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Abstract: Causal random forests provide efficient estimates of heterogeneous treatment effects. However, forest
algorithms are also well-known for their black-box nature, and therefore, do not characterize how input variables
are involved in treatment effect heterogeneity, which is a strong practical limitation. In this article, we develop a
new importance variable algorithm for causal forests, to quantify the impact of each input on the heterogeneity of
treatment effects. The proposed approach is inspired from the drop and relearn principle, widely used for
regression problems. Importantly, we show how to handle the case where the forest is retrained without a
confounding variable. If the confounder is not involved in the treatment effect heterogeneity, the local centering
step enforces consistency of the importance measure. Otherwise, when a confounder also impacts heterogeneity,
we introduce a corrective term in the retrained causal forest to recover consistency. Additionally, experiments on
simulated, semi-synthetic, and real data show the good performance of our importance measure, which out-
performs competitors on several test cases. Experiments also show that our approach can be efficiently extended
to groups of variables, providing key insights in practice.

Keywords: causal inference; heterogeneous treatment effects; causal random forests; variable importance;
interpretability
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1 Introduction
1.1 Context and objectives

Estimating heterogeneous treatment effects has recently attracted a great deal of interest in the machine learning
community, particularly for medical applications [1] and in the social sciences. Over the past few years, numerous
efficient algorithms have been developed to estimate such effects, including double robust methods [2], R-learners
[3], X-learners [4], causal forests [5, 6], the lasso [7], BART [8], or neural networks [9]. Besides, let us also mention
policy learning, which aims at selecting relevant individuals to treat [10-13]. However, most of these methods
remain black boxes, and it is therefore difficult to grasp how input variables impact treatment effects. This
understanding is crucial for optimizing treatment policies, for instance, so that this shortcoming clearly limits
their practical use. While the accuracy of treatment effect estimates has significantly improved recently, little
effort has been dedicated to improve their interpretability, and quantifying the impact of variables involved in
treatment effect heterogeneity. In this regard, we can mention the importance measure of the causal forest
package grf [14], the double robust approach of [15], and the algorithm from [16] for high dimensional linear
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cases. The main purpose of this article is to introduce a variable importance measure for heterogeneous treat-
ment effects, improving over the existing algorithms, to better identify the sources of heterogeneity. We focus on
causal random forests, defined as a specific case of generalized forests [6], and well-known to be one of most
powerful algorithm to estimate heterogeneous treatment effects.

1.1.1 Contributions

Our main contribution is thus the introduction of a variable importance algorithm for causal random forests,
following the drop and retrain principle, which is well-established for regression problems [17-20]. The main idea
is to retrain the learning algorithm without a given input variable, and measure the drop of accuracy to get its
importance. In particular, such approach ensures that irrelevant variables get a null importance asymptotically.
In the context of causal inference, the main obstacle is to retrain the causal forest without a confounding variable,
since the unconfoundedness assumption can be violated, leading to inconsistent forest estimates and biased
importance values, as explained in Section 2. However, we will see that the local centering of the outcome and
treatment assignment leads to consistent estimates, provided that the removed variable is not involved in the
treatment effect heterogeneity. Otherwise, to handle a confounder involved in heterogeneity, we introduce a
corrective term in the retrained causal forest. Overall, we will show in Section 3, that our proposed variable
importance algorithm is consistent, under standard assumptions in the literature about the theoretical analysis of
random forests. Next, in Section 4, we run several batches of experiments on simulated, semi-synthetic, and real
data to show the good performance of the introduced method compared to the existing competitors. Additionally,
we take advantage of the experimental section to illustrate that the extension of our approach to group of
variables is straightforward and provides powerful insights in practice. The remaining of this first section is
dedicated to the mathematical formalization of the problem.

1.2 Definitions

To define heterogeneous treatment effects, we first introduce a standard causal setting with an input vector
X=(x9,..,X®) e RP with p € N*, the binary treatment assignment W € {0, 1}, the potential outcome Y (1) € R
for the subject receiving the treatment, and the potential outcome without treatment ¥ (0) € R. We denote by X "
the subvector with only the components in  c {1, ..., p}, and X' the vector X with the j-th component removed.
The observed outcome is given by Y = WY(1) + (1 — W)Y(0), which is known as the SUTVA assumption in the

literature. More precisely, the potential outcomes are defined by

Y (0) = u(X) + £(0),
Y(1) =uX)+ XMy +£(1),

where u(X) is a baseline function, 7 (X)) is the conditional average treatment effect (CATE) only depending on
variables in H c {1, ..., p}, and &(0), (1) are some noise variables satisfying E[¢(0) | X] = E[e(1) | X] = 0. Notice
that the CATE is also defined as the mean difference between potential outcomes, conditional on X, i.e.,
E[Y (1) - Y(0) | X] = 7(X"), by construction. Overall, the observed outcome Y also writes

Y = u(X) + (X" x W+ e(W). (6]

The cornerstone of causal treatment effect identifiability is the assumption of unconfoundedness given in
Assumption 1, which states that all confounding variables are observed in the data. By definition, the responses
Y(0), Y(1), and the treatment assignment W simultaneously depend on the confounding variables. If all
confounding variables are observed, then the responses and the treatment assignment are independent
conditional on the inputs. Consequently, the treatment effect is identifiable, as stated in Proposition 1 below—all
proofs of propositions and theorems stated throughout the article are gathered in Appendix A. Notice that
Assumption 1 below enforces that the input vector X contains all confounding variables, but X may also contain
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non-confounding variables. Consequently, X " can also be a mix of confounding and non-confounding variables,
or contain only variables of one type. Ideally, all variables impacting the treatment effect heterogeneity should be
involved in the analysis, even if they are not confounding variables, to better estimate and interpret the treatment
effect.

Assumption 1. Potential outcomes are independent of the treatment assignment conditional on the observed
input variables, i.e., Y(0), Y(1) 1 W|X.

Proposition 1. If the unconfoundedness Assumption 1 is satisfied, then we have

TX")=E[Y|X,W=1-E[Y|X,W =0].

Note that we define above the treatment effect as the expected difference between potential outcomes,
conditioned on input variables. However, the heterogeneity properties strongly depend on how we define the
treatment effect [21-23]. The ratio between the means of potential outcomes may also define a treatment effect,
leading to potential heterogeneity while our original outcome difference remains constant. A thorough discussion
of this topic is out of scope of this article, and we take the difference of potential outcomes as treatment effect, the
widely used metric for many applications [21]. We refer to Colnet et al. [23] for a comparison of treatment effect
measures.
VanderWeele and Robins [21] defined treatment effect heterogeneity as follows.

Definition 1: (VanderWeele and Robins [21]). The treatment effect 7is said to be heterogeneous with respect to X if
it exists x,X € R? such that 7(x™) # 7 (x'(1).

We strengthen this definition in two directions, formalized in Definition 2 below. First, we require 7 to be
heterogeneous with respect to each variable in H, to enforce H to be the subset of variables impacting treatment
effect heterogeneity. Secondly, notice that Definition 1 can be satisfied while having an homogeneous treatment
effect in probability, ie., P(7(X®) = 7(X ™)) =1,, with X" an independent copy of X, In such cases,
heterogeneity is not detectable from a data sample, and has a negligible impact in practice. Therefore, we enforce
7 to take distinct values with respect to all variables in H on sets of non-null Lebesgue measure.

Definition 2. The treatment effect 7 is said to be heterogeneous with respect to all variables in #, if for all j € H, it
exists Xp_1 ¢ RP! and X3, X ¢ R, such that for all X € X4, x € Xy, X D) € X, we have

7 (x™) # 7(x ™),
with x*? = X7, and X, 4, X3, and X, have a non-null Lebesgue measure.

In the sequel, we assume that the treatment effect 7is heterogeneous in the sense of Definition 2, and that X admits
a strictly positive density, to enforce heterogeneity with a positive probability, as stated in the proposition below.
Our objective is to quantify the influence of the input variables X on the treatment heterogeneity using an
available sample &, ={(X;Y; W)}L,, made of neN* independent and identically distributed (iid)
observations.

Assumption 2. The treatment effect 7 is heterogeneous according to Definition 2, and X admits a strictly positive
density.

Proposition 2. If Assumption 2 is satisfied, and X' is an independent copy of X, then

P(t(X™) = 7 (X™)) > 0.
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2 Variable importance for heterogeneous treatment effects
2.1 Theoretical definition

To propose a variable importance measure, we build on Sobol [24] and Williamson et al. [18], which define
variable importance in the case of regression as the proportion of output explained variance lost when a given
input variable is removed. Hines et al. [15] extend this idea to treatment effects, and introduce the theoretical
importance measure 1? of X?, defined by

[ _ VIEXO0] - VB[ X)X D)) E[(r(X™) - E[r(X")XP)’]
- Vir(X™)) - Vir(X™)]

) @

which is well-defined under Assumption 2, since V[7 (X)] > 0. Otherwise, when V [z (X")] = 0, the treatment
ishomogeneous, i.e. constant with respect to all input variables, and does not satisfy Definition 2. This importance
measure gives the proportion of treatment effect variance lost when a given input variable is removed, and is
called the total Sobol index of 7 in sensitivity analysis. Additionally, the following proposition shows that I
properly identifies variables in 7, which have an impact on treatment heterogeneity, where the proof in
Appendix A is a consequence of Assumption 2.

Proposition 3. Let Assumption 2 be satisfied. If j ¢ 4, then we have I? = 0. Otherwise, if j € H, we have 0 <I1? < 1.

Note that by definition of I?, a variable strongly correlated to another variable involved in the heterogeneity, has
a low importance value. This is due to the fact that, owing to this strong dependence, there is minimal loss of
information regarding the treatment effect heterogeneity when such a variable is removed. As suggested by both
Williamson et al. [18] and Hines et al. [15], one possible approach involves extending the importance measure to a
group of variables, where strongly dependent variables are grouped together. For the sake of clarity, we focus on
the case of a single variable in the following sections. However, extending this approach to groups of variables is
straightforward, and we will present such examples in the experimental section.

More importantly, Hines et al. [15] highlight that a key problem to estimate the above quantity I, is that the
unconfoundedness Assumption 1 does not imply unconfoundedness for the reduce set of input variables X,
i.e, we may have ¥(0), Y(1)..L W|X?. Hines et al. [15] overcome this issue using double robust approaches [2, 3] to
estimate 7 with all input variables in a first step, and then regress the obtained treatment effect on X to estimate
E[7 (X)X 9]. Actually, the generalized random forest framework from Athey et al. [6] enables to get closer to
the original proposal of Williamson et al. [18] by retraining the causal forest without variable X% and still get
consistent estimates of E [7 (X")|X (9], as we will see. Therefore, we focus on causal forests [5, 6], one of the state-
of-the-art algorithm to estimate heterogeneous treatment effects, to propose efficient estimates of I. Hence, the
proposed approach differs from Hines et al. [15], since we estimate E[7 (XX from scratch, whereas Hines
et al. [15] reuse the initial estimate of 7 (X)) and solve a regression problem to obtain the treatment effect with a
variable removed.

2.2 Causal random forests

Generalized random forests [6] are a generic framework to build efficient estimates of quantities defined as
solutions of local moment equations. As opposed to original Breiman’s forests, generalized forests are not the
average of tree outputs. Instead, trees are aggregated to generate weights for each observation of the training
data, used in a second step to build a weighted estimate of the target quantity. Causal forests are a specific case of
generalized forest, where the following local moment equation identifies the treatment effect under the
unconfoundedness Assumption (1),

T(XM)x V[W | X] - Cov[W, Y| X] = 0. 3)
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The local moment Equation (3) is thus used to define the causal forest estimate 7, ,(X) at a new query point X, built
from the data &, with M € N* trees, and formally defined in Athey et al. [6, Section 6.1] by

na(XWY - WY,

ala @
Y (X) (W - W)

TM,n (X) =

where Y, = Y (X)Y;, W, = Y (X)W, and the weights a,(x) are generated by the forest to quantify the
frequency of x and the training observation X; both falling in the same terminal leaves of trees. Notice that the ¢-th
tree of the forest is randomized by ©,, which defines the resampling of the data prior to the tree growing, as well
as the random variable selection at each node for the split optimization. We write the causal forest estimate
Tarn(X, ©)) when it improves clarity, where ©,,= (0, ..., ©,,). Besides, notice that the local moment Equation (3) is
also used to define an efficient splitting criterion of the tree nodes.

Finally, the causal forest algorithm first performs a local centering step in practice, by regressing Y and W on
X using regression forests, fit with &,. The obtained out-of-bag forest estimates of m(X;) = E[Y; | X;] and
n(X;) = E[W; | X;] are denoted by m, (X;) and 7, (X;). Then, these quantities are subtracted to get the centered
outcome Y; = Y; — m, (X;), and centered treatment W; = W; — 7, (X;), used to fit the causal forest 7 ,(X).

2.3 Variable importance algorithm

We take advantage of causal forests to build an estimate of our variable importance measure I?, defined in
Equation (2). The forest estimate 7,,,(X), described in the previous subsection, provides a plug-in estimate for the
first term 7 (X™) of 1. Next, we need to estimate the second term E[z (X7)|X?] involved in I?, and then, a
Monte-Carlo method will provide an efficient algorithm for our importance measure. Hence, a natural approach
is to drop the j-th variable and retrain the forest to estimate E[7 (X"?)|X(]. As we deepen below and summarize
in Algorithm 1, a critical feature of this procedure is that all input variables are used in the local centering of Y; and
W;, before the j-th variable is dropped to build T](V,",)l (x). Therefore, the causal forest is retrained using the

observations { x7, 7, Wi)}; to generate new weights a'(x'”) and build T](V,'le (x) through Equation (4).

2.3.1 Identifiability of treatment effect

When a variable X” is removed from the input variables, the moment Equation (3) does not necessarely
hold anymore, since unconfoundedness Assumption (1) may be violated with a reduced set of inputs, even for
j ¢ H. However, an important feature of causal forests is the preliminary step of local centering of the observed
outcome and treatment assignment, explained above. The following proposition shows that the treatment effect is
well identified by the local moment equation of causal forests including only variables in H, provided that the
data is centered with all inputs. We recall that m(X) = E[Y | X] and 7(X) = E[W | X].

Proposition 4. If Assumption 1 is satisfied, we have
T(XM) x VW - (X) | X®] - Cov[W - (X),Y - m(X) | X®] =0,

which is the local moment equation defining causal forests, with input variables X centered outcome Y - m(X),
and centered treatment assignment W — m(X).

On the other hand, removing an influential and confounding variable j € H to learn a causal forest is more
delicate. Indeed, a local moment equation to identify the mean CATE over X? exists if the treatment effect is
uncorrelated to the squared centered treatment assignment.
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Proposition 5. If Assumption 1 is satisfied, then we have for j € H

E[t(X™) | XD xV[W -n(X)|XP] - Cov[W - n(X),Y - m(X) | X7]
+ Cov[t(X™), n(X)(1 -7 (X)) | XP] = 0.

Then, for a query point X € [0,1]P "}, if Cov [z (X)), m(X) (1 - (X)) | X = xP] = 0, E[7(X") | XD = x D] s
identified by the original local moment equation of causal forests, with X as input variables, centered outcome
Y - m(X), and centered treatment assignment W — m(X).

Athey and Wager [25, Footnote 5, page 42] conduct an empirical analysis using causal forests, and state in a
footnote, that local centering “eliminates confounding effects. Thus, we do not need to give the causal forest all
features X% that may be confounders. Rather, we can focus on features that we believe may be treatment
modifiers”. However, Propositions 4 and 5 show that this statement must be completed. Indeed, Proposition 4
states that confounders not involved in the heterogeneity of the treatment effect, i.e. confounders that do no
belong to H, may be dropped without hurting the identifiability of 7, thanks the local centering step. On the other
hand, Proposition 5 shows that this is clearly not the case for confounders involved in heterogeneity, as the
treatment effect is not properly identified by the local moment equation of causal forests, even with local
centering. To overcome this problem, we introduce a corrective term in the retrained forest.

2.3.2 Corrected causal forests

The additional covariance term in Proposition 5 can be estimated using the original causal forest fit with all
inputs. Therefore, we propose the corrected causal forest estimate when removing a confounding variable X?
with j € H. Recall that the weights a’(x'”) are generated by the causal forest using centered data and dropping

variable X, to define Tﬁ; (x). We define the corrected causal forest estimate 915/,’]31 (x) as

s NN T2 T 0 —
Z?:I ai (X(_]))Wi TM,n (Xl) - Wi Ta

9(*]') (x) = T(—i) (x) - -
M,n M,n ler B (Wa')z

b (5)

where Wi =yr.q (x“f’)W?, Wy = Y1, (x9)W,, and the mean treatment effect is T, = Y1, @; (X )Ty, 0 (X))
More precisely, the corrective term of Equation (5) is the forest estimate of the third term of the equation of
Proposition 5 divided by V[W - 7 (X) | X, Consequently, the corrected causal forest GI(M‘J; (x) retrained without
a confounding variable is an estimate of E [7 (X ") | X? = x()], which is the targeted quantity, and is consistent,
as we will show in Section 3. However, note that the correction term can be small in practice, as demonstrated in
the experimental Section 4.

2.3.3 Variable importance estimate

Using 7, = {(X;,Y;, W;)} , an independent copy of 7y, we define

n g D (x'\]*
I(]') _ Zi:l [TMJl(Xi) - 6M,]n (Xl)] _ I(())

n ; n > (6)
X4 [TM,n (X)) - TM,H]Z

where Ty, = Y, 7a 0 (X;)/n, and I'” is the mean squared difference between the initial forest predictions and the
predictions of the corrected forest 6,7, (X;, 8, ), retrained with still all the inputs variables involved but a new
randomization @,,, i.e.,

(0) inzl [TM,H(XVL" GM) - el(l/i))n(xl’ GM)]Z
L= , 3 ~ ™)
>0 [tmn (X)) = T

In fact, I,(lo) partially removes the bias of the first term of I,‘j’, due to the randomization of the forest training, and
vanishes as the sample size increases if the causal forest converges. Notice that the above definition is formalized
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with &, for the sake of clarity, but that such additional data is usually not available in practice. Instead, out-of-bag
causal forest estimates are rather used to define I,(f), as summarized in Algorithm 1 below.

Algorithm 1 Variable importance algorithm for causal forests

Require: A dataset 2, = {(X;,Y;, W;)}7; containing all confounding variables.

1: Perform local centering of outputs Y; and treatment assignments W; to get the centered dataset
{(X;,Y;, Wi)}?zl, using regression forests and out-of-bag estimates.
Train a causal forest with the centered data {(X,Y;, W;)}7_, containing all variables.
Retrain a corrected causal forest with the same data as the previous step.
Compute IEP ) according to Equation (7) and using the forests trained at Steps 2 and 3.
for je{1,...,p} do

Train a corrected causal forest with the centered data {(X(fj )Y, W) i1, where the j-th variable

is removed.
7. Compute IS,J ) according to Equation (6) using the initial forest of Step 2 and the retrained forest of
the previous Step 6, and with I;O) computed at Step 4.
8: end for

9: return {I&P }1.7:1

3 Theoretical properties

Propositions 4 and 5 are the cornerstones of the consistency of our variable importance algorithm. This result
relies on the asymptotic analysis of Athey et al. [6], which states the consistency of causal forests in Theorem 1.
Several mild assumptions are required, mainly about the input distribution, the regularity of the involved
functions, and the forest growing. Then, the core of our mathematical analysis is the extension to the case of a
causal forest fit without a given input variable. When the removed input is a confounding variable, consistency is
obtained thanks to the corrective term introduced in Equation (5) of the previous section. Then, the convergence
of our variable importance algorithm follows using a standard asymptotic analysis. We first formalize the
required assumptions and specifications on the tree growing from Athey et al. [6], that are frequently used in the
theoretical analysis of random forests [5, 26, 27].

Assumption 3. The input X takes value in [0,1], and admits a density bounded from above and below by strictly
positive constants.

Assumption 4. The functions 7z, m, and 7 are Lipschitz, 0 < 77(x) < 1 for x € [0,1]”, and u and 7 are bounded.

Specification 1. Tree splits are constrained to put at least a fraction y > 0 of the parent node observations in each
child node. The probability to split on each input variable at every tree node is greater than & > 0. The forest is
honest, and built via subsampling with subsample size a,, satisfying a,/n — 0 and a,, — .

The first part of Specification 1 is originally introduced by Meinshausen [26]. The idea is to enforce the diameter of
each cell of the trees to vanish as the sample size increases, by adding a constraint on the minimum size of children
nodes, and slightly increasing the randomization of the variable selection for the split at each node. Then, vanishing
cell diameters combined to Lipschitz functions lead to the forest convergence. Additionally, honesty is a key
property of the tree growing, extensively discussed in Wager and Athey [5], where half of the data is used to optimize
the splits, and the other half to estimate the cell outputs. With these assumptions satisfied, we state below the causal
forest consistency proved in Athey et al. [6]. Notice that the original proof is conducted for generalized forests, for
any local moment equation satisfying regularity assumptions, automatically fulfilled for the moment Equation (3)
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involved in our analysis. In Appendix A, we give a specific proof of Theorem 1 in the case of causal forests. We built
on this proof to further extend the consistency result when a confounding variable is removed.

Theorem 1: (Theorem 3 from Athey et al. [6]). If Assumptions 1-4 and Specification 1 are satisfied, and the causal
forest 73;,,(x) is built with &, without local centering, then we have for x € [0,1]7,

Tyn (%) DT (x),

Next, we need a slight simplification of our variable importance algorithm to alleviate the mathematical analysis.
We assume that a centered dataset &, = {(X;, W;,Y;)} is directly available, where W; = W; - n(X;) and
Y? =Y; - m(X;). A causal forest grown with this dataset where a given input variablej € {1, ..., p} \ H is dropped,
consistently estimates the treatment effect as stated below. Consistency also holds for variables j € 7 in specific
cases, whereas in the general case, the corrected term introduced in Equation (5) is required. Theorem 2 states the
consistency of causal forests when an input variable is removed.

Theorem 2. If Assumptions 1-4 and Specification 1 are satisfied, and the causal forest TI(\,,’],)l (x) is fit with the
centered data 77 without the j-th variable,
() forje{1,...,p} \ H and x € [0,1]”, we have

Tih () 5 7(x),
(ii) for j € H and x € [0,1]?, if Cov[r (X"),7(X)(1 - n(X)) | X = x(P] = 0, we have

Tl(t/;,jr)z (X)iE[T(X(H)) | X = X(_j)].

Theorem 2 is a direct consequence of Propositions 4 and 5 combined with Theorem 1. Indeed, provided that the
outcome and treatment assignment are centered, if the removed variable j is not involved in the treatment
heterogeneity, i.e. j ¢ H, consistency holds. On the other hand, if j € H, we need an additional assumption that
7(X™) and n(X)(1 — n(X)) are not correlated conditional on X = x', where x*” is the new query point.
Otherwise, consistency is obtained with the corrective term defined in Equation (5), as we will see. However, we
need an additional small modification of causal forests to enforce the generated estimates to be bounded, and to
limit the number of observations in each terminal leave of trees, as stated in the specification below. Notice that
such modifications are quite mild. Indeed, the true treatment effect is bounded by assumption. For the second
part, the number of observations in each terminal leave may not be bounded in specific cases, because of honest
tree growing. Nevertheless, it is still possible to comply with this specification, by randomly splitting cells that
exceed the number of observation threshold.

Specification 2. The causal forest estimates are truncated from below and above by —K and K, where K € Ris an
arbitrarily large constant. The number of observations in each terminal leave of trees is smaller than a threshold
ty € N*.

Theorem 3. Let the initial causal forest 7,,(x) fit with the centered data &;, and the corrected causal for-
est 91523, (%) fit using 7y;,(%) and &7, an independent copy of the centered data with the j-th variable dropped. If
Assumptions 1-4, and Specifications 1 and 2 are satisfied, then for j € {1, ..., p} and x € [0,1]”, we have

9]5/[—)/2[ (X)_p,E[T(X(H)) | XD =x.

Since Theorems 1 and 3 give the consistency of causal forests respectively fit with all input variables, and when a
given variable is removed, we can deduce the consistency of our variable importance algorithm from standard
asymptotic arguments.
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Theorem 4. Under the same assumptions than Theorem 3, we have for all j € {1, ..., p}

Theorem 4 states that the introduced variable importance algorithm gets arbitrarily close to the true theoretical
value, provided that the sample size is large enough. Combining this result with Proposition 3, we get that, for
J¢H, I,Y ) —P 0, which means that the variables not involved in the treatment heterogeneity by construction get a
null importance. Finally, we conclude our theoretical analysis with a focus on the corrective term of the retrained
causal forests. In particular, we quantify the positive asymptotic bias introduced in the importance measure
without this correction. We thus denote by Z ,([’ ) the estimated importance measure following the same procedure
as for 1Y, except that the corrected forest 0](‘,,”2[ (x) is replaced by the raw retrained forest TJ(V;]ZI (x).

Theorem 5. Under the same assumptions than Theorem 3, with Z¢ the importance measure estimated without
the corrective term in the causal forests, we have for all j € H,

7080, 1 Cov([z (X", m(X) (1 -7 (X)) | X7
! V[T (X)) E[n(X)(1-71(X)) | XD

4 Experiments

We assess the performance of the introduced algorithm through three batches of experiments. First, we use
simulated data, where the theoretical importance values are known by construction, to compare our algorithm to
the existing competitors. Secondly, we test our procedure with the semi-synthetic cases of the ACIC data challenge
2019, where the variables involved in the heterogeneity are known, but not the importance value. Finally, we
present cases with real data to show examples of an analysis conducted with our procedure. Our approach is
compared to the importance of the grf package and TE-VIM, the double robust approach of Hines et al. [15]. For
TE-VIM, any learning method can be used, and we report the performance of GAM models, which outperform
regression forests in the presented experiments. Otherwise, we use the default settings of TE-VIM. When reading
the results, recall that TE-VIM targets the same theoretical quantities I? as our algorithm, whereas the grf
importance grf-vimp is the frequency of variable occurrence in tree splits. The grf-vimp algorithm is fast to
compute, since it only requires to count the variables involved in node splits, but does not provide a precise
quantification of the impact of each variable on the output variability. Besides, the algorithm of Boileau et al. [16]
is designed for high dimensional cases and linear treatment effects, and is thus not appropriate to our goal of
precisely quantifying variable importance in non-linear settings. The implementation of our variable importance
algorithm is available online at https://gitlab.com/random-forests/vimp-causal-forests, along with the code to
reproduce experiments with simulated data.

4.1 Simulated Data
4.1.1 Experiment 1

We consider a first example of simulated data to highlight the good performance of the proposed importance
measure. The input is a Gaussian vector of dimension p = 8, defined by X~A/ (0, L), where X is the identity matrix.
The treatment assignment W is simply a Bernoulli random variable of parameter 1/2, and the response Y follows

Y = (XD, + 0.6X P ye0) x W+025(X® x X W) + ¢, ®)


https://gitlab.com/random-forests/vimp-causal-forests
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where e~N (0,0.1). This first experiment gives a baseline in a quite simple case, since input variables are
independent, there are no confounding effects, and the ratio V [z (X"?)]/V [Y] is large, with a value of about 50 %.
The targeted theoretical values can be easily computed from the defined distributions and Equation (8), and are
reported in the left column of Table 1. Next, we draw a sample of size n = 3000, and the causal forest is fit with all
default settings, including the number of trees M = 2000. Table 1 shows the estimated mean importance values
over 10 repetitions for our proposed algorithm I,(j), TE-VIM, and the metric from the grf package, along with the
standard deviation of the mean importance in brackets. Notice that for each repetition, a new data sample is
drawn from the data generating process described above, and then is used to run each variable importance
algorithm. As expected, both I? and TE-VIM provide accurate estimates of the theoretical importance values 1?in
this quite simple setting. The fast metric provided by grf-vimp also provides a good approximation of the relative
variable importance, even if irrelevant variables get higher values than with I and TE-VIM. Next, Figure 1
displays the importance I with respect to the sample size n. The estimated values get closer to the theoretical
quantities, as expected from the convergence results of Section 3. Notice that variables X%, ..., X® all have a small
importance, and therefore overlap on Figure 1. We omit X” and X® on the figure, since they are symmetric with
X® Finally, we also take advantage of this first experiment to analyze a case of higher dimension. We thus
consider the same settings, but we add 32 independent Gaussian variables of unit variance to get a final input
dimension of p = 40. Table 2 shows that the impact of this large number of noisy variables is small for IY and TE-
VIM, but strong for grf-vimp, with a high decrease of the importance value of X®. Such phenomenon is expected,
since the forest quite often splits on noisy variables because of the split randomization at each tree node, leading

Table 1: Variable importance of Experiment 1 for I¥, the importance measure of grf package, and TE-VIM. Standard deviations are
displayed in brackets when greater than 0.002.

I I, TE-VIM grf-vimp
X0 0.74 XM 0.77 (0.01) X0 0.74 (0.02) X0 0.70 (0.003)
x@ 0.26 Xx@ 0.25 (0.01) x@ 0.28 (0.01) x@ 0.19 (0.003)
X 0 X© 0.001 X 0.007 X© 0.03
X9 0 X4 0.001 X9 -0.005 X9 0.03
x® 0 X© 0.0005 x® 0.003 x© 0.01
X© 0 X®© 0.0003 X© 0.003 X© 0.01
X0 0 X7 0.0003 X0 0.003 X0 0.01
x® 0 X® 0.0003 x® 0.003 x® 0.01
) . .
0.75 ® hd
Variable
o X1
0.50 o X2
= - X3
X4
o X5
X6
0.25 * s L ] b d
[] ) )
Figure 1: Importance values I
with respect to the sample size n
0.00 ° for Experiment 1. Non-null theo-
5501000 2000 3000 5000 10500 retical importance are displayed

n as solid lines.
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Table 2: Variable importance of Experiment 1 with the dimension p set to 40 by adding noisy variables, for I¥), the importance measure of
grf package, and TE-VIM. Standard deviations are displayed in brackets when greater than 0.002.

1 I, TE-VIM grf-vimp
XM 0.74 X0 0.79 (0.01) X0 0.80 (0.01) XM 0.56 (0.004)
Xx@ 0.26 x@ 0.22 (0.01) x@ 0.24 (0.01) x@ 0.23 (0.003)
X© 0 X 0.001 X® —0.04 (0.01) X© 0.03 (0.002)
X4 0 X9 0.001 X9 -0.02 (0.01) X 0.03 (0.003)
X© 0 x® 0.00004 x© —0.02 (0.004) x® 0.004
X®© 0 X© 0.00003 X®© —0.01 (0.003) X® 0.005
X7 0 X0 0.00003 X0 —0.01 (0.005) X0 0.004
X® 0 x® 0.00002 x® —0.01 (0.004) x® 0.005

to a lower split frequency of the relevant inputs. Besides, we can also notice that TE-VIM assigns a negative bias to
irrelevant variables in this noisy setting, whereas IV still provides values very close to 0.

4.1.2 Experiment 2

We consider the same settings as in Experiment 1 with the original dimension p = 8, but we introduce three
modifications to make the problem more difficult. In particular, we set W~Bernouilli (0.4 + 0.21;),,) to introduce
a confounding factor, the covariance ¥ is now the identity matrix except that Cov(X®, X*) = 0.9 to get a strong
correlation between two variables, and we finally increase the weight of (X® x X*)? to 1 to reduce the ratio
V{7 (X™)]/V[Y] to about5 %. Such a quite small ratio is realistic, and makes the treatment effect quite difficult to
estimate in practice. The response Y is now defined by

Y = (XD, + 0.6X Py ) x W+ (X x X)) 4 ¢, )

where e~ (0, 0.1). We then take a sample size n = 3000, and the causal forest is again fit with default settings and
anumber of trees M = 2000. Here, both X and X’ are involved in heterogeneity, i.e. % = {1, 2}, but only X? is also
a confounder. Results are averaged over 50 repetitions, and are reported in Table 3. Additionally, the standard
deviation of the mean importance for each variable is displayed in brackets, except for negligible values (<0.001).
The first column of Table 3 is the oracle importance value, precisely estimated using Equation (2), the closed-form
of 7 given by Equation (9), and a Monte-Carlo method with a large sample drawn from the joint distribution of
(Y, W, X), known by construction.

The results displayed in Table 3 show that both our algorithm and TE-VIM provide the accurate variable
ranking, where X? is the most important variable, and X9 the second most important one. However, the standard

Table 3: Variable importance ranking of Experiment 2 for I,S/), the importance measure of grf package, and TE-VIM. Standard deviations
are displayed in brackets when greater than 0.001.

I I, TE-VIM grf-vimp
Xx@ 0.26 x@ 0.21(0.008) x@ 0.25 (0.06) X0 0.49 (0.01)
X 0.18 X0 0.19 (0.004) X0 0.13 (0.07) X9 0.12 (0.006)
X© 0 X@ 0.03 (0.005) X© -0.22(0.14) X® 0.12 (0.007)
X@ 0 x® 0.03 (0.003) x® -0.23(0.15) x@ 0.11 (0.005)
X© 0 x® 0.005 X® —0.24(0.15) x® 0.11 (0.005)
X®© 0 X© 0.001 X0 -0.28(0.16) X7 0.02 (0.001)
X7 0 X0 0.001 X -0.32(0.28) x® 0.02 (0.001)
X® 0 x® 0.001 X9 -0.55(0.32) X©® 0.02
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deviations of the mean importance values over 50 repetitions are higher for TE-VIM, which is induced by a high
instability across repetitions. This can be a limitation in practice with real data, as importance values are
computed only once. We also observe that variables with a theoretical null importance get a quite strong negative
bias. On the other hand, the importance measure from the grf package underestimates the importance of
variable X, and identifies X®, X, and X*® as slightly more important than X%, although these three variables are
not involved in the treatment heterogeneity by construction. In particular, X® is not involved at all in the
response Y, but is strongly correlated to the influential input X*. Because of this dependence, X* is frequently
used in the causal forests splits, leading to this quite high importance given by the grf package. On the other hand,
1Y gives an importance close to 0 for X®. This result is expected, since the removal of X® does not lead to any loss
of information regarding the treatment heterogeneity, by definition. An additional interesting phenomenon is the
non-negligible importance for variables X and X given by all procedures. In fact, the interaction term in the
baseline function g, which takes the form of a squared product, is rather difficult to estimate by regression forests.
Then, the local centering of Y is only partial, and X® and X still have impact on the variance of treatment
estimates. Besides, notice that the corrective term of Equation (5) is negligible in this experiment, and that using
the original causal forest retrained with one variable removed, gives the same result as in Table 3 for I,([), up to the
displayed digits. Finally, Figure 2 also displays the importance values I with respect to the sample size n.
Results are consistent with the convergence results of the previous section. In particular, for a large sample of n =
10000, the relative errors of I happen to be really small, whereas irrelevant variables get high importance
values for n = 500.

4.1.3 Experiment 3

This third experiment has the same setting than Experiment 2, except that variable X is only a confounder and is
not involved in the treatment effect heterogeneity anymore. Now, the response writes

Y = (0.6XP150,0) x W+ X Vg0, + (XD x XY 4.

The results are provided in Table 4. Clearly, I,([) outperforms the competitors. Indeed, X® is well-identified by I,Y’ as
responsible for most of the heterogeneity of the treatment effect, whereas TE-VIM is strongly biased, with
some values exceeding 1 because of the variance of estimates involved in the ratio of TE-VIM. The importance
procedure of the grf package outputs quite close values for X%, X and X®. As expected, the importance of these
last two variables is relatively larger than in Experiment 1, since the ratio V [z (X*)]/V[Y] drops to 1% in this
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Table 4: Variable importance ranking of Experiment 3 for I, the importance measure of grf package, and TE-VIM. Standard deviations
are displayed in brackets when greater than 0.001.

I I, TE-VIM grf-vimp
x@ 1 x@ 0.84 (0.02) X 1.12 (0.6) X 0.36 (0.01)
X0 0 X@ 0.16 (0.02) X 0.63 (0.4) x@ 0.24 (0.008)
X© 0 X© 0.15 (0.02) X@ 0.37(0.2) X® 0.23 (0.008)
X4 0 X7 0.007 (0.001) X0 0.29 (0.2) X®© 0.04 (0.003)
X© 0 X®© 0.005 x® 0.29 (0.2) x® 0.04 (0.004)
X®© 0 X® 0.005 X0 0.29 (0.2) X0 0.04 (0.002)
X7 0 X© 0.003 X© 0.25(0.2) X0 0.03 (0.002)
X® 0 X0 0.002 x© 0.17 (0.1) X© 0.03 (0.002)
1.00
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_ Py T Figure 3: Importance values I?
b = s with respect to the sample size n
000 © e o ° ® ® for Experiment 3. Non-null theo-
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n as solid lines.

case. As in the previous experiments, Figure 3 displays the importance values 1Y with respect to the sample size n,
and shows that the errors decrease as n increases, following the theory.

4.1.4 Experiment 4

The goal of this fourth simulated experiment is to highlight a case where the corrective term in the retrained
causal forest has a strong influence, as opposed to Experiments 1, 2, and 3. We consider p = 5 inputs uniformly
distributed over [0,1], except X" defined as X* = U®, where U~/ (0, 1). The treatment assignment W is a Bernoulli
variable defined from 7(X) = X, and the response is given by

Y=10XY1-XD)xW+X? +¢,

where e~N (0, 0.1). We still use n=3000 and M = 2000 trees in the causal forests. Next, we compute our importance
measure I,({" for all inputs, as well as its counterpart Z ,(f), where the corrective term is removed, and with 10
repetitions for uncertainties. Results are reported in Table 5, and clearly show the high bias of the importance of
X when the corrective term in the retrained forest is removed. Indeed, we get Z\" = 1.57, whereas the target
quantity is I’ = 1, since X* is the only variable involved in the treatment effect heterogeneity and X? is
independent of the other inputs. With the correction, we recover an importance value of 0.98 for X as expected.
Notice that the asymptotic bias exhibited in Theorem 5 takes values 0.72 for this case, which explains the empirical
results. Importantly, this bias takes small values in practice in most cases. Here, we take the treatment effect as
7(X™) =107 (X) (1 — 7 (X)) to maximize the covariance term involved in the bias of Theorem 5.
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Table 5: Variable importance ranking of Experiment 4 for I,S,/) (with corrected causal forests) and I,S” (without correction).
Standard deviations are displayed in brackets when greater than 0.001.

I, In
X0 0.98 (0.002) X0 1.57 (0.01)
x@ 0.0003 x@ 0.001
X® 0.001 X© 0.001
X9 0.0002 X@ 0.002
x® 0.0002 X© 0.001

4.2 ACIC Data Challenge 2019

We run a second batch of experiments using the data from the ACIC data challenge 2019 (https://sites.google.
com/view/acic2019datachallenge/data-challenge), where the goal was to estimate ATEs in various settings.
The input data is taken from real datasets available online on the UCI repository. Next, outcomes are simulated
with different scenarios, and the associated code scripts were released after the challenge. Since the
data generating mechanism is available, we have access to the variables involved in the heterogeneous
treatment effect. In each scenario, a hundred datasets were randomly sampled.

We first use the “student performance 2” data with 29 input variables, considering Scenario 4 defined in the
ACIC challenge, involving heterogeneity of the treatment effect with respect to X, Each dataset is of size n = 649,
and we run 50 repetitions with independent datasets for uncertainties. Table 6 gives the top 5 variables ranked by
1Y, which accurately identifies X as the only variable involved in the treatment heterogeneity, since other
variables all have a negligible importance value. Both TE-VIM and the grf importance measure also identify X as
the most important variable. However, the bias of TE-VIM is strong, and the grf importance of many irrelevant
variables is not negligible, as opposed to I{.

Secondly, we use the “spam email” data, made of 22 input variables. We also consider Scenario 4, where
variables X® and X" are involved in the heterogeneous treatment effect. In this case, we merge 20 datasets to get
a quite large sample of size n = 10000, and run 5 repetitions to compute standard deviations. The two relevant

variables are properly identified as the most important ones by I,‘{ ) and grf-vimp, as shown in Table 7. On the other

Table 6: Top 5 variables for “Student performance 2 (Scenario 4)” dataset using I¥, TE-VIM, and the importance measure of grf package.
Standard deviations are displayed in brackets.

¥ TE-VIM grf-vimp
X© 0.85 (0.02) X® 0.82 (1.1) X® 0.44 (0.01)
X 0.013 (0.006) X 0.22 (0.6) X 0.06 (0.004)
X 0.007 (0.002) X 0.06 (0.5) X 0.04 (0.002)
X@ 0.006 (0.003) X -0.09 (0.8) X 0.04 (0.003)
X 0.005 (0.002) X019 -0.25(0.3) X@n 0.03 (0.003)

Table 7: Top 6 variables for “Spam email (Scenario 4)” dataset using I,(,/), TE-VIM, and the importance measure of grf package. Standard
deviations are displayed in brackets.

I, TE-VIM grf-vimp
x® 0.83 (0.001) X8 0.88 (0.01) X® 0.85 (4.1073)
X 0.011 (0.002) X0 0.04 (0.007) X9 0.064 (6.107%)
x@ 0.003 (4.107% X9 0.04 (0.007) XM 0.013 (3.107%)
X2 0.002 (4.107% Xxan 0.006 (0.007) X 0.013 (1.107%)
X 0.001 (3.107% X4 0.006 (0.006) X9 0.010 (8.107%
X 0.0004 (<107% X 0.005 (0.006) X0 0.009 (2.107%)
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hand, TE-VIM ranks the noisy variable X® as slightly more important than the relevant input X’?. Again, the grf
importance gives rather higher values to irrelevant variables than 19, Notice that the impact of X*® on het-
erogeneity is really small, and if we use only few datasets of size n = 500 in the forest training, X" is not identified
as more important than noisy variables by any method. Thus, a large sample size is required to detect its
influence, and therefore we use n = 10000.

4.3 Real data
4.3.1 Welfare data

For a first experiment with real data, we use the “Welfare” dataset from a GSS survey, introduced in Green and
Kern [28] and available at https://github.com/gsbDBI/ExperimentData. The goal of this survey is to analyze the
impact of question wording about the support of Americans to the government welfare spending. Respondents
are randomly assigned one of two possible questions, with the same introduction and response options, but using
the phrasing “welfare” or “assistance to the poor”. In fact, this slight wording difference has a quite strong impact
on the survey answers, and defines the treatment. The output of interest indicates if respondents have answered
that “too much” is spent. Our objective is to identify the main characteristics of individuals that have an impact on
the heterogeneity of the treatment effect. The considered dataset is of size n =13198 with p = 31 input variables, and
basic data preparation steps were used to drop rows with missing values. Notice that imputing missing values
may improve estimates. We leave this topic for future work, as handling missing values for variable importance is
of high practical interest.

Table 8 displays the top 10 most important variables for Welfare data using our algorithm I,, and also the
importance from the grf package. The ranking provided by the two algorithms are close, but I,, has a clear
meaning as the variance proportion of the treatment effect lost when a given variable is removed, whereas grf-
vimp can only be used as a relative importance between covariates, without an intrinsic meaning.

Notice that the sum of the importance of all input variables, i.e. Z,-I,(]), adds to 0.45, which is far from 1. Indeed,
when inputs are independent, we have Zjl(f’ > 1. Such a low value is explained by the correlation within input
variables. We run a simple hierarchical clustering of the input variables in 10 groups based on correlation, to
enforce a small correlation between these groups. More precisely, the hierarchical clustering uses the dissimi-
larity matrix defined as 1 — C, with C the correlation matrix of the inputs, and the cutting threshold is set to get 10
groups of variables. Then, we run the group variable importance I/’ for each group of variables J c {1, ..., p}. The
results are displayed in the following Table 9, and are quite straightforward to read. Indeed, half of the treatment
heterogeneity is explained by political orientations of individuals, almost a quarter of the heterogeneity is given

Table 8: Top 10 most important variables with respect to I, and grf-vimp for Welfare data.

I, grf-vimp
polviews 0.18 polviews 0.31
partyid 0.09 partyid 0.17
hrs1 0.04 educ 0.09
indus80 0.03 indus80 0.07
maeduc 0.02 hrs1 0.07
educ 0.02 marital 0.04
marital 0.01 degree 0.04
age 0.01 maeduc 0.04
0cc80 0.01 occ80 0.02

reg16 0.01 age 0.02



https://github.com/gsbDBI/ExperimentData

16 —— C.Bénard and ). Josse: Variable importance for causal forests DE GRUYTER

Table 9: Group variable importance for Welfare data.

Variable group “
partyid, polviews 0.51
educ, sibs, 0cc80, prestg80, maeduc, degree 0.23
hrs1, income, rincome, wrkstat 0.07
age, marital, childs, babies 0.04
wrkslf, indus80, sex 0.03
reg16, mobile16 0.01
race, res16, parborn, born 0.00
family16 0.00
earnrs, hompop, adults 0.00
preteen, teens 0.00

by variables mostly related to education and degrees. Then, several groups have a small impact, especially a group
about income and working status, and a second one about family information.

4.3.2 NHEFS health data

For the second case study, we use the NHEFS real data about body weight gain following a smoking cessation,
extensively described in the causal inference book of Hernan and Robins [29]. As highlighted in the introduction
of Chapter 12, these data help to answer the question “what is the average causal effect of smoking cessation on
body weight gain?”. According to the authors, the unconfoundedness assumption holds. Here, we go a step further
to analyze the heterogeneity of this causal effect with respect to health and personal data of individuals who have
stopped smoking, using causal forests and our variable importance algorithm. The data record the weight of
individuals, first measured in 1971, and then in 1982. The treatment assignment W indicates whether people have
stopped smoking during this period, and the observed output Yis the weight difference between 1971 and 1982. We
take the dataset of size n = 1566 used in Hernan and Robins [29, Chapter 12]. Notice that 63 rows with the output
missing were removed, introducing a small bias, as discussed by the authors. They include 9 variables in their
analysis, sufficient for unconfoundedness. To better estimate heterogeneity, we also include all variables of the
original dataset, that do not contain missing values and are not related to the response, and obtain p = 41 input
variables. As already mentioned, handling missing values is out of scope of this article, and is left for future work.
We run our variable importance algorithm and the grf importance, using M = 4000 trees.

The results are displayed in Table 10. Clearly, the original weight of individuals in 1971 has a strong causal
effect on weight gain following smoking cessation, with half of the treatment effect variance lost when this

Table 10: Top 10 most important variables with respect to I, and grf-vimp for NHEFS data.

I, grf-vimp
wt71 0.52 wt71 0.26
smokeyrs 0.09 smokeyrs 0.13
smokeintensity 0.07 age 0.10
ht 0.06 ht 0.10
age 0.05 smokeintensity 0.07
alcoholfreq 0.01 school 0.07
active 0.01 active 0.03
tumor 0.01 alcoholfreq 0.03
asthma 0.01 chroniccough 0.02

alcoholtype 0.01 marital 0.02
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Table 11: Group variable importance for NHEFS data.

Variable group v
sex, ht, wt71, birthcontrol 0.67
age, smokeyrs 0.26
school, education 0.03
alcoholpy, alcoholfreq, alcoholtype 0.02
hbp, diabetes, pica, hbpmed, boweltrouble 0.02

variable is removed. The intensity and duration of smoking, as well as personal characteristics, such as height and
age are also involved in treatment heterogeneity, according to both algorithms. Notice that grf-vimp un-
derestimates the importance of wt71 with respect to other variables. Next, we group together variables that are
highly correlated, to compute group variable importance. We use the same clustering procedure as the Welfare
case, except that we increase the number of groups to 30, since most variables have a very weak dependence with
the others. Sex, height, and birth control are highly correlated with the weight in 1971, and this group explains two
third of the treatment effect heterogeneity. In fact, age and smoke years also have a quite strong impact with a
quarter of heterogeneity explained. Also notice that sex and birth control belong to the most influential group, but
have a low importance 1Y, which means that they do not contain unique information regarding the treatment
effect. This shows how single and group variable importance provide complementary information (Table 11).

5 Conclusions

We introduced a new variable importance algorithm for causal forests, based on the drop and relearn principle,
widely used for regression problems. The proposed method has hoth theoretical and empirical solid groundings.
Indeed, we show that our algorithm is consistent, under standard assumptions in the mathematical analysis of
random forests. Additionally, we run extensive experiments on simulated, semi-synthetic, and real data, to show
the practical efficiency of the method. Notice that the implementation of our variable importance algorithm is
available online at https://gitlab.com/random-forests/vimp-causal-forests.

Let us summarize the main guidelines for practitioners using our variable importance algorithm. First, all
confounders must be included in the initial data, as it is always necessary to fulfill the unconfoundedness
assumption to obtain consistent estimates. Secondly, it is also recommended to include all variables impacting
heterogeneity in the data as well. However, leaving aside a non-confounding variable impacting heterogeneity,
does not bias the analysis, as opposed to a missing confounder. Thirdly, practitioners must also keep in mind that
adding a large number of irrelevant variables, i.e. non-confounding and not impacting heterogeneity, may hurt
the accuracy of causal forests. Finally, it is recommended to group correlated variables together, and then
compute group variable importance to get additional relevant insights.

We only consider binary treatment assignments throughout the article for the sake of clarity, but notice that
the extension to conditional average partial effects with continuous treatment assignments is straightforward,
since causal forests natively handle continuous assignments [6]. In this case, the outcome and treatment effect are
directly defined through Equation (1) as Y = u(X) + 7(X"Y) x W + &, where the noise ¢ is a random variable
eventually dependent on W, and the unconfoundedness Assumption 1 is extended to: € 1L W|X, as explained in
Section 6 of [6]. Then, all the propositions and theorems stated in the article also apply to this continuous settings
(except Proposition 1), since they do not rely on the binary assignment assumption. However, further in-
vestigations are required to precisely analyze the introduced variable importance algorithm in this continuous
setting, which is left for future work.

To conclude, we highlight two further research directions of interest. First, handling missing values in
variable importance algorithms is barely discussed in the literature, but is strongly useful in practice, since
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observational databases often have missing values, which should be handled carefully to avoid misleading
results. Secondly, developing a testing procedure to detect significantly non-null importance values, would enable
to identify the set 7 of variables involved in heterogeneity, an insight of high practical value. The asymptotic
normality of causal forests is probably a promising starting point to develop such testing algorithms.
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A Proofs of Propositions 1-5 and Theorems 1-5

Proof of Proposition 1.
Using the observed outcome definition with SUTVA (line 1), and the unconfoundedness Assumption 1 (line 2
to 3), we have
E[Y|X, W] =E[WY(Q)+ (1-W)Y(0)|X, W]
=WE[Y() | X, W]+ (1-W)E[Y(0)|X, W]
=WE[Y () [X] + (1-W)E[Y (0) | X]
=E[Y(0) | X] + W(E[Y (1) | X] - E[Y (0) | X])
=E[Y(0) | X] + WE[Y (1) - Y (0) | X])
=E[u(X) +&(0) | X] + WE[7(X") + £(1) - £(0) | X])
= u(X) + Wt (X7),

and the final result follows. O

Proof of Proposition 2.
From Assumption 2, X admits a strictly positive density, denoted by f. Then, from Definition 2,

P(T(X(H)) + T(x’(H))) > J' f(X(j>,X(_j))f (X'(i),x(—l'))dx(j) X dX'(j)dX(—j)’

A1x X xXpy
which s strictly positive, since f is strictly positive and X;, X}, and X,_; have a non-null Lebesgue measure. O
Proof of Proposition 3.
Assumption 2 implies that V[z (X7?)] > 0. By definition,

[ _ VITXO0)] - VIE[T (X)X )]

Viz(X")] ’ i

which also writes using the law of total variance

_EVIr@"M)XD)] _E[(r(X™) - E[r(X") X))’

v —
V[T (X)) V[t (X))

an

If j ¢ H, we clearly have E[7 (X")|X] = 7(X"), and then Equation (11) gives that I? = 0.

We now consider the case where j € H. First, since V[E[7(X")|X(?]] 2 0, we directly get that I <1 from
Equation (10). Secondly, from Definition 2, for x € Xy, the function x”? — 7(x?, x'?) takes different values
over X; and X}, and therefore (7(X"”) - E[7 (X)X 7)])? > 0 with a positive probability, since X3, X}, and X4
have a non-null Lebesgue measure. It implies that I? > 0. O
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https://github.com/gsbDBI/ExperimentData
https://github.com/gsbDBI/ExperimentData
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Proof of Proposition 4.
We first expand the covariance term

Cov[W - 1(X),Y - m(X) | X"]

=E[(W -7(X) (Y -m(X) | X"] -E[W - 7(X) | XT)E[Y - m(X) | X7].

Notice that the second term is null since E[Y - m(X) | X"] = E[E[Y - m(X) | X] | X"?] = 0. Additionally, by

definition,

m(X) =E[Y | X] = E[u(X) + T(X") x W + (W) | X] = u(X) + 1 (X7 (X),

thenY - m(X) = (W —m (X))t (X™) + £¢(W), and we get

Cov[W - 1(X), Y - m(X) | X"]

= E[(W - 1 (X)((W - 7 (X0)7 (X") + (W) | X"

T(X") x E[(W - (X))* | X™] + E[e(W) (W - (X)) | X"]

T(XM) xE[(W - (X)) | X"] + E[(W - n(X))E[e(W) | X, W] | X"]]
T(XM) x VW - 7(X) | X™)],

which gives the final local moment equation in X O

Proof of Proposition 5.
As in the proof of Proposition 4, we obtain

Notice that

Cov[W - 71(X),Y - m(X) | X7] = E[t (X") (W - (X)) | X7].

COV[T(X(H)), (W - ﬂ(X))Z | X(*]')] =E[r (X(H)) (W - H(X))Z | X(*]')]
~Elr(X™) | XPE[(W - n(X))* | XT].

Combining the above two equations, we have

Cov[W - 1(X),Y - m(X) | XP] = Cov[z (X)), (W - 1 (X))* | X7]
+E[r(X") | X x VW - 7(X) | X7],

which gives the final result since

Cov[z (X™), (W - 1(X))? | XP] = Cov[t (X", 7(X) (1 - (X)) | XP].

Proof of Theorem 1.

The result is obtained by applying Theorem 3 from Athey et al. [6]. The first paragraph of Section 3 of Athey
et al. [6] provides conditions to apply Theorem 3, that are satisfied by our Assumptions 3 and 4: X € [0,1%, X admits
a density bounded from below and above by strictly positive constants, and u and 7 are bounded.

Next, Assumptions 1-6 from Athey et al. [6] must be verified. As stated at the end of Section 6.1, Assumptions
3-6 always hold for causal forests, the first assumption holds because the functions m, i, and 7 are Lispschitz from
our Assumption 4 (the product of Lipschitz functions is Lipschitz), and Assumption 2 is satisfied because
0<V[W|X] =n(X)(1 - (X)) <1from our Assumption 4.

Finally, the forest is grown from Specification 1, and the treatment effect is identified by Equation (3) since
Assumption 1 enforces unconfoundedness. Overall, we apply Theorem 3 from Athey et al. [6] to get the consistency
of the causal forest estimate, i.e., for x € [0,1]7

o (X) 2 7 (x ).
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Notice that Theorem 3 from Athey et al. [6] states the consistency of generalized forests. As it will be useful for
further results, we give below a proof of the weak consistency in the specific case of causal forests, using
arguments of Athey et al. [6]. In particular, we take advantage of Specification 1, which enforces the honesty
property, and that the diameters of tree cells vanish as the sample size n increases. First, in our case of binary
treatment W, the causal forest estimate writes

YraWYi - QL a(x)W;) (XL @i (X)Y;)
LG (OW; - (T @ (W) ’

Ty,n (X) =

where the weight a;(x) is defined by Equation (3) of Athey et al. [6], as the weight associated to training observation
X; to form an estimate at the new query point x. The weights a;(x) sum to 1 over all observations, i.e., Y, a;(x) = 1.
Also notice that we alleviate notations of a;(x) throughout the article, but the full expression with all dependencies
is a; (X, X;, Oy, Z,), where the causal forest is built with data &7, and trees are randomized with ©,,. Now, we
denoteby Ay (%) = Z{Llai (X)W;Y; the first term of the numerator of 7,,(x), and derive its convergence. Since the
weights sum to 1,

A (%) -E[WY [ X=X] = iai(x)(wiyi_]E[WY|X:X]);
i=1
and then,
E[A,(x)-E[WY |X=X]] = iE[E[ai(X)(WiYi -E[WY | X =x])| X{]].

i=1

Here, we use a key property of the forest growing given by Specification 1: honesty. Indeed, it enforces that &, is
randomly split in two halves for each tree, where one part is used to build the splits, and the other half to compute
the weights. Therefore, a; (X, X;, Oy, &,) and W;Y; are independent conditional on X;, for all {i, ..., n}. Then, we
have

E[An(x) - E[WY | X =x]] = iE[E[ai (X) [ XJE[WY; - E[WY | X = x] | Xi]]
i=1
= éE[E[ai (x) [ X (E[WY; [ X;] -E[WY [ X =x])].

Since W and Y are independent conditional on X from the unconfoundedness Assumption 1,
E[W;Y; | X;] = E[W; | X{]E[Y; | X;]. Additionally, Assumption 4 states that the functions 7 and m are Lipschitz,
and since the product of two Lipschitz functions is Lipschitz, E[W;Y; | X;] is Lipschitz, with a constant C > 0.
Therefore, we obtain

E[dn (%) -E[WY | X =x]] < éE[E[ai (x) [ X]C [ X; - xl,]

<CE iai(X) I X; - XIIZ]

=

[ n
<CE|sup || X; - Xl1q, x50 > @ (X)]
| i =)

<CE|sup | X; - X||21ai(x)>0]~
L !

Since Assumptions 3 and 4 and Specification 1 are satisfied, Equation (26) in the Supplementary Material of Athey
et al. [6] states that

E sup I X; - X||21ai(x)>0] -0,
1
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which gives that
E[A;,(x)] = E[WY | X =x]. (12)

Next, we use Equation (24) in Lemma 7 of the Supplementary Material of Athey et al. [6], to get that
VI[Ayn (x)] = O(an/n). Since a,/n — 0 by Specification 1, we finally have V[A; , (x)] — 0. Finally, this last limit
combined with Equation (12), states that A, , (x) — E[WY | X = x] is asymptotically unbiased and of null variance.
Using the bias-variance decomposition, we obtain the L2-consistency of Ay ,(x) towards E[WY | X = x], which
implies the weak consistency

n

Y a;(X)W,Y; SE[WY | X = x].

i=1
Identically, we obtain the weak consistency of the other terms involved in 7,;,(x), ie., Z;‘ﬂai (x)W,l»n(x),
Y (X)Y; L (%), %nd Y (x)W? LE [W?| X = x]. The continuous mapping theorem gives for the last term
that (31L,a;(x) Wl-)2 —E[W | X = x]% Finally, using Slutsky’s Lemma, we obtain

p E[IWY |X=x]-E[W|X=X]E[Y | X =X]
Ty,n (X) — 2 2
E[W* | X=x]-E[W|X =X]
_ Cov[W,Y | X =X]
T VW |X=x]
=t(x"),

where the last line is given by the local moment Equation (3), which identifies the treatment effect. Finally, notice
that this proof applies to any linear local moment equation defining a generalized random forest. O

Proof of Theorem 2. ‘
We consider j ¢ H, and follow the same proof as Theorem 1, to show that the causal forest T;Z,)l (x) fit with
79 converges as

T (0> 0(x D),

where 0(x”) satisfies the following equation by definition of causal forests,
OX D) x VW -1(X) | XD = xP] - Cov[W - 7(X),Y -m(X) | X? =xT] = 0.

Then, according to Proposition 4, the above moment equation identifies the treatment effect under Assumptions 1
and 2, and we obtain

Q(X(*j)) — T(X(H)),

which gives (i). For (ii), we apply the same proof, except that the obtained local moment equation identifies
E[r(X™) | X9 = x()] according to Proposition 5. O

Proof of Theorem 3.

With j € {1, ..., p}, recall that the causal forest 7,,,(x) is fit with a centered dataset &, and the corrected
causal forest estimate Ojﬁij,)l (x) is fitwith 79, an independent copy of the centered dataset with the j-th variable
dropped, and is formally defined as

Y & (XY (Wi — 71 (X)) a0 (X0) - WoT,
' . _ 2
(X)W - W)

0, (x) = T3/} (x) - ,

where Wfl =YL a (XY (W; - 1(X))2, Ty = 3oy @ (X1 (Xp), and Wy = Y1 @ (XD) (W, - (X)) We first
prove the convergence of the first term of the numerator,
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Do = 3 (X D) (Wi — 71(X))Tpn (X)
i=1
= 36, (XY (W, - m(X))Pr(X) + 3 0, (X D) (W, — 71 (X)) (Tan (X0) — T (X)),
i=1 i=1

Using the same proof as for Theorem 1, we get that
5, (x ) (W, - 1 (X)F T (X) S EL(W - (X)) (X) | X = x7].
i=1

For the second term involved in A,, we cannot directly apply the proof of Theorem 1 since the output depends on n
through the term 7,,,(X;). We first need to bound P (a, (x9) > 0). Let us consider a given tree £ € {1, ..., M}, and the
associated weights d, (x‘?) for this tree alone. From Specification 2, we have

n
2 1y xny0 S tos
= "

where ¢, is the maximum number of observations in each terminal leave. Since the weights are identically
distributed, we have n]E[larle(X(,j))>0] <ty ie, ]P’(a'le (x?) > 0) < ty/n. Finally, considering all trees, since
a,(x) = YV a,, (x?)/M, we obtain
. ; Mt
P(d, (x7)>0) < TO 13)
Next, for the second term of A,,, we write

n

JE[ Hi a; (XY (Wi = 71 (X0)* (Tag,n (Xi) = T(Xi))H < E[Z & (X |Tpr,n (Xp) = 7 (X))
i=1

i=1
<nE[a; (X))t 0 (X1) - T(X)]]-
The right hand side of this inequality writes
nE[a, (x7)|Ta,n (X1) - 7(X)]]

= nE[d, (x7)|7y,n (X1) - 7 (X)) | @ (x7) > 0] P, (x) > 0)

< MtE[|7a,0 (X1) - 7(Xp)] | @y (x) > 0],
where the last inequality is obtained using (13). Finally, since the original causal forest trained with all inputs and
the weights a; (x7) of the retrained forest are built using independent data, the conditioning event in

E[ITw,n (X1) - T(Xy)| | @, (x7) > 0] only modifies the distribution of X;. Therefore, with Z, a random variable
following this conditional distribution, we have

E[I7yn K1) = T(X)| | & (X7) > 0] = E[|7a1,0 (Zn) - T(Zo)]].

Since Theorem 1 gives the convergence in probability towards 0 of 7,,,(X) — 7(x) for all x € [0, 1] and Z, is
independent from 7, ,(X), we get that T, , (Z,) — T(Zy) 2, 0. Since the causal forest is bounded from Specification 2,
convergence in probability implies I'-convergence, and we get that

E[I7y,n (X1) = T (X | & (x7) > 0] = E[|Tas,0 (Zn) = T(Zn)]] — .
This implies the convergence of the second term of A,, and overall, we obtain that
Ay DELW - (X)PT(X) [X = x),

Next, 7, is handled similarly as A, and we follow the same proof as for Theorem 1 to get the weak consistency of
the remaining terms involved in 6;;’, (x), and using Slutsky’s lemma, we obtain
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i1 a} (xD) (W, - JT(Xi))ZTM,n (X;) - lez'?a' LN Cov[z(X™), 7(X)(1 - (X)) | X = x)
m a (X (W —Wav)2 VW -7(X) | XD = x9)]

Then, following the case (ii) of Theorem 2, we get

p Cov[W - (X),Y —m(X) | X = x]

(=)
T X - -
win (%) VW -(X) | XD = x]

>

which gives the final result

) ron 2 COV[W = 71(X),Y - m(X) | X = xF)
0, (x)— = —
VIW-7(X) | X' =x)]

- Covt(XM), n1(X)(1- (X)) | XP =x]
VW -m(X) | XD = x9]

- E[T(X(H)) | X = X(_j)],

where the last equality is given by Proposition 5. O

Proof of Theorem 4.

We first consider the case j € {1,...,p} \ H for the sake of clarity. We assume that Assumptions 1-4, and
Specifications 1 and 2 are satisfied, and causal forests are trained as specified in Theorem 3. Then, we can apply
Theorems 1 and 3 to get that

T (X) = 037 (X) 50,

According to Specification 2, 7y, (X) — 9;]3, (X) is bounded, and therefore convergence in probability implies
L*-convergence, i.e.,

E[ (Tytn (X) = 07 (X))Z] -0 (14)
Next, recall that

n ' &) (x\1?
10 = X [TM,n (Xi) - GM,]n (Xiz)] _10
T [T (X) = Tarn]

We first consider

and then
Elni] = E[ (e (%) - 073 (X))']
Since |Ap4| = Apy, according to Equation (14), we have
Ef|An1l] = 0,

which also implies the convergence in probability of A, ;.
Similarly for the denominator, we write
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We first show the convergence of 7, ,. Hence,

ElTunl = E[% érM,n(X})] = E[ty,n (X)] = E[r(X™)],

where the limit is obtained because Theorem 1 gives the weak consistency of 7,;,(X), which implies the
convergence of the first moment since 7,;,(X) is bounded from Specification 2. Next, we show that the variance of
Ta.n vanishes. We use the law of total variance to get

Vitmnl = VIE[Tyn | On, Zn]] + E[V[Tyn | On, Zll-

For E[V [Tirn | On, Zn]], notice that 7y , (X'i) are iid conditional on ©,; and & ,. Therefore,

2 (X , T, K
VT | 0y, 7] = @ [O Zul

since 7y ,(X) is bounded by K from Specification 2. We thus obtain E[V [Ty, | Oy, Z,]] — 0. For the first term,
notice that

VIE[Tsn | On, Znll = VIE[Ty,n (X) | Onr; Zn]] <V [Ta1,n (X)],

where this upper bound converges to 0, since 7y;,(X) converges towards 7(X"") in L2 Overall, T, , is asymp-
totically unbiased and its variance vanishes, and therefore converges towards 0 in IL?, and the weak consistency
follows, i.e.,

T2 E[T(X™)].

Using the continuous mapping theorem, we conduct the same analysis to get that 1y, 7y, , (X,)* 5> E[z (X 7)),
and then

A p BV [T (X70)],

with V [z (X?)] > 0 from Assumption 2. Finally, both the numerator A, ; and denominator A, , of I converge in
probability, and we can apply Slutsky’s Lemma to obtain

i P
IV +17 >0,
and following the same arguments, we get that I'” > 0, which gives the final result. The proof is similar for the
case where j ¢ H. O
Proof of Theorem 5.
We can directly deduce from the proof of Theorem 3 that, for x € (0, 1),

N Cov[r (XM, (X)(1- (X)) | XD = x(D]

b o
Tin (0 SE[T(X7) | XD = x)] VW -2 X)X = x|

We denote by Cj(x“p) the second term of the above limit to lighten notations. Next, we follow the proof of Theorem
4 to get the convergence of Z, given by
)2 E[rX) -E[rX") | X7] - G;(XP))’]

i .

©
Z" V[T(X(H)]
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The numerator writes

E[(r(X®) —E[r(X™) | X7] - ¢, (X(,,-)))z]
- E[E[(z(X") - E[r(X") | X7] - ¢;(X D)7 | X ]|
= E[(r(X™) - E[r(X™) | XD))* + C;(XD)?]
—2E[E[r(X™) —E[t(X™) | XP] | XD |E[¢; (X)) | X 7]
= E[(r(X™) — E[z(X™) | XD + E[Cj(x(—j))Z].

Then, we have

p o E[GEXDY
(WS (0) J
In -1V + V[T(X(H)] s

which gives the final result. O
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