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Abstract

Constrained reinforcement learning is to maximize the reward subject to constraints on
utilities/costs. However, in practice it is often the case that the training environment is not
the same as the test one, due to, e.g., modeling error, adversarial attack, non-stationarity,
resulting in severe performance degradation and more importantly constraint violation in
the test environment. To address this challenge, we formulate the framework of robust
constrained reinforcement learning under model uncertainty, where the MDP is not fixed
but lies in some uncertainty set. The goal is two fold: 1) to guarantee that constraints
on utilities/costs are satisfied for all MDPs in the uncertainty set, and 2) to maximize the
worst-case reward performance over the uncertainty set. We design a robust primal-dual
approach, and further develop theoretical guarantee on its convergence, complexity and
robust feasibility. We then investigate a concrete example of δ-contamination uncertainty
set, design an online and model-free algorithm and theoretically characterize its sample
complexity.

1 Introduction

In many practical reinforcement learning (RL) applications, it is critical for an agent to meet certain constraints
on utilities/costs while maximizing the reward. This problem is usually modeled as the constrained Markov
decision processes (CMDPs) Altman (1999). Consider a CMDP with state space S, action space A, transition
kernel P = {pa

s ∈ ∆S
1 : s ∈ S, a ∈ A}, reward and utility functions: r, ci : S × A → [0, 1], 1 ≤ i ≤ m, and

discount factor γ. The goal of CMDP is to find a stationary policy π : S→ ∆A that maximizes the expected
reward subject to constraints on the utility:

max
π∈Π

Eπ,P

[ ∞∑
t=0

γtr(St, At)|S0 ∼ ρ

]
, s.t. Eπ,P

[ ∞∑
t=0

γtci(St, At)|S0 ∼ ρ

]
≥ bi, 1 ≤ i ≤ m, (1)

where ρ is the initial state distribution, bi ’s are some thresholds and Eπ,P denotes the expectation when the
agent follows policy π and the environment transits following P.

In practice, it is often the case that the environment on which the learned policy will deploy (the test
environment) possibly deviates from the training one, due to, e.g., modeling error of the simulator, adversarial
attack, and non-stationarity. This could lead to a significant performance degradation in reward, and more
importantly, constraints may not be satisfied anymore, which is severe in safety-critical applications. For
example, a drone may run out of battery and crash due to mismatch between training and test environments.
This hence motivates the study of robust constrained RL in this paper. In this paper, we take a pessimistic
approach in face of uncertainty. Specifically, consider a set of transition kernels P, which is usually constructed
in a way to include the test environment with high probability Iyengar (2005); Nilim & El Ghaoui (2004);
Bagnell et al. (2001). The learned policy should satisfy the constraints under all these environments in P, i.e.,
∀P ∈ P,

Eπ,P

[ ∞∑
t=0

γtci(St, At)|S0 ∼ ρ

]
≥ bi, (2)

1∆X denotes the probability simplex supported on the set X.
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which is equivalent to minP∈P Eπ,P [
∑∞

t=0 γtc(St, At)|S0 ∼ ρ] ≥ bi. At the same time, we aim to optimize the
worst-case reward performance over P:

max
π∈Π

min
P∈P

Eπ,P

[ ∞∑
t=0

γtr(St, At)|S0 ∼ ρ

]
,

s.t. min
P∈P

Eπ,P

[ ∞∑
t=0

γtci(St, At)|S0 ∼ ρ

]
≥ bi, 1 ≤ i ≤ m. (3)

On one hand, a feasible solution to eq. (3) always satisfies eq. (2), and on the other hand, the solution to
eq. (3) provides a performance guarantee for any P ∈ P. We note that our approach and analysis can also be
applied to the optimistic approach in face of uncertainty.

In this paper, we design and analyze a robust primal-dual algorithm for the problem of robust constrained
RL. In particular, the technical challenges and our major contributions are as follows.

• We take the Lagrange multiplier method to solve the constrained policy optimization problem. A first
question is that whether the primal problem is equivalent to the dual problem, i.e., whether the duality
gap is zero. For non-robust constrained RL, the Lagrange function has a zero duality gap Paternain et al.
(2019); Altman (1999). However, we show that this is not necessarily true in the robust constrained setting.
Note that the set of visitation distribution being convex is one key property to show zero duality gap of
constrained MDP Altman (1999); Paternain et al. (2019). In this paper, we constructed a novel counter
example showing that the set of robust visitation distributions for our robust problem is non-convex.

• In the dual problem of non-robust CMDPs, the sum of two value functions is actually a value function of
the combined reward. However, this does not hold in the robust setting, since the worst-case transition
kernels for the two robust value functions are not necessarily the same. Therefore, the geometry of our
Lagrangian function is much more complicated. In this paper, we formulate the dual problem of the robust
constrained RL problem as a minimax linear-nonconcave optimization problem, and show that the optimal
dual variable is bounded. We then construct a robust primal-dual algorithm by alternatively updating the
primal and dual variables. We theoretically prove the convergence to stationary points, and characterize
its complexity.

• In general, convergence to stationary points of the Lagrangian function does not necessarily imply that the
solution is feasible Lin et al. (2020); Xu et al. (2023). We design a novel proof to show that the gradient
belongs to the normal cone of the feasible set, based on which we further prove the robust feasibility of
the obtained policy.

• We apply and extend our results on an important uncertainty set referred to as δ-contamination model
Huber (1965). Under this model, the robust value functions are not differentiable and we hence propose a
smoothed approximation of the robust value function towards a better geometry. We further investigate
the practical online and model-free setting and design an actor-critic type algorithm. We also establish its
convergence, sample complexity, and robust feasibility.

We then discuss works related to robust constrained RL.

Robust constrained RL. In Russel et al. (2020), the robust constrained RL problem was studied, and a
heuristic approach was developed. The basic idea is to estimate the robust value functions, and then to use
the vanilla policy gradient method Sutton et al. (1999) with the vanilla value function replaced by the robust
value function. However, this approach did not take into consideration the fact that the worst-case transition
kernel is also a function of the policy (see Section 3.1 in Russel et al. (2020)), and therefore the "gradient"
therein is not actually the gradient of the robust value function. Thus, its performance and convergence cannot
be theoretically guaranteed. The other work Mankowitz et al. (2020) studied the same robust constrained RL
problem under the continuous control setting, and proposed a similar heuristic algorithm. They first proposed
a robust Bellman operator and used it to estimate the robust value function, which is further combined
with some non-robust continuous control algorithm to update the policy. Both approaches in Russel et al.
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(2020) and Mankowitz et al. (2020) inherit the heuristic structure of "robust policy evaluation" + "non-robust
vanilla policy improvement", which may not necessarily guarantee an improved policy in general. In this
paper, we employ a "robust policy evaluation" + "robust policy improvement" approach, which guarantees
an improvement in the policy, and more importantly, we provide theoretical convergence guarantee, robust
feasibility guarantee, and complexity analysis for our algorithms.

Constrained RL. The most commonly used method for constrained RL is the primal-dual method Altman
(1999); Paternain et al. (2019; 2022); Auer et al. (2008), which augments the objective with a sum of constraints
weighted by their corresponding Lagrange multipliers, and then alternatively updates the primal and dual
variables. Under the non-robust constrained MDP problems, it was shown that the strong duality holds, and
hence the primal-dual method has zero duality gap Paternain et al. (2019); Altman (1999). The convergence
rate of the primal-dual method was moreover investigated in Ding et al. (2020; 2021); Li et al. (2021b); Liu
et al. (2021); Ying et al. (2021).

Another class of method is the primal method, which does not introduce any dual variables or Lagrange
multipliers; Instead, it checks if the constraints are satisfied after each update, and enforces the constraints if
not Achiam et al. (2017); Liu et al. (2020); Chow et al. (2018); Dalal et al. (2018); Xu et al. (2021); Yang
et al. (2020).

The above studies, when directly applied to robust constrained RL, cannot guarantee the constraints when
there is model deviation. Moreover, the objective and constraints in this paper take min over the uncertainty
set (see eq. (4)), and therefore have much more complicated geometry than the non-robust case.

Non-Constrained Robust RL under model uncertainty. The non-constrained robust RL was first
introduced and studied in Iyengar (2005); Nilim & El Ghaoui (2004), where the uncertainty set is assumed to
be known, and the problem can be solved using robust dynamic programming. It was further extended to the
model-free setting, where the learner assumes no knowledge of the environment, and can only get samples
from its centroid transition kernel Roy et al. (2017); Wang & Zou (2021; 2022); Zhou et al. (2021); Yang et al.
(2021); Panaganti & Kalathil (2021); Ho et al. (2018; 2021).

These works, however, mainly focus on robust RL without constraints, whereas in this paper we investigate
robust RL with constraints, which is more challenging. There is a related line of works on (robust) imitation
learning Ho & Ermon (2016); Fu et al. (2017); Torabi et al. (2018); Viano et al. (2022), which can be
formulated as a constrained problem. But their problem settings and approaches are fundamentally different
from ours.

2 Preliminaries

Constrained MDP. Consider the CMDP problem in eq. (1). Define the visitation distribution induced by
policy π and transition kernel P: dπ

ρ,P(s, a) = (1− γ)
∑∞

t=0 γtP(St = s, At = a|S0 ∼ ρ, π, P). It can be shown
that the set of the visitation distributions of all policies {dπ

ρ,P ∈ ∆S×A : π ∈ Π} is convex Paternain et al.
(2022); Altman (1999). Based on this convexity, the strong duality of CMDP can be established Altman
(1999); Paternain et al. (2019) under a standard assumption referred as Slater’s condition: Bertsekas (2014);
Ding et al. (2021): there exists a constant ζ > 0 and a policy π ∈ Π s.t. ∀i, V π

ci,P − bi ≥ ζ.

Robust MDP. In this paper, we focus on the (s, a)-rectangular uncertainty set Nilim & El Ghaoui (2004);
Iyengar (2005), i.e., P =

⊗
s,a P

a
s , where Pa

s ⊆ ∆S. At each time step, the environment transits following a
transition kernel belonging to the uncertainty set Pt ∈ P. The robust value function of a policy π is then
defined as the worst-case expected accumulative discounted reward following policy π over all MDPs in the
uncertainty set Nilim & El Ghaoui (2004); Iyengar (2005):

V π
r,P(s) ≜ min

κ=(P0,P1,...)∈
⊗

t≥0
P

Eκ

[ ∞∑
t=0

γtr(St, At)|S0 = s, π

]
, (4)

where Eκ denotes the expectation when the state transits according to κ. It was shown that the robust
value function is the fixed point of the robust Bellman operator Nilim & El Ghaoui (2004); Iyengar (2005);
Puterman (2014): TπV (s) ≜

∑
a∈A π(a|s)

(
r(s, a) + γσPa

s
(V )

)
, where σPa

s
(V ) ≜ minp∈Pa

s
p⊤V is the support

function of V on Pa
s .
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Note that the minimizer of eq. (4), κ∗, is stationary in time Iyengar (2005), which we denote by κ∗ =
{Pπ, Pπ, ...}, and refer to Pπ as the worst-case transition kernel. Then the robust value function V π

r,P is actually
the value function under policy π and transition kernel Pπ. The goal of robust RL is to find the optimal robust
policy π∗ that maximizes the worst-case accumulative discounted reward: π∗ = arg maxπ V π

r,P(s),∀s ∈ S.

3 Robust Constrained RL

Recall the robust constrained RL formulated in eq. (3):

max
θ∈Θ

V πθ
r (ρ), s.t. V πθ

ci
(ρ) ≥ bi, 1 ≤ i ≤ m, (5)

where for simplicity we omit the subscript P in V πθ

⋄,P and denote by V πθ
ci

(ρ) and V πθ
r (ρ) the robust value

function for ci and r under πθ. The goal of eq. (5) is to find a policy that maximizes the robust reward value
function among those feasible solutions. Here, any feasible solution to eq. (5) can guarantee that under any
MDP in the uncertainty set, its accumulative discounted utility is always no less than bi, which guarantees
robustness to constraint violation under model uncertainty. Furthermore, the optimal solution to eq. (5)
achieves the best "worst-case reward performance" among all feasible solutions. If we use the optimal solution
to eq. (5), then under any MDP in the uncertainty set, we have a guaranteed reward no less than the value of
eq. (5).

In this paper, we focus on the parameterized policy class, i.e., πθ ∈ ΠΘ, where Θ ⊆ Rd is a parameter set and
ΠΘ is a class of parameterized policies, e.g., direct parameterized policy, softmax or neural network policy.
For technical convenience, we adopt a standard assumption on the policy class.
Assumption 1. The policy class ΠΘ is k-Lipschitz and l-smooth, i.e., for any s ∈ S and a ∈ A and for any
θ ∈ Θ, there exist universal constants k, l, such that ∥∇πθ(a|s)∥ ≤ k, and ∥∇2πθ(a|s)∥ ≤ l.

This assumption can be satisfied by many policy classes, e.g., direct parameterization Agarwal et al. (2021),
soft-max Mei et al. (2020); Li et al. (2021a); Wang & Zou (2020), or neural network with Lipschitz and
smooth activation functions Du et al. (2019); Neyshabur (2017); Miyato et al. (2018).

The problem eq. (5) is equivalent to the following max-min problem:

max
θ∈Θ

min
λi≥0

V πθ
r (ρ) +

m∑
i=1

λi(V πθ
ci

(ρ)− bi). (6)

Unlike non-robust CMDP, strong duality for robust constrained RL may not hold. For robust RL, the robust
value function can be viewed as the value function for policy π under its worst-case transition kernel Pπ,
and therefore can be written as the inner product between the reward (utility) function and the visitation
distribution induced by π and Pπ (referred to as robust visitation distribution of π). The following lemma
shows that the set of robust visitation distributions may not be convex, and therefore, the approach used in
Altman (1999); Paternain et al. (2019) to show strong duality cannot be applied here.
Lemma 1. There exists a robust MDP, such that the set of robust visitation distributions is non-convex.

In the following, we focus on the dual problem of eq. (6). For simplicity, we investigate the case with one
constraint, and extension to the case with multiple constraints is straightforward:

min
λ≥0

max
θ∈Θ

V πθ
r (ρ) + λ(V πθ

c (ρ)− b). (7)

We make an assumption of Slater’s condition, assuming there exists at least one strictly feasible policy
Bertsekas (2014); Ding et al. (2021), under which, we further show that the optimal dual variable of eq. (7) is
bounded.
Assumption 2. There exists ζ > 0 and a policy π ∈ ΠΘ, s.t. V π

c (ρ)− b ≥ ζ.

Lemma 2. Denote the optimal solution of eq. (7) by (λ∗, πθ∗). Then, λ∗ ∈
[
0, 2

ζ(1−γ)

]
.
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Lemma 2 suggests that the dual problem eq. (7) is equivalent to a bounded min-max problem:

min
λ∈
[

0, 2
ζ(1−γ)

]max
θ∈Θ

V πθ
r (ρ) + λ(V πθ

c (ρ)− b). (8)

In general, the robust value functions V π
r and V π

c are not differentiable. Although we can use sub-differential-
based approaches Wang & Zou (2022), it may bring huge difficulties in analysis. To solve this issue, we make
the following assumption.
Assumption 3. There exists some approximation function Ṽ π

r and Ṽ π
c , and define the corresponding Lagrange

function Ṽ L(θ, λ) = Ṽ πθ
r (ρ) + λ(Ṽ πθ

c (ρ)− b) such that Assumption 2 holds for Ṽ , and the gradients of the
Lagrangian function are Lipschitz:

∥∇λṼ L(θ, λ)|θ1 −∇λṼ L(θ, λ)|θ2∥ ≤ L11∥θ1 − θ2∥, (9)
∥∇λṼ L(θ, λ)|λ1 −∇λṼ L(θ, λ)|λ2∥ ≤ L12|λ1 − λ2|, (10)
∥∇θṼ L(θ, λ)|θ1 −∇θṼ L(θ, λ)|θ2∥ ≤ L21∥θ1 − θ2∥, (11)
∥∇θṼ L(θ, λ)|λ1 −∇θṼ L(θ, λ)|λ2∥ ≤ L22|λ1 − λ2|. (12)

We will justify this assumption under a widely-used contamination uncertainty model in the next section.
Possible approaches for obtaining such approximation include using its Moreau envelope or a regularized
version of the robust value function, e.g., entropy regularization. If Ṽ approximates the robust value function
V , the solution to Ṽ L is also close to the one to V L. We hence aim to solve the smoothed problem instead.
We will also characterize this approximation error in the next section for the contamination model.

The problem in eq. (8) is a bounded linear-nonconcave optimization problem. We then propose our robust
primal-dual algorithm for robust constrained RL in Algorithm 1. The basic idea of Algorithm 1 is to perform

Algorithm 1 Robust Primal-Dual algorithm (RPD)
Input: T , αt, βt, bt

Initialization: λ0, θ0

for t = 0, 1, ..., T − 1 do
λt+1 ←

∏
[0,Λ∗]

(
λt − 1

βt

(
Ṽ

πθt
c (ρ)− b

)
− bt

βt
λt

)
θt+1 ←

∏
Θ

(
θt + 1

αt

(
∇θṼ

πθt
r (ρ) + λt+1∇θṼ

πθt
c (ρ)

))
end for

Output: θT

gradient descent-ascent w.r.t. λ and θ alternatively. When the policy π violates the constraint, the dual
variable λ increases such that λV π

c dominates V π
r . Then the gradient ascent will update θ until the policy

satisfies the constraint. Therefore, this approach is expected to find a feasible policy (as will be shown in
Lemma 5). Here,

∏
X(x) denotes the projection of x to the set X, and {bt} is a non-negative monotone

decreasing sequence, which will be specified later. Algorithm 1 reduces to the vanilla gradient descent-ascent
algorithm in Lin et al. (2020) if bt = 0. However, bt is critical to the convergence of Algorithm 1 Xu et al.
(2023). The outer problem of eq. (8) is actually linear, and after introducing bt, the update of λt can be
viewed as a gradient descent of a strongly-convex function λ(Vc − b) + bt

2 λ2, which converges more stable and
faster.

Denote that Lagrangian function by V L(θ, λ) ≜ V πθ
r (ρ) + λ(V πθ

c (ρ) − b), and further denote the gradient
mapping of Algorithm 1 by

Gt ≜

 βt

(
λt −

∏
[0,Λ∗]

(
λt − 1

βt

(
∇λṼ L(θt, λt)

)))
αt

(
θt −

∏
Θ

(
θt + 1

αt

(
∇θṼ L(θt, λt)

)))
 . (13)

The gradient mapping is a standard measure of convergence for projected optimization approaches Beck
(2017). Intuitively, it reduces to the gradient (∇λṼ L,∇θṼ L), when Λ∗ =∞ and Θ = Rd, and it measures
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the updates of θ and λ at time step t. If ∥Gt∥ → 0, the updates of both variables are small, and hence the
algorithm converges to a stationary solution.

As will be shown in Section 4, Assumption 3 can be satisfied with a smoothed approximation of the robust
value function.

In the following theorem, we show that our robust primal-dual algorithm converges to a stationary point
of the min-max problem eq. (16), with a complexity of O(ϵ−4). The accurate statement can be found in
Appendix E.
Theorem 1. Under Assumption 3, if we set step sizes αt, βt, and bt as in Section E and T = O((Λ∗)4ϵ−4),
then min1≤t≤T ∥Gt∥ ≤ 2ϵ.

We note that this convergence rate matches the rate of general convex-nonconcave optimization problems in
Xu et al. (2023), which is State-of-the-Art according to our best knowledge.

The next proposition characterizes the feasibility of the obtained policy.
Proposition 1. Denote by W ≜ arg min1≤t≤T ∥Gt∥. If λW − 1

βW

(
∇λṼ L(θW , λW )

)
∈ [0, Λ∗), then πW

satisfies the constraint with a 2ϵ-violation.

In general, convergence to stationary points of the Lagrangian function does not necessarily imply that the
solution is feasible. Proposition 1 shows that Algorithm 1 always return a policy that is robust feasible, i.e.,
satisfying the constraints in eq. (5). Intuitively, if we set Λ∗ larger so that the optimal solution λ∗ ∈ [0, Λ∗),
then Algorithm 1 is expected to converge to an interior point of [0, Λ∗] and therefore, πW is feasible. On the
other hand, Λ∗ can’t be set too large. Note that the complexity in Theorem 1 depends on Λ∗ (see eq. (54) in
the appendix), and a larger Λ∗ means a higher complexity.

4 δ-Contamination Uncertainty Set

In this section, we investigate a concrete example of robust constrained RL with δ-contamination uncertainty
set. The method we developed here can be similarly extended to other types of uncertainty sets like
KL-divergence or total variation. The δ-contamination uncertainty set models the scenario where the
state transition of the MDP could be arbitrarily perturbed with a small probability δ. This model is
widely used to model distributional uncertainty in the literature of robust learning and optimization, e.g.,
Huber (1965); Du et al. (2018); Huber & Ronchetti (2009); Nishimura & Ozaki (2004; 2006); Prasad et al.
(2020a;b); Wang & Zou (2021; 2022). Specifically, let P = {pa

s |s ∈ S, a ∈ A} be the centroid transition
kernel, then the δ-contamination uncertainty set centered at P is defined as P ≜

⊗
s∈S,a∈A Pa

s , where
Pa

s ≜ {(1− δ)pa
s + δq|q ∈ ∆S} , s ∈ S, a ∈ A.

Under the δ-contamination setting, the robust Bellman operator can be explicitly computed: TπV (s) =∑
a∈A π(a|s)

(
r(s, a) + γ

(
δ mins′ V (s′) + (1− δ)

∑
s′∈S pa

s,s′V (s′)
))

. In this case, the robust value function
is non-differentiable due to the min term, and hence Assumption 3 does not hold. One possible approach
is to use sub-gradient, which, however, is less stable, and its convergence is difficult to characterize. In the
following, we design a differentiable and smooth approximation of the robust value function. Specifically,
consider a smoothed robust Bellman operator Tπ

σ using the LSE function:

Tπ
σV (s) = EA∼π(·|s)

[
r(s, A) + γ(1− δ)

∑
s′∈S

pA
s,s′V (s′) + γδLSE(σ, V )

]
, (14)

where LSE(σ, V ) = log(
∑d

i=1
eσV (i))

σ for V ∈ Rd and some σ < 0. The approximation error |LSE(σ, V ) −
min V | = O(σ−1) → 0 as σ → −∞, and hence the fixed point of Tπ

σ, denoted by V π
σ , is an approximation

of the robust value function V π (Theorem 4 in Wang & Zou (2022)). We refer to V π
σ as the smoothed

robust value function and define the smoothed robust action-value function as Qπ
σ(s, a) ≜ r(s, a) + γ(1 −

δ)
∑

s′∈S pa
s,s′V π

σ (s′) + γδLSE(σ, V π
σ ). It can be shown that for any π, as σ → −∞, ∥V π

r − V π
σ,r∥ → 0 and

∥V π
c − V π

σ,c∥ → 0.
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The gradient of V πθ
σ can be computed explicitly Wang & Zou (2022): ∇V πθ

σ (s) = B(s, θ) +
γδ
∑

s∈S
eσV

πθ
σ (s)B(s,θ)

(1−γ)
∑

s∈S
eσV

πθ
σ (s)

, where B(s, θ) ≜ 1
1−γ+γδ

∑
s′∈S dπθ

s,P(s′)
∑

a∈A∇πθ(a|s′)Qπθ
σ (s′, a), and dπθ

s,P(·) is the

visitation distribution of πθ under P starting from s. Denote the smoothed Lagrangian function by
V L

σ (θ, λ) ≜ V πθ
σ,r(ρ) + λ(V πθ

σ,c(ρ)− b). The following lemma shows that ∇V L
σ is Lipschitz.

Lemma 3. ∇V L
σ is Lipschitz in θ and λ. And hence Assumption 3 holds for V L

σ .

A natural idea is to use the smoothed robust value functions to replace the ones in eq. (7):

min
λ≥0

max
π∈ΠΘ

V π
σ,r(ρ) + λ(V π

σ,c(ρ)− b). (15)

As will be shown below in Lemma 6, this approximation can be arbitrarily close to the original problem in
eq. (7) as σ → −∞. We first show that under Assumption 2, the following Slater’s condition holds for the
smoothed problem in eq. (15).
Lemma 4. Let σ = O(ϵ−1) be sufficiently large such that ∥V π

σ,c − V π
c ∥ < ζ for any π, then the Slater’s

condition also holds for V π
σ,c, i.e., there exists ζ ′ > 0 and a policy π′ ∈ ΠΘ s.t. V π′

σ,c(ρ)− b ≥ ζ ′.

The following lemma shows that the optimal dual variable for eq. (15) is also bounded.

Lemma 5. Denote the optimal solution of eq. (15) by (λ∗, πθ∗). Then λ∗ ∈
[
0, 2Cσ

ζ′

]
, where Cσ is the upper

bound of smoothed robust value functions V π
σ,c.

Denote by Λ∗ = max
{

2Cσ

ζ′ , 2
ζ(1−γ)

}
, then problems eq. (8) and eq. (15) are equivalent to the following

bounded ones: minλ∈[0,Λ∗] maxπ∈ΠΘ
V π

r (ρ) + λ(V π
c (ρ)− b), and

min
λ∈[0,Λ∗]

max
π∈ΠΘ

V π
σ,r(ρ) + λ(V π

σ,c(ρ)− b). (16)

The following lemma shows that the two problems are within a gap of O(ϵ).
Lemma 6. Choose a large enough σ = O(ϵ−1) such that ∥V π

r − V π
σ,r∥ ≤ ϵ and ∥V π

c − V π
σ,c∥ ≤ ϵ. Then∣∣∣∣ min

λ∈[0,Λ∗]
max

π∈ΠΘ

V π
σ,r(ρ) + λ(V π

σ,c(ρ)− b)− min
λ∈[0,Λ∗]

max
π∈ΠΘ

V π
r (ρ) + λ(V π

c (ρ)− b)
∣∣∣∣ ≤ (1 + Λ∗) ϵ.

In the following, we hence focus on the smoothed dual problem in eq. (16), which is an accurate approximation
of the original problem eq. (8). Denote the gradient mapping of the smoothed Lagrangian function V L

σ by

Gt ≜

 βt

(
λt −

∏
[0,Λ∗]

(
λt − 1

βt

(
∇λV L

σ (θt, λt)
)))

αt

(
θt −

∏
Θ

(
θt + 1

αt

(
∇θV L

σ (θt, λt)
)))

 . (17)

Applying our RPD algorithm in eq. (16), we have the following convergence guarantee.
Corollary 1. If we set step sizes αt, βt, and bt as in Section J and set T = O((Λ∗)8ϵ−12), then
min1≤t≤T ∥Gt∥ ≤ 2ϵ.

This corollary implies that our robust primal-dual algorithm converges to a stationary point of the min-max
problem eq. (16) under the δ-contamination model, with a complexity of O(ϵ−12).

5 Robust Primal-Dual Method for Model-Free Setting

In the previous sections, we assumed full knowledge of the environment, the smoothed robust value functions,
and their gradients. However, such information may not be readily available in real-world applications. To
address this challenge, we consider a more practical model-free setting, where we have no prior knowledge
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of the environment or robust value functions and can only obtain samples from the nominal transition
kernel. This setting presents new challenges in terms of designing effective algorithms for constrained robust
reinforcement learning. By extending our approach to the model-free setting, we aim to provide a more
practical and applicable solution to robust constrained RL problems.

Different from the non-robust value function which can be estimated using Monte Carlo, robust value functions
are the value function corresponding to the worst-case transition kernel from which no samples are directly
taken.

To solve this issue, we adopt the smoothed robust TD algorithm (Algorithm 2) from Wang & Zou (2022) to
estimate the smoothed robust value functions.

Algorithm 2 Smoothed Robust TD Wang & Zou (2022)
Input: Tinner, π, σ, c
Initialization: Q0, s0

for t = 0, 1, ..., Tinner − 1 do
Choose at ∼ π(·|st) and observe ct, st+1
Vt(s)←

∑
a∈A π(a|s)Qt(s, a) for all s ∈ S

Qt+1(st, at)← Qt(st, at) + αt

(
ct + γ(1− δ) · Vt(st+1) + γδ · LSE(σ, Vt)−Qt(st, at)

)
end for

Output: QTinner,c ≜ QTinner

It was shown that the smoothed robust TD algorithm converges to the smoothed robust value function with
a sample complexity of O(ϵ−2) Wang & Zou (2022) under the tabular case. We then construct our online and
model-free RPD algorithm as in Algorithm 3. We note that Algorithm 3 is for the tabular setting with finite
S and A. It can be easily extended to the case with large/continuous S and A using function approximation.

Algorithm 3 Online Robust Primal-Dual algorithm
Input: T , σ, ϵest, βt, αt, bt,r,c
Initialization: λ0, θ0

for t = 0, 1, ..., T − 1 do
Set Tinner = O

(
1

ϵ2
est

)
and run Algorithm 2 for r and c, output QTinner,r, QTinner,c

V̂
πθt

σ,r (s)←
∑

a πθt
(a|s)QTinner,r(s, a), V̂

πθt
σ,c (s)←

∑
a πθt

(a|s)QTinner,c(s, a)
V̂

πθt
σ,r (ρ)←

∑
s ρ(s)V̂ πθt

σ,r (s), V̂
πθt

σ,c (ρ)←
∑

s ρ(s)V̂ πθt
σ,c (s)

λt+1 ←
∏

[0,Λ∗]

(
λt − 1

βt

(
V̂

πθt
σ,c (ρ)− b

)
− bt

βt
λt

)
θt+1 ←

∏
Θ

(
θt + 1

αt

(
∇θV̂

πθt
σ,r (ρ) + λt+1∇θV̂

πθt
σ,c (ρ)

))
end for

Output: θT

Algorithm 3 can be viewed as a biased stochastic gradient descent-ascent algorithm. It is a sample-based
algorithm without assuming any knowledge of robust value functions and can be performed in an online
fashion. We further extend the convergence results in Theorem 1 to the model-free setting, and characterize
the following finite-time error bound of Algorithm 3. Similarly, Algorithm 3 can be shown to achieve a
2ϵ-feasible policy almost surely.

Under the online model-free setting, the estimation of the robust value functions is biased. Therefore, the
analysis is more challenging than the existing literature, where it is usually assumed that the gradients are
exact. We develop a new method to bound the bias accumulated in every iteration of the algorithm and
establish the final convergence results. The formal statement and discussion on the sample complexity can be
found in Theorem 3.

8
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Theorem 2. Set step sizes αt, βt, and bt as in Section J, and let ϵest = O( ϵ2

σ2t0.75 ), T = O(ϵ−12), then
min1≤t≤T ∥Gt∥ ≤ (1 +

√
2)ϵ.

6 Numerical Results

In this section, we numerically demonstrate the robustness of our algorithm in terms of both maximizing
robust reward value function and satisfying constraints under model uncertainty. We compare our RPD
algorithm with the heuristic algorithms in Russel et al. (2021); Mankowitz et al. (2020) and the vanilla
non-robust primal-dual method. Based on the idea of "robust policy evaluation" + "non-robust policy
improvement" in Russel et al. (2021); Mankowitz et al. (2020), we combine the robust TD algorithm 2 with
non-robust vanilla policy gradient method Sutton et al. (1999), which we refer to as the heuristic primal-dual
algorithm. Several environments, including Garnet Archibald et al. (1995), 8 × 8 Frozen-Lake and Taxi
environments from OpenAI Brockman et al. (2016), are investigated.

We first run the algorithm and store the obtained policies πt at each time step. At each time step, we run
robust TD with a sample size 200 for 30 times to estimate the objective Vr(ρ) and the constraint Vc(ρ). We
then plot them v.s. the number of iterations t. The upper and lower envelopes of the curves correspond to
the 95 and 5 percentiles of the 30 curves, respectively. We deploy our experiments on the δ-contamination
model, and repeat for two different values of δ = 0.2, 0.3.

Garnet problem. A Garnet problem can be specified by G(Sn, An), where the state space S has Sn states
(s1, ..., sSn

) and action space has An actions (a1, ..., aAn
). The agent can take any actions in any state, and

receives a randomly generated reward/utility signal generated from the uniform distribution on [0,1]. The
transition kernels are also randomly generated. The comparison results are shown in Fig.1.

8× 8 Frozen-Lake problem. We then compare the three algorithms under the 8× 8 Frozen-lake problem
setting in Fig.4. The Frozen-Lake problem involves a frozen lake of size 8× 8 which contains several "holes".
The agent aims to cross the lake from the start point to the end point without falling into any holes. The
agent receives r = −10 and c = 30 when falling in a hole, receives r = 20 and c = 5 when arriving at the
endpoint; At other times, the agent receives r = 2 and a randomly generated utility c according to the
uniform distribution on [0,10].

Taxi problem. We then compare the three algorithms under the Taxi problem environment. The taxi
problem simulates a taxi driver in a 5× 5 map. There are four designated locations in the grid world and a
passenger occurs at a random location of the designated four locations at the start of each episode. The goal
of the driver is to first pick up the passengers and then drop them off at another specific location. The driver
receives r = 20 for each successful drop-off and always receives r = −1 at other times. We randomly generate
the utility according to the uniform distribution on [0,50] for each state-action pair. The results are shown in
Fig.3.

From the experiment results above, it can be seen that: (1) Both our RPD algorithm and the heuristic
primal-dual approach find feasible policies satisfying the constraint under the worst-case scenario, i.e., V π

c ≥ b.
However, the non-robust primal-dual method fails to find a feasible solution that satisfy the constraint under
the worst-case scenario. (2) Compared to the heuristic PD method, our RPD method can obtain more reward
and can find a more robust policy while satisfying the robust constraint. Note that the non-robust PD method
obtain more reward, but this is because the policy it finds violates the robust constraint. Our experiments
demonstrate that among the three algorithms, our RPD algorithm is the best one which optimizes the
worst-case reward performance while satisfying the robust constraints on the utility.

9
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(a) Vc when δ = 0.2. (b) Vr when δ = 0.2. (c) Vc when δ = 0.3. (d) Vr when δ = 0.3.

Figure 1: Comparison on Garnet problem G(20, 10).

(a) Vc when δ = 0.2. (b) Vr when δ = 0.2. (c) Vc when δ = 0.3. (d) Vr when δ = 0.3.

Figure 2: Comparison on 4 × 4 Frozen-Lake problem.

(a) Vc when δ = 0.2. (b) Vr when δ = 0.2. (c) Vc when δ = 0.3. (d) Vr when δ = 0.3.

Figure 3: Comparison on Taxi problem.

7 Conclusion

In this paper, we formulate the problem of robust constrained reinforcement learning under model uncertainty,
where the goal is to guarantee that constraints are satisfied for all MDPs in the uncertainty set, and to
maximize the worst-case reward performance over the uncertainty set. We propose a robust primal-dual
algorithm, and theoretically characterize its convergence, complexity and robust feasibility. Our algorithm
guarantees convergence to a feasible solution, and outperforms the other two heuristic algorithms. We
further investigate a concrete example with δ-contamination uncertainty set, and construct online and
model-free robust primal-dual algorithm. Our methodology can also be readily extended to problems with
other uncertainty sets like KL-divergence, total variation and Wasserstein distance. The major challenge lies
in deriving the robust policy gradient, and further designing model-free algorithm to estimate the robust
value function.
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Appendix

A Additional Experiments

4 × 4 Frozen Lake problem. The 4 × 4 frozen lake is similar to the 8 × 8 one but with a smaller map.
Similarly, we randomly generate the utility signal for each state-action pair. The results are shown in Fig.2.

(a) Vc when δ = 0.2. (b) Vr when δ = 0.2. (c) Vc when δ = 0.3. (d) Vr when δ = 0.3.

Figure 4: Comparison on 8 × 8 Frozen-Lake problem.

N-Chain problem. We then compare three algorithms under the N -Chain problem environment. The
N -chain problem involves a chain contains N nodes. The agent can either move to its left or right node.
When it goes to left, it receives a reward-utility signal (1, 0); When it goes right, it receives a reward-utility
signal (0, 2), and if the agent arrives the N -th node, it receives a bonus reward of 40. There is also a small
probability that the agent slips to the different direction of its action. In this experiment, we set N = 40.
The results are shown in Fig.5.

(a) Vc when δ = 0.2. (b) Vr when δ = 0.2. (c) Vc when δ = 0.3. (d) Vr when δ = 0.3.

Figure 5: Comparison on N -Chain problem.

B Proof of Lemma 1

Denote by Pπ = {(pπ)a
s ∈ ∆S : s ∈ S, a ∈ A} the worst-case transition kernel corresponding to the policy

π. We consider the δ-contamination uncertainty set defined in Section 4. We then show that under δ-
contamination model, the set of visitation distributions is non-convex. The robust visitation distribution set
can be written as follows:

d ∈ ∆S×A : ∃π ∈ Π, s.t. ∀(s, a),


d(s, a) = π(a|s)

∑
b

d(s, b),

γ
∑
s′,a′

(pπ)a′

s′,sd(s′, a′) + (1− γ)ρ(s) =
∑

a

d(s, a).


 . (18)
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Under the δ-contamination model, Pπ can be explicated as (pπ)a
s,s′ = (1− δ)pa

s,s′ + δ1{s′=arg min V π}. Hence
the set in eq. (18) can be rewritten as

d ∈ ∆S×A : ∃π, s.t. ∀(s, a),



d(s, a) = π(a|s)
(∑

b

d(s, b)
)

,

γ(1− δ)
∑
s′,a′

pa′

s′,sd(s′, a′) + γδ1{s=arg min V π}

+ (1− γ)ρ(s) =
∑

a

d(s, a).




. (19)

Now consider any two pairs (π1, d1), (π2, d2) of policy and their worst-case visitation distribution, to show
that the set is convex, we need to find a pair (π′, d′) such that ∀λ ∈ [0, 1] and ∀s, a,

λd1(s, a) + (1− λ)d2(s, a) = d′(s, a), (20)

d′(s, a) = π′(a|s)
(∑

b

d′(s, b)
)

, (21)∑
a′

d′(s, a′) = γ(1− δ)
∑
s′,a′

pa′

s′,sd′(s′, a′) + γδ1{s=arg min V π′} + (1− γ)ρ(s). (22)

eq. (22) firstly implies that ∀s,

λ1{s=arg min V π1 } + (1− λ)1{s=arg min V π2 } = 1{s=arg min V π′}, (23)

where from eq. (20) and eq. (21), π′ should be

π′(a|s) = d′(s, a)∑
b d′(s, b) = λd1(s, a) + (1− λ)d2(s, a)∑

b(λd1(s, b) + (1− λ)d2(s, b)) . (24)

We then construct the following counterexample, which shows that there exists a robust MDP, two policy-
distribution pairs (π1, d1), (π2, d2), and λ ∈ (0, 1), such that λ1{s=arg min V π1 } + (1 − λ)1{s=arg min V π2 } ≠
1{s=arg min V π′}, and therefore the set of robust visitation distribution is non-convex.

Consider the following Robust MDP. It has three states 1, 2, 3 and two actions a, b. When the agent is at
state 1, if it takes action a, the system will transit to state 2 and receive reward r = 0; if it takes action b,
the system will transit to state 3 and receive reward r = 2. When the agent is at state 2/3, it can only take
action a/b, the system can only transits back to state 1 and the agent will receive reward r = 1. The initial
distribution is 1s=1.

1

3

2
action=a r = 0

action=b r = 2

action=a r = 1

action=b r = 1

Clearly all policy can be written as π = (p, 1− p), where p is the probability of taking action a at state 1.
We consider two policies, π1 = (1, 0) and π2 = (0, 1).
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It can be verified that arg min V π1 = 1, and its robust visitation distribution, denoted by d1, is

d1(1, a) = 1− γ

1− γ2 , (25)

d1(1, b) = 0, (26)

d1(2, a) = γ(1− γ)
1− γ2 , (27)

d1(2, b) = 0, (28)
d1(3, a) = 0, (29)
d1(3, b) = 0. (30)

Similarly, arg min V π2 = 2, and and its robust visitation distribution, denoted by d2, is

d2(1, a) = 0, (31)

d2(1, b) = 1− γ

1− γ2 , (32)

d2(2, a) = 0, (33)
d2(2, b) = 0, (34)
d2(3, a) = 0, (35)

d2(3, b) = γ(1− γ)
1− γ2 . (36)

Hence according to eq. (24), π′ should be as follows:

π′(a|1) = λ, π′(b|1) = 1− λ, π′(a|2) = 1, π′(b|3) = 1. (37)

We then show that there exists λ ∈ [0, 1], such that λ1{s=1} + (1− λ)1{s=2} ̸= 1{arg min V π′}.

Clearly eq. (23) holds only if V π′(1) = V π′(2) = mins V π′(s). However, according to the Bellman equations
for π′, we have that

V π′
(1) = λ(γ(1− δ)V π′

(2) + γδ min V π′
) + (1− λ)(2 + γ(1− δ)V π′

(3) + γδ min V π′
), (38)

V π′
(2) = 1 + γ(1− δ)V π′

(1) + γδ min V π′
, (39)

V π′
(3) = 1 + γ(1− δ)V π′

(1) + γδ min V π′
. (40)

If we set λ = 1
3 ,

V π′
(1) = 4

3 + γδ min V π′
+ γ(1− δ)V π′

(2), (41)

V π′
(2) = 1 + γδ min V π′

+ γ(1− δ)V π′
(1). (42)

Clearly, V π′(1) ̸= V π′(2), and hence λ1{arg min V 1} + (1− λ)1{arg min V 2} ̸= 1{arg min V π′}.

C Proof of Lemmas 2 and 5

Proof of Lemma 2

Proof. We first set C = V πθ∗
r (ρ) + λ∗(V πθ∗

c (ρ)− b), clearly maxπ∈Π V π
r (ρ) + λ∗(V π

c (ρ)− b) = C, and hence

C = max
π∈Π

V π
r (ρ) + λ∗(V π

c (ρ)− b) ≥ V πζ

r (ρ) + λ∗(V πζ

c (ρ)− b) ≥ V πζ

r (ρ) + λ∗ζ. (43)
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Thus we have that

λ∗ ≤ C − V πζ

r (ρ)
ζ

. (44)

Note that

C = min
λ≥0

max
π∈Π

V π
r (ρ) + λ(V π

c (ρ)− b)
(a)
≤ max

π∈Π
V π

r (ρ) ≤ 1
1− γ

, (45)

where (a) is because minλ≥0 maxπ∈Π V π
r (ρ) + λ(V π

c (ρ)− b) is less than the optimal value of inner problem
when λ = 0, i.e., maxπ∈Π V π

r (ρ), and 1
1−γ is the upper bound of robust value functions. Hence we have that

λ∗ ≤ 1
(1− γ)ζ , (46)

which completes the proof.

Proof of Lemma 5

Proof. Set C = V θ∗
σ,r(ρ) + λ∗(V θ∗

σ,c(ρ)− b), then

C = max
π∈Π

V π
σ,r(ρ) + λ∗(V π

σ,c(ρ)− b) ≥ V πζ′

σ,r (ρ) + λ∗(V πζ′

σ,c (ρ)− b) ≥ V πζ′

σ,r (ρ) + λ∗ζ ′. (47)

Thus we have that

C ≥ V πζ

σ,r (ρ) + λ∗ζ ′, (48)

hence

λ∗ ≤
C − V πζ

σ,r (ρ)
ζ ′ . (49)

Note that

C = min
λ≥0

max
π∈Π

V π
σ,r(ρ) + λ(V π

σ,c(ρ)− b)≤max
π∈Π

V π
σ,r(ρ) ≤ Cσ, (50)

where Cσ is the upper bound of smoothed robust value functions Wang & Zou (2022): Cσ = 1
1−γ (1+2γR log |S|

σ ).
Hence we have that

λ∗ ≤ Cσ

ζ ′ , (51)

which completes the proof.

D Proof of Lemma 6

Proof. For any λ, denote the optimal value of the inner problems maxπ∈ΠΘ
V π

σ,r(ρ) + λ(V π
σ,c(ρ) − b) and

maxπ∈ΠΘ
V π

r (ρ) + λ(V π
c (ρ)− b) by V D(λ) and V D

σ (λ). It is then easy to verify that

|V D(λ)− V D
σ (λ)| ≤ (1 + λ)ϵ ≤ (1 + Λ∗)ϵ. (52)

Denote the optimal solutions of minλ∈[0,Λ∗] V D(λ) and minλ∈[0,Λ∗] V D
σ (λ) by λD and λD

σ . We thus conclude
that |V D

σ (λD
σ )− V D(λD)| ≤ (1 + Λ∗) ϵ, and this thus completes the proof.
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E Proof of Theorem 1

We restate Theorem 1 with all the specific step sizes as follows.

Set bt = 19
20ξt0.25 , µt = ξL2

21 + 16τL2
21

ξ(bt+1)2 − 2ν, βt = 1
ξ , αt = ν + µt, where ξ < 1

10L11
, ν is any positive number

and τ > max
{

2, 192(L22+2ν−ξ(L21)2)
202∗16ξL2

21

}
, then

min
1≤t≤T

∥Gt∥2 ≤ 2ϵ, (53)

when

T = max
{

7(Λ∗)4

ξ4ϵ4 ,

(
2 + 9ξ(τ − 2)(L21)2D2D3

ϵ2

)2}
= O(ϵ−4). (54)

The definitions of the constants can be found in Section J.

Theorem 1 can be proved similarly as Theorem 2, and hence the proof is omitted here.

F Proof of Corollary 1

Corollary 1 follows directly from Theorem 1 and Lemma 3. More specifically, note that

L11 = CV
σ = O(1), (55)

L21 = (1 + Λ∗)Lσ = O(Λ∗σ), (56)
L12 = 0, (57)
L22 = CV

σ = O(1). (58)

Hence the corollary can be proved by plugging these constants in Theorem 1. Note that Lσ = O(Λ∗σ),
D2 = O(L2

21), D3 = O((Λ∗)2), therefore it implies the sample complexity to achieve an ϵ-stationary solution
is O((Λ∗)8ϵ−12).

G Proof of Proposition 1

Proof. The λ-entry of GW is smaller than 2ϵ, i.e.,

|(GW )λ| =
∣∣∣∣βW

(
λW −

∏
[0,Λ∗]

(
λW −

1
βW

(
∇λṼ L(θW , λW )

)))∣∣∣∣ < 2ϵ. (59)

Denote λ+ ≜
∏

[0,Λ∗]

(
λW − 1

βW

(
∇λṼ L(θW , λW )

))
. From Lemma 3 in Ghadimi & Lan (2016),

−∇λṼ L(θW , λ+) can be rewritten as the sum of two parts: −∇λṼ L(θW , λ+) ∈ N[0,Λ∗](λ+) + 4ϵB, where
NK(x) ≜

{
g ∈ Rd : ⟨g, y − x⟩ ≤ 0 : ∀y ∈ K

}
is the normal cone, and B is the unit ball.

This hence implies that for any λ ∈ [0, Λ∗], (λ− λ+)(V W
c − b) ≥ −4(λ− λ+)ϵ. By setting λ = Λ∗, we have

V W
c + 4ϵ ≥ b, which means πW is feasible with a 4ϵ-violation.

H Proof of Lemma 3

Proof. Recall that V L
σ (θ, λ) = V πθ

σ,r(ρ) + λ(V πθ
σ,c(ρ)− b), hence we have that

∇λV L
σ (θ, λ) = V πθ

σ,c(ρ)− b, (60)
∇θV L

σ (θ, λ) = ∇θV πθ
σ,r(ρ) + λ∇θV πθ

σ,c(ρ). (61)
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Note that in Wang & Zou (2022), it has been shown that

∥V πθ1
σ,r − V

πθ2
σ,r ∥ ≤ CV

σ ∥θ1 − θ2∥, (62)
∥∇θV

πθ1
σ,r −∇θV

πθ2
σ,r ∥ ≤ Lσ∥θ1 − θ2∥, (63)

where the definition of constants CV
σ and Lσ can be found in Section J. Hence

∥∇λV L
σ (θ, λ)|θ1 −∇λV L

σ (θ, λ)|θ2∥ = ∥V πθ1
σ,c (ρ)− V

πθ2
σ,c (ρ)∥ ≤ CV

σ ∥θ1 − θ2∥, (64)
∥∇λV L

σ (θ, λ)|λ1 −∇λV L
σ (θ, λ)|λ2∥ = 0. (65)

Similarly, we have that

∥∇θV L
σ (θ, λ)|θ1 −∇θV L

σ (θ, λ)|θ2∥ ≤ (1 + λ)Lσ∥θ1 − θ2∥ ≤ (1 + Λ∗)Lσ∥θ1 − θ2∥, (66)
∥∇θV L

σ (θ, λ)|λ1 −∇θV L
σ (θ, λ)|λ2∥ ≤ |(λ1 − λ2)|max

θ∈Θ
∥∇θV πθ

σ,c(ρ)∥ ≤ CV
σ |λ1 − λ2|. (67)

This completes the proof.

I Proof of Theorem 2

We then prove Theorem 2. Our proof extends the one in Xu et al. (2023) to the biased setting.

To simplify notations, we denote the updates in Algorithm 3 by f̂(θt) ≜ V̂
πθt

σ,c (ρ) − b, and ĝ(θt, λt+1) ≜
∇θV̂

πθt
σ,r (ρ) + λt+1∇θV̂

πθt
σ,c (ρ), and denote the update functions in Algorithm 1 by f(θt) ≜ V

πθt
σ,c (ρ)− b, and

g(θt, λt+1) ≜ ∇θV
πθt

σ,r (ρ) + λt+1∇θV
πθt

σ,c (ρ). Here f̂ and ĝ can be viewed as biased estimations of f and g.

In the following, we will first show several technical lemmas that will be useful in the proof of Theorem 2.
Lemma 7. Recall that the step size αt = ν + µt. If µt > (1 + Λ∗)Lσ, ∀t ≥ 0, then

V L
σ (θt+1, λt+1)− V L

σ (θt, λt+1) ≥ ⟨θt+1 − θt,−ĝ(θt, λt+1) + g(θt, λt+1)⟩

+
(µt

2 + ν
)
∥θt+1 − θt∥2. (68)

Proof. Note that from the update of θt and proposition of projection, it implies that〈
θt + 1

αt
ĝ(θt, λt+1)− θt+1, θt − θt+1

〉
≤ 0. (69)

Hence

⟨ĝ(θt, λt+1)− αt(θt+1 − θt), θt − θt+1⟩ ≤ 0. (70)

From Lemma 3, we have that

V L
σ (θt+1, λt+1)− V L

σ (θt, λt+1) ≥ ⟨θt+1 − θt, g(θt, λt+1)⟩ − (1 + Λ∗)Lσ

2 ∥θt+1 − θt∥2. (71)

Summing up the two inequalities implies

V L
σ (θt+1, λt+1)− V L

σ (θt, λt+1)

≥ ⟨θt+1 − θt,−ĝ(θt, λt+1) + g(θt, λt+1) + αt(θt+1 − θt)⟩ −
(1 + Λ∗)Lσ

2 ∥θt+1 − θt∥2

≥ ⟨θt+1 − θt,−ĝ(θt, λt+1) + g(θt, λt+1)⟩+
(

αt −
Lσ(1 + Λ∗)

2

)
∥θt+1 − θt∥2

≥ ⟨θt+1 − θt,−ĝ(θt, λt+1) + g(θt, λt+1)⟩+
(µt

2 + ν
)
∥θt+1 − θt∥2, (72)

and hence completes the proof.
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Lemma 8. Recall that the step size βt = 1
ξ , and set ξ ≤ 1

b0
, then

V L
σ (θt+1, λt+1)− V L

σ (θt, λt)

≥ (f(θt−1)− f̂(θt−1))(λt+1 − λt) + ⟨θt+1 − θt,−ĝ(θt, λt+1) + g(θt, λt+1)⟩ − ξ(CV
σ )2

2 ∥θt − θt−1∥2

+
(µt

2 + ν
)
∥θt+1 − θt∥2 + bt−1

2 (λ2
t − λ2

t+1)− 1
ξ

(λt+1 − λt)2 − 1
2ξ

(λt − λt−1)2. (73)

Proof. For any t > 1, define Ṽt(θ, λ) ≜ V L
σ (θ, λ) + bt−1

2 λ2. Thus we have

|∇λṼt(θt, λt+1)−∇λṼt(θt, λt)| = bt−1|λt+1 − λt| ≤ b0|λt+1 − λt|, (74)

where that last inequality is due to bt−1 ≤ b0. Note that Ṽt(θ, λ) is bt−1-strongly convex in λ, hence we have

(∇λṼt(θ, λt+1)−∇λṼt(θ, λt))(λt+1 − λt)
≥ bt−1(λt+1 − λt)2

≥ bt−1

(
bt−1 + b0

bt−1 + b0

)
(λt+1 − λt)2

= bt−1b0

bt−1 + b0
(λt+1 − λt)2 +

b2
t−1

bt−1 + b0
(λt+1 − λt)2

≥ bt−1b0

bt−1 + b0
(λt+1 − λt)2 + 1

bt−1 + b0
(∇λṼt(θt, λt+1)−∇λṼt(θt, λt))2, (75)

where the last inequality is from eq. (74).

Recall the update of λt in Algorithm 3 which can be rewritten as

λt+1 =
∏

[0,Λ∗]

(
λt −

1
βt
∇λṼt+1(θt, λt) + 1

βt
(f(θt)− f̂(θt))

)
, (76)

This further implies that ∀λ ∈ [0, Λ∗]:

(βt(λt+1 − λt) +∇λṼt+1(θt, λt)− f(θt) + f̂(θt))(λ− λt+1) ≥ 0. (77)

Hence setting λ = λk implies that

(βt(λt+1 − λt) +∇λṼt+1(θt, λt)− f(θt) + f̂(θt))(λt − λt+1) ≥ 0. (78)

Similarly, we have that

(βt(λt − λt−1) +∇λṼt(θt−1, λt−1)− f(θt−1) + f̂(θt−1))(λt+1 − λt) ≥ 0. (79)

Note that Ṽt is convex, we hence have that

Ṽt(θt, λt+1)− Ṽt(θt, λt)
≥ (∇λṼt(θt, λt))(λt+1 − λt)
= (∇λṼt(θt, λt)−∇λṼt(θt−1, λt−1))(λt+1 − λt) + (∇λṼt(θt−1, λt−1))(λt+1 − λt)
(a)
≥ (∇λṼt(θt, λt)−∇λṼt(θt−1)(λt−1), λt+1 − λt)

+ (f(θt−1)− f̂(θt−1)− βt(λt − λt−1))(λt+1 − λt), (80)

where (a) is from eq. (79). The first term in the RHS of eq. (80) can be further bounded as follows.

(∇λṼt(θt, λt)−∇λṼt(θt−1, λt−1))(λt+1 − λt)
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= (∇λṼt(θt, λt)−∇λṼt(θt−1, λt))(λt+1 − λt)
+ (∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))(λt+1 − λt)

= (∇λṼt(θt, λt)−∇λṼt(θt−1, λt))(λt+1 − λt)
+ (∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))(λt − λt−1)
+ mt+1(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1)), (81)

where mt+1 ≜ (λt+1 − λt)− (λt − λt−1). Plug it in eq. (80) and we have that

Ṽt(θt, λt+1)− Ṽt(θt, λt)
≥ (f(θt−1)− f̂(θt−1)− βt(λt − λt−1))(λt+1 − λt)

+ (∇λṼt(θt, λt)−∇λṼt(θt−1, λt))(λt+1 − λt)︸ ︷︷ ︸
(a)

+ (∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))(λt − λt−1)︸ ︷︷ ︸
(b)

+ (∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))mt+1︸ ︷︷ ︸
(c)

. (82)

We then provide bounds for each term in eq. (82) as follows.

Term (a) can be bounded as follows:

(∇λṼt(θt, λt)−∇λṼt(θt−1, λt))(λt+1 − λt)
= (∇λV L

σ (θt, λt)−∇λV L
σ (θt−1, λt))(λt+1 − λt)

≥ −(λt+1 − λt)2

2ξ
− ξ

2(∇λV L
σ (θt, λt)−∇λV L

σ (θt−1, λt))2

≥ −(λt+1 − λt)2

2ξ
− ξ(CV

σ )2

2 ∥θt − θt−1∥2, (83)

which is from Cauchy–Schwarz inequality and CV
σ -smoothness of V L

σ (θ, λ).

Term (b) can be bounded as follows:

(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))(λt − λt−1)

≥ 1
bt−1 + b0

(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))2, (84)

which is from eq. (75).

Term (c) can be bounded as follows by Cauchy–Schwarz inequality:

mt+1(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))

≥ −ξ

2(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))2 − 1
2ξ

m2
t+1 (85)

Moreover, it can be shown that

1
ξ

(λt+1 − λt)(λt − λt−1) = 1
2ξ

(λt+1 − λt)2 + 1
2ξ

(λt − λt−1)2 − 1
2ξ

m2
t+1. (86)

Plug eq. (83) to eq. (86) in 82, and we have that

Ṽt(θt, λt+1)− Ṽt(θt, λt)
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≥ (f(θt−1)− f̂(θt−1))(λt+1 − λt)− βt(λt − λt−1)(λt+1 − λt)
+ (∇λṼt(θt, λt)−∇λṼt(θt−1, λt))(λt+1 − λt) + (∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))(λt − λt−1)
+ mt+1(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))

≥ (f(θt−1)− f̂(θt−1))(λt+1 − λt)−
1
2ξ

(λt+1 − λt)2 − 1
2ξ

(λt − λt−1)2 + 1
2ξ

m2
t+1

− (λt+1 − λt)2

2ξ
− ξ(CV

σ )2

2 ∥θt − θt−1∥2 + 1
bt−1 + b0

(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))2

− ξ

2(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))2 − 1
2ξ

m2
t+1

≥ (f(θt−1)− f̂(θt−1))(λt+1 − λt)−
1
ξ

(λt+1 − λt)2 − 1
2ξ

(λt − λt−1)2 − ξ(CV
σ )2

2 ∥θt − θt−1∥2. (87)

From the definition of Ṽt, we have that

Ṽt(θt, λt+1)− Ṽt(θt, λt)

= V L
σ (θt, λt+1) + bt−1

2 λ2
t+1 − V L

σ (θt, λt)−
bt−1

2 λ2
t . (88)

Then we have that

V L
σ (θt, λt+1)− V L

σ (θt, λt)

≥ bt−1

2 (λ2
t − λ2

t+1) + (f(θt−1)− f̂(θt−1))(λt+1 − λt)

− 1
ξ

(λt+1 − λt)2 − 1
2ξ

(λt − λt−1)2 − ξ(CV
σ )2

2 ∥θt − θt−1∥2. (89)

Combining with Lemma 7, if ∀t, µt > (1 + Λ∗)Lσ, we then have that

V L
σ (θt+1, λt+1)− V L

σ (θt, λt)

≥ (f(θt−1)− f̂(θt−1))(λt+1 − λt) + ⟨θt+1 − θt,−ĝ(θt, λt+1) + g(θt, λt+1)⟩ − ξ(CV
σ )2

2 ∥θt − θt−1∥2

+
(µt

2 + ν
)
∥θt+1 − θt∥2 + bt−1

2 (λ2
t − λ2

t+1)− 1
ξ

(λt+1 − λt)2 − 1
2ξ

(λt − λt−1)2. (90)

Lemma 9. Define

Ft+1 ≜ − 8
ξ2bt+1

(λt − λt+1)2 − 8
ξ

(
1− bt

bt+1

)
λ2

t+1 + V L
σ (θt+1, λt+1) + bt

2 λ2
t+1

+
(
−16(CV

σ )2

ξb2
t+1

− ξ(CV
σ )2

2

)
∥θt+1 − θt∥2 +

(
8
ξ
− 1

2ξ

)
(λt+1 − λt)2, (91)

and if 1
bt+1
− 1

bt
≤ ξ

5 , then

Ft+1 − Ft

≥ St +
(

µt

2 + ν − 16(CV
σ )2

ξb2
t+1

− ξ(CV
σ )2

2

)
∥θt+1 − θt∥2 + bt − bt−1

2 λ2
t+1

+ 9
10ξ

(λt+1 − λt)2 + 8
ξ

(
bt

bt+1
− bt−1

bt

)
λ2

t+1, (92)

where St ≜ 16
btξ (f(θt−1) − f̂(θt−1) − f(θt) + f̂(θt))(−λt + λt+1) + (f(θt−1) − f̂(θt−1))(λt+1 − λt) + ⟨θt+1 −

θt,−ĝ(θt, λt+1) + g(θt, λt+1)⟩.
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Proof. From eq. (78) and eq. (79), we have that

βtmt+1(λt − λt+1) ≥ (∇λṼt+1(θt, λt)−∇λṼt(θt−1, λt−1))(−λt + λt+1)
+ (f(θt−1)− f̂(θt−1)− f(θt) + f̂(θt))(−λt + λt+1). (93)

The first term can be rewritten as

(∇λṼt+1(θt, λt)−∇λṼt(θt−1, λt−1))(λt+1 − λt)
= (∇λṼt+1(θt, λt)−∇λṼt(θt−1, λt))(λt+1 − λt) + (∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))(λt+1 − λt)
= (∇λṼt+1(θt, λt)−∇λṼt(θt−1, λt))(λt+1 − λt) + (∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))(λt − λt−1)

+ mt+1(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1)). (94)

The first term in eq. (94) can be bounded as

(∇λṼt+1(θt, λt)−∇λṼt(θt−1, λt))(λt+1 − λt)
= (∇λV L

σ (θt, λt)−∇λV L
σ (θt−1, λt))(λt+1 − λt) + (btλt − bt−1λt)(λt+1 − λt)

(a)
≥ − 1

2h
(∇λV L

σ (θt, λt)−∇λV L
σ (θt−1, λt))2 − h

2 (λt+1 − λt)2

+ (bt − bt−1)
2 (λ2

t+1 − λ2
t )− (bt − bt−1)

2 (λt+1 − λt)2

(b)
≥ − (CV

σ )2

2h
∥θt − θt−1∥2 − h

2 (λt+1 − λt)2

+ (bt − bt−1)
2 (λ2

t+1 − λ2
t )− (bt − bt−1)

2 (λt+1 − λt)2, (95)

where (a) is from the Cauchy–Schwarz inequality and (b) is from the CV
σ -smoothness of V L

σ , for any h > 0.

Similar to eq. (75), the second term in eq. (94) can be bounded as

(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))(λt − λt−1)

≥ bt−1b0

bt−1 + b0
(λt − λt−1)2 + 1

bt−1 + b0
(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))2. (96)

The third term in eq. (94) can be bounded as

mt+1(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))

≥ −ξ

2(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))2 − 1
2ξ

m2
t+1. (97)

Hence combine eq. (95) to eq. (96) and plug in eq. (94), we have that

(∇λṼt+1(θt, λt)−∇λṼt(θt−1, λt−1))(λt+1 − λt)

≥ − (CV
σ )2

2h
∥θt − θt−1∥2 − h

2 (λt+1 − λt)2

+ (bt − bt−1)
2 (λ2

t+1 − λ2
t )− (bt − bt−1)

2 (λt+1 − λt)2

+ bt−1b0

bt−1 + b0
(λt − λt−1)2 + 1

bt−1 + b0
(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))2

− ξ

2(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))2 − 1
2ξ

m2
t+1. (98)

Hence eq. (93) can be further bounded as

(βtmt+1)(λt − λt+1)
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≥ (f(θt−1)− f̂(θt−1)− f(θt) + f̂(θt))(−λt + λt+1)

− (CV
σ )2

2h
∥θt − θt−1∥2 − h

2 (λt+1 − λt)2

+ (bt − bt−1)
2 (λ2

t+1 − λ2
t )− (bt − bt−1)

2 (λt+1 − λt)2

+ bt−1b0

bt−1 + b0
(λt − λt−1)2 + 1

bt−1 + b0
(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))2

− ξ

2(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))2 − 1
2ξ

m2
t+1. (99)

It can be directly verified that

mt+1(λt − λt+1) = 1
2(λt − λt−1)2 − 1

2(λt − λt+1)2 −
m2

t+1
2 . (100)

Recall that βt = 1
ξ , hence

1
2ξ

(λt − λt−1)2 − 1
2ξ

(λt − λt+1)2 −
m2

t+1
2ξ

≥ (f(θt−1)− f̂(θt−1)− f(θt) + f̂(θt))(−λt + λt+1)

− (CV
σ )2

2h
∥θt − θt−1∥2 − h

2 (λt+1 − λt)2

+ (bt − bt−1)
2 (λ2

t+1 − λ2
t )− (bt − bt−1)

2 (λt+1 − λt)2

+ bt−1b0

bt−1 + b0
(λt − λt−1)2 + 1

bt−1 + b0
(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))2

− ξ

2(∇λṼt(θt−1, λt)−∇λṼt(θt−1, λt−1))2 − 1
2ξ

m2
t+1. (101)

From ξ ≤ 1
b0
≤ 2

b0+bt−1
, we have 1

bt−1+b0
(∇λṼt(θt−1, λt) − ∇λṼt(θt−1, λt−1))2 − ξ

2 (∇λṼt(θt−1, λt) −
∇λṼt(θt−1, λt−1))2 ≥ 0. Also, it can be shown that bt−1b0

bt−1+b0
≥ bt−1b0

2b0
= bt−1

2 . Thus, it follows that

1
2ξ

(λt − λt−1)2 − 1
2ξ

(λt − λt+1)2 −
m2

t+1
2ξ

≥ (f(θt−1)− f̂(θt−1)− f(θt) + f̂(θt))(−λt + λt+1)

− (CV
σ )2

2h
∥θt − θt−1∥2 − h

2 (λt+1 − λt)2

+ (bt − bt−1)
2 (λ2

t+1 − λ2
t )− (bt − bt−1)

2 (λt+1 − λt)2

+ bt−1

2 (λt − λt−1)2 − 1
2ξ

m2
t+1. (102)

Re-arrange the terms, it follows that

− 1
2ξ

(λt − λt+1)2 − bt − bt−1

2 λ2
t+1

≥ (f(θt−1)− f̂(θt−1)− f(θt) + f̂(θt))(−λt + λt+1)− (CV
σ )2

2h
∥θt − θt−1∥2 − h

2 (λt+1 − λt)2

− (bt − bt−1)
2 λ2

t −
(bt − bt−1)

2 (λt+1 − λt)2 + bt−1

2 (λt − λt−1)2 − 1
2ξ

(λt − λt−1)2

≥ − 1
2ξ

(λt − λt−1)2 − (bt − bt−1)
2 λ2

t + (f(θt−1)− f̂(θt−1)− f(θt) + f̂(θt))(−λt + λt+1)
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− (CV
σ )2

2h
∥θt − θt−1∥2 − h

2 (λt+1 − λt)2 + bt−1

2 (λt − λt−1)2, (103)

where the last inequality is from the fact that bt is decreasing.

Now multiply 2
ξbt

on both sides, we further have that

− 1
ξ2bt

(λt − λt+1)2 − 1
ξ

(
1− bt−1

bt

)
λ2

t+1

≥ − 1
ξ2bt

(λt − λt−1)2 − 1
ξ

(
1− bt−1

bt

)
λ2

t + 2
ξbt

(f(θt−1)− f̂(θt−1)− f(θt) + f̂(θt))(−λt + λt+1)

− (CV
σ )2

hξbt
∥θt − θt−1∥2 − h

ξbt
(λt+1 − λt)2 + 1

ξ
(λt − λt−1)2. (104)

If we set h = bt

2 , eq. (104) can be rewritten as

− 1
ξ2bt

(λt − λt+1)2 − 1
ξ

(
1− bt−1

bt

)
λ2

t+1

≥ − 1
ξ2bt

(λt − λt−1)2 − 1
ξ

(
1− bt−1

bt

)
λ2

t + 2
ξbt

(f(θt−1)− f̂(θt−1)− f(θt) + f̂(θt))(−λt + λt+1)

− 2(CV
σ )2

ξb2
t

∥θt − θt−1∥2 − 1
2ξ

(λt+1 − λt)2 + 1
ξ

(λt − λt−1)2. (105)

Further we have that

− 1
ξ2bt+1

(λt − λt+1)2 +
(

1
ξ2bt+1

− 1
ξ2bt

)
(λt − λt+1)2 − 1

ξ

(
1− bt

bt+1

)
λ2

t+1 + 1
ξ

(
bt−1

bt
− bt

bt+1

)
λ2

t+1

≥ − 1
ξ2bt

(λt − λt−1)2 − 1
ξ

(
1− bt−1

bt

)
λ2

t + 2
ξbt

(f(θt−1)− f̂(θt−1)− f(θt) + f̂(θt))(−λt + λt+1)

− 2(CV
σ )2

ξb2
t

∥θt − θt−1∥2 − 1
2ξ

(λt+1 − λt)2 + 1
ξ

(λt − λt−1)2. (106)

Re-arranging the terms in eq. (106) implies that

− 1
ξ2bt+1

(λt − λt+1)2 − 1
ξ

(
1− bt

bt+1

)
λ2

t+1 −
(
− 1

ξ2bt
(λt − λt−1)2 − 1

ξ

(
1− bt−1

bt

)
λ2

t

)
≥ −

(
1

ξ2bt+1
− 1

ξ2bt

)
(λt − λt+1)2 − 1

ξ

(
bt−1

bt
− bt

bt+1

)
λ2

t+1

− 2(CV
σ )2

ξb2
t

∥θt − θt−1∥2 − 1
2ξ

(λt+1 − λt)2 + 1
ξ

(λt − λt−1)2

+ 2
ξbt

(f(θt−1)− f̂(θt−1)− f(θt) + f̂(θt))(−λt + λt+1)

≥ − 7
10ξ

(−λt + λt+1)2 − 2(CV
σ )2

ξb2
t

∥θt − θt−1∥2 + 1
ξ

(λt − λt−1)2 + 1
ξ

(
bt

bt+1
− bt−1

bt

)
λ2

t+1

+ 2
ξbt

(f(θt−1)− f̂(θt−1)− f(θt) + f̂(θt))(−λt + λt+1), (107)

where the last inequality is from 1
bt+1
− 1

bt
≤ ξ

5 . Recall in Lemma 8, we showed that

V L
σ (θt+1, λt+1)− V L

σ (θt, λt)

≥ (f(θt−1)− f̂(θt−1))(λt+1 − λt) + ⟨θt+1 − θt,−ĝ(θt, λt+1) + g(θt, λt+1)⟩ − ξ(CV
σ )2

2 ∥θt − θt−1∥2

+
(µt

2 + ν
)
∥θt+1 − θt∥2 + bt−1

2 (λ2
t − λ2

t+1)− 1
ξ

(λt+1 − λt)2 − 1
2ξ

(λt − λt−1)2. (108)
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Combine both inequality together, and we further have that

− 8
ξ2bt+1

(λt − λt+1)2 − 8
ξ

(
1− bt

bt+1

)
λ2

t+1 −
(
− 8

ξ2bt
(λt − λt−1)2 − 8

ξ

(
1− bt−1

bt

)
λ2

t

)
+ V L

σ (θt+1, λt+1)− V L
σ (θt, λt)

≥ −28
5ξ

(−λt + λt+1)2 − 16(CV
σ )2

ξb2
t

∥θt − θt−1∥2 + 8
ξ

(λt − λt−1)2 + 8
ξ

(
bt

bt+1
− bt−1

bt

)
λ2

t+1

+ 16
btξ

(f(θt−1)− f̂(θt−1)− f(θt) + f̂(θt))(−λt + λt+1)

+ (f(θt−1)− f̂(θt−1))(λt+1 − λt) + ⟨θt+1 − θt,−ĝ(θt, λt+1) + g(θt, λt+1)⟩ − ξ(CV
σ )2

2 ∥θt − θt−1∥2

+
(µt

2 + ν
)
∥θt+1 − θt∥2 + bt−1

2 (λ2
t − λ2

t+1)− 1
ξ

(λt+1 − λt)2 − 1
2ξ

(λt − λt−1)2

= St +
(
−16(CV

σ )2

ξb2
t

− ξ(CV
σ )2

2

)
∥θt − θt−1∥2 +

(
−28

5ξ
− 1

ξ

)
(−λt + λt+1)2 + bt−1

2 (λ2
t − λ2

t+1)

+
(

8
ξ
− 1

2ξ

)
(λt − λt−1)2 + 8

ξ

(
bt

bt+1
− bt−1

bt

)
λ2

t+1 +
(µt

2 + ν
)
∥θt+1 − θt∥2, (109)

where St ≜ 16
btξ (f(θt−1) − f̂(θt−1) − f(θt) + f̂(θt))(−λt + λt+1) + (f(θt−1) − f̂(θt−1))(λt+1 − λt) + ⟨θt+1 −

θt,−ĝ(θt, λt+1) + g(θt, λt+1)⟩. Now

− 8
ξ2bt+1

(λt − λt+1)2 − 8
ξ

(
1− bt

bt+1

)
λ2

t+1 −
(
− 8

ξ2bt
(λt − λt−1)2 − 8

ξ

(
1− bt−1

bt

)
λ2

t

)
+ V L

σ (θt+1, λt+1)− V L
σ (θt, λt) + bt

2 λ2
t+1 −

bt−1

2 λ2
t

+
(
−16(CV

σ )2

ξb2
t+1

− ξ(CV
σ )2

2

)
∥θt+1 − θt∥2 −

(
−16(CV

σ )2

ξb2
t

− ξ(CV
σ )2

2

)
∥θt − θt−1∥2

+
(

8
ξ
− 1

2ξ

)
(λt+1 − λt)2 −

(
8
ξ
− 1

2ξ

)
(λt − λt−1)2

≥ St +
(

µt

2 + ν − 16(CV
σ )2

ξb2
t+1

− ξ(CV
σ )2

2

)
∥θt+1 − θt∥2 + bt − bt−1

2 λ2
t+1

+
(

8
ξ
− 1

2ξ
− 28

5ξ
− 1

ξ

)
(λt+1 − λt)2 + 8

ξ

(
bt

bt+1
− bt−1

bt

)
λ2

t+1

= St +
(

µt

2 + ν − 16(CV
σ )2

ξb2
t+1

− ξ(CV
σ )2

2

)
∥θt+1 − θt∥2 + bt − bt−1

2 λ2
t+1

+ 9
10ξ

(λt+1 − λt)2 + 8
ξ

(
bt

bt+1
− bt−1

bt

)
λ2

t+1, (110)

which then completes the proof.

We now restate Theorem 2 with all the specific step sizes. The definitions of these constants can also be
found in Section J.
Theorem 3. (Restatement of Theorem 2) Set bt = 19

20ξt0.25 , µt = ξ(CV
σ )2 + 16τ(CV

σ )2

ξ(bt+1)2 −2ν, βt = 1
ξ , αt = ν +µt,

where ξ > 2ν+(1+Λ∗)Lσ

(CV
σ )2 , ν is any positive number and τ is any number greater than 2. Moreover, set

ϵest = 1
t0.5LΩ

1
32t0.25Λ∗+2Λ∗+ 1

α1
(1+Λ∗)CV

σ

192ϵ2

3200ξ(τ−2)(CV
σ )2uLΩ

= O( ϵ2

σ2t0.75 ), then

min
1≤t≤T

∥Gt∥2 ≤ (1 +
√

2)ϵ, (111)

when T = max
{

7(Λ∗)4

ξ4ϵ4 ,
(

2 + 9ξ(τ−2)(CV
σ )2uK

ϵ2

)2
}

= O(ϵ−12).
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Proof. Denote by pt ≜ 8(τ−2)(CV
σ )2

ξb2
t+1

and M1 ≜ 16τ2

(τ−2)2 + (ξ(CV
σ )2−ν)2

64(τ−2)2(CV
σ )2ξ2 . Then it can be verified that

ν + µt

2 −
ξ(CV

σ )2

2 − 16(CV
σ )2

ξb2
t+1

= pt. Then eq. (110) can be rewritten as

Ft+1 − Ft ≥ St + pt∥θt+1 − θt∥2 + bt − bt−1

2 λ2
t+1

+ 9
10ξ

(λt+1 − λt)2 + 8
ξ

(
bt

bt+1
− bt−1

bt

)
λ2

t+1. (112)

From the definition, we have that

Gt =

 βt

(
λt −

∏
[0,Λ∗]

(
λt − 1

βt

(
∇λV L

σ (θt, λt)
)))

αt

(
θt −

∏
Θ

(
θt + 1

αt

(
∇θV L

σ (θt, λt)
)))

 , (113)

and denote by

G̃t ≜

 βt

(
λt −

∏
[0,Λ∗]

(
λt − 1

βt

(
∇λṼt(θt, λt)

)))
αt

(
θt −

∏
Θ

(
θt + 1

αt

(
∇θṼt(θt, λt)

)))
 . (114)

It can be verified that

∥Gt∥ − ∥G̃t∥ ≤ bt−1|λt|. (115)

From Theorem 4.2 in Xu et al. (2023), it can be shown that

∥G̃t∥2 ≤ 2(µt + ν)2∥θt+1 − θt∥2 +
(

2(CV
σ )2 + 1

ξ2

)
(λt+1 − λt)2, (116)

and

M1 ≥
2(ν + µt)2

p2
t

. (117)

Hence

∥G̃t∥2 ≤M1p2
t∥θt+1 − θt∥2 +

(
2(CV

σ )2 + 1
ξ2

)
(λt+1 − λt)2. (118)

Set ut ≜ 1

max
{

M1pt,
10+20ξ2(CV

σ )2
9ξ

} , then from eq. (112), we have that

ut∥G̃t∥2 ≤ Ft+1 − Ft − St −
bt − bt−1

2 λ2
t+1 −

8
ξ

(
bt

bt+1
− bt−1

bt

)
λ2

t+1. (119)

Summing the inequality above from t = 1 to T , then

T∑
t=1

ut∥G̃t∥2 ≤ FT +1 − F1 −
T∑

t=1
St + 8

ξ

(
b0

b1
λ2

2 −
bT

bT +1
λ2

T +1

)
+
(

b0 − bT

2 (Λ∗)2
)

≤ FT +1 − F1 −
T∑

t=1
St + 8

ξ

b0

b1
(Λ∗)2 +

(
b0 − bT

2 (Λ∗)2
)

, (120)

which is from bt is decreasing and λt < Λ∗. Note that

max
t≥1

max
θ∈Θ,λ∈[0,Λ∗]

Ft = max
{
− 8

ξ2bt+1
(λt − λt+1)2 − 8

ξ

(
1− bt

bt+1

)
λ2

t+1 + V L
σ (θt+1, λt+1) + bt

2 λ2
t+1
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+
(
−16(CV

σ )2

ξb2
t+1

− ξ(CV
σ )2

2

)
∥θt+1 − θt∥2 +

(
8
ξ
− 1

2ξ

)
(λt+1 − λt)2

}
≤ 1.6

ξ
(Λ∗)2 + (1 + Λ∗)(2Cσ) + b1

2 (Λ∗)2 + 15
2ξ

(Λ∗)2

≜ F ∗, (121)

which is from the definition of bt, and 8( bt

bt+1
− 1) ≤ 8( (t+1)0.25

t0.25 − 1) ≤ 8( 20.25

1 − 1) < 1.6. Then plugging in
the definition of bt implies that

T∑
t=1

ut∥G̃t∥2 ≤ F ∗ − F1 −
T∑

t=1
St + 8

ξ
(Λ∗)2 +

(
b0

2 (Λ∗)2
)

. (122)

If moreover set u ≜ max
{

M1,
10+20ξ2(CV

σ )2

9ξp2

}
, then ut ≥ 1

upt
, and hence

∑T
t=1

1
pt
∥G̃t∥2∑T

t=1
1
pt

≤ u∑T
t=1

1
pt

(
F ∗ − F1 −

T∑
t=1

St + 8
ξ

(Λ∗)2 +
(

b0

2 (Λ∗)2
))

. (123)

Plug in the definition of pt then we have that∑T
t=1

1
pt
∥G̃t∥2∑T

t=1
1
pt

≤ 3200ξ(τ − 2)(CV
σ )2d

192(
√

T − 2)

(
F ∗ − F1 −

T∑
t=1

St + 8
ξ

(Λ∗)2 +
(

b0

2 (Λ∗)2
))

. (124)

We moreover have that

|St| =
∣∣∣∣ 16
btξ

(f(θt−1)− f̂(θt−1)− f(θt) + f̂(θt))(−λt + λt+1) + (f(θt−1)− f̂(θt−1))(λt+1 − λt)

+ ⟨θt+1 − θt,−ĝ(θt, λt+1) + g(θt, λt+1)⟩
∣∣∣∣

≤ 32t0.25Λ∗(Ωt−1 + Ωt) + 2Λ∗Ωt−1 + 1
αt

(1 + Λ∗)CV
σ Ωt, (125)

where Ωt ≜ max
{
∥g(θt, λt+1)− ĝ(θt, λt+1)∥, |f(θt)− f̂(θt)|

}
. Note that it has been shown in Wang & Zou

(2022) that Ωt ≤ LΩ max
{
∥Qσ,r − Q̂σ,r∥, ∥Qσ,c − Q̂σ,c∥

}
= LΩϵest, and hence Ωt can be controlled by

setting ϵest.

Note that αt = ν + µt is increasing, hence 1
αt

≤ 1
α1

. Hence if we set ϵest =
1

t0.5LΩ

1
32t0.25Λ∗+2Λ∗+ 1

α1
(1+Λ∗)CV

σ

192ϵ2

3200ξ(τ−2)(CV
σ )2uLΩ

= O( ϵ2

t0.75 ), then

|St| ≤
1

t0.5
192ϵ2

3200ξ(τ − 2)(CV
σ )2uLΩ

, (126)

and hence ∣∣∣∣∣
T∑

t=1
St

∣∣∣∣∣ ≤ √T
192ϵ2

3200ξ(τ − 2)(CV
σ )2uLΩ

. (127)

Thus plug in eq. (124) and we have that∑T
t=1

1
pt
∥G̃t∥2∑T

t=1
1
pt

≤ 3200ξ(τ − 2)(CV
σ )2u

192(
√

T − 2)
K + ϵ2, (128)
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where K = F ∗ − F1 + 8
ξ (Λ∗)2 +

(
b1
2 (Λ∗)2). When T = (2 + 3200ξ(τ−2)(CV

σ )2uK
192ϵ2 )2, we have that∑T

t=1
1
pt
∥G̃t∥2∑T

t=1
1
pt

≤ 2ϵ2. (129)

Similarly to Theorem 4.2 in Xu et al. (2023), if t > 194(Λ∗)4

2·104ξ4ϵ4 , then bt−1 < ϵ
Λ∗ and bt−1λt < ϵ. Hence combine

with eq. (115) we finally have that

min
1≤t≤T

∥Gt∥ ≤ (1 +
√

2)ϵ, (130)

when T = max
{

7(Λ∗)4

ξ4ϵ4 ,
(

2 + 9ξ(τ−2)(CV
σ )2uK

ϵ2

)2
}

= O(ϵ−4).

J Constants

In this section, we summarize the definitions of all the constants we used in this paper.

f̄ = (1 + Λ∗) 1
1− γ

,

F0 = f̄ + K0
(Λ∗)2

ξ
,

D1 = 16τ2

(τ − 2)2 + K2
(ξL2

21 − µ)2

(τ − 2)2L4
21ξ2 ,

D2 = max
{

D1,
K2 + ξ2L2

21
ξ

,

}
D3 = F0 + (Λ∗)2

ξ
,

LV = k|A|
(1− γ)2 ,

Cσ = 1
1− γ

(1 + 2γδ
log |S|

σ
),

CV
σ = 1

1− γ
|A|kCσ,

kB = 1
1− γ + γδ

(
|A|Cσl + |A|kCV

σ

)
+ 2|A|2γ(1− δ)

(1− γ + γδ)2 k2Cσ,

Lσ = kB + γδ

1− γ

(√
|S|kB + 2σ|S|CV

σ

1
1− γ + γδ

k|A|Cσ

)
,

bt = 19
20ξt0.25 ,

M1 = 16τ2

(τ − 2)2 + (ξ(CV
σ )2 − ν)2

64(τ − 2)2(CV
σ )2ξ2 ,

u = max
{

M1,
10 + 20ξ2(CV

σ )2

9ξp2

}
,

F ∗ = 1.6
ξ

(Λ∗)2 + (1 + Λ∗)(2Cσ) + b1

2 (Λ∗)2 + 15
2ξ

(Λ∗)2,

K = F ∗ − F1 + 8
ξ

(Λ∗)2 +
(

b1

2 (Λ∗)2
)

,

µt = ξ(CV
σ )2 + 16τ(CV

σ )2

ξ(bt+1)2 − 2ν,
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βt = 1
ξ

,

αt = ν + µt. (131)
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