,

where σ := 2 + n̂+mρn̂/(1− ρ), n̂ :=
⌈
logρm

−1
⌉
, and L = max {LP , Lπ}. Involved constants

are defined in Assumptions 1 to 3. Since µ†
ξ and µξ are marginal distributions of µ‡

ξ, as a corollary,
we have

∥µ†
ξ1
− µ†

ξ2
∥TV ≤ σL (∥θ1 − θ2∥+ ∥η1 − η2∥) ,

∥µξ1 − µξ2∥TV ≤ σL (∥θ1 − θ2∥+ ∥η1 − η2∥) .

Proof. We first prove the last inequality in the lemma. By Mitrophanov (2005, Corollary 3.1), we
have

∥µξ1 − µξ2∥TV ≤ (σ − 2)∥Pξ1 − Pξ2∥TV,

where Pξ represents the transition kernel determined by policy Γπ(θ) and population measure η, and

∥Pξ∥TV := sup
q∈M(S)
∥q∥TV=1

∥∥∥∥∫
S
q(s)P (· | s, θ, η)ds

∥∥∥∥
TV

= sup
q∈M(S)
∥q∥TV=1

∥∥∥∥∫
S×A

q(s)πθ(a | s)P (· | s, a, η)dsda
∥∥∥∥
TV

.

By the triangle inequality, we have

∥µξ1 − µξ2∥TV ≤ σ∥P(θ1;η1) − P(θ1;η2)∥TV + σ∥P(θ1;η2) − P(θ2;η2)∥TV. (8)
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For the first term, by Assumption 1, we have∥∥P(θ1;η1) − P(θ1;η2)

∥∥
TV

= sup
q∈M(S)

∥q∥TV=1

∥∥∥∥∫
S×A

q(s)πθ1(a | s) (P (· | s, a, η1)− P (· | s, a, η2)) dsda
∥∥∥∥
TV

≤ sup
q∈M(S×A)

∥q∥TV=1

∥∥∥∥∫
S×A

q(s, a) (P (· | s, a, η1)− P (· | s, a, η2)) dsda
∥∥∥∥
TV

= ∥Pη1 − Pη2∥TV

≤LP ∥η1 − η2∥.

Similarly, for the second term in (8), by Assumption 2, we have∥∥P(θ1;η2) − P(θ2;η2)

∥∥
TV

= sup
q∈D(S)

∥q∥TV=1

∥∥∥∥∫
S×A

q(s)P (· | s, a, η2)(πθ1(a | s)− πθ2(a | s))dsda
∥∥∥∥
TV

≤ sup
q∈D(S)

∥q∥TV=1

∫
S2×A

q(s)P (s′ | s, a, η2)|πθ1(a | s)− πθ2(a | s)|dadsds′

= sup
q∈D(S)

∥q∥TV=1

∫
S
q(s) ∥πθ1(· | s)− πθ2(· | s)∥TV ds

≤ sup
q∈D(S)

∥q∥TV=1

∫
S
q(s) · Lπ∥θ1 − θ2∥ds

=Lπ∥θ1 − θ2∥.

Let L := max {LP , Lπ}. Plugging the above two inequalities into (8) gives

∥µξ1 − µξ2∥TV ≤ σL (∥η1 − η2∥+ ∥θ1 − θ2∥) .

Then, by the definition of µ†
ξ, we have

∥µ†
ξ1
− µ†

ξ2
∥TV =

∫
S×A

|µξ1(s)πθ1(a | s)− µξ2(s)πθ2(a | s)|dsda

≤
∫
S×A

(|µξ1(s)− µξ2(s)|πθ1(a | s) + µξ2(s) |πθ1(a | s)− πθ2(a | s)|) dsda

=∥µξ1 − µξ2∥TV +

∫
S
µξ2(s) ∥πθ1(· | s)− πθ2(· | s)∥TV ds

≤(σ − 2)L (∥η1 − η2∥+ ∥θ1 − θ2∥) + Lπ∥θ1 − θ2∥
≤(σ − 1)L (∥η1 − η2∥+ ∥θ1 − θ2∥) .

Similarly, by the definition of µ‡
ξ, we have

∥µ‡
ξ1
− µ‡

ξ2
∥TV ≤∥µ†

ξ1
− µ†

ξ2
∥TV + LP ∥η1 − η2∥+ Lπ∥θ1 − θ2∥

≤σL (∥η1 − η2∥+ ∥θ1 − θ2∥) .

Corollary 2. Similarly, for steady distributions induced by general value functions and population
measures µ1 := µ(Q1,M1), µ2 := µ(Q2,M2), we have

max
{
∥µ1 − µ2∥TV , ∥µ

†
1 − µ

†
2∥TV, ∥µ‡

1 − µ
‡
2∥TV

}
≤ σ

(
LP√
d2
∥M1 −M2∥+ Lπ∥Q1 −Q2∥∞

)
.

Lemma 6 (Lipschitz temporal difference operators). For any two sets of mean-path temporal
difference operators Ḡξ1 , φ̄ξ1 , ψ̄ξ1 and Ḡξ2 , φ̄ξ2 , ψ̄ξ2 determined by parameters ξ1 = (θ1; η1) and
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ξ2 = (θ2; η2), we have

∥Ḡξ1 − Ḡξ2∥ ≤σL(1 + γ) (∥θ1 − θ2∥+ ∥η1 − η2∥) ,
∥φ̄ξ1 − φ̄ξ2∥ ≤σLR (∥θ1 − θ2∥+ ∥η1 − η2∥) + Lr∥η1 − η2∥
∥ψ̄ξ1 − ψ̄ξ2∥ ≤σLF (∥θ1 − θ2∥+ ∥η1 − η2∥) ,

where σ and L are defined in Lemma 5, and Lr is defined in Assumption 1.

Proof. By definition, we have

∥Ḡξ1 − Ḡξ2∥ =
∥∥∥∥∫

S2×A2

ϕ(s, a)(ϕ(s, a)− γϕ(s′, a′))T
(
µ‡
ξ1
(s, a, s′, a′)− µ‡

ξ2
(s, a, s′, a′)

)
dsdads′da′

∥∥∥∥
≤
∫
S2×A2

∥∥ϕ(s, a)(ϕ(s, a)− γϕ(s′, a′))T∥∥(µ‡
ξ1
(s, a, s′, a′)− µ‡

ξ2
(s, a, s′, a′)

)
dsdads′da′.

Since ∥ϕ(s, a)∥ ≤ 1, we have
∥∥ϕ(s, a)(ϕ(s, a)− γϕ(s′, a′))T∥∥ ≤ 1 + γ. Then, by Lemma 5, we

have
∥Ḡξ1 − Ḡξ2∥ ≤ (1 + γ)σL (∥θ1 − θ2∥+ ∥η1 − η2∥) .

Similarly, by definition, we have

∥φ̄ξ1 − φ̄ξ2∥ =
∥∥∥∥∫

S×A
ϕ(s, a)r(s, a, η1)µ

†
ξ1
(s, a)− ϕ(s, a)r(s, a, η2)µ†

ξ2
(s, a)dsda

∥∥∥∥
≤
∫
S×A

(
r(s, a, η1)

∣∣∣µ†
ξ1
(s, a)− µ†

ξ2
(s, a)

∣∣∣+ µ†
ξ2
(s, a) |r(s, a, η1)− r(s, a, η2)|

)
dsda

≤R∥µ†
ξ1
− µ†

ξ2
∥TV + Lr∥η1 − η2∥

≤σLR (∥θ1 − θ2∥+ ∥η1 − η2∥) + Lr∥η1 − η2∥,

and
∥ψ̄ξ1 − ψ̄ξ2∥ ≤ F∥µξ1 − µξ2∥TV ≤ σLF (∥θ1 − θ2∥+ ∥η1 − η2∥) .

Lemma 7 (Lipschitz semi-gradient). Given a fixed semi-gradient operator g (which can be a mean-
path semi-gradient), for any parameters ξ1, ξ2 ∈ Ξ, we have

∥g(ξ1)− g(ξ2)∥ ≤ H∥ξ1 − ξ2∥.

Let ξ1 = (θ1; η1) and ξ2 = (θ2; η2). For any ξ = (θ; η) such that ∥θ∥ ≤ G, we have

∥ḡξ1(ξ)− ḡξ2(ξ)∥ ≤ σHmax {LP , Lπ} (∥θ1 − θ2∥+ ∥η1 − η2∥) + Lr∥η1 − η2∥.

Proof. We first show that the semi-gradient operator is Lipschitz in its argument. By definition, we
have

∥g(ξ1;O)− g(ξ2;O)∥ = ∥ (Gϕ(O)⊕Gψ) (ξ1 − ξ2)∥ ≤ ∥Gϕ(O)⊕Gψ∥op∥ξ1 − ξ2∥.

We get the result by noticing that

∥Gϕ(O)⊕Gψ∥op ≤ max {∥Gϕ(O)∥op, ∥Gψ∥op} ≤ max {1 + γ, F} ≤ H.

Next, we show that the mean-path semi-gradient operator is Lipschitz in the parameter. Another
representation of the mean-path semi-gradient is

ḡξ1 =
(
Ḡξ1θ − φ̄ξ1 ;Gψη − ψ̄ξ1

)
.

Therefore, by Lemma 6, we have

∥ḡξ1(ξ)− ḡξ2(ξ)∥ ≤
∥∥Ḡξ1θ − Ḡξ2θ − b̄ξ1 + b̄ξ2

∥∥+ ∥∥Gψη1 −Gψη2 − ψ̄ξ1 + ψ̄ξ2
∥∥

≤D
∥∥Ḡξ1 − Ḡξ2∥∥+ ∥∥b̄ξ1 − b̄ξ2∥∥+ ∥∥ψ̄ξ1 − ψ̄ξ2∥∥

≤σL((1 + γ)D +R+ F ) (∥θ1 − θ2∥+ ∥η1 − η2∥) + Lr∥η1 − η2∥.
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H SAMPLE COMPLEXITY ANALYSIS

H.1 KEY LEMMAS

In this section, we first decompose the mean square error into different terms, and then bound each
term separately.
Lemma 8 (Error decomposition). Let ξ∗ be the optimal parameter. Recall that by Proposition 2,
ḡ∗(ξ∗) = 0. We have

E∥ξt+1 − ξ∗∥2 ≤E∥ξ̆t+1 − ξ∗∥2

=E∥ξt − ξ∗∥2 − 2αtE ⟨ξt − ξ∗, gt(ξt)⟩+ α2
t ∥gt(ξt)∥2

=E∥ξt − ξ∗∥2 + α2
t ∥gt(ξt)∥2

− 2αtE ⟨ξt − ξ∗, ḡt(ξt)− ḡ∗(ξ∗)⟩ (descent)
− 2αtE ⟨ξt − ξ∗, ḡt−τ (ξt)− ḡt(ξt)⟩ (progress)
− 2αtE ⟨ξt − ξ∗, gt−τ (ξt)− ḡt−τ (ξt)⟩ (mix)
− 2αtE ⟨ξt − ξ∗, gt(ξt)− gt−τ (ξt)⟩ . (backtrack)

Lemma 9 (Descent). Let ξ∗ = (θ∗; η∗) be a projected MFE. For any parameter ξ = (θ; η) ∈
Bd1D ×∆d2 , we denote ∆θ = θ − θ∗ and ∆η = η − η∗. We have

−⟨η − η∗, ḡξ(η)− ḡξ∗(η∗)⟩ ≤ −λmin(Gψ)∥∆η∥2 + σLF∥∆η∥ (∥∆θ∥+ ∥∆η∥) ,
−⟨θ − θ∗, ḡξ(θ)− ḡξ∗(θ∗)⟩ ≤ −(1− γ)λmin(Ĝξ∗)∥∆θ∥2 + σLH∥∆θ∥(∥∆θ∥+ ∥∆η∥) + Lr∥∆η∥∥∆θ∥.

That is, neither −ḡξ(η) nor −ḡξ(θ) is guaranteed to be a descent direction. Let w :=
1
2 min

{
λmin(Gψ), (1− γ)λmin(Ĝξ∗)

}
. Suppose 3σLH + Lr ≤ 2w. Then, we have

−⟨ξ − ξ∗, ḡξ(ξ)− ḡξ∗(ξ∗)⟩ ≤ −w∥ξ − ξ∗∥2.

Proof. We first focus on the first two inequalities. We denote ∆η := η − η∗ and ∆θ := θ − θ∗. For
the population measure parameter, by definition, we have

−⟨∆η, ḡξ(η)− ḡξ∗(η∗)⟩ =
〈
∆η,−Gψ∆η + ψ̄ξ − ψ̄ξ∗

〉
.

Note that Gψ is a positive definite Gram matrix if ψ is linearly independent. Then, by Lemma 6, we
have

−⟨∆η, ḡξ(η)− ḡξ∗(η∗)⟩ ≤ − ⟨∆η,Gψ∆η⟩+
∥∥ψ̄ξ − ψ̄ξ∗∥∥ ∥∆η∥

≤ − λmin(Gψ)∥∆η∥2 + σLF∥∆η∥(∥∆η∥+ ∥∆θ∥). (9)

For the value function parameter, we have

−⟨∆θ, ḡξ(θ)− ḡξ∗(θ∗)⟩ =
〈
∆θ, Ḡξ∗θ∗ − φ̄ξ∗ − Ḡξθ + φ̄ξ

〉
=
〈
∆θ,−Ḡξ∗∆θ + (Ḡξ∗ − Ḡξ)θ + φ̄ξ − φ̄ξ∗

〉
≤−

〈
∆θ, Ḡξ∗∆θ

〉
+D∥Ḡξ∗ − Ḡξ∥∥∆θ∥+ ∥φ̄ξ − φ̄ξ∗∥∥∆θ∥.

By Lemma 6, we have

−⟨∆θ, ḡξ(θ)− ḡξ∗(θ∗)⟩ ≤ −
〈
∆θ, Ḡξ∗∆θ

〉
+ ∥∆θ∥((1 + γ)σLD(∥∆θ∥+ ∥∆η∥)

+ σLR(∥∆θ∥+ ∥∆η∥) + Lr∥∆η∥). (10)

For a matrix G, we define wmin(G) := min∥x∥=1 ⟨x,Gx⟩. For Ḡξ∗ , we have

wmin(Ḡξ∗) = min
∥θ∥=1

Eξ∗
[
θTϕ(s, a)(ϕ(s, a)− γϕ(s′, a′))T θ

]
=: min

∥θ∥=1
Eξ∗

[
u2 − γuu′

]
,

where u := θTϕ(s, a) and u′ := θTϕ(s′, a′). We have

E[uu′] ≤ 1

2

(
E[u2] + E[u′2]

)
=

1

2

(
E[u2] + E[u2]

)
= E[u2].
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Therefore,

wmin(Ḡξ∗) ≥ (1−γ) min
∥θ∥=1

Eξ∗ [u2] = (1−γ)wmin

(
Eξ∗ [ϕϕT ]

)
= (1−γ)wmin

(
Ĝξ∗

)
= (1−γ)λmin

(
Ĝξ∗

)
,

(11)
where Ĝξ∗ is the Gram matrix of the feature map ϕ under the steady distribution induced by ξ∗, and
the last equality uses the property of normal matrices. Plugging the above derivation into (10) gives

−⟨∆θ, ḡξ(θ)− ḡξ∗(θ∗)⟩ ≤ −(1−γ)λmin(Ĝξ∗)∥∆θ∥2+σL(H−2F )∥∆θ∥(∥∆θ∥+∥∆η∥)+Lr∥∆η∥∥∆θ∥.
(12)

It is clear that (9) and (12) are controlled by both ∥∆θ∥ and ∥∆η∥. When ∥∆η∥ ≫ ∥∆θ∥, (12)
suggests that −ḡξ(θ) may not be a descent direction for ∥∆θ∥; when ∥∆θ∥ ≫ ∥∆η∥, (9) suggests
that −ḡξ(η) may not be a descent direction for ∥∆η∥.
However, combining (9) and (12) gives

−⟨∆ξ, ḡξ(ξ)− ḡξ∗(ξ∗)⟩ ≤ − (1− γ)λmin(Ĝξ∗)∥∆θ∥2 − λmin(Gψ)∥∆η∥2 + σLF∥∆η∥2

+ σL(H − 2F )∥∆θ∥2 + (σLF + σL(H − 2F ) + Lr)∥∆θ∥∥∆η∥.

By Lemma 2, we have

− ⟨∆ξ, ḡξ(ξ)− ḡξ∗(ξ∗)⟩

≤ −min{(1− γ)λmin(Ĝξ∗), λmin(Gψ)}∥∆ξ∥2 + σLH∥∆ξ∥2 + 1

2
(σLH + Lr)∥∆ξ∥2

≤
(
−min{(1− γ)λmin(Ĝξ∗), λmin(Gψ)}+

1

2
(3σLH + Lr)

)
∥∆ξ∥2.

Let w := 1
2 min

{
(1− γ)λmin(Ĝξ∗), λmin(Gψ)

}
. Suppose 3σLH + Lr ≤ 2w. Then, we have

−⟨∆ξ, ḡξ(ξ)− ḡξ∗(ξ∗)⟩ ≤ −w∥∆ξ∥2.

The above inequality suggests that −ḡξ(ξ) is a descent direction for ∥∆ξ∥ if the Lipschitz constants
are small enough.

Rd1

∆η

−gξ(η)

Rd2 ∆θ

−gξ(θ)

∆η

−gξ(η)

−gξ(θ)
∆θ

∆ξ = ∆θ ⊕∆η−gξ(ξ) = −(gξ(θ)⊕ gξ(η))

Rd1 ⊕ Rd2

⟨−gξ(ξ),∆ξ⟩ < 0

Figure 14: An illustrative example for Lemma 1, where −ḡξ(ξ) gives a descent direction, while
−ḡξ(θ) does not.

Lemma 10 (Progress). For any ξ = (θ; η) in Bd1D ×∆d2 , and for any time step t and period τ , we
have

∥ḡt(ξ)− ḡt−τ (ξ)∥ ≤ αt−ττCprog,

where Cprog := σmax{Lπ, LP }H2 + 2LrF .

Proof. By Lemma 7, we have

∥ḡt(ξ)− ḡt−τ (ξ)∥ ≤ σLH (∥θt − θt−τ∥+ ∥ηt − ηt−τ∥) + Lr∥ηt − ηt−τ∥.
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According to the update rule of θ and η, we have

∥θt − θt−1∥ ≤∥θ̆t − θt−1∥ = ∥αt−1gt−1(θt−1)∥
∥ηt − ηt−1∥ ≤∥η̆t − ηt−1∥ = ∥αt−1gt−1(ηt−1)∥.

Since ∥θt−1∥ ≤ D and ∥ηt−1∥ ≤ ∥ηt−1∥1 = 1, by Lemma 3, we have

∥θt − θt−1∥+ ∥ηt − ηt−1∥ ≤ αt−1 ((1 + γ)D +R) + αt−1 · 2F = αt−1H.

By the triangle inequality, we get

∥ḡt(ξ)− ḡt−τ (ξ)∥ ≤σLH
τ−1∑
l=0

(∥θt−l − θt−l−1∥+ ∥ηt−l − ηt−l−1∥) + Lr

τ−1∑
l=0

∥ηt−l − ηt−l−1∥

≤αt−ττσLH2 + 2αt−ττLrF

=:αt−ττCprog,

where we require that the step size αt is non-increasing, and Cprog := σmax{Lπ, LP }H2 +
2LrF .

Lemma 11 (Mix). Let Ft−τ be the filtration generated by the history up to time t − τ . For any
ξ = (θ; η) ∈ Bd1D ×∆d2 that is independent of gt−τ and ḡt−τ conditioned on Ft−τ , and for any
time step t and period τ , we have∥∥∥E [gt−τ (ξ; Õt)− ḡt−τ (ξ)

∣∣∣Ft−τ]∥∥∥ ≤ mρτH.
Proof. We denote Pt−τ as the observation distribution on the virtual trajectory by fixing the transition
kernel Pξt−τ at time t− τ . We have∥∥∥E [gt−τ (ξ, Õt)− ḡt−τ (ξ)

∣∣∣Ft−τ]∥∥∥
=

∥∥∥∥∫
S2×A2

(
ϕ(s, a)

(
r(s, a) + γϕT (s′, a′)θ − ϕT (s, a)θ

)
; ψ̂(s′)

)(
Pt−τ (Õt = o | Ft−τ )− µ‡

t−τ (o)
)
do

∥∥∥∥
≤((1 + γ)D +R+ F )

∥∥∥Pt−τ − µ‡
ξt−τ

∥∥∥
TV

.

Since Pt−τ and µ‡
ξt−τ

share the same policy πθt−τ and transition kernel Pξt−τ , we have∥∥∥Pt−τ − µ‡
ξt−τ

∥∥∥
TV

=
∥∥Pt−τ (st = · | Ft−τ )− µξt−τ∥∥TV

≤ mρτH,

where the last inequality uses Assumption 3.

Lemma 12 (Bakctrack). Let Ft−τ be the filtration generated by the history up to time t− τ . For any
ξ = (θ; η) ∈ Bd1D ×∆d2 that is independent of gt and gt−τ conditioned on Ft−τ , and for any time
step t and period τ , we have∥∥∥E [gt(ξ,Ot)− gt−τ (ξ, Õt)

∣∣∣Ft−τ]∥∥∥ ≤ αt−ττCback(τ),

where Cback(τ) := (τ + 1)LH2 + 2LrF .
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Proof. By definition, we have∥∥∥E [gt(ξ,Ot)− gt−τ (ξ, Õt)
∣∣∣Ft−τ]∥∥∥

=
∥∥∥∫

S2×A2

(Gϕ(o)⊕Gψ) ξ ·
(
Pt(Ot = o | Ft−τ )− Pt−τ (Õt = o | Ft−τ )

)
do

−
∫
S2×A2

(φηt ⊕ ψ) (o)Pt(Ot = o | Ft−τ )−
(
φηt−τ ⊕ ψ

)
(o)Pt−τ (Õt = o | Ft−τ )do

∥∥∥
≤((1 + γ)D + F )∥Pt − Pt−τ∥TV

+

∥∥∥∥∫
S2×A2

(φηt ⊕ ψ) (o)
(
Pt(Ot = o | Ft−τ )− Pt−τ (Õt = o | Ft−τ )

)
do

∥∥∥∥
TV

+

∥∥∥∥∫
S2×A2

(
φηt − φηt−τ

)
(o)Pt−τ (Õt = o | Ft−τ )do

∥∥∥∥
TV

≤((1 + γ)D + F +R+ F )∥Pt − Pt−τ∥TV + Lr∥ηt − ηt−τ∥

where Pt and Pt−τ are the distributions of observation at time step t on the actual trajectory and
the virtual trajectory, respectively. By the proof of Lemma 10, we have ∥ηt − ηt−τ∥ ≤ αt−ττ · 2F .
Therefore, we have∥∥∥E [gt(ξ,Ot)− gt−τ (ξ, Õt)

∣∣∣Ft−τ]∥∥∥ ≤ H∥Pt − Pt−τ∥TV + 2αt−ττLrF. (13)

Let Ξ be the set of all parameters. We first expand Pt with conditional probabilities:

Pt(Ot = (s, a, s′, a′) | Ft−τ )

=

∫
Ξ2

Pt(st = s | ξt−τ , st−τ )Pt(ξt−1 = ξ | ξt−τ , st−τ , st = s)πθ(a | s)

P (s′ | s, a, η′)Pt(ξt = ξ′ | ξt−τ , st−τ , ξt−1 = ξ, st = s, at = a)πθ′(a
′ | s′)dξdξ′,

where ξ = (θ; η) and ξ′ = (θ′; η′). We then decompose Pt−τ into a similar form:

Pt−τ (Õt = (s, a, s′, a′) | Ft−τ )
=Pt−τ (s̃t = s | ξt−τ , st−τ )πθt−τ (a | s)P (s′ | s, a, ηt−τ )πθt−τ (a′ | s′)
=Pt−τ (s̃t = s | ξt−τ , st−τ )πθt−τ (a | s)P (s′ | s, a, ηt−τ )πθt−τ (a′ | s′)

·
∫
Ξ2

Pt(ξt−1 = ξ | ξt−τ , st−τ , st = s)Pt(ξt = ξ′ | ξt−τ , st−τ , ξt−1 = ξ, st = s, at = a)dξdξ′.

Therefore, we can decompose the distribution difference into four parts:

Pt − Pt−τ

=

∫
Ξ2

(Pt(st = s | Ft−τ )− Pt−τ (s̃t = s | Ft−τ ))Pt(ξt−1 = ξ | ξt−τ , st−τ , st = s)

πθ(a | s)P (s′ | s, a, η′)Pt(ξt = ξ′ | ξt−τ , st−τ , ξt−1 = ξ, st = s, at = a)πθ′(a
′ | s′)dξdξ′

(S1)

+

∫
Ξ2

Pt−τ (s̃t = s | Ft−τ )Pt(ξt−1 = ξ | ξt−τ , st−τ , st = s)
(
πθ(a | s)− πθt−τ (a | s)

)
P (s′ | s, a, η′)Pt(ξt = ξ′ | ξt−τ , st−τ , ξt−1 = ξ, st = s, at = a)πθ′(a

′ | s′)dξdξ′ (S2)

+

∫
Ξ2

Pt−τ (s̃t = s | Ft−τ )Pt(ξt−1 = ξ | ξt−τ , st−τ , st = s)πθt−τ (a | s) (P (s′ | s, a, η′)− P (s′ | s, a, ηt−τ ))

Pt(ξt = ξ′ | ξt−τ , st−τ , ξt−1 = ξ, st = s, at = a)πθ′(a
′ | s′)dξdξ′ (S3)

+

∫
Ξ2

Pt−τ (s̃t = s | Ft−τ )Pt(ξt−1 = ξ | ξt−τ , st−τ , st = s)πθt−τ (a | s)P (s′ | s, a, ηt−τ )

Pt(ξt = ξ′ | ξt−τ , st−τ , ξt−1 = ξ, st = s, at = a)
(
πθ′(a

′ | s′)− πθt−τ (a′ | s′)
)
dξdξ′. (S4)
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We now bound each part separately. By integrating out the later part, S1 becomes the marginal
difference of the state distribution:∫
S2×A2

S1dsdads
′da′ =

∫
S
(Pt(st = s | Ft−τ )− Pt−τ (s̃t = s | Ft−τ ))

·

(∫
S×A2×Ξ2

Pt(ξt−1 = ξ | ξt−τ , st−τ , st = s)πθ(a | s)P (s′ | s, a, η′)

Pt(ξt = ξ′ | ξt−τ , st−τ , ξt−1 = ξ, st = s, at = a)πθ′(a
′ | s′)dξdξ′dads′da′

)
ds

=

∫
S
(Pt(st = s | Ft−τ )− Pt−τ (s̃t = s | Ft−τ )) ds

≤∥Pt(st = · | Ft−τ )− Pt−τ (s̃t = · | Ft−τ )∥TV

= ∥Pt−1(st = · | Ft−τ )− Pt−τ (s̃t = · | Ft−τ )∥TV .

By Jensen’s inequality, we have

∥Pt−1(st = · | Ft−τ )− Pt−τ (s̃t = · | Ft−τ )∥TV

=

∥∥∥∥∫
S×A2

Pt−1(Ot−1 = (s, a, ·, a′) | Ft−τ )− Pt−τ (Õt−1 = (s, a, ·, a′) | Ft−τ )dsdada′
∥∥∥∥
TV

≤
∫
S×A2

∥∥∥Pt−1(Ot−1 = (s, a, ·, a′) | Ft−τ )− Pt−τ (Õt−1 = (s, a, ·, a′) | Ft−τ )
∥∥∥
TV

dsdada′

=
∥∥∥Pt−1(Ot = · | Ft−τ )− Pt−τ (Õ = · | Ft−τ )

∥∥∥
TV

.

That is, S1 is recursively bounded by ∥Pt−1 − Pt−τ∥TV.

For S2, we have∫
S2×A2

S2dsdads
′da′

=

∫
S×A×Ξ

Pt−τ (s̃t = s | Ft−τ )Pt(ξt−1 = ξ | ξt−τ , st−τ , st = s)
(
πθ(a | s)− πθt−τ (a | s)

)
·

(∫
S×A×Ξ

P (s′ | s, a, η′)Pt(ξt = ξ′ | ξt−τ , st−τ , ξt−1 = ξ, st = s, at = a)πθ′(a
′ | s′)ds′da′dξ′

)
dsdadξ

=

∫
S×A×Ξ

Pt−τ (s̃t = s | Ft−τ )Pt(ξt−1 = ξ | ξt−τ , st−τ , st = s)
(
πθ(a | s)− πθt−τ (a | s)

)
dsdadξ

≤
∫
S×Ξ

Pt−τ (s̃t = s | Ft−τ )Pt(ξt−1 = ξ | ξt−τ , st−τ , st = s)
∥∥πθ(· | s)− πθt−τ (· | s)∥∥TV

dsdξ.

By Assumption 2 and Lemma 10, for any ξ ∈ Ξ such that Pt(ξt−1 = ξ | Ft−τ ) ̸= 0 (which is
equivalent to Pt(ξt−1 = ξ | ξt−τ , st−τ , st = s) ̸= 0 as all policies are ergodic), we have

∥πθ(· | s)− πθt−τ (· | s)∥TV ≤ αt−τ (τ − 1)Lπ((1 + γ)G+R).

Therefore, we get∫
S2×A2

S2dsdads
′da′ ≤αt−τ (τ − 1)Lπ((1 + γ)G+R)

∫
S×Ξ

Pt−τ (s̃t = s | Ft−τ )Pt(ξt−1 = ξ | ξt−τ , st−τ , st = s)dsdξ

=αt−τ (τ − 1)Lπ((1 + γ)G+R).
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For S3, we have∫
S2×A2

S3dsdads
′da′

=

∫
S2×A×Ξ2

Pt−τ (s̃t = s | Ft−τ )Pt(ξt−1 = ξ | ξt−τ , st−τ , st = s)πθt−τ (a | s)

· (P (s′ | s, a, η′)− P (s′ | s, a, ηt−τ ))Pt(ξt = ξ′ | ξt−τ , st−τ , ξt−1 = ξ, st = s, at = a)

·
(∫

A
πθ′(a

′ | s′)da′
)
dsdads′ξdξ′

≤
∫
S×A×Ξ2

Pt−τ (s̃t = s | Ft−τ )Pt(ξt−1 = ξ | ξt−τ , st−τ , st = s)πθt−τ (a | s)

· ∥P (· | s, a, η′)− P (· | s, a, ηt−τ )∥TV Pt(ξt = ξ′ | ξt−τ , st−τ , ξt−1 = ξ, st = s, at = a)dsdadξdξ′.

Similar to the bound for S2, by Assumption 1 and Lemma 10, for any ξ′ ∈ Ξ such that Pt(ξt =
ξ′ | Ft−τ ) ̸= 0, we have

∥P (· | s, a, η′)− P (· | s, a, ηt−τ )∥TV ≤ 2αt−ττLP .

Therefore, we get∫
S2×A2

S3dsdads
′da′ ≤αt−ττLPH

∫
S×A×Ξ2

Pt−τ (s̃t = s | Ft−τ )Pt(ξt−1 = ξ | ξt−τ , st−τ , st = s)

πθt−τ (a | s)Pt(ξt = ξ′ | ξt−τ , st−τ , ξt−1 = ξ, st = s, at = a)dsdadξdξ′

=2αt−ττLP .

Similar to the bound for S2, for S4, we have∫
S2×A2

S4dsdads
′da′ ≤ αt−ττLπ((1 + γ)G+R).

Plugging back the above bounds for S1, S2, S3, and S4, we get

∥Pt − Pt−τ∥TV ≤∥Pt−1 − Pt−τ∥TV + 2ταt−τ (Lπ((1 + γ)D +R) + LPF )

.

Recursively, we get

∥Pt − Pt−τ∥TV ≤ 2LH

τ∑
l=1

(lαt−l) ≤ αt−ττ(τ + 1)LH,

where we require the step size to be non-increasing. Plugging the above bound back to (13) gives the
desired result.

H.2 PROOF OF THEOREM 1

Theorem 1. Let ξ∗ = (θ∗; η∗) be a (projected) MFE. Let {ξt = (θt; ηt)} be a sequence of parameters
generated by Algorithm 1. Then, under Assumptions 1 to 3, if 3σLH + Lr ≤ 2w, we have

E ∥ξt+1 − ξ∗∥2 ≤ (1− αtw)E∥ξt − ξ∗∥2 + α2
tH

2 +O

(
α3
t log

4 α−1
t L2H4

w

)
.

Proof. We denote ∆ξt = ξt − ξ∗. We first plug Lemmas 1 and 3 into Lemma 8 to get

E∥∆ξt+1∥2 ≤(1− 2αtw)E∥∆ξt∥2 + α2
tH

2

+ 2αtE ⟨∆ξ, ḡt(ξt)− ḡt−τ (ξt)⟩ (14)
+ 2αtE ⟨∆ξ, ḡt−τ (ξt)− gt−τ (ξt)⟩ (15)
+ 2αtE ⟨∆ξ, gt−τ (ξt)− gt(ξt)⟩ . (16)
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For (14), by Young’s inequality, for any β > 0, we have

2E ⟨∆ξt, ḡt(ξt)− ḡt−τ (ξt)⟩ ≤ βE ∥∆ξt∥2 +
1

β
E ∥ḡt−τ (ξt)− ḡt(ξt)∥2 .

By Lemma 10, we get

2E ⟨∆ξt, ḡt(ξt)− ḡt−τ (ξt)⟩ ≤ βE ∥∆ξt∥2 + β−1α2
t−ττ

2C2
prog. (17)

For (15), note that conditioned on Ft−τ , ḡt−τ is determined and gt−τ is only dependent on the virtual
Markovian trajectory. Thus, ξt is independent of gt−τ and ḡt−τ conditioned on Ft−τ . Therefore, by
Lemma 11 and Young’s inequality, we have

2E ⟨∆ξt, ḡt−τ (ξt)− gt−τ (ξt)⟩ =2E [⟨E [∆ξt | Ft−τ ] ,E [gt−τ (ξt)− ḡt−τ (ξt) | Ft−τ ]⟩]
≤2E [E [∥∆ξt∥ | Ft−τ ] · ∥E [gt−τ (ξt)− ḡt−τ (ξt) | Ft−τ ]∥]
≤2mρτHE ∥∆ξt∥
≤βE ∥∆ξt∥2 + β−1m2ρ2τH2. (18)

For (16), we cannot directly apply Lemma 12 as ξt and gt are dependent conditioned on Ft−τ . To
proceed, we employ the following decomposition:

E ⟨∆ξt, gt−τ (ξt)− gt(ξt)⟩ =E ⟨∆ξt, (gt−τ (ξt)− gt−τ (ξt−τ ))− (gt(ξt)− gt(ξt−τ ))⟩︸ ︷︷ ︸
H1

+ E ⟨ξt − ξt−τ , gt−τ (ξt−τ )− gt(ξt−τ )⟩︸ ︷︷ ︸
H2

+E ⟨∆ξt−τ , gt−τ (ξt−τ )− gt(ξt−τ )⟩︸ ︷︷ ︸
H3

.

For H1, by the Lipschitzness of the semi-gradient (Lemma 7) and Lemma 10, we have

H1 ≤ 2αt−ττH
2 · E ∥∆ξt∥ .

For H2, by Lemmas 3 and 10, we get

H2 ≤ 2H · αt−ττH.

For H3, ξt−τ is independent of gt and gt−τ conditioned on Ft−τ . Similar to the bound of (18), by
Lemma 12, we have

H3 =E [⟨E [∆ξt−τ | Ft−τ ] ,E [gt−τ (ξt−τ )− gt(ξt−τ ) | Ft−τ ]⟩]
≤E [E [∥∆ξt−τ∥ |Ft−τ ] · ∥E [gt(ξt−τ )− gt−τ (ξt−τ ) | Ft−τ ]∥]
≤αt−ττCbackE ∥∆ξt−τ∥ .

Then, applying Lemma 10 and Young’s inequality gives

2H3 ≤ αt−ττCback

(
αt−ττH + E∥∆ξt∥2

)
≤ 2α2

t−ττ
2HCback+βE∥∆ξt∥2+β−1α2

t−ττ
2C2

back.

Plugging H1, H2, and H3 back into the decomposition and applying Young’s inequality, we get

2E ⟨∆ξt, gt−τ (ξt)− gt(ξt)⟩ ≤2βE ∥∆ξt∥2 + 4αt−ττH
2 + α2

t−ττ
2
(
2HCback + β−1

(
C2

back + 4H4
))
.

(19)

Finally, plugging the bounds of (17–19) back into (14–16) gives

E∥∆ξt+1∥2 ≤(1− 2αtw + 4αtβ)E∥∆ξt∥2 + α2
tH

2 + 4αtαt−ττH
2

+ αt
(
β−1α2

t−ττ
2C2

prog + β−1m2ρ2τH2 + α2
t−ττ

2(2HCback + β−1(C2
back + 4H4))

)
.

Now we choose τ =
⌈
logα−1

t

log ρ−1

⌉
. Then, ρτ ≤ αt. We require the step-size to be non-increasing, and

not too small such that
∞∑
t=1

αt = +∞ and logα−1
t = o(T ).
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The first condition indicates that lim supt→∞ αt/2/αt := Cα,1 < ∞. And there exists Cα,2 > 0
such that αt/2/αt ≤ Cα,2 · lim supt→∞ αt/2/αt for any time step t. The second condition indicates
the existence of Cα,2 > 0 such that αt−τ ≤ Cα,3αt/2 for any t. In conclusion, we have

αt−τ ≤ Cα,3αt/2 ≤ Cα,3Cα,2Cα,1αt =: Cααt.
Then, we choose β = w/4. Together, we get

E∥∆ξt+1∥2 ≤(1− αtw)E∥∆ξt∥2 + α2
t (H

2 + 4τCαH
2) (20)

+ α3
t

(
4

w

(
τ2C2

α(C
2
prog + C2

back + 4H4) +m2H2
)
+ 2τ2C2

αCbackH

)
=:(1− αtw)E∥∆ξt∥2 + α2

t · C2(αt) + α3
t · C3(αt),

where we use C2 and C3 to encapsulate the terms in the right-hand side of (20). Plugging back the
definitions of Cprog and Cback gives the final result

E∥∆ξt+1∥2 = (1−αtw)E∥∆ξt∥2+H2·O(α2
t logα

−1
t )+

max {Lπ, LP , Lr}2H4

w
·O(α3

t log
4 α−1

t ),

where the asymptotic equivalence holds as αt → 0.

H.3 PROOF OF COROLLARIES

Corollary 1. For a constant step-size αt ≡ α0, we have

E∥ξt − ξ∗∥2 ≤ e−α0wt∥ξ0 − ξ∗∥2 +
α0H

2

w
+O

(
L2H4α2

0

w2

)
.

Proof. By Theorem 1, we have

E∥ξT − ξ∗∥2 ≤(1− α0w)
T ∥ξ0 − ξ∗∥2 +

T∑
t=0

(1− α0w)
T−t(α2

0C2 + α3
0C3)

≤e−α0wT ∥ξ0 − ξ∗∥2 +
α0

w
(C2 + α0C3)

≤e−α0wT ∥ξ0 − ξ∗∥2 + w−1H2 ·O(α0 logα
−1
0 ).

Corollary 3 (Linearly decaying step-size). We define a linearly decaying step-size sequence αt =
4/(w(t+ 1)), and the convex combination ξ̃T := 2

T (T+1)

∑T
t=0 tξt. Then, we have

E∥ξ̃T − ξ∗∥2 ≤ O
(
H2 log T

w2T

)
.

Proof. Rearranging the result of Theorem 1 gives

1

2
E∥∆ξt∥2 ≤

(
1

αtw
− 1

2

)
E∥∆ξt∥2 −

1

αtw
E∥∆ξt+1∥2 +

αt
w
C2 +

α2
t

w
C3.

Substituting αt = 4/(w(t+ 1)) and multiplying by t gives

tE∥∆ξt∥2 ≤
(t− 1)t

2
E∥∆ξt∥2 −

t(t+ 1)

2
E∥∆ξt+1∥2 +

8t

w2(t+ 1)
C2 +

32t

w3(t+ 1)2
C3. (21)

By Jensen’s inequality, we have

E∥ξ̃T − ξ∗∥2 ≤
1

T (T + 1)

T∑
t=0

tE∥∆ξt∥2. (22)

Combining (21) and (22) gives

E∥ξ̃T − ξ∗∥2 ≤
4

w2T (T + 1)

(
C2

T∑
t=0

t

t+ 1
+

4C3

w

T∑
t=0

t

(t+ 1)2

)
= O

(
H2 log T

w2T

)
.
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I CONVERGENCE WITH GENERAL POLICY OPERATORS

Our convergence result for general policy operators leverages Zhang et al. (2023, Corollary 3.10) for
stochastic approximation methods on rapidly changing Markov chains. Thus, we only need to verify
that SemiSGD satisfies all the assumptions in Zhang et al. (2023) and specify the corresponding
parameters and constants. Table 5 provides a side-by-side comparison of the notations and constants
for easy reference.

Table 5: Comparison of notations and constants in Zhang et al. (2023) and our setting.

Description Ours Zhang et al. (2023)

Parameter ξt = (θt; ηt) wt ≡ θt
Observation sample Ot Yt
Algorithm operator −g(ξt;Ot) + ξt Fθt(wt, Yt)
Mean-path operator id−αḡξ fαw
Projection operator Π Γ
Update rule (6) ξt+1 = Π(ξt − αtg(ξt;Ot)) wt+1 = Γ(wt − αt(Fwt(wt, Yt)− wt))
Steady distribution µξ dθ

Assumption 3.4
Zero/fixed point ḡξ(Λ(ξ)) = 0 F̄θ(w

∗
θ) = w∗

θ
Assumption Algorithm 1 Assumption 3.1
Assumption Assumption 3 Assumption 3.2 and Lemma 3.3

Assumption contractivity of Bellman
and transition operators Assumption 3.4

Assumption Lemma 7 Assumption 3.5 (i)
Assumption Algorithm 1 Assumption 3.5 (ii)
Assumption Lemma 3 Assumption 3.5 (iii)
Assumption Lemma 7 Assumption 3.5 (iv)
Assumption Lemma 1 Assumption 3.5 (vi)
Assumption Assumption 1 and Lemma 4 Assumption 3.5 (vii)
Assumption D > w̄−1 Assumption 3.6
Assumption αt = 4/(1 + w̄t) Assumption 3.7
Constant

√
1− αw̄ κα

Constant w̄ η
Constant max {1 + γ, F}+ 1 LF
Constant 0 L′

F
Constant R+ F UF
Constant σL(1 + γ)

√
max{d1, d2} L′′

F

Constant R+F
1+γ + Lr

σL(1+γ) U ′′
F

Constant w̄−1/2 Uinv

Constant w̄−1(R+ F )/2 Uw
Constant (30) Lw
Constant LP LP

Zhang et al. (2023, Assumption 3.1) is satisfied by our action selection rule in Algorithm 1:

Pr (Ot+1 = o = (s, a, s′, a′)) =Pr ((st+1, at+1, st+2, at+2) = (s, a, s′, a′))

=Pηt+1
(st+1, at+1, s

′)πθt+1
(a′ | s′)

=:Pξt+1
(Ot+1, o) .

That is, the transition depends on the current parameter.

Zhang et al. (2023, Assumption 3.2) is directly satisfied by Assumption 3.

Zhang et al. (2023, Assumption 3.4 (i)) is satisfied by the contraction property of the Bellman and
transition operators. To ease representation, we define a mapping Λ that maps any parameter ξ to the
zero point of ḡξ. Recall that

ḡξ(ξ
′) =

(
Ḡξ ⊕Gψ

)
ξ −

(
φ̄ξ ⊕ ψ̄ξ

)
.
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By previous analysis (e.g., Lemma 9), we know that Ḡξ and Gψ are positive definite. Thus, we have

Λ(ξ) =
(
Ḡξ ⊕Gψ

)−1 (
φ̄ξ ⊕ ψ̄ξ

)
,

indicating the existence and uniqueness of the zero point of ḡξ.

Zhang et al. (2023, Assumption 3.4 (ii)) can be verified by modifying the proof of Lemma 9. For a
given parameter ζ ∈ Ξ, we denote Λ(ζ) = ξ̄ = (θ̄; η̄), ∆ξ = ξ − ξ̄, ∆θ = θ − θ̄, and ∆η = η − η̄
for any ξ = (θ; η) ∈ Ξ. Then, similar to the proof of Lemma 9, we have

−⟨∆η, ḡζ(η)⟩ ≤ − λmin(Gψ)∥∆η∥2,
−⟨∆θ, ḡζ(θ)⟩ ≤ − (1− γ)λmin(Ĝζ)∥∆θ∥2.

(23)

Note that here the coupling between θ and η is gone as we fix the parameter ζ that controls the
dynamics, resulting in a stationary setting. Let

w̄ :=
1

2
inf
ζ∈Ξ

min
{
(1− γ)λmin(Ĝζ), λmin(Gψ)

}
.

Note that ζ determines Ĝζ through the transition kernel. Since the set of transition kernels on a
compact state space is compact, the infimum is achieved. And by definition, we have 0 < w̄ < w ≤
1/2. By Lemma 7, we have

∥ḡζ(ξ)∥ = ∥ḡζ(ξ)− ḡζ(ξ̄)∥ ≤ max {1 + γ, F} ∥ξ − ξ̄∥. (24)

Combining (23) and (24) gives∥∥ξ − αḡζ(ξ)− ξ̄∥∥2 ≤∥∆ξ∥2 − 2α ⟨∆η, ḡζ(η)⟩ − 2α ⟨∆θ, ḡζ(θ)⟩+ α2∥ḡζ(ξ)∥2

≤∥∆ξ∥2 − 2αw̄∥∆ξ∥2 + α2 max {1 + γ, F}2 ∥∆ξ∥2

=(1− 2αw̄ + α2 max {1 + γ, F}2)∥∆ξ∥2.

Therefore, let ᾱ := w̄/(max {1 + γ, F})2. When α ≤ ᾱ, the above inequality gives a pseudo-
contraction (Zhang et al., 2023, Assumption 3.4 (ii)):∥∥ξ − αḡζ(ξ)− ξ̄∥∥ ≤ √1− αw̄∥ξ − ξ̄∥2.
In Zhang et al. (2023, Assumption 3.5), (i) is satisfied by Lemma 7. (ii) is satisfied by our update rule,
because given an observation O, g(ξ;O) is independent of the parameter controlling the dynamics.
(iii) is satisfied by Lemma 3. (iv) is satisfied by Lemma 7:

∥ḡξ1(ξ)− ḡξ2(ξ)∥ ≤σL ((1 + γ)∥θ∥+R+ F )
√
max{d1, d2}∥ξ1 − ξ2∥+ Lr∥η1 − η2∥

≤σL(1 + γ)
√
max{d1, d2}

(
∥θ∥+ R+ F

1 + γ
+

Lr
σL(1 + γ)

)
∥ξ1 − ξ2∥.

Before verifying Zhang et al. (2023, Assumption 3.5 (v) and (vi)), we first show the following norm
bound: ∥∥∥(Ḡξ ⊕Gψ)−1

∥∥∥
op

=σ−1
min

(
Ḡξ ⊕Gψ

)
(25)

≤λ−1
min

(
sym

(
Ḡξ ⊕Gψ

))
(26)

=min
{
λmin

(
sym

(
Ḡξ
))
, λmin (Gψ)

}−1
(27)

=min
{
wmin

(
Ḡξ
)
, λmin (Gψ)

}−1

≤min
{
(1− γ)λmin

(
Ĝξ

)
, λmin (Gψ)

}−1

(28)

≤w̄−1/2, (29)

where (25) is the spectral norm equality; (26) uses the Fan-Hoffman inequality (Bhatia, 2013) and
the fact that sym(Ḡξ ⊕Gψ) is positive definite, where sym(A) = (A+ AT )/2; (27) uses the fact
that λ(A⊕B) = λ(A) ∪ λ(B), where λ(A) is the set of eigenvalues of A; (28) is by (11); and (29)
is by the definition of w̄.
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Therefore, we have

∥Λ(ξ1)− Λ(ξ2)∥ ≤
∥∥∥(Ḡξ1 ⊕Gψ)−1 (

ϕ̄ξ1 ⊕ ψ̄ξ1
)
−
(
Ḡξ2 ⊕Gψ

)−1 (
ϕ̄ξ2 ⊕ ψ̄ξ2

)∥∥∥
≤
∥∥∥(Ḡξ1 ⊕Gψ)−1

∥∥∥
op

∥∥(ϕ̄ξ1 ⊕ ψ̄ξ1)− (ϕ̄ξ2 ⊕ ψ̄ξ2)∥∥︸ ︷︷ ︸
U1

+
∥∥∥(Ḡξ1 ⊕Gψ)−1 −

(
Ḡξ2 ⊕Gψ

)−1
∥∥∥
op

∥∥ϕ̄ξ2 ⊕ ψ̄ξ2∥∥︸ ︷︷ ︸
U2

.

For U1, by Lemma 6 and (29), we have

U1 ≤ w̄−1
(
σL
√

max{d1, d2}(R+ F ) + Lr

)
∥ξ1 − ξ2∥/2.

For U2, we have

U2 ≤
∥∥∥(Ḡξ1 ⊕Gψ)−1

∥∥∥
op

∥∥(Ḡξ1 ⊕Gψ)− (Ḡξ2 ⊕Gψ)∥∥op ∥∥∥(Ḡξ2 ⊕Gψ)−1
∥∥∥
op

∥∥ϕ̄ξ2 ⊕ ψ̄ξ2∥∥
≤w̄−2σL(1 + γ)

√
max{d1, d2}(R+ F )∥ξ1 − ξ2∥/4,

where the last inequality uses (29) and Lemma 6. Plugging U1 and U2 back gives

∥Λ(ξ1)− Λ(ξ2)∥ ≤ Lw∥ξ1 − ξ2∥,
where

Lw = w̄−1
(
w̄−1σL

√
max{d1, d2}(R+ F ) + Lr/2

)
, (30)

and thus Zhang et al. (2023, Assumption 3.5 (v)) is satisfied.

By the definition of Λ and (29), (Zhang et al., 2023, Assumption 3.5 (vi)) is satisfied:

sup
ξ∈Ξ
∥Λ(ξ)∥ ≤ w̄−1(R+ F )/2.

Zhang et al. (2023, Assumption 3.5 (vii)) is satisfied by Assumption 1 and Lemma 4.

Let D > max
{
w̄−1/2, ∥ξ0∥

}
. Zhang et al. (2023, Assumption 3.6) is satisfied.

Finally, let αt = 4/(1 + w̄t). Zhang et al. (2023, Assumption 3.7) is satisfied. Note that we do not
need the parameter t0 in Zhang et al. (2023, Assumption 3.7) because we use asymptotic notations.

Proof of Theorem 2. By Zhang et al. (2023, Corollary 3.10), we have

E
[
∥ξT − Λ(ξT )∥2

]
= O

(
L2
wD

2

w̄2
+

log2 T

T

)
.

By Assumption 5, we get
Lw ≤ w̄−1(w̄/4 + w̄/4) ≤ 1/2.

Therefore, Λ is a contraction mapping. Suppose there exists another MFE ξ∗∗. We have

∥ξ∗ − ξ∗∗∥ = ∥Λ(ξ∗)− Λ(ξ∗∗)∥ ≤ Lw∥ξ∗ − ξ∗∗∥ ≤ 1/2∥ξ∗ − ξ∗∗∥,
which implies ξ∗ = ξ∗∗. We also get

E [∥ξT − ξ∗∥] ≤E [∥ξT − Λ(ξT )∥] + E [∥Λ(ξT )− ξ∗∥]
=E [∥ξT − Λ(ξT )∥] + E [∥Λ(ξT )− Λ(ξ∗)∥]
≤E [∥ξT − Λ(ξT )∥] + LwE [∥ξ − ξ∗∥] ,

which gives

E [∥ξT − ξ∗∥] ≤
1

1− Lw
E [∥ξT − Λ(ξT )∥] = O

(
D(Lr + w̄−1L̄(R+ F ))

w̄2
+

log T√
T

)
,

where L̄ = σL
√
max{d1, d2}.
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I.1 CONVERGENCE REGION

The radius of the convergence region in Theorem 2 needs to be further inspected to make the bound
informative. We compare it with two constants: the projection radius D and the magnitude of the
optimal policy parameter ∥ξ∗∥.
A desirable property of the convergence region is that it can be much smaller than the projection
radius D. This property is not enjoyed by some algorithms with linear function approximation. For
instance, linear Q-learning with asymptotically visits every part of the projection ball. To achieve this
property, we need

Lr + w̄−1L̄(R+ F )

w̄2
≲ 1,

which is equivalent to
Lr ≲ w̄2 and R+ F ≲ w̄3. (31)

Recall from Assumption 5 that
Lr ≲ w̄ and R+ F ≲ w̄2.

Therefore, to make the convergence region radius smaller than the projection radius, we need to
further scale down the bounds on Lr, R, and F by w̄.

We now discuss the condition for the convergence region radius to be smaller than ∥ξ∗∥, ensuring that
the algorithm finds a better parameter than ξ = 0. Note that the only requirement on the projection
radius D is that it should be no smaller than the magnitude of the optimal policy parameter θ ∗, i.e.,
D ≥ ∥θ∥. We first consider the case where we have a good estimate of θ. Let D ≍ ∥ξ∥. Then, one
can see that (31) ensures that the convergence region radius is smaller than ∥ξ∗∥.
Next, we consider a general D. Denote c := (Lr + L̄(R + F )w̄−1)/w̄2, which is independent of
D. Theorem 2 implies that, in expectation, ξT will be bounded by ∥ξT ∥ ≲ ∥ξ∗∥ + cD. Thus, the
projection will be inactive if D ≳ ∥ξ∗∥+ cD. Let D′ ≍ ∥ξ∗∥/(1− c). We know that running the
algorithm with projection radius D or D′ is equivalent for large T , as the projection will be inactive
in both cases. Consequently, we only need ∥ξ∗∥ to be smaller than the convergence region radius if
D = D′ ≍ ∥ξ∗∥/(1− c), which is equivalent to

∥ξ∗∥
1− c

· c ≲ ∥ξ∗∥ ⇐= Lr ≲ w̄2/4 and R+ F ≲ w̄3/4.

Therefore, we conclude that the convergence region in Theorem 2 is especially informative if (31)
holds.

J APPROXIMATION ERROR ANALYSIS

This section aims to characterize the approximation error of SemiSGD for general (non-linear)
MFGs. Recall that SemiSGD converges to the projected MFE (Appendix F). Let ξ⋄ = (θ⋄; η⋄) be the
convergence point of SemiSGD with PA-LFA. Let (q∗, µ∗) be the actual MFE. The approximation
error is defined as

ϵq := ∥q∗ − ⟨ϕ, θ⋄⟩ ∥∞, ϵµ := ∥µ∗ − ⟨ψ, η⋄⟩ ∥TV. (32)
Additionally, we define the inherent error of the chosen basis as

ϵϕ := ∥q∗ −Πϕq∗∥∞, ϵψ := ∥P∗ −ΠψP∗∥TV.

The next two lemmas bound the approximation errors in (32) separately, showing how they are
correlated. Theorem 3 is a direct corollary of Lemmas 13 and 14 under the small Lipschitz constants
assumption.
Lemma 13 (Value function approximation error).

ϵq ≤
(
γ +

γσRLπ
1− γ

)
ϵq +

(
Lr +

γσRLP

(1− γ)
√
d2

)
ϵµ + ϵϕ.

Proof. We first have the decomposition:

ϵq ≤ ∥ ⟨ϕ, θ⋄⟩ −Πϕq∗∥∞ + ∥Πϕq∗ − q∗∥∞, (33)
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where Πϕ is the orthogonal projection operator onto the linear span of basis ϕ w.r.t. the inner product
induced by the ξ⋄. Since ξ⋄ is a projected MFE, by Definition 3, we get

∥⟨ϕ, θ⋄⟩ −Πϕq∗∥ = ∥ΠϕT⋄ ⟨ϕ, θ⋄⟩ −Πϕq∗∥ ≤ ∥T⋄ ⟨ϕ, θ⋄⟩ − q∗∥ , (34)

where T⋄ := Tξ⋄ and the inequality uses the fact that Πϕ is a non-expansive operator. Since q∗ is an
equilibrium value function, we have

∥T⋄ ⟨ϕ, θ⋄⟩ − q∗∥∞ = ∥T⋄ ⟨ϕ, θ⋄⟩ − T∗q∗∥∞ ≤ ∥T⋄ (⟨ϕ, θ⋄⟩ − q∗) ∥∞ + ∥(T⋄ − T∗) q∗∥∞ . (35)

For the first term in (35), the Bellman operator’s definition gives

∥T⋄ (⟨ϕ, θ⋄⟩ − q∗)∥∞ ≤ γ ∥⟨ϕ, θ⋄⟩ − q∗∥∞ = γϵq. (36)

Similar to the Lipschitzness of TD operators (Lemma 6), the second term in (35) can be bounded as
follows:

∥(T⋄ − T∗) q∗(s, a)∥∞

=

∥∥∥∥r(s, a, ⟨ψ, η⋄⟩)− r(s, a, µ∗) +

∫
S×A

γq∗(s
′, a′)

(
µ‡
ξ⋄
(s, a, s′, a′)− µ‡

∗(s, a, s
′, a′)

)
ds′da′

∥∥∥∥
∞

≤Lr∥ ⟨ψ, η⋄⟩ − µ∗∥+ γ∥q∗∥∞∥µ‡
ξ⋄
− µ‡

∗∥TV (37)

≤Lrϵµ + γ∥q∗∥∞ · σ
(
LP√
d2
ϵµ + Lπϵq

)
, (38)

where (37) uses Assumption 1 and (38) uses Corollary 2. Since q∗ is the best response to µ∗, we have

∥q∗∥∞ =

∥∥∥∥∥E(q∗,µ∗)

∞∑
t=0

γtr(st, at, µ∗)

∥∥∥∥∥
∞

≤
∞∑
t=0

γtR =
R

1− γ
. (39)

Plugging (39) back into (38) gives

∥(T⋄ − T∗) q∗∥∞ ≤ Lrϵµ +
γσR

1− γ

(
LP√
d2
ϵµ + Lπϵq

)
. (40)

Plugging (36) and (40) back into (35) gives

∥T⋄ ⟨ϕ, θ⋄⟩ − q∗∥∞ ≤
(
γ +

γσRLπ
1− γ

)
ϵq +

(
Lr +

γσRLP

(1− γ)
√
d2

)
ϵµ. (41)

Plugging (41) back into (34) and then (33) gives the desired result.

Lemma 14 (Population measure approximation error).

Proof. For uniformly ergodic MDPs, P∞
∗ := limt→∞ Pt∗ exists, which maps any distribution to µ∗.

The uniform ergodicity is equivalent to strong ergodicity (Meyn & Tweedie, 2012), which implies
following relation about the geometric convergence rate (Isaacson & Luecke, 1978):

ρ(P∗ − P∞
∗ ) ≤ ρ < 1,

where ρ(P) returns the spectral radius of P . Without loss of generality, we assume ρ > ρ(P∗−P∞
∗ ).

Then, by Isaacson & Luecke (1978, Corollary 3.9), for any ρ > ρ(P∗ − P∞
∗ ), there exists k ∈ N

such that
∥Pk∗ − P∞

∗ ∥TV ≤ ρk,
where the norm is the operator norm induced by the total variation norm. Now we apply the
decomposition:

ϵµ ≤
∥∥⟨ψ, η⋄⟩ − Pk∗ ⟨ψ, η⋄⟩∥∥TV︸ ︷︷ ︸

E1

+
∥∥Pk∗ ⟨ψ, η⋄⟩ − µ∗

∥∥
TV︸ ︷︷ ︸

E2

. (42)

Since ξ⋄ is a projected MFE, by Definition 3, we have

E1 =
∥∥∥((ΠψP⋄)

k − Pk∗
)
⟨ψ, η⋄⟩

∥∥∥
TV
≤
∥∥∥(ΠψP⋄)

k − Pk∗
∥∥∥
TV

.
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A further decomposition gives

E1 ≤
∥∥∥ΠψP⋄

(
(ΠψP⋄)

k−1 − Pk−1
∗

)
+Πψ (P⋄ − P∗)Pk−1

∗ + (Πψ − Id)Pk∗
∥∥∥
TV

.

Note that both Πψ and P are non-expansive operators. By the sub-multiplicativity of operator norms,
we have

E1 ≤
∥∥∥(ΠψP⋄)

k−1 − Pk−1
∗

∥∥∥
TV

+ ∥P⋄ − P∗∥TV︸ ︷︷ ︸
E3

+ ∥(Πψ − Id)P∗∥TV︸ ︷︷ ︸
ϵψ

. (43)

We denote ϵψ := ∥P∗ −ΠψP∗∥TV; ϵψ is the inherent approximation error induced by ψ. For E3, by
definition, we have

E3 = sup
∥µ∥TV≤1

∥∥∥∥∫
S×A

(P (· | s, a, ⟨ψ, η⋄⟩)πθ⋄(a | s)− P (· | s, a, µ∗)πq∗(a | s))µ(s)dsda
∥∥∥∥
TV

≤Lπϵq +
LP√
d2
ϵµ.

Plugging the above bound of E3 back into (43) gives the following recursion:

E1 ≤
∥∥∥(ΠψP⋄)

k−1 − Pk−1
∗

∥∥∥
TV

+ Lπϵq +
LP√
d2
ϵµ + ϵψ

≤k
(
Lπϵq +

LP√
d2
ϵµ + ϵψ

)
. (44)

For E2, since µ∗ is the equilibrium population measure, and P∞
∗ maps any distribution to µ∗, we

have

E2 =
∥∥Pk∗ ⟨ψ, η⋄⟩ − µ∗ + µ∗ − µ∗

∥∥
TV

=
∥∥Pk∗ ⟨ψ, η⋄⟩ − Pk∗µ∗ + P∞

∗ ⟨ψ, η⋄⟩ − P∞
∗ µ∗

∥∥
TV

=
∥∥(Pk∗ − P∞

∗
)
(⟨ψ, η⋄⟩ − µ∗)

∥∥
TV

≤
∥∥Pk∗ − P∞

∗
∥∥
TV

ϵµ

≤ρkϵµ. (45)

Plugging (44) and (45) back into (42) gives

ϵµ ≤
(
ρk +

kLP√
d2

)
ϵµ + kLπϵq + kϵψ.

Furthermore, if ∥P∗ −P∞
∗ ∥TV ≤ ρ, for example, P∗ corresponds to a reversible Markov chain, then

k = 1.

K MEAN FIELD GAMES WITH FINITE STATE-ACTION SPACE

Recall that SemiSGD with PA-LFA (Algorithm 1) reduces to tabular SemiSGD (Algorithm 1) for
finite state-action spaces, when the feature map and measure map are chosen as

ϕ(s, a) = e(s,a) ∈ R|S||A|, ψ(s′) = es′ ∈ ∆|S|.

Then, Q = θ ∈ R|S||A| and M = η ∈ ∆|S| are the parameters themselves.

K.1 IMPLICIT REGULARIZATION

We first show that tabular SemiSGD does not need the projection step for regularizing the parameters
(see (6)). That is, tabular SemiSGD enjoys implicit regularization. For ∥M∥, we first have ∥ψ(s′)∥1 ≤
1 =: F . Recall the stochastic update rule of M :

Mt+1 =Mt − α
(
Mt − est+1

)
= (1− α)Mt + αest+1 .
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Suppose Mt ∈ ∆|S| and the step-size is smaller than one. Then Mt+1 ≥ 0. Furthermore, we have

∥Mt+1∥1 =
∑
s∈S
|(1−α)Mt(s)+αest+1

(s)| = (1−α)
∑
s∈S

Mt(s)+α
∑
s∈S

est+1
(s) = (1−α)+α = 1,

indicating that Mt+1 ∈ ∆|S|, without any projection.

For ∥Q∥, notice that the true action-value function induced by any policy π is bounded by ∥qπ∥∞ ≤∑∞
t=0 γ

tR = R/(1− γ) =: D∞ Suppose current estimated value function satisfies that ∥Qt∥∞ ≤
D∞, then we have

|Qt+1(s, a)| = |Qt(st, at) + α (rt + γQt (st+1, at+1)−Qt(st, at))|
= |(1− α)Qt(st, at) + αγQt (st+1, at+1) + αrt|
≤ (1− α)D∞ + αγD∞ + αR

= (1− α+ αγ)
R

1− γ
+ αR

=
R

1− γ
= D∞.

Therefore, if the bound holds for the initial estimated value function, it holds for all sequential
estimated value functions. Then, the following ℓ2 norm bound holds for all value functions:

∥Q∥2 ≤
√
|S||A|∥Q∥∞ ≤

√
|S||A|R
1− γ

=: D

Consequently,

H =
((1 + γ)

√
|S||A|+ 1− γ)R
1− γ

+ 2 = O

(√
|S||A|R
1− γ

)
.

K.2 CONVERGENCE RATE

We now figure out the scale of the descent parameter w for finite MFGs. First, for tabular SemiSGD,
Gψ = I . According to Lemma 9, λmin(Gψ) = 1. Second, Ĝ∗ = diag(µ†

∗(s, a)), where µ†
∗ is the

steady state-action distribution induced by ξ∗. Thus, λmin(Ĝ∗) = mins,a µ
†
∗(s, a) ≤ 1

|S||A| . We

define λ := mins,a µ
†
∗(s, a) > 0, the probability of visiting the least probable state-action pair in the

MFE. Then, we have

w =
1

2
min{(1− γ)λmin(Ĝξ∗), λmin(Gψ)} ≥

1

2
(1− γ)λ.

We are now ready to state the sample complexity of tabular SemiSGD.
Corollary 4. With either a constant step size αt ≡ α0 = log T/(wT ) or a linearly decaying step
size αt = 1/(w(1 + t)), there exists a convex combination ξ̃T of the iterates {ξt}Tt=1 such that

E
∥∥∥ξ̃T − ξ∗∥∥∥2 = Õ

(
|S||A|R2

λ2(1− γ)4T

)
,

where Õ suppresses logarithmic factors.

Notably, tabular SemiSGD has the same sample complexity as TD Learning methods (Bhandari et al.,
2018; Zou et al., 2019).
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