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ABSTRACT

Extracranial electroencephalography (EEG) and intracranial stereoelectroen-
cephalography (SEEG) are crucial for epilepsy diagnosis. However, existing
deep learning models often limit themselves to specific signal types and applica-
tion scenarios, leading to challenges in generalization and perception capabilities.
While large language models excel in natural language processing, they cannot
effectively capture the disease-specific signal features in the highly specialized
field of epilepsy, and the lack of pre-training data restricts their generalization
ability. To address these issues, we propose a Epilepsy Foundation Model (Epilep-
syFM), a domain-specific foundational model that considers the mechanisms of
seizure and propagation in epilepsy. EpilepsyFM learns a generalized represen-
tation of epilepsy through unsupervised pre-training across various signal types,
data formats, and sources, and optimizes multiple epilepsy-related downstream
tasks through fine-tuning. We collected clinical EEG and SEEG data from multiple
patients at a first-class hospital, as well as the currently largest publicly available
epilepsy dataset, the TUH series, ensuring diversity in representation learning.
First, the neural activity signals are segmented into multiple patches, and a discrete
EEG and SEEG neural tokenizer is trained to construct a domain-specific neural
codebook for epilepsy. Then, EpilepsyFM takes into account the mechanisms
of clustered neuronal discharges in epilepsy and designs a channel set masking
strategy to enhance the model’s ability to capture the spatiotemporal character-
istics of the signals. The model fully utilizes the multi-dimensional propagation
characteristics of seizures through temporal, spectral, and spatial encoder modules,
achieving comprehensive representation of complex neural signals. Extensive
experiments show that EpilepsyFM achieves state-of-the-art performance in a vari-
ety of domain-specific tasks, including seizure detection and both short-term and
long-term predictions of neural signals, demonstrating strong generalization ability
and broad clinical application potential.

1 INTRODUCTION

Epilepsy is a chronic neurological disorder caused by abnormal discharges of brain neurons, affecting
approximately 70 million people worldwide, making it one of the most common neurological diseases
(Asadi-Pooya et al., 2023; Specchio et al., 2022). Its pathological mechanisms are complex and
varied, with diverse clinical manifestations. Persistent epileptic seizures not only endanger patients’
health but also place a heavy burden on medical resources (Kanner & Bicchi, 2022). Extracranial
electroencephalography (EEG) and intracranial stereoelectroencephalography (SEEG) are effective
neurosurgical methods for recording brain activity in epilepsy patients during ictal and interictal
periods, with intracranial SEEG widely regarded as the gold standard for diagnosing epileptic seizures
(Supriya et al., 2021; Narasimhan et al., 2020; Yan et al., 2024).

Currently, deep learning models for epilepsy are typically designed for specific neural signals and
application scenarios (Shoeibi et al., 2021; Usman et al., 2021; Peh et al., 2023). Although there has
been some progress in seizure detection and prediction using EEG, such as using graph convolutional
networks (Li et al., 2020) and generative adversarial networks (Rasheed et al., 2021), two core issues
remain: first, clinical epilepsy EEG and SEEG are scarce, particularly the limited availability of
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SEEG as the gold standard, which prevents many models from being thoroughly validated in clinical
applications; second, most existing models are designed for specific tasks, performing exceptionally
well on single tasks but lacking generalization capability in real clinical settings.

In recent years, the rise of general-purpose large language models (LLMs) (Vaswani, 2017;
Thirunavukarasu et al., 2023; Yuan et al., 2024a), such as ChatGPT, has demonstrated their pow-
erful capabilities in addressing multi-task and multi-domain problems. Compared to traditional
deep learning models, LLMs effectively overcome the limitations of single-task models through
pre-training and fine-tuning. In the field of medical information, LLMs provide intelligent support for
disease diagnosis by processing vast datasets, significantly improving healthcare efficiency (Li et al.,
2023; Thirunavukarasu et al., 2023). Recent studies have introduced various foundational models
for analyzing brain neural activity, showcasing exceptional performance. For example, Cui et al.
(Cui et al., 2024) proposed Neuro-GPT, which combines an EEG encoder with a GPT architecture
to address challenges related to the scarcity and heterogeneity of EEG data. Yi et al. (Yi et al.,
2023) aimed to bridge gaps between different EEG resources, introducing the MMM framework
for cross-dataset pre-training, while Jiang et al. (Jiang et al., 2024) presented a unified model that
successfully navigates issues such as mismatched EEG electrode counts.

Although general-purpose LLMs perform exceptionally well, domain-specific models often demon-
strate superior performance in specialized fields (Pal et al., 2024; Zhang et al., 2024; Arefeen et al.,
2024). These models are optimized to capture unique features relevant to their domains. For example,
Gu et al. (Gu et al., 2021) highlighted the advantages of training domain-specific language models
from scratch in biomedical natural language processing, while Xie et al. (Xie et al., 2023) proposed a
cost-effective strategy that successfully built domain-specific models, achieving significant improve-
ments in financial tasks. For epilepsy, a clinical neurological disorder, we hope to break through the
problem that deep learning can only solve a single task, and avoid the limitation of relying only on
LLMs related to generalized brain activity to deal with various data sources (e.g., motor imagery,
sleep detection, etc.). Our goal is to design a clinical-focused foundation model that concentrates
on epilepsy. This model will learn the generalized representations of intra- and extracranial signals
associated with epilepsy, aiming to effectively tackle various tasks related to the condition. However,
we still face several challenges in this process:

1) Lack of sufficient EEG and SEEG data for epilepsy: Although several publicly available
EEG datasets for epilepsy exist, SEEG data remains extremely scarce. Collecting EEG data poses
significant challenges due to individual differences in seizures and the considerable time and effort
required for expert annotation.

2) Lack of consideration for the mechanisms of seizure: The mechanisms of epilepsy are complex
and involve abnormal discharges from various brain neurons. Improving the model’s understanding
of the dynamic changes during seizure processes remains a critical challenge.

3) Lack of consideration for the propagation process of epilepsy: After a seizure, the propagation
process spreads over time to different brain regions, accompanied by low-amplitude, high-frequency
oscillations. This process involves information across time, space, and frequency. Capturing signal
changes during this propagation and learning the features of EEG activity related to epilepsy are key
to building an efficient model.

To address aforementioned challenges, our goal is to design a domain-specific foundational model
for epilepsy, termed EpilepsyFM, which considers seizure onset and its propagation mechanisms,
effectively handling EEG and SEEG data while achieving excellent performance across different
epilepsy task states. We first segment neural activity signals into multiple patches and, prior to
pre-training, leverage the concept of VQ-VAE (Van Den Oord et al., 2017) to train a discrete neural
tokenizer, thereby constructing a neural vocabulary specific to the epilepsy domain. Subsequently,
during the pre-training phase, we design a channel set masking strategy that reflects the characteristics
of clustered epileptic discharges, randomly masking sets of neural patches and predicting the masked
patches from visible ones, enhancing the model’s learning capability and accelerating the training
speed through a symmetric masking strategy. Additionally, EpilepsyFM incorporates temporal,
spatial, and spectral encoding methods aimed at capturing the dynamic features during the propagation
process of epilepsy. The main contributions of this work are summarized as follows:

1) Robust data foundation: We collected clinical EEG and SEEG epilepsy data from a a first-class
hospital’s neurosurgery department and combined it with the largest publicly available epilepsy
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EEG dataset, the TUH series, to serve as the pre-training foundation for EpilepsyFM. The labels for
downstream tasks are meticulously annotated by two specialized physicians from the hospital.

2) Channel set masking pre-training strategy: In response to the clustered discharge mechanisms
observed during epileptic seizures, we designed a self-supervised pre-training strategy utilizing
localized channel set masking. This approach enables more accurate capture of neural activity both
within and across channels while improving computational efficiency through symmetric masking.

3) Temporal-spatial-spectral encoding: To gain deeper insights into the propagation mechanisms
of epilepsy, we developed temporal, spatial, and spectral encoding methods. These techniques dy-
namically capture the features of neural activity associated with epilepsy, providing a comprehensive
understanding of its complex dynamics.

4) Diverse downstream tasks: We conducted comprehensive experimental studies on several key
tasks related to epilepsy, including seizure detection, as well as short-term and long-term signal
prediction. The results indicate EpilepsyFM’s adaptability across different tasks, highlighting its
broad potential for clinical applications.

2 METHOD

The overall architecture of EpilepsyFM is depicted in Figure 1. In this architecture, EEG and SEEG
signals with varying channel counts and temporal lengths are input into the model to learn generalized
representations of epileptic neural activity, which are then encoded for downstream tasks.
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Figure 1: The overall architecture of EpilepsyFM, the Epileptic Neural Transformer. EEG or SEEG
signals are first segmented into fixed-size patches. A temporal encoder and a spectral encoder
extract time and frequency features from each patch, which are then concatenated. The spatial
encoder captures channel information and integrates the temporal and spatial embeddings into patch
embeddings. Finally, these embeddings are fed into the transformer encoder in patch order to produce
the final output.

2.1 DEFINITIONS AND NOTATIONS

The large publicly available epilepsy EEG datasets TUEP, TUSL, and TUSZ, along with the collected
clinical long-term EEG and SEEG datasets (XJSZ-EEG and XJSZ-SEEG), are utilized as pre-training
data (for more details, see Appendix B). The multi-channel EEG and SEEG signals are represented
as X ∈ RC×P , where C represents the number of EEG and SEEG channels, and P represents
the number of sampling points with a sampling rate of S. The set of channels used in EEG and
SEEG is defined as CX = {ci1, ci2, . . . , ciC} for EEG and C ′

X = {c1, c2, . . . , cC′} for SEEG,
where CX ⊆ CEEG and C ′

X ⊆ CSEEG, with CEEG being the complete set of channels defined by
the international 10-20 system (Jurcak et al., 2007), and CSEEG representing the set of all SEEG
channels actually used in clinical experiments.

2.2 MODEL ARCHITECTURE

We introduce a general architecture for learning epileptic neural activity — Epileptic Neural Trans-
former, which can handle scalp EEG signals and intracranial SEEG signals with different data formats,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

M
M

M
M
M

M
M
M

M

M
M

M
M
M

M

M
M

M M M M

M
M

M

M
M

M
M
M

M
M
M

M
M
M

M

M
M

M
M
M

M
M
M

M
M
M

M

M M M M
M M M M

M
M

M

M

M M M

M
M

Tem
poral 

Encoder

Spatial Encoder

Spectral 
Encoder

Patch &
 Tem

poral &
 Spatial 

Em
bedding

Transform
er B

lock 1

Transform
er B

lock 2
......

Transform
er B

lock N

Token Prediction H
ead

86

72

97

7

29
46

299

43
68

27

408
14

60 245 87 64
357 3 21 38
11 156 85 47

25 49 66 42

72 102 18 91

74

574
15

342
46

33

88

79
84

106

2
45

54
321

59

83
69

74

51
6

14

13
62

146
547 26 14 27

66 52 16 100

Mask

Symmetric Mask

ch1
ch2
ch3
ch4
ch5
ch6
ch7
ch8

Input Epilepsy 
EEG/SEEG Signals

Input Epilepsy 
EEG/SEEG Signals Epilepsy N

eural
Tokenizer

�2 - norm

�2- norm

Lookup Replace

�1 �2 �3 ��−2��−1 ��

......

Epilepsy N
eural

D
ecoder

Fourier Spectrum

Amplitude

Phase

86

72

97

7
29
46

299

43
68

27

408
14

60 245 87 64

357 3 21 38

11 156 85 47
25 49 66 42

72 102 18 91

74

574
15

342
46

33

88

79
84

106

2
45

54
321

59

83
69
74

51
6

14

13
62

146
547 26 14 27

66 52 16 100

Codebook

ch1
ch2
ch3
ch4
ch5
ch6
ch7
ch8

EpilepsyFM Tokenizer Training

EpilepsyFM Pre-training

Figure 2: Training of Epilepsy EEG&SEEG Tokenizers and EpilepsyFM Pre-training. (a) Epilep-
syFM Tokenizer training: The tokenizer discretizes epileptic EEG and SEEG signals into discrete
neural tokens by decoding epileptic neural activity. (b) EpilepsyFM Pre-training: During pre-
training, patches of epileptic EEG and SEEG are masked according to the channel set, with the
objective of predicting the masked neural tokens from the unmasked patches.

channel numbers, and sampling points. The model framework is illustrated in Figure 1. For each
sample x, we divide it into N patches using a non-overlapping time window W (Bao et al., 2021),
resulting in x = {xcij ,k ∈ RC×W |j = 1, 2, . . . , C, k = 1, 2, . . . , ⌊ P

W ⌋}, where N = C⌊ P
W ⌋.

Temporal Encoder. Due to the abnormal temporal variations in EEG and SEEG signals during
epileptic seizures, we propose a temporal encoder to learn temporal features before the self-attention
mechanism interacts between patches. The encoder consists of multiple temporal convolution blocks,
each composed of a convolution layer, a group normalization layer, and a GELU activation function
(Hendrycks & Gimpel, 2016). The output of the temporal encoder can be expressed as:

εt =

{
et
cij ,k

∈ Rd|j = 1, 2, . . . , C, k = 1, 2, . . . , ⌊ P
W

⌋
}

(1)

where d is the dimension of the embeddings.

Spectral Encoder. Due to epileptic ictal or interictal periods, patients’ brain activity signals exhibit
characteristic waves such as spikes, sharp waves, and sharp-slow waves, which are high-frequency,
low-amplitude oscillations, all accompanied by changes in frequency. It is therefore necessary to
analyze the signal variations at different frequency components during epileptic ictal or interictal
periods. To this end, we propose a wavelet packet convolution (WavepConv) to extract frequency
features from EEG and SEEG signals (Wang et al., 2021). In the aforementioned approach, the input
to the spectral encoder can be expressed as efi , where:

εw = efi (N − R
2 + 1), . . . , efi (N − 1) c⃝efi (0), (2)

. . . , efi (N − 1) c⃝efi (0), . . . , e
f
i (

R
2 − 2)

yA(t) =
∑R

r=0 εw(s× i− r)× g(r)

yD(t) =
∑R

r=0 εw(s× i− r)× h(r)
(3)

where, εw represents the output of the periodic padding. Periodic padding ensures the minimum
length of wavelet packet decomposition, preserving the original characteristics of the input signals and
avoiding boundary effects. c⃝ represents the concatenating operation. R, s represent the size of the
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convolution kernel and stride, respectively. yA(t) and yD(t) represent the approximate coefficients
and fine coefficients, respectively. And g, h are a pair of convolution kernels (Shi et al., 2020).

Spatial Encoder. Due to the characteristic of abnormal discharge signals spreading from the epileptic
focus to other brain regions over time during a seizure, we propose a spatial encoder to effectively
capture this spatial diffusion pattern (Zhang et al., 2019). The spatial encoder is designed to learn
spatial features both within and across channels in EEG and SEEG signals. This encoder is composed
of multiple spatial convolution blocks, similar to the temporal encoder, but with a greater focus on
capturing the spatial correlations between channels. We concatenate the features encoded in both
time and frequency from EEG and SEEG signals (εp = εt c⃝εw), and the output patch embedding of
the spatial encoder can be expressed as:

εp =

{
epcij ,k ∈ Rd|j = 1, 2, . . . , C, k = 1, 2, . . . , ⌊ P

W
⌋
}

(4)

where d is the dimension of the embeddings.

Temporal & Spatial Embedding. To enable the model to capture both temporal and spatial informa-
tion of patch embeddings (Petukhova et al., 2024), we constructed two learnable embedding lists:
temporal embeddings te = {te1, te2, . . . , tetmax} and spatial embeddings se = {se1, se2, . . . , seC},
both of which have a dimension of d. In this process, the hyperparameter tmax determines the
maximum number of temporal patches, satisfying the condition tmax ≥ N . Given arbitrary patch
embedding ei from the spatial encoder, the result by adding the corresponding temporal and spatial
embeddings can be expressed as:

εineb = {epcij ,k + tek + sec| j = 1, . . . , C, k = 1, 2, . . . , ⌊ P
W

⌋} (5)

where, εineb is the input to the Transformer encoder.

Transformer Encoder. The sequence of embedding εineb is input into the Transformer encoder
(Vaswani, 2017), resulting in the output embedding ei ∈ Rd. To prevent excessively large values
in the attention scores, we apply layer normalization to the queries and keys before the dot-product
attention mechanism.

Attention(Q,K, V ) = softmax
(

LN(Q)LN(K)T√
dhead

)
V (6)

where, LN represents layer normalization, and dhead represents the dimension of each attention
head. For downstream prediction tasks, the output embeddings are flattened and processed using
classification or prediction heads.

2.3 NEURAL TOKENIZER TRAINING

EpilepsyFM Neural Tokenizer. As shown in Figure 2(a), we are inspired by LaBraM (Van
Den Oord et al., 2017; Jiang et al., 2024); however, they only trained the tokenizer on EEG sig-
nals, which makes it incompatible with SEEG signals. To address the different signal sources
in epilepsy (such as intracranial and extracranial signals), we define an epilepsy neural tokenizer
B = {bi|i = 1, ..., Ncode} ∈ RNcode×Dcode , where Ncode represents the number of discrete epilepsy
neural embeddings and Dcode represents the dimensionality of the embeddings. Given an epilepsy
EEG or SEEG signal, the tokenizer encodes it into patches q = {qi ∈ Rdcode |i = 1, 2, . . . , N},
where N indicates the number of patches. Subsequently, the quantizer converts qi into embeddings in
the epilepsy codebook. Finally, the nearest neighbor for each qi is found using the epilepsy codebook
B (Peng et al., 2022), which can be expressed as:

zi = argmin
j

∥ℓ2(qi)− ℓ2(bj)∥2 (7)

where, ℓ2 is the ℓ2-normalization, and zi is the vector after being quantized by the quantizer.

EpilepsyFM Neural Decoder. Due to the low signal-to-noise ratio of epilepsy EEG and SEEG
signals, especially with EEG signals exhibiting strong randomness and nonstationarity, directly
reconstructing these signals is highly challenging. Instead of reconstructing the raw signals, we
predict the amplitude and phase from their Fourier spectrum, as these features more accurately reflect
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brain activity. We apply the Discrete Fourier Transform (DFT) to EEG or SEEG segments to extract
amplitude and phase information (Gao et al., 2023), followed by normalization to ensure stable model
convergence. Then, using a epilepsy neural tokenizer and decoder, we train the model to predict these
features using the mean squared error loss function, with the total loss defined as follows:

LT =
∑
x∈D

N∑
i=1

∥oAi −Ai∥22 + ∥oϕi − ϕi∥22 + ∥sg(ℓ2(qi))− ℓ2(vbi)∥22 + ∥ℓ2(qi)− sg(ℓ2(bzi))∥22

(8)

where, oAi and oϕi represent the predicted amplitude and phase from the epilepsy neural decoder,
respectively, while Ai and ϕi represent the true amplitude and phase obtained from the Fourier
transform of the EEG or SEEG signals, and sg(·) indicates the stop-gradient operation.

2.4 EPILEPSYFM PRE-TRAINING

Masked EEG and SEEG Modeling. As shown in Figure 2(b), to enhance the general representa-
tion learning of EpilepsyFM with extensive data, we propose a channel set masking strategy that
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Figure 3: Epileptic EEG and SEEG
electrodes are masked according to
channel sets.

specifically considers the mechanisms of epileptic seizures
(Wei et al., 2022). Specifically, for the case where the num-
ber of channels is divisible by 3, we apply random masking
to group the channels into sets of three, forming the mask
M = {mi|i = 1, ..., N}, where mi ∈ {0, 1} and a propor-
tion r of m is set to 1. For the remaining channels, we use
single-channel random masking, as shown in Figure 3. The
rationale for using 3 channels is detailed in Appendix F. We
replace the random mask M with a learnable mask eM ∈ Rd;
these masked patches are added to the temporal and spatial em-
beddings to serve as input to the Transformer encoder. Using
the output hidden vectors, we predict the neural tokens related
to EEG and SEEG. Ultimately, our objective training loss is
defined as follows:

LM = −
∑
x∈D

∑
mi=1

log p(bi|eM ) (9)

Symmetric Masking. Inspired by LaBraM, we propose a symmetric masking strategy to enhance
training efficiency. We utilize the inverse of the mask M as a new masking approach for pre-training,
thereby obtaining the corresponding loss LM

sym. Consequently, the total loss for our epilepsy base
model is defined as follows:

Lmae = LM + LM
sym (10)

3 EXPERIMENTS

3.1 DATASETS

Due to the current lack of publicly available SEEG datasets related to epilepsy, we have collected
long-term clinical SEEG data from 20 patients in the neurosurgery department of a first-class hospital,
as well as extensive long-term EEG data, all acquired using Neuracle equipment (i.e., XJSZ-EEG
and XJSZ-SEEG). In these datasets, the EEG and SEEG signals are time-locked .

Pre-training Datasets: The pre-training dataset includes the largest publicly available epilepsy-
related TUH EEG datasets, such as TUEP, TUSL, and TUSZ (Harati et al., 2014), as well as data from
4 patients for XJSZ-EEG and 12 patients for XJSZ-SEEG that we collected. To cover all training
data and improve training efficiency, we set the time length of each sample to 4 seconds.

Downstream Datasets: The downstream task dataset includes TUAB, TUEV, (Harati et al., 2014)
CHB-MIT (Shoeb, 2009), and data from 8 patients with XJSZ-EEG and XJSZ-SEEG. The tasks
across these datasets vary. TUAB is segmented into 10-second samples, TUEV into 5-second samples,
and CHB-MIT, XJSZ-EEG, and XJSZ-SEEG into 2-second samples.

For more detailed information about the data, please refer to Appendix B.
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3.2 IMPLEMENTATION DETAILS

Preprocessing: We downsampled the SEEG signals from 1000Hz to 200Hz and similarly downsam-
pled the EEG signals from various datasets to 200Hz to retain essential information. Meanwhile,
we applied a 0.5-70Hz bandpass filter to the EEG and SEEG signals to remove noise, along with
a 50Hz notch filter to eliminate power line interference. Finally, z-score normalization is used to
reduce nonstationarity and fluctuations in the signals (Hosseini et al., 2020).

Model Configuration: Each EEG and SEEG patch has a length of 1 second, with the number of
patches limited to 256. The temporal and spatial encoders consist of 3 layers of 1-D convolution,
GroupNorm, and GELU, while the frequency encoder is composed of 3 layers of wavelet packet
convolution, GroupNorm, and GELU, with the wavelet packet convolution used to extract frequency
band features from the signals. Subsequently, the EEG or SEEG patches are transformed into patch
embeddings and fed into a Transformer encoder with a depth of 8 layers and 10 attention heads. For
more details, please refer to Appendix C.

Pre-training and Fine-tuning: To train the epilepsy neural tokenizer and EpilepsyFM pre-training,
we utilized the largest publicly available EEG epilepsy TUH series dataset, along with most of the
XJSZ-EEG and XJSZ-SEEG datasets as training data. This dataset includes approximately 9,000
patients and 2,000 hours of data, with specific details provided in Appendix B. The task records
vary across different datasets. We used TUAB, TUEV, CHB-MIT, and a small portion of XJSZ-EEG
and XJSZ-SEEG data from different patients to evaluate downstream epilepsy tasks. The training,
validation, and testing sets are divided in a ratio of 80%, 10%, and 10%. Our experiments are
conducted on 8 A100-PCIE-40GB GPUs using Python 3.8 (Ubuntu 20.04) and PyTorch 1.11.0 +
CUDA 11.3. During training, binary classification tasks employed binary cross-entropy loss, while
multi-class classification tasks used cross-entropy loss.

3.3 EVALUATION RESULTS

3.4 MAIN RESULTS

The performance of EpilepsyFM across all downstream tasks is presented in Figure 4. As a founda-
tional model in the field of epilepsy, EpilepsyFM demonstrates SOTA (state-of-the-art) performance in
both extracranial EEG and intracranial SEEG detection and prediction tasks, compared to other base-
line models. In the following paragraphs, we will provide a detailed discussion of the experimental
results for each task.
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Figure 4: Performance comparison of downstream tasks. Left: Epilepsy detection task (Metrics:
Balance Accuracy); Center: Epilepsy short-term prediction task (Metrics: Mean Absolute Error);
Right: Epilepsy long-term prediction task (Metrics: Mean Absolute Error).

3.5 SEIZURE DETECTION

Epileptic seizure detection is of significant importance in the clinical application of EEG and SEEG
(Siddiqui et al., 2020; Tran et al., 2022; Farooq et al., 2023). The aim of seizure detection is to
identify or classify the discharge phenomena and types of discharges in the intracranial SEEG and
extracranial EEG signals of patients with epilepsy. We present the seizure detection performance of
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scalp EEG and intracranial SEEG on different datasets. We use Balance Accuracy, AUC-PR, and
AUROC as evaluation metrics, with the definitions of these metrics provided in Appendix D.

Seizure Detection on Extracranial EEG: We present the detection performance of EpilepsyFM
against other advanced methods on various public epilepsy EEG datasets (TUAB, TUEV, CHB-MIT)
and a private EEG dataset (XJSZ-EEG). We compared not only self-supervised pre-training methods
(TF-C, SimMTM) (Zhang et al., 2022; Dong et al., 2024) and temporal mask modeling methods
(BrainBERT, LaBraM) (Wang et al., 2023; Jiang et al., 2024) as unsupervised approaches but also a
supervised learning method specifically for EEG, namely ST-Transformer (Song et al., 2021).

As shown in Table 1, EpilepsyFM outperformed other methods across multiple evaluation metrics,
with LaBraM and BrainBERT following closely behind. This is largely attributed to LaBraM and
BrainBERT’s ability to effectively consider contextual information and integrate embeddings of
neural signals related to brain activity, particularly as BrainBERT shares a similar approach to our
model in integrating temporal and spectral information.

Table 1: The performance(%) of epilepsy detection tasks on EEG.

Methods

Metrics TUAB CHB-MIT

Balance Acc. AUC-PR AUROC Balance Acc. AUC-PR AUROC

TF-C 59.98±0.47 58.08±0.44 57.45±0.68 80.68±0.66 62.74±0.50 58.65±0.88
SimMTM 58.68±0.40 59.33±0.44 62.15±0.72 75.74±0.63 58.02±0.81 81.38±0.92

ST-Transformer 79.66±0.23 85.21±0.26 87.07±0.19 82.45±1.27 60.32±1.46 86.28±0.68
BrainBERT 78.97±0.75 85.14±0.54 87.33±0.71 82.31±0.72 60.45±0.45 86.36±0.72

LaBraM 81.37±0.21 89.33±0.24 89.72±0.16 84.51±0.05 62.45±0.73 90.47±0.14

EpilepsyFM 82.27±0.18 89.77±0.17 91.91±0.11 85.12±0.34 64.25±0.45 92.01±0.52

Methods

Metrics XJSZ-EEG TUEV

Balance Acc. AUC-PR AUROC Balance Acc. Cohen Kappa Weighted F1

TF-C 68.54±0.43 69.35±0.34 73.35±0.86 40.46±0.67 37.19±0.12 67.19±0.12
SimMTM 74.67±0.87 75.34±0.56 75.85±0.45 40.12±0.96 37.94±0.73 37.94±0.73

ST-Transformer 76.27±1.64 76.79±1.58 79.36±0.99 39.84±2.28 37.65±3.06 68.23±1.90
BrainBERT 75.90±0.36 76.45±0.53 78.34±0.57 47.55±0.75 48.76±0.58 60.64±0.56

LaBraM 76.74±0.45 77.21±0.84 79.98±0.56 61.26±0.48 61.76±1.21 80.46±0.45

EpilepsyFM 80.35±0.83 82.05±0.68 84.25±0.73 62.74±0.76 64.35±1.01 81.45±0.96

Seizure Detection on Intracranial SEEG: The detection results for SEEG signals are presented
in Table 2. This study found that the detection performance of SEEG signals significantly out-
performs that of EEG signals, primarily due to the high signal-to-noise ratio of SEEG signals.

Table 2: The performance(%) of epilepsy detection tasks
on SEEG.

Methods

Metrics XJSZ-SEEG

Balance Acc. AUC-PR AUROC

TF-C 78.10±0.50 76.50±0.60 80.04±0.55
SimMTM 80.25±0.65 78.80±0.70 82.85±0.60

ST-Transformer 83.50±0.70 81.56±0.50 85.34±0.65
BrainBERT 86.30±0.60 84.50±0.75 89.00±0.70

LaBraM 87.50±0.75 83.67±0.61 85.46±0.55

EpilepsyFM 89.74±0.74 86.05±0.57 92.07±0.56

This characteristic enables our EpilepsyFM
model to excel across multiple evalua-
tion metrics. Additionally, the design of
the EpilepsyFM model fully considers the
unique properties of SEEG signals, result-
ing in enhanced robustness across different
intracranial channel locations. These find-
ings underscore the critical role of Epilep-
syFM in SEEG analysis and further support
its effectiveness in clinical applications.

Ultimately, our detection results outper-
form other methods due to our model’s
design, which specifically addresses the
characteristics of seizure onset and prop-
agation in epilepsy. By utilizing channel
set masking and spatio-temporal frequency encoders, we achieve a broader receptive field. This
enables the model to effectively capture complex patterns and relationships within the EEG signals,
thereby improving the accuracy of epilepsy detection (further experimental evidence can be found in
Appendix G).
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3.6 EPILEPSY SHORT- AND LONG-TERM SIGNAL PREDICTION

Predicting epilepsy signals is essential for developing early warning systems for patients in need of
preventive measures (Usman et al., 2020; Savadkoohi et al., 2020; Dissanayake et al., 2021). We
established both short-term and long-term predictions for seizures, focusing on signals of varying
durations. Specifically, we set the historical sequence length to 90 epochs (90 seconds), with short-
term predictions covering 12 epochs (12 seconds) and long-term predictions spanning 20 epochs
(20 seconds). A linear prediction head is utilized to forecast future signals, and we employed Mean
Absolute Error (MAE) and Mean Squared Error (MSE) as evaluation metrics, with the definitions of
these metrics provided in Appendix D. The prediction results are shown in Table 3.

Short- and Long-term Signal Prediction on Extracrania EEG: EpilepsyFM has demonstrated
outstanding performance in short-term prediction across multiple EEG datasets. For example, in the
XJSZ-EEG dataset, the MAE is 0.6421 and the MSE is 0.9380, which is significantly better than
other baseline methods. This superiority is attributed to the model’s multi-dimensional design, which
enables it to analyze signals across various dimensions, allowing for flexible capture of dynamic
changes and long-range dependencies in the signals. In long-term prediction, EpilepsyFM also
exhibits strong performance, with a MAE of 0.6567 and an MSE of 1.1123 in the XJSZ-EEG dataset,
further validating its potential and reliability in epileptic signal prediction.

Short- and Long-term Signal Prediction on Intracrania SEEG: The EpilepsyFM method has
again demonstrated its outstanding capabilities in short-term prediction, achieving a MAE of 0.5587
and an MSE of 0.8592 in the XJSZ-SEEG dataset, highlighting its effectiveness in capturing key
features in SEEG signal processing. In contrast, the LaBraM and SimMTM methods recorded MAE
values of 0.7556 and 0.9621, respectively. While these methods performed well, they did not match
the accuracy of EpilepsyFM. In long-term signal prediction, EpilepsyFM continued to maintain its
advantage, with a MAE of 0.6024 and an MSE of 0.9502, further emphasizing its adaptability and
accuracy across different signal processing scenarios.

Table 3: The performance of epilepsy short- and long-term Signal Prediction.

Dataset
Methods

Metrics Short-term Signal Prediction Long-term Signal Prediction

MAE MSE MAE MSE

TUAB

TF-C 1.2413±0.0013 1.8411±0.0037 1.4242±0.0012 1.9720±0.0021
SimMTM 1.5213±0.0015 2.2561±0.0063 1.6892±0.0010 2.4720±0.0023
LaBraM 0.1907±0.0025 0.3136±0.0081 0.2237±0.0030 0.3321±0.0013

EpilepsyFM 0.1498±0.0010 0.3868±0.0076 0.1482±0.0026 0.2868±0.0016

CHB-MIT

TF-C 1.3251±0.0011 2.2802±0.0053 1.4436±0.0017 2.7676±0.0011
SimMTM 1.3765±0.0014 2.3215±0.0062 1.4212±0.0012 2.8675±0.0010
LaBraM 0.9823±0.0013 1.4657±0.0076 0.9701±0.0014 1.5246±0.0018

EpilepsyFM 0.8231±0.0014 1.2002±0.0048 0.8550±0.0012 1.2319±0.0016

TUEV

TF-C 1.4075±0.0008 1.6802±0.0110 1.4436±0.0016 1.6789±0.0031
SimMTM 1.4356±0.0024 1.7721±0.0143 1.3665±0.0033 1.6213±0.0030
LaBraM 0.4112±0.0023 1.6092±0.0064 0.4231±0.0012 1.6294±0.0013

EpilepsyFM 0.3489±0.0046 1.5272±0.0044 0.3489±0.0014 1.5257±0.0043

XJSZ-EEG

TF-C 0.8265±0.0014 1.2588±0.0022 0.8541±0.0015 1.3187±0.0025
SimMTM 0.8531±0.0012 1.3065±0.0025 0.9779±0.0016 1.4231±0.0030
LaBraM 0.7231±0.0010 1.1214±0.0015 0.7583±0.0015 1.2780±0.0021

EpilepsyFM 0.6421±0.0010 0.9380±0.0010 0.6567±0.0012 1.1123±0.0015

XJSZ-SEEG

TF-C 0.8513±0.0011 1.3034±0.0023 0.9332±0.0014 1.4015±0.0026
SimMTM 0.9621±0.0015 1.4295±0.0025 0.9577±0.0018 1.5389±0.0028
LaBraM 0.7556±0.0012 1.2674±0.0020 0.8206±0.0015 1.3423±0.0023

EpilepsyFM 0.5587±0.0010 0.8592±0.0012 0.6024±0.0014 0.9502±0.0018

In summary, the EpilepsyFM method outperformed other methods in both short-term and long-term
prediction tasks on the EEG and SEEG datasets, exhibiting significant accuracy advantages. This
result underscores the potential of EpilepsyFM in predicting epilepsy signals.
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4 EPILEPSYLM WITH/WITHOUT PRE-TRAINING

In the experiments, we compared the impact of pre-training on the detection and prediction per-
formance across downstream datasets. For the without pre-training experiments, we trained the
EpilespyFM model from scratch on each downstream task dataset, and the results are shown in
Figure 5. Here, we only present the performance of publicly available datasets in the downstream
tasks. The experimental results indicate a decline in performance on the TUAB, CHB-MIT, and
TUEV datasets, with a particularly noticeable drop on the TUEV dataset, thereby validating the
effectiveness of channel set mask pre-training.

Balance Accuracy AUC-PR AUROC0
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Figure 5: Performance comparison with/without pre-training. Left: Epilepsy detection task; Right:
Epilepsy short- and long-term prediction tasks

.

5 CONCLUSION

Inspired by LLMs, we designed a foundational model—EpilepsyFM, specifically for understanding
the mechanisms of epilepsy onset and propagation. This model is capable of learning generalized
representayions from extracranial EEG and intracranial SEEG signals across different signal types,
data formats and sources to facilitate various epilepsy-related tasks. To enhance data diversity and
address the scarcity of intracranial SEEG signals, we collected time-locked clinical EEG and SEEG
data from a first-class hospital’s neurosurgery department. Initially, we trained an epilepsy neural
tokenizer to learn comprehensive EEG and SEEG data, thereby creating a codebook for the epilepsy
neural tokenizer. We then employed unsupervised pre-training using a channel set masking approach
to capture generalized representations of epilepsy. Subsequently, we fine-tuned the model on multiple
downstream tasks related to epilepsy, achieving state-of-the-art performance across different task
settings. Extensive experiments demonstrated that EpilepsyFM achieved leading performance in
tasks such as seizure detection, and short- and long-term neural signal prediction.
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A RELATED WORK

Self-supervised Pre-training: Self-supervised pre-training has made significant progress in natural
language processing and computer vision, yet its potential in the brain-computer interface (BCI)
field remains underexplored, providing an opportunity to leverage large-scale EEG data for training
large models. Currently, several foundational models have emerged: Neuro-GPT (Cui et al., 2024)
aims to address the scarcity and heterogeneity of EEG data by combining EEG encoders with GPT
models; MMM (Yi et al., 2023) facilitates cross-dataset brainwave pre-training through a unified
topological structure, employing multidimensional position encoding and a multi-level channel
hierarchy; LaBraM (Jiang et al., 2024) segments raw EEG signals into slices and trains a neural
tokenizer via spectral prediction to generate neural vocabulary, masking portions of slices during
pre-training for the Neural Transformer to predict from visible slices. The Brant (Zhang et al.,
2023) and Brant-2 (Yuan et al., 2024b) models are specifically designed for intracranial recordings,
with Brant-2 expanding upon its predecessor to demonstrate robustness against data variations and
modeling scales, applicable to a broader range of neural data and validating the effectiveness and
application potential of self-supervised learning in the BCI domain. The introduction of these models
marks a significant step toward utilizing self-supervised learning and large-scale datasets in BCI.

Domain-specific Foundation Model: Existing brain signal analysis models are primarily general-
purpose, excelling in various applications but lacking focus on epilepsy analysis. For instance,
domain-specific models have been successfully utilized in other medical fields, such as Tariq et al.’s
work on prostate cancer, where they collected over 1.8 million clinical notes and developed a model
fine-tuned for clinical information prediction and question-answering tasks. Their model, enhanced
by UMLS-guided training and domain-specific tokenizers, significantly outperformed the general-
purpose model GPT-2 and even surpassed the specialized BioGPT in certain tasks (Tariq et al., 2024).
However, similar methodologies have not been widely applied to epilepsy analysis. While there have
been efforts like Zhao et al.’s EpilepsyLLM, which fine-tuned models on epilepsy-related datasets,
this work focused mainly on textual knowledge representation (Zhao et al., 2024). In contrast, our
research advances a model specifically tailored for epilepsy, leveraging extensive specialized data
to analyze seizure dynamics and addressing clinical needs in EEG analysis. Our work not only fills
a gap in LLM field but also provides insights for applying large-scale EEG data to specific disease
research, further advancing epilepsy studies.

B DATASET DESCRIPTION

• TUEP (Veloso et al., 2017): This corpus is a subset of the TUH EEG Corpus that contains
100 sessions from patients with epilepsy and 100 sessions from patients without epilepsy
with EEG recorded (19-23 channels, 256 Hz). These data are based on clinical history, EEG
features, etc., reviewed and verified by a board-certified neurologist. (total time: 473 hours)

• TUSL (von Weltin et al., 2017): This is another subset of TUH EEG that contains sessions
that are known to contain seizure events, slowing events, and complex background events
(23 channels, 256 Hz). The corpus has been used in studies to distinguish between seizures
and slowing events. (total time: 20.59 hours)

• TUSZ (Shah et al., 2018): This corpus contains EEG signals that are annotated to contain in
addition to a start and stop time, a channel index with EEG recorded (19-23 channels, 256
Hz). (total time: 1138.53 hours)

• TUAB (Obeid & Picone, 2016): The corpus contains statistical data (about demographics and
related information) from the TUH EEG anomaly Corpus, which contains EEG recordings
is classified as clinically normal or abnormal. (total time: 1142 hours)

• TUEV (Obeid & Picone, 2016): This is a subset of TUH EEG that contains annotations
of EEG segments as one of six classes: (1) spike and sharp wave (SPSW), (2) generalized
periodic epileptiform discharges (GPED), (3) periodic lateralized epileptiform discharges
(PLED), (4) eye movement (EYEM), (5) artifact (ARTF) and (6) background (BCKG).

• CHB-MIT (Shoeb, 2009): This dataset consists of scalp EEG signals from 23 pediatric
epilepsy patients, including 24 EEG sets, each subset corresponding to several days of
records from one epilepsy patient, and each epileptic EEG set contains 9 to 42 consecutive
sets of multilead epileptic EEGs (256 Hz) (total time: 969hours)
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• XJSZ-EEG: The dataset is collected from the Department of Neurosurgery at a first-class
hospital, monitoring the EEG signals of 12 clinical epilepsy patients. Each patient have
different electrode positions and channel numbers. We selected the data from 4 patients
for self-supervised pre-training and used the data from 8 patients for downstream tasks.
The labels are manually annotated by two clinically experienced physicians. The sampling
frequency is 1000 Hz, synchronized with SEEG signals. We chose seizure subfolders (6
hours per subfolder) for training, with a total duration of approximately 38 hours, as shown
in Table 4.

Table 4: General information of epileptic patients of the XJSZ-EEG dataset.
Patient

ID Gender Age EEG
Channels

Seizure
Events

Total Seizure
Time (s)

Total
Time (h)

01 Male 24 19 14 420 98.3
02 Male 16 19 13 390 125.5
03 Male 34 18 32 960 100.5
04 Male 14 19 18 540 244.7
05 Male 16 19 13 390 125.5
06 Male 13 18 32 962 100.5
07 Male 14 19 18 540 244.7
08 Male 8 18 41 1231 401.5
09 Female 17 18 6 362 24
10 Female 16 18 32 960 237
11 Female 5 17 43 1295 166
12 Male 34 19 3 107 72

• XJSZ-SEEG: The dataset is collected from the Department of Neurosurgery at a first-
class hospital, monitoring the SEEG signals of 20 clinical epilepsy patients. All signals
are recorded using the Neruacle digital SEEG machines (NSH0256). Each patient have
a personalized surgical plan, and the number of SEEG contacts varied, with each contact
representing an SEEG channel. The dataset is manually annotated by two clinically experi-
enced physicians. The sampling frequency is 1000 Hz, with a total duration of 388 hours.
We used the data from 12 patients for pre-training, not by summing the total duration of
each patient’s data but by selecting seizure subfolder data from each patient. The remaining
8 patients are used for downstream tasks, as shown in Table 5.

Table 5: General information of epileptic patients of the XJSZ-SEEG dataset.
Patient

ID Gender Age SEEG
Electrodes

SEEG
Channels

Seizure
Events

Total Seizure
Time (s)

Total
Time (h)

01 Female 33 9 127 146 4380 384
02 Female 5 10 132 65 10549 154
03 Female 11 8 126 138 2438 94
04 Male 15 13 196 12 2430 237
05 Female 10 11 142 16 1067 92
06 Male 28 13 166 26 1222 141
07 Male 7 10 130 17 1020 169
08 Female 17 11 141 6 362 24
09 Female 34 14 190 5 202 120
10 Female 11 10 141 14 427 67
11 Female 28 10 141 11 385 102
12 Male 34 13 200 3 107 72
13 Male 16 13 166 13 390 125.5
14 Male 14 13 188 18 540 244.7
15 Male 8 9 106 41 1231 401.5
16 Male 34 14 194 32 962 100.5
17 Female 5 10 120 43 1295 166
18 Female 11 10 118 138 4142 93.5
19 Female 34 11 127 44 1326 118.5
20 Male 24 13 195 5 157 98.3
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C MODEL DETAILS

The EpilepsyFM Tokenizer Training model comprises three key components: (1) the Epilepsy
Neural Tokenizer, (2) the Vector Quantizer, and (3) the EpilepsyFM Neural Decoder, as shown in
Table 6. As illustrated in Figure 2, the architecture of the Neural Tokenizer efficiently processes and
tokenizes epilepsy-related data. The Vector Quantizer is designed similarly to the LaBraM model,
ensuring effective data compression and representation. The EpilepsyFM Neural Decoder features a
Transformer decoder with stacked layers and a temporal regression head, enabling accurate modeling
of time series data. Additionally, the pre-training of EpilepsyFM aligns with the Epilepsy Neural
Transformer module, as shown in Table 7.

Table 6: The hyperparameters for EpilepsyFM Tokenizer Training.
Module Sub-Module Name Value

Epilepsy
Neural Tokenizer

(Epilepsy
Neural Transformer)

Temporal Encoder # of Input Channels {1,8,8}
# of Output Channels {8,8,8}

Spectral Encoder # of Input Channels {1,2,2}
# of Output Channels {2,2,2}

Spatial Encoder # of Input Channels {10,16,16}
# of Output Channels {16,16,8}

Transformer Encoder

# of Transformer Layers 8
Hidden Size 200
MLP Size 800

# of Attention Heads 10

Vector Quantizer -
Codex Size 8192×64

Embedding-to-Codex 200 → 200(Tanh) → 64
Codex-to-Embedding 64 → 200

Epilepsy
Neural Decoder Transformer Decoder

# of Transformer Layers 3
Hidden Size 200
MLP Size 800

# of Attention Heads 10

Optimizer -

Batch Size 512
Maximum Learning Rate 5e-5
Minimum Learning Rate 1e-6
Learning Rate Scheduler Cosine

Optimizer Type AdamW
Adam (0.9,0.99)

Weight Decay 0.01
Total Epochs 100

Warm-up Epochs 30

Table 7: The hyperparameters for the EpilepsyFM.
Hyperparameters Values

Batch Size 64
Maximum Learning Rate 5e-4
Minimal Learning Rate 1e-6

Learning Rate Scheduler cosine
Optimizer adamw
Adam β (0.9, 0.99)

Weight Decay 0.05
Total Epochs 30

Warmup Epochs 5
Drop Path 0.1

Layer-wise Learning Rate Decay 0.9
Label Smoothing 0.1
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D EVALUATION METRICS

In the task of epileptic seizure detection(Cai et al., 2023; Chen et al., 2022), we follow existing
research and employ balanced accuracy, AUC-PR, and AUROC as evaluation metrics for binary
classification tasks. For multi-class classification tasks(Memar & Faradji, 2017), we use balanced
accuracy, Cohen Kappa, and weighted F1 as evaluation metrics. In the short-term and long-term
prediction tasks for epilepsy (Woo et al., 2022), we also adhere to existing research by utilizing MAE,
MSE as evaluation metrics.

• Balanced accuracy: Balanced accuracy is a method of calculating accuracy that accounts
for class imbalance. It is the average of the recall for each class. In epilepsy detection,
balanced accuracy effectively reflects the model’s classification performance in the face of
imbalanced data, avoiding the bias that can arise from simple accuracy.

• AUC-PR: AUC-PR measures the area under the curve plotted between precision and recall,
primarily used to evaluate the performance of classification models on imbalanced data.
In epilepsy datasets, AUC-PR better assesses model performance in scenarios with scarce
positive samples, particularly focusing on the precision and recall of the model.

• AUROC: AUROC measures the area under the receiver operating characteristic curve,
primarily used to evaluate the performance of classification models across various threshold
levels. In epilepsy datasets, AUROC better assesses the overall performance of the model
under different thresholds.

• Cohen Kappa: Cohen Kappa is a statistic that measures the agreement between two
classifiers while accounting for the effect of random chance. Its value ranges from -1 to
1, where 1 indicates perfect agreement, 0 indicates no better than random agreement, and
negative values indicate agreement below random levels. In multi-class tasks, Cohen Kappa
effectively evaluates the consistency of the model’s classifications, especially in situations
of class imbalance.

• Weighted F1 Score: Weighted F1 Score is an extension of the F1 score that considers the
importance of each class. It calculates the F1 score for each class and weighs it according to
the frequency of that class in the dataset. The Weighted F1 Score is particularly important
in multi-class tasks, as it balances the performance of all classes, making it suitable for
addressing class imbalance issues and ensuring effective evaluation of the model across all
categories.

• Mean Absolute Error (MAE): MAE calculates the average of the absolute differences
between predicted values and actual values. MAE treats all errors equally, avoiding the bias
introduced by MSE towards extreme values, thus providing an intuitive assessment of model
performance. In epilepsy prediction, MAE quantifies the overall predictive accuracy of the
model clearly, particularly when ensuring the reliability of each prediction is critical.

• Mean Squared Error (MSE): MSE refers to the average of the squared differences between
predicted values and actual values. The primary advantage of MSE lies in its sensitivity
to larger errors, making it useful in model optimization to identify and reduce significant
biases. In the context of epilepsy prediction, MSE effectively reflects how well the model
captures rare but severe seizure events.

E VISUALIZATION OF MASK MODELING

In Figure 6, we present the convergence curves of the total pre-training loss and the masked modeling
accuracy of EpliespyFM. It is evident from the figure that the training method utilizing channel set
masked modeling effectively facilitates the learning process of the model. Specifically, the training
loss steadily decreases with each iteration, indicating that the model is progressively optimizing its
parameters to enhance performance. At the same time, the masked accuracy shows a consistent
upward trend, further validating the effectiveness of this approach in capturing the features of EEG
and SEEG data.
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Figure 6: The loss curve and accuracy curve during the training process of the EpliespyFM.

F ABLATION ON CHANNEL-SET MASKING

Due to the locality and specificity of brain computation, research into more challenging epilepsy
tasks (such as the clustering discharges and propagation circuits of different brain regions in different
patients) remains to be explored. Our designed channel masking strategy can cover the neural activity
signals of multiple neighboring channels, which exhibit signal similarity, as shown in Figure 7. SEEG
signal channels are continuous, so there is no need to consider channel reordering. For EEG signals,
we reorder the electrode signals based on the left and right hemispheres, grouping nearby brain region
channels together to implement the masking.

In the experiments, we evaluated the performance of EEG seizure detection using different numbers
of masked channels, as shown in Table 8. From the figure, it can be observed that in most datasets,
the detection performance is best with three channels, and the masking methods using three or
four channels perform slightly better than the single-channel masking approach. Utilizing multiple
channels for masking can more effectively capture and analyze the characteristic information of
seizure events. Compared to single-channel masking, this approach may provide richer spatial and
temporal information, enhancing the model’s ability to learn complex signal patterns.

EEG

SEEG

Figure 7: The layouts and information of EEG and SEEG electrode channels.
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Table 8: The ablation study of channel set masking.

Channel-set Mask TUAB CHB-MIT

Balance Acc. AUC-PR AUROC Balance Acc. AUC-PR AUROC

1 81.77±0.54 86.73±0.37 89.53±0.56 83.45±0.07 61.98±0.35 93.32±0.15
3 82.27±0.18 89.77±0.17 91.91±0.11 85.12±0.34 64.25±0.45 92.01±0.52
4 82.10±0.27 89.66±0.12 90.91±0.21 85.42±0.51 64.00±0.57 91.41±0.47

Channel-set Mask XJSZ-EEG TUEV

Balance Acc. AUC-PR AUROC Balance Acc. AUC-PR AUROC

1 79.35±0.87 81.58±0.67 84.69±0.48 61.76±0.58 61.33±0.65 80.34±0.68
3 80.35±0.83 82.05±0.68 84.25±0.73 62.74±0.76 64.35±1.01 81.45±0.96
4 81.57±0.26 81.45±0.73 86.37±0.36 62.25±0.38 67.11±0.46 81.79±0.47

G ABLATION ON ENCODER MODULE

In the experiments, we found that the temporal encoder (TEME), spectral encoder (SPEE), and spatial
encoder (SPAE) significantly impact the performance of the epilepsy model, as shown in Table 9.
Removing the temporal encoder leads to a noticeable decline in balanced accuracy and AUC metrics,
indicating that temporal information is crucial for capturing the dynamic characteristics of epileptic
seizures. The absence of the spectral encoder also affects predictive performance, particularly in
the analysis of long time series. Although the impact of the spatial encoder is relatively smaller, its
removal still results in a performance drop, highlighting the importance of spatial features. Ultimately,
the EpilepsyFM model, which combines all encoder modules, demonstrates the best performance.

Table 9: The ablation study of encoder module

- TUAB CHB-MIT

Balance Acc. AUC-PR AUROC Balance Acc. AUC-PR AUROC

w/o TEME 81.47±0.15 89.32±0.10 89.88±0.08 82.12±0.20 65.23±0.15 90.12±0.12
w/o SPEE 80.45±0.18 88.75±0.12 89.00±0.09 81.50±0.25 64.10±0.20 89.50±0.15
w/o SPAE 79.65±0.20 87.40±0.15 88.50±0.10 80.00±0.30 63.55±0.25 88.80±0.20
EpilepsyFM 82.27±0.18 89.77±0.17 91.91±0.11 85.12±0.34 64.25±0.45 92.01±0.52

- XJSZ-EEG TUEV

Balance Acc. AUC-PR AUROC Balance Acc. AUC-PR AUROC

w/o TEME 80.13±0.23 81.86±0.43 83.32±0.66 62.76±0.33 61.76±1.23 80.45±0.45
w/o SPEE 79.00±0.51 81.20±0.34 83.00±0.41 61.50±0.60 63.00±1.00 80.20±0.90
w/o SPAE 78.50±0.43 80.00±0.25 82.00±0.32 60.80±0.55 62.50±0.80 79.80±0.75
EpilepsyFM 80.35±0.83 82.05±0.68 84.25±0.73 62.74±0.76 64.35±1.01 81.45±0.96

H DISCUSSION

Limitations. Although EpilspyFM has made significant progress in common clinical tasks for
epilepsy by training on multiple publicly available EEG datasets and private data, the availability
of SEEG data in clinical settings remains relatively limited. This somewhat constrains our in-depth
exploration in the field of foundational models for epilepsy. If we can further enrich task settings,
particularly in the precise localization of epileptic foci and avoidance of functional areas, it will
greatly enhance the clinical applicability of the model, allowing for more effective guidance in
treatments such as thermal coagulation.

Outlook. Based on the aforementioned limitations, our research outlook encompasses several key
areas: First, we plan to expand the collection of SEEG data, particularly from different devices,
to enhance the diversity and representativeness of the data; we are currently actively promoting
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this effort. Second, we will extend the task settings to consider the relationship between epileptic
lesion areas and brain functional regions, thereby improving the comprehensiveness and depth of
our research. Lastly, we will explore the potential of multimodal integration. Our existing model
already includes EEG and SEEG as two types of neural signals, and in the future, we may consider
incorporating fMRI or PET data. This direction not only poses technical challenges but also represents
an innovative approach with significant clinical implications. Through these efforts, we aim to achieve
a deeper understanding and breakthroughs in the field of epilepsy research.
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