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Abstract

Although language models are trained to mimic humans, the resulting
systems display capabilities beyond the scope of any one person. To under-
stand this phenomenon, we use a controlled setting to identify properties
of the training data that lead a model to transcend the performance of its
data sources. We build on previous work to outline three modes of tran-
scendence, which we call skill denoising, skill selection, and skill generalization.
We then introduce a knowledge graph-based setting in which simulated
experts generate data based on their individual expertise. We highlight sev-
eral aspects of data diversity that help to enable the model’s transcendent
capabilities. Additionally, our data generation setting offers a controlled
testbed that we hope is valuable for future research in the area.

1 Introduction

Language models are trained to mimic human behavioral data. This mimicry makes it
tempting to anthropomorphize a system—to think of it like a person. However, not only
is the model not a person, it is not even trained to mimic a person. Instead, the model has
been trained to mimic a group of people with individual capacities, predilections, and biases.
In some circumstances, this combination of multiple people augments their shared biases
(Bender et al., 2021), but we also see the enormous advantage of training on data from a
diverse set of people: often, it is possible to outperform any individual member of that
group. The capacity of a generalist model to exceed individual ability is evident in a chatbot
that can converse with equal competence about cryptography, international law, and the
work of Dostoevsky. Our goal is to describe the circumstances in which a model, trained
to mimic multiple people, is capable of transcending its sources by outperforming each
individual.

For a group of humans, there are several ways to outperform any one individual in the
group. One path is to allow the group to vote, counting each individual vote equally, thereby
averaging out the bias of each individual. Another path is to route disparate knowledge by
allowing a cryptographer to handle issues of cryptography and a lawyer to handle issues
of international law. Finally, a group of specialists can use their shared understanding of
the world as an anchor point to combine their knowledge, as when a cryptographer and a
lawyer reason together through the legality of an algorithmic embargo. Like these human
examples, an artificial model trained as a generalist can outperform the capabilities of the
individual specialists it is trained to emulate, under the following conditions:

• Skill denoising: When the biases of each specialist cancel out in their average
– this is classically described as “wisdom of crowds” or a voting ensemble. This
scenario applies when all specialists produce data relevant to an input context, but
each may make independent errors.

• Skill selection: When different specialists are experts on different parts of the
context space. A given input may be common for one specialist and rare for another,
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and we can reasonably assume that the specialist who frequently encounters such
inputs is better equipped to handle them. By routing to the appropriate expert, the
generalist model can address a wider range of topics than any individual alone.
This scenario applies when the input context is familiar to at least one specialist.

• Skill generalization: When specialist expertise can be combined by using assump-
tions of shared underlying structure. Prior assumptions about how to generalize
from training data allow the generalist model to interpolate, reason, and compose
knowledge across domains by representing inputs in a shared semantic space. This
scenario applies when the input context is unfamiliar to all individual specialists
but can be understood through generalization.

In this paper, we examine the conditions under which a model can transcend its training
sources, organizing them into a taxonomy of modes of transcendence. Furthermore, we
connect each type of transcendence to conditions in the training data, showing that the
model can transcend its sources only through a sufficiently heterogeneous set of experts.
Our contributions are as follows:

• Building on definitions from Zhang et al. (2024), we formalize three modes of
transcendence: skill denoising, skill selection, and skill generalization.

• We propose conditions that the training data must hold in order to achieve each
mode of transcendence, and build intuition using simple theoretical settings.

• Using a synthetic knowledge graph-based setting, we empirically confirm the
necessary conditions for each mode of transcendence.

We hope this will provide a useful framework for further theoretical and empirical work
studying the ability of imitative models to achieve transcendent capabilities.

2 Definitions

2.1 Preliminaries

We borrow much of our notation from Zhang et al. (2024) to align with their definitions.
Let X = T n denote the input space and Y = T m denote the output space over a set of
tokens T . Let F be a class of functions mapping X to P(Y) where P(·) denotes a probability
distribution over the given space. Each function f ∈ F then defines a conditional probability
distribution of y ∈ Y given x ∈ X that we denote by f (y|x).
Let there be k experts, each associated with a conditional probability function fi ∈ F. Let
p1, . . . , pk denote the respective input distributions over X for each expert. Define the
average input distribution as p̄(x) = 1

k ∑k
i=1 pi(x), and let supp( p̄) denote its support.

Define the mixture model f̄ (y|x) = ∑k
i=1 g(i|x) fi(y|x) where g denotes the conditional

probability that input x is observed under expert i.

Then, each expert i induces a distribution Di over X ×Y , defined by Di(x, y) = pi(x) fi(y|x).
Let D̄ be the mixed distribution D̄(x, y) = 1

k ∑k
i=1 Di(x, y).

We measure the quality or skill level of each expert with a reward function r : X ×Y → R.
Specifically, for a distribution p over X and some f ∈ F, define the average reward of f
under p as:

Rp( f ) = Ex∼p [rx( f )] , where rx( f ) = Ey∼ f (·|x) [r(x, y)]

For some fixed hypothesis class H ⊆ {h : X → P(Y)}, the learner chooses some function
hD̄ ∈ H that minimizes the expected cross-entropy with the mixture model f̄ :

hD̄ = arg min
h∈H

Ex∼ p̄[H( f̄ (· | x), h(· | x))]

where H is the cross-entropy function.
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We use the definition of “transcendence” from Zhang et al. (2024), as follows: For some test
distribution ptest over X , we say a model achieves transcendence if

Rptest(hD̄) > max
i∈[k]

Rptest( fi)

We now proceed to formalize three modes of achieving transcendence.

2.2 Skill Denoising

Trained on noisy experts who make occasional errors, a model may outperform the experts
by simply denoising their outputs. This setting is characterized by the following simplifying
assumptions:

1. Single input distribution: All experts share the same distribution over X ; that is,
for all i, we have pi = p̄.

2. In-domain test distribution: The support of the test distribution ptest is contained in
the support of p̄, i.e. we have supp(ptest) ⊆ supp( p̄). In other words, any example
that has non-zero probability under the test distribution has non-zero probability
under the training distribution.

As studied in Zhang et al. (2024), transcendence in this setting can be achieved by low
temperature sampling as long as expert errors are uncorrelated. Low temperature sampling
returns the mode of the predicted output distribution, which corresponds to a “wisdom of
the crowd” approach.

2.3 Skill Selection

In this setting, we drop Assumption 1 from the denoising setting. Without this assumption,
experts may have differing distributions over the input space. The resulting specialist experts
each have specific expertise, or a subset of inputs on which they will predict a correct output.
These subsets vary across experts. This setting maintains Assumption 2 that the support of
the test distribution is contained in the support of the train distribution.

We claim that transcendence can be achieved when a given input context is more likely to
be observed for experts that achieve a higher expected reward on that context. Specifically,
the probability g(i|x) of sampling expert i on context x is a function dependent on x rather
than a constant function. Intuitively, this reflects a scenario in which experts are more likely
than non-experts to encounter and respond to inputs within their domain—for example, a
lawyer is more likely to comment on questions of law.

As a simple example, we analyze the case of two experts.

Theorem 2.1. Let a and b be two experts. For transcendence to hold, we must have that

Ex∼ptest [(rx( fa)− rx( fb))(g(a|x)− g(b|x))] > 0

That is, the excess probability of seeing a given example under expert a compared to expert
b is correlated with the excess reward of expert a on that example. We provide the proof in
Appendix A.1.

2.4 Skill Generalization

In this setting, we drop Assumption 2, that the support of the test distribution is con-
tained in the support of the train distribution. More strongly, we will now assume that
supp(ptest) ∩ supp( p̄) = ∅; that is, the inputs at test time are never seen during training.

How can a model answer correctly if no individual expert can? If expert knowledge is
representable in a shared latent space, the model can compose knowledge from different
experts, producing knowledge outside the scope of any one expert’s knowledge.
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Denoising Selection Generalization

Figure 1: Illustration of the expert distributions in our knowledge-graph setting. Edges
in blue and orange denote facts that the experts will respectively get correct, and the
remaining edges they will get wrong. Edge opacity represents the probability of an expert
generating a sample based on that edge. From left to right: (1) Denoising setting: experts
have unbiased errors and uniform probability of generating each fact. (2) Selection setting:
specialized experts are more likely to generate data within their expertise. (3) Generalization
setting: a subcase of the setting of specialized experts. For simplicity in our generalization
experiments, we set the probability of an expert generating an incorrect fact to 0.

Crystalia

Glyndorath

Nerythra

Glimmerdawn

Jadriath

Zephyrweaver

One hop facts:
The sibling of Nerythra is Glyndorath.
The country of citizenship of Glyndorath is Crystalia.
The occupation of Glimmerdawn is Zephyrweaver.
…

Two hop facts:
Within expertise:
The country of citizenship of the sibling of Nerythra is Crystalia.
The occupation of the spouse of Jadriath is Zephyrweaver.
Across expertise:
The spouse of the president of Crystalia is Glimmerdawn.

Figure 2: Example visualization of the knowledge graph with fictional entities. The blue
and orange edges represent the knowledge of two different experts. A subset of nodes and
edges are labeled with example entities and relations. Two-hop facts, as used in the skill
generalization experiments, are split into “within expertise” (known by at least one expert)
and “across expertise” (known by no expert) categories.

We evaluate this idea in a two-hop fact completion task over a knowledge graph. Each
expert observes and labels a set of one-hop facts, and is able to answer certain two-hop
queries composed entirely from their own knowledge. However, the test queries require
combining information from multiple experts: no single expert has access to both necessary
one-hop facts.

If a learner is biased toward simple solutions, and if the compositional structure of the task
is simpler than memorizing all two-hop inputs, the model may generalize by composing
reusable one-hop components. This enables it to answer novel two-hop queries that no
individual expert could answer. We explore this mechanism more formally in Appendix A.2.

3 Knowledge graph setting

Our experiments use a synthetic knowledge graph and corresponding corpora of natural
language sequences describing the relations in the graph. Consider the ground-truth
knowledge graph G consisting of a set of nodes V (representing entities) and edges E
(representing relational facts between entities). Each fact is represented by a tuple (head,
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relation, tail), where the head and tail are entities in the graph. We create our knowledge
graph by taking the structure of the WIKIDATA-based graph from Cohen et al. (2023) and
using GPT-4o-mini (OpenAI, 2024) to replace the entities with fictional names. The result is
a realistically structured knowledge graph populated by facts unseen during pretraining
(See Appendix B.1 for further details).

In a set of ne experts, expert i has a personal knowledge graph Gi that contains their
knowledge of the world. Each expert is assigned a predefined amount of correct knowledge
from the ground-truth graph, along with a number of incorrect beliefs.

Incorrect beliefs are modeled by introducing corrupted edges into the expert’s graph. Specif-
ically, for a fact (head, relation, tail) from the ground truth knowledge graph, we generate a
corrupted version by replacing either the head or the tail with a different entity of the same
type. Each entity in the graph is assigned a semantic type (e.g., country, person, occupation),
and substitutions are restricted to entities of the same type to preserve syntactic plausibility.

For skill selection and skill generalization, we use spectral clustering over the edges to define
potential areas of expertise for our synthetic experts. We split the graph into 5,000 clusters
of edges. Each expert is then assigned knowledge of one or more clusters. Further details on
how experts are generated in each setting are provided in the methodology sections specific
to each experiment.

Training data: Each sample is a paragraph about a specific entity, emulating an expert
writing about a particular topic. To generate a dataset of N samples from a set of ne experts,
we have each expert generate N/ne samples unless otherwise specified. To generate each
sample, we sample a node uniformly at random from the expert’s personal knowledge graph
and generate a templated sentence for each edge (fact) connected to that node. Templates
follow a simple pattern such as: “The {relation} of {head} is {tail}.” The sentences are written
in random order. See Figure 2 for examples of the templated sentences.

Evaluation: We evaluate each model on its query completion accuracy, computed as follows.
For each fact in the ground-truth set – represented as a triple (head, relation, tail) – we
construct a query by removing the tail and prompting the model with the remaining
components (e.g., “The {relation} of {head} is ”). A prediction is considered correct if the
model’s output exactly matches the ground-truth tail. For queries with multiple correct tails,
we mark the output correct if it matches any correct tail. The query completion accuracy is
then defined as the percentage of facts for which the model correctly outputs the tail. In
other words, we evaluate the percentage of the ground truth facts the model has memorized.

Experiment setup: Unless otherwise specified, all experiments finetune a pretrained GPT2
model (Radford et al., 2019). Since the knowledge graph contains entities that are completely
fictional, the model’s pretraining phase does not include any facts from our knowledge
graph. All runs use AdamW (Loshchilov & Hutter, 2019) with learning rate 0.001, weight
decay 0.1, 1000 steps of warmup with a cosine decay schedule and batch size 24.

4 Skill denoising

When expert sources commonly make factual errors – but each makes different errors – their
collective majority vote is often correct. By leveraging this “wisdom of the crowd”, a model
trained on their data can transcend the accuracy of any single expert by denoising their
mistakes.

Methodology For some number of experts ne, we assign all experts a shared coverage level
c ∈ [0, 1], defined as the fraction of the knowledge graph that each expert knows correctly.
To create a personal knowledge graph Gi for expert i, we iterate over each edge in the
ground-truth graph: with probability c, we include the correct edge, and with probability
1 − c we instead include a corrupted edge as described in Section 3. In our experiments, we
vary the number of experts ne as a proxy for uncorrelated errors. Since errors are sampled
uniformly and independently for each expert, increasing the number of experts leads to a
more uniform distribution of errors in the resulting dataset.
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Figure 3: When trained on noisy experts, the model can leverage low-temperature sampling to
transcend expert skill level.

Results All experiments are run on 10M samples per configuration. For plots where
temperature is unspecified, greedy decoding (i.e., temperature 0) is used. Accuracy refers to
the query completion accuracy defined in Section 3. Consistent with our intuition, we find
that with a sufficient number of experts, the model can substantially outperform individual
expert skill level. Even for expert coverage scores as low as 0.2, the model achieves over 80%
query accuracy when trained with 100 experts. Accuracy across different coverage levels
is shown in Figure 4. As seen in Figure 3, low-temperature sampling allows the model to
achieve high accuracy, while accuracy at temperature 1.0 remains close to the underlying
expert coverage level.
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Figure 4: Expert coverage vs query accuracy
on one hop facts for the denoising setting.
With enough experts, even with low expert
coverage, the model is highly accurate.

Takeaway Data diversity, in the form of
uncorrelated errors, enables a model to
perform at a higher skill level by leverag-
ing the “wisdom of the crowd” with low-
temperature sampling.

5 Skill selection

In reality, nonexperts often share their mis-
conceptions about a topic, so their errors are
rarely uncorrelated. We therefore cannot as-
sume that a majority vote always provides
transcendence through denoising. How-
ever, models can still outperform all individ-
ual experts across the training set by choos-
ing answers from sources with the relevant
expertise. For a model to transcend the ex-
perts by skill selection, it needs training data in which experts comment more on topics
within their expertise than on topics where they hold common misconceptions.

Methodology As described in Section 3, we partition the edges of the knowledge graph
into 5,000 clusters to define potential areas of expertise. We set a coverage level c ∈ [0, 1]
shared by all experts, indicating the fraction of the graph each expert knows correctly. For
each expert i, we generate a coverage vector si = (s(1)i , . . . , s(5000)

i ), where each s(j)
i ∈ [0, 1]

indicates expert i’s accuracy on edges in cluster j. This vector is constructed to satisfy:
5000

∑
j=1

s(j)
i · |Cj| = c · |E|

where we denote the set of edges in cluster j by Cj and |E| is the total number of edges in
the graph. To construct expert i’s personal knowledge graph, we iterate over each edge

6



Published as a conference paper at COLM 2025

0.8 0.9 1.00.0

0.5

1.0

Ac
cu

ra
cy

Expert Coverage=0.01

0.8 0.9 1.0

Expert Coverage=0.1

100

101

102

103

# Experts

Generation correctness ( )

Figure 5: α vs query accuracy on one hop facts for the selection setting with two different
coverage levels. With a sufficient number of experts and high probability that experts
generate data within their “expertise”, the model can achieve high accuracy even when each
individual expert knows only a fraction of the knowledge graph.

e ∈ E. Let j be the cluster membership of e, i.e., e ∈ Cj. Then with probability s(j)
i we include

the correct edge and with probability 1 − s(j)
i we replace it with a corrupted version.

To generate training sequences, we sample a node uniformly at random from an expert’s
personal knowledge graph, as in the denoising setting. However, we now introduce another
parameter α ∈ [0, 1] which describes the extent to which each expert restricts commentary
to their area of expertise. For each fact connected to the chosen node, we write the fact with
probability p = αs(j)

i + (1 − α), where s(j)
i is the expert’s coverage score for the cluster to

which the edge belongs (i.e., the probability the edge is correct). In other words, α controls a
weighted interpolation between the “expertise” scores and the uniform distribution. With
α = 1, a fact will be written with probability equal to the expert’s level of expertise over the
cluster the edge belongs to, and with lower α, we will train on more facts outside of the
expert’s expertise. This provides a mechanism to control the extent to which experts write
about what they know versus what they don’t know.

Results Each training run is on a dataset of 1M paragraphs and is trained for 10 epochs.
We set two coverage levels of 0.01 and 0.1 and we vary α for a range of values between 0.8
and 1. Increasing the number of experts corresponds with increasing diversity of expertises.
As shown in Figure 5, for both levels of coverage, the model can achieve near-perfect
accuracy with a sufficient number of experts. Moreover, accuracy consistently improves as
α increases, i.e, as experts are more likely to write about facts within their area of expertise.

Takeaway When non-experts share common misconceptions about a subject (i.e. biased
errors), transcendence is enabled by data diversity in the form of sources with varied
expertise. To guarantee this transcendence, experts must write more frequently about topics
within their domain of expertise than about those outside it.

6 Skill generalization

In the skill selection setting, at least one expert knows the correct answer to a question. In
skill generalization, by contrast, no single expert knows the correct answer. In order to
transcend through skill generalization, a model must compose knowledge from multiple
experts by leveraging shared representations of the world. We study this setting using a
compositional two-hop fact completion task, showing that a model can complete two-hop
queries which no expert can by combining diverse expert knowledge in a latent space.

Methodology We use a simplified version of the expert generation technique from Sec-
tion 5 in which each expert has knowledge of a single cluster. For data generation, we
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Figure 6: Left: Across-expertise two-hop query accuracy increases linearly with number of
within-expertise two-hop examples seen during training. Right: Comparison of methods
with full two-hop example training set in terms of across-expertise query accuracy. The
standard method refers to training the model on paragraphs of one-hop facts as well
as all 80,000 within-expertise two-hop sentences. For data diversity, we include diverse
rephrasings of the one-hop and two-hop samples.

generate samples from each expert proportional to the size of their known cluster. As in
previous experiments, the training data consists of paragraphs about entities generated
from each expert’s personal knowledge graph Gi.

To evaluate the model’s ability to combine knowledge from different experts, we draw on the
framework proposed by Yang et al. (2024), which measures the model’s latent compositional
ability via accuracy on multi-hop facts for which the model knows the relevant single hop
facts. The model is said to have latent knowledge if it can correctly complete the multi-hop
fact without generating the intermediate entity.

To test compositional generalization, we use across-expertise two-hop facts, facts where the
two edges are in different clusters. By contrast, we refer to two-hop facts with both edges
in the same cluster as within-expertise two-hop facts. (See Figure 2.) To teach the two-hop
answer format, we include a set of within-expertise two-hop facts in the training data. We
withhold a validation set of 6,000 within-expertise two-hop queries during training.

The across-expertise two-hop facts are unseen during training and require the model to
combine specialized expertises. In addition to measuring accuracy on one-hop queries, we
measure accuracy on the unseen validation set of within-expertise two-hop queries and on
the test set of two-hop across-expertise queries.

We compare two-hop accuracy to baselines based on Yang et al. (2024), which describes
two potential “shortcut methods” using simple co-occurrence statistics between entities and
relations. We refer to these baselines as direct connection and majority relation. The direct
connection baseline tests if there is a direct one-hop connection between the head and tail.
The majority relation baseline measures the accuracy achieved from simply assigning the
entity of the correct type (e.g., country, person, occupation) which appears most often with
the second relation of the two-hop fact. (See Appendix B.3 for details).

Experiment Details Since this is a more difficult task we use the 1B parameter LLaMA
3.2 model (Llama Team, 2024). However, in line with prior findings (Yang et al., 2024;
Allen-Zhu & Li, 2024b), preliminary experiments in the base setting suggest that increasing
model size offers limited improvement in two-hop performance. We train the model on 6M
paragraphs containing one-hop facts about a given entity, combined with the training set of
within-expertise two-hop facts. We repeat the two-hop facts 20 times each epoch in order to
saturate accuracy on the training set and train for 10 epochs.
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Results Motivated by our analysis in Appendix A.2, we measure how increasing the size
of the two-hop training set affects the performance on the unseen across-expertise two-hop
facts. Our findings are reported in Figure 6. We find increasing the size of the training set
steadily increases accuracy; by using all 80,000 within-expertise two-hop facts, the model
achieves 34% accuracy on across-expertise two-hop facts, which is a nontrivial improvement
over the 20% baseline. All models achieve near-perfect scores on one-hop query accuracy.

This suggests a core challenge in our setting: the number of two-hop facts known by
individual experts is limited. We cannot continue to indefinitely increase the size of the
training set. Therefore we explore two alternate methods: phrasing diversity and Chain-of-
Thought (CoT).

Phrasing diversity Inspired by Allen-Zhu & Li (2024a), we consider how augmenting
data to increase the diversity of phrasing may improve model performance. Allen-Zhu &
Li (2024a) argued that this type of data augmentation allowed the model to retain factual
information while encouraging the model to have better latent representations rather than
memorizing context. We experiment with adding phrasing diversity to both the one-hop
fact paragraphs and the two-hop facts. (See Appendix B.3). We find that adding diversity
to the one-hop paragraph samples increased performance from 34% to 37%, but adding
diversity to the two-hop samples had no impact. We leave it to future work to explore
whether more principled forms of data augmentation can enhance multihop capabilities.

Chain-of-Thought Several prior works have found CoT (Wei et al., 2023) to be essential
in solving knowledge manipulation tasks such as solving multihop queries (Allen-Zhu &
Li, 2024b; Prystawski et al., 2023). Indeed, we see an immediate benefit of allowing the
model to use CoT as it reaches over 60% accuracy on across-expertise two-hop queries
(Figure 6). We note that within our framework, when the model uses CoT to explicitly name
the intermediate node, it reduces the skill generalization problem into a skill selection problem.
Further details on the CoT method are given in Appendix B.3.

Takeaway Although skill generalization is more challenging than other forms of transcen-
dence explored, language models can nonetheless achieve it. By increasing the diversity of
surface forms or phrasing, we can promote this form of transcendence. More noticeably,
we promote skill generalization by increasing the diversity of compositions provided in the
training data.

7 Related work

Transcendence Recently, Zhang et al. (2024) formally described the phenomenon of tran-
scendence, in which a model outperforms the individual skills of the humans who generated
its data. Zhang et al. (2024) proposed that when a model is trained on noisy data, low
temperature sampling denoises the data if the noise comes from uncorrelated errors. As an
example, they studied a chess model that achieves a 1500 Elo rating despite being trained
to imitate players of rating 1000. Our work extends the transcendence framework to addi-
tional settings and cases where expert errors are correlated. Cunningham (2023) similarly
delineated ways in which an imitative model can transcend human performance.

Data diversity & Knowledge acquisition Our setup is similar to Allen-Zhu & Li (2024a),
which used a synthetic biography dataset to show that data augmentation enables more
flexible knowledge extraction. While they focus on extraction, we also study multi-hop
composition. Zhu et al. (2025) suggested adding diverse data formats to improve knowledge
acquisition. Allen-Zhu & Li (2024b) showed that chain-of-thought is critical for knowledge
manipulation; we similarly observe benefits but focus on how data diversity supports
implicit representations. Naik et al. (2024) studied how diversity in prompting at inference
time can improve a model’s reasoning ability. Chang et al. (2024) also used fictional entities
to study knowledge acquisition, but focused on how knowledge is acquired over the course
of training. Our finding that skill generalization relies on diverse examples of compositions
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also reflects a broader conclusion in the compositionality literature concerned with data
diversity (Berlot-Attwell et al., 2024; Levy et al., 2023; Oren et al., 2021; Rahimi et al., 2024).

Knowledge composition Several works have studied failures of knowledge composition
in Transformers (Dziri et al., 2023; Press et al., 2023; Wang et al., 2024; Yang et al., 2024;
Saparov et al., 2023). Press et al. (2023) measured these failures as a compositionality gap,
the fraction of compositional questions which are incorrectly answered despite correct
answers to their atomic components. They found that this gap does not shrink with model
scale. Wang et al. (2024) studied a path finding problem in which transformers must learn
adjacency and reachability matrices. They found that transformers fail to learn reachability
through transitive relationships, i.e. they cannot deduce a full path after seeing its segmented
components. Yang et al. (2024) studied whether language models perform latent reasoning
when answering questions that involve multi-hop knowledge. They intervened on each
component hop to study how the model’s recall changes when the prompt changes. Their
findings suggest that scaling model size can promote better recall for the first hop of
reasoning, but not for the second hop.

Skill generalization Many works have studied the ability of neural networks to generalize
beyond their training data, in particular through implicit regularization. Most relevant to
our setting of skill generalization are Goldblum et al. (2024), which used information theory
to argue that models are biased towards solutions with low Kolmogorov complexity, and
Zadrozny (2000), which demonstrates that memorization becomes high-complexity as the
corpus grows, causing compositional behavior to arise in a formal language setting.

Ensembling & Model fusion In our work, a model might be seen as building an ensemble
of the diverse experts who generated its training data. Because the training data reflects an
implicit ensemble of experts, our results often mirror findings in the literature on model
ensembling. These works have studied how to denoise, select, or combine knowledge
from the model perspective – that is, how to improve performance in these settings using
multiple models or agents. For instance, Wang et al. (2023) and Li et al. (2024) demonstrate
how majority voting over a model’s outputs can improve performance. Work on Mixture-of-
Expert (MoE) models (Lepikhin et al., 2020; Fedus et al., 2022), ensembling (Liu et al., 2021;
Li et al., 2022; Gururangan et al., 2023) design architectures explicitly for skill selection by
combining diverse expert models, whereas we define experts that generate the training data
for a simpler architecture. Work on model fusion (Wan et al., 2024; Mavromatis et al., 2024,
i.a.) is yet another way to combine diverse models for an interpolated ensemble. Li et al.
(2022) and Gururangan et al. (2023) train separate models on different clusters of documents
and combine models via ensembling for inference, deliberately exploiting data diversity
through model architecture.

8 Discussion

In this work, we outline three types of transcendence in which an imitative model can
outperform the sources that generated its data. We analyze what conditions of the data must
hold to allow for transcendence in each setting. In particular, we highlight several aspects of
data diversity: For skill denoising, low temperature sampling enables transcendence as long
as errors are uncorrelated. For skill selection, the model can accumulate knowledge from
specialized experts as long as experts tend to generate data within their expertise. For skill
generalization, we draw on the model’s simplicity bias to argue that the model will learn to
combine expert knowledge once the training data has high enough complexity through its
diverse phrasing and examples of knowledge composition.

While valuable for isolating specific phenomena, our controlled experimental setup is lim-
ited, and we encourage future work that investigates these ideas in more real-world settings.
We also encourage future work developing additional settings in which transcendence may
occur – for example, our framework does not capture the idea of skill discovery. We hope our
work is a useful starting point for broader investigation in the area.
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A Proofs and Analysis

A.1 Skill selection analysis

Proof of Theorem 2.1. Let a and b denote two experts. For transcendence to hold, we have
Rptest(hD̄) > Rptest( fa) and Rptest(hD̄) > Rptest( fb). Starting with the first inequality, we have

0 < Rptest(hD̄)− Rptest( fa) = Ex∼ptest

[
rx( f̄ )− rx( fa)

]
= Ex∼ptest [g(a|x)rx( fa) + (1 − g(a|x))rx( fb)− rx( fa)]

= Ex∼ptest [(1 − g(a|x))(rx( fb)− rx( fa))]

= Ex∼ptest [(g(b|x))(rx( fb)− rx( fa))]

And symmetrically, we have Ex∼ptest [(g(a|x))(rx( fa)− rx( fb))] > 0

Combining these we get the desired result:

Ex∼ptest [(rx( fa)− rx( fb)) (g(a|x)− g(b|x))] > 0

A.2 Skill generalization analysis

We develop a simple case study to provide intuition for the skill generalization setting,
based on our knowledge graph-based experiment setup.

Let G = (V, E) denote a knowledge graph where the nodes V represent entities and the
edges represent relational facts between entities. Let R denote a set of relation types. Then
each edge e ∈ E is represented by a tuple (a, r, b) with a, b ∈ V and r ∈ R. Let F(1) denote
the set of one-hop facts in G. That is,

F(1) = {e = (a, r, b) : e ∈ E}
For simplicity assume there is a deterministic mapping of one-hop facts, that is, for a given
prefix (a, r) there is at most one label b. We will refer to this type of prefix (a, r) as a “one-hop
input.”

A two-hop fact is represented by a tuple (a, r1, r2, c) such that there exists a bridge entity
b ∈ V where (a, r1, b) ∈ F(1) and (b, r2, c) ∈ F(1). Let F(2) denote the set of two-hop facts:

F(2) =
{
(a, r1, r2, c)

∣∣∣ ∃b ∈ V such that (a, r1, b), (b, r2, c) ∈ F(1)
}

In particular, G induces a function f ∗ : V × R × R → V that encodes the two-hop facts in
the knowledge graph. We assume f ∗ is only defined on triples (a, r1, r2) for which such a
bridge entity b exists in the graph. We will refer to such a triple (a, r1, r2) as a “two-hop
input.”

Then f ∗ can be expressed as a compositional function:

f ∗(a, r1, r2) = g∗(g∗(a, r1), r2) where g∗(a, r) = b : (a, r, b) ∈ F(1)

Let the input space X contain strings of the type (a, r1, r2) such that a ∈ V, r1, r2 ∈ R and
(a, r1, r2, c) is a two-hop fact in G for some c ∈ V. Define the output space as Y = V ∪ {ϵ}
where ϵ represents a default null label.

Now we will partition the graph according to k “experts.” Let {F(1)
i : i = 1 . . . k} be a

partition of one-hop facts of the graph. Then define the input space of expert i as

Xi =
{
(a, r1, r2) | ∃b, c : (a, r1, b), (b, r2, c) ∈ F(1)

i

}
That is, Xi is the two-hop inputs where both relevant one-hop facts are in Fi. Let pi be some
distribution over Xi such that every element of Xi has non-zero probability. Let each expert
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have a label function fi : Xi → Y. Assume that given an input x ∈ Xi, expert i will always
provide the correct label. That is, for any x = (a, r1, r2), fi(x) = c where (a, r1, r2, c) ∈ F(2).

Let D = {(x, fi(x)) : x ∼ Xi, i ∼ [1, . . . , k]} such that |D| = N be a training set of N unique
samples.

We will define a hypothesis class that contains two classes of memorizer functions: one
class Hmem that uses a single lookup via a lookup table T(2)

h to map inputs to outputs, and a

second class Hcomp that uses a compositional function with a lookup table T(1)
h . Formally,

let T(2)
h , T(1)

h be lookup tables where T(2)
h is size V × R × R and T(1)

h is of size V × R. Let
H = Hmem ∪Hcomp, where

Hmem =
{

h | h(a, r1, r2) = T(2)
h [(a, r1, r2)] for some T(2)

h : V × R × R → Y
}

Hcomp =
{

h | h(a, r1, r2) = g (g(a, r1), r2) , where g(a, r) = T(1)
h [(a, r)] for some T(1)

h : V × R → Y
}

Define the complexity of a lookup table T to be the number of non-null mappings:

κ(T) := |{x | T(x) ̸= ϵ}|

Define a lookup function f to be a function whose only operation is a single lookup with a
table Tf . Then define the complexity of the lookup function κ( f ) = κ(Tf ). Assume there is
a fixed overhead associated with composing functions. That is, for a composed function of
the form f ( f (·), ·), we define its complexity as:

κ( f ( f (·), ·)) = κ( f ) + κcomp,

where κcomp is a constant representing the additional cost of composition compared to
independent lookups.

Under an ERM learner, for training set D we have that

hD ∈ arg min
h∈H

E(x,y)∼D[H(y, h(x))]

This setting is realizable, so we can write hD ∈ H∗
D where H∗

D ⊆ H is the set of hypotheses
that achieve zero loss. Any h that correctly memorizes the two-hop examples in D will
achieve zero loss. However, this gives us no guarantee as to how the function generalizes to
unseen two-hop examples – namely, two-hop facts in which the first hop and the second
hop belong to different expert partitions.

Here we will assume a simplicity bias to allow us to characterize when we will find the
generalizing solution:

hD ∈ arg min
h∈H∗

D
κ(h)

We now argue that, under reasonable conditions, the learner will prefer a compositional
solution due to its lower complexity.

Any h ∈ Hmem ∩H∗
D must store a separate mapping for each training example. Thus, its

complexity satisfies:
κ(h) ≥ |D|

By contrast, for any compositional function h ∈ Hcomp, the lookup table T(1)
h only needs to

store one-hop facts. Therefore, its complexity is bounded by

κ(h) ≤ |F(1)|+ κcomp
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where κcomp accounts for some fixed additional cost of composition.

This leads to a sufficient condition under which the learner prefers a compositional solution:
|D| ≥ |F(1)|+ κcomp

To understand when this condition is likely to hold, we analyze the maximum size of the
training set |D| for a given graph. Importantly, |D| is bounded by the number of two-hop
facts where both hops lie within a single expert’s domain. Therefore, satisfying the condition
above requires that enough such examples exist in the graph.

Let din(v) and dout(v) denote the in-degree and out-degree of node v. Then the total number
of one-hop facts in the graph is

|F(1)| = ∑
v∈V

din(v) = ∑
v∈V

dout(v)

Each node v induces din(v) · dout(v) two-hop facts. However, the training data consists only
of two-hop facts in which both hops belong to the same expert partition F(1)

i . The total
number of such training examples is bounded by:

|D| ≤
k

∑
i=1

|Xi| =
k

∑
i=1

∑
v∈V

d(i)in (v) · d(i)out(v)

where d(i)in (v) and d(i)out(v) are the in/out degrees of node v restricted to edges in partition

F(1)
i .

Combining the complexity bound and the dataset size estimate, we obtain a sufficient
condition under which the learner prefers a compositional solution:

∑
v∈V

din(v) + κcomp <
k

∑
i=1

∑
v∈V

d(i)in (v) · d(i)out(v)

This condition intuitively requires that enough valid two-hop facts lie within the domain
of a single expert. Because expert knowledge is structured in a shared latent space, via
reusable one-hop representations, these facts can be composed efficiently. When this holds,
the training set can be large enough for the compositional function to be simpler than
memorization – causing the learner, under a simplicity bias, to prefer generalization.
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B Training Details

B.1 Knowledge graph generation

For our experiments, we use a knowledge graph filled with fictional entities to generate facts
the model has not seen during pretraining. We create the knowledge graph by taking the
structure of the WIKIDATA-based graph from Cohen et al. (2023) and we use GPT-4o-mini
(OpenAI, 2024) to replace the entities with fictional names. To generate entities, we start by
asking GPT-4o-mini for a set of fictional country names to seed the fictional graph. These
fictional country names are randomly assigned to replace the country entities in the original
graph. We then run a BFS-like procedure in which the updated neighbors of each node
are used as a context to generate the fictional name of the current node. We also provide
a starting letter drawn at random to increase diversity. This guarantees that GPT-4o-mini
provides a fictional entity name based only on its fictional context. The resulting knowledge
graph has approximately 25,000 entities, 39 relation types, and 54,500 edges.

B.2 Compute Resources

All training runs used 1-4 Nvidia H100s for 1-8 hours.

B.3 Skill generalization experiment details
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Figure 7: Left: Number of training samples vs within-expertise two-hop query accuracy on
the held-out samples. Right: Comparison of methods in terms of within-expertise query
accuracy.

B.3.1 Baselines

We include baselines based on two potential “shortcuts” as described in Yang et al. (2024).
For the direct connection baseline, we want to measure whether the tail entity of the two-hop
fact can be predicted from frequent cooccurrences with the head entity in the training data.
To do this, we measure the number of two-hop prompts in which the head-tail pair also
occur in the one-hop fact training set. That is, the number of two hop prompts (a, r1, r2) 7→ c
such that c ∈ {c : (a, r, c) ∈ Fone-hop for some relation r} where Fone-hop denotes the one-hop
facts in the knowledge graph. This effectively counts all head-tail pairs which co-occur in
the one-hop facts. This accounts for 528 out of 6133 validation within-expertise two hop
facts, corresponding to an accuracy of 0.086, and 5666 out of 64811 across-expertise two hop
facts, corresponding to an accuracy of 0.087. We also check head-tail co-occurrences in the
training set of two-hop facts and find that this corresponds to an accuracy of < 5% in both
the validation and across-expertise sets, so we leave this out for clarity.
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For the relation majority baseline, we measure the accuracy achieved from simply assigning
the most common entity of the correct type (e.g. person, location, occupation) based on the
second relation of the two-hop fact.

B.3.2 Scores on validation set

The validation set for two-hop facts consists of roughly 6000 queries of within-expertise
two-hop facts that are held out during training. Scores are reported in Figure 7.

B.3.3 Data diversity experiments

Level Method Sample
1 1 template per relation The place of death of Glimmerhold is Galadron Abyss. The name of the

head of government of Galadron Abyss is Morrathis Voidstrider.
2 4 templates per relation Glimmerhold died in Galadron Abyss. Galadron Abyss’s head of govern-

ment is Morrathis Voidstrider.
3 GPT generated Glimmerhold died in Galadron Abyss, which is governed by Morrathis

Voidstrider.
4 GPT generated Glimmerhold met its demise in the treacherous depths of Galadron Abyss,

a notable locale governed by Morrathis Voidstrider. This abyss, shrouded
in mystery, serves as a poignant backdrop to the tale of Glimmerhold’s
fate.

Table 1: Comparison of diversity levels in one-hop paragraph generation.

We run preliminary experiments on the usefulness of phrasing diversity in improving the
model’s to answer unseen two-hop facts. For each sample, we generate a version at four
diversity levels:

• Level 1: Facts are written from a single template as in the standard setting. Multihop
facts are written in a single template.

• Level 2: Each relation type has four templates. Each time an edge is written, one of
four templates is sampled u.a.r. Multihop facts are written in a single template.

• Level 3: We use GPT-4o-mini to generate a low creativity entry based on the Level
1 paragraph. The following prompt is used: “You will be provided with a list of facts
about an entity. Your job is to write a 10-50 word encyclopedia entry about the given entity.
You should not make up additional information, just rewrite the facts.”

• Level 4: We use GPT-4o-mini to generate a high creativity entry based on the Level
2 paragraph. The following prompt is used: “You will be provided with a list of facts
about an entity. Your job is to write a 10-50 word encyclopedia entry about the given entity.
You should not make up additional information, just rewrite the facts. Use creative word
choices and phrasing.”

To increase data diversity of the two-hop sentences, we ask GPT-4o-mini to rephrase each
templated two-hop sentence. For the models marked with “Data diversity,” each model was
trained with 1.5 million paragraph samples, each provided at the four levels of diversity for
a total of 6 million samples. Models were additionally provided with the rephrased two-hop
samples repeated 20x per epoch along with the templated two-hop samples.

B.3.4 Chain-of-Thought

For models that are allowed CoT to answer two-hop queries, we use a QA format and
provide the intermediate entity before the final answer: For example, “What is the award
received by the screenwriter of Glyndor Aetheralis? Ithryndor Glaciaris; Xyphorian Starblossom.”
During evaluation, we allow the model to generate an intermediate step proceeding the
semicolon and judge accuracy based only on the final answer.
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