
Spatial Shortcuts in Graph Neural Controlled
Differential Equations

Michael Detzel∗
Fraunhofer HHI

Gabriel Nobis
Fraunhofer HHI

Jackie Ma
Fraunhofer HHI

Wojciech Samek
Fraunhofer HHI and TU Berlin

Abstract

We incorporate prior graph topology information into a Neural Controlled Differ-
ential Equation (NCDE) to predict the future states of a dynamical system defined
on a graph. The informed NCDE infers the future dynamics at the vertices of
simulated advection data on graph edges with a known causal graph, observed only
at vertices during training. We investigate different positions in the model archi-
tecture to inform the NCDE with graph information and identify an outer position
between hidden state and control as theoretically and empirically favorable. Our
such informed NCDE requires fewer parameters to reach a lower Mean Absolute
Error (MAE) compared to previous methods that do not incorporate additional
graph topology information.

1 Introduction

Effect follows cause. When a problem is represented on a graph, its structure contains information on
how causes at one spatial position are linked to effects at another. To learn about physical dynamics
from spatial time series data, one can often leverage this structural information. Schölkopf [1]
describes differential equations as the gold standard for understanding cause-effect structures and
highlight the lack of a time component in statistical machine learning methods. Neural Differential
Equations (NDEs) [2] are able to learn a hidden state that evolves continuously in time, and could
remedy this lack. With Neural Controlled Differential Equations (NCDE) [3], one can update the
hidden state continuously with data incoming at different points in time. If one also wants to account
for spatial dependencies, Graph Neural Controlled Differential Equations (GNCDEs) [4] can be
used, where a node embedding is learned to capture these spatial dependencies. We incorporate
prior known graph topology information into a GNCDE to infer the future dynamics at the vertices.
We therefore generate data coming from a graph advection simulation from which we know the
underlying graph topology plus the temporal cause and effect relation. We will outline the close
connection between the graph information in the data generated and the artificial Neural Network
(NN) architecture. Then we train our Informed GNCDEs and let them learn the dynamics to predict
their future behavior. We start by describing advection on graphs and the theory before we explain
the data generation and our Informed GNCDE. We believe this approach can lead to improvements in
domains where graph information is available or where time series data is scarce or partially missing.
NCDEs are an effective method in this context due to their ability to handle irregular time series data
[5]. With graph information one has the potential to predict with fewer observations, as the graph
structure itself does not have to be learned on top of the temporal dynamics. Promising domains for
introducing known graph structure are traffic forecasting, river water level forecasting, climate and
weather prediction, or disease spread (see A.4).

∗Corresponding author michael.detzel@hhi.fraunhofer.de

D3S3: Data-driven and Differentiable Simulations, Surrogates, and Solvers @ NeurIPS 2024.

Figure 1: Advection of an initial Gaussian pulse on a graph with 5 edges over time

2 Related Work

Choi et al. [4] consider time series on a graph by using a graph embedding to capture the spatial
dependencies, without directly incorporating prior graph knowledge for traffic forecasting. Spatial-
Temporal Graph Neural Networks (GNNs) [6, 7] inform NNs with graph information, where Message
Passing NNs [8] are combined with Recurrent Neural Networks (RNNs) like Long Short Term
Memorys (LSTMs) [9] or Gated Recurrent Units (GRUs) [10]. Poli et al. [11] introduce spatial
inductive bias as a node embedding into the vector field while generalizing the notion of Neural
Ordinary Differential Equations (NODEs) to graphs. Other attempts of incorporating prior knowledge
into NN architecture include Physics Informed Neural Networks (PINNS) [12] which enforce a
prior defined Partial Differential Equation (PDE) but do not act on graphs as they avail oneself
of a discretized continuous description of the spatial domain. Kosma et al. [13] use NODEs for
epidemic spreading on graphs and Verma et al. [14] use NODEs for climate and weather forecasting
in discretized continuous space.

3 Learning Advection with Graph Neural Controlled Differential Equations

Advection on Graph Edges. In contrast to Chapman and Mesbahi [15], where the quantities on the
vertices are updated discretely in time, we advect quantities that move continuously in time along the
edges of a graph and fork or merge at vertices. For the advection simulation, we consider a directed
graph G with a set of vertices V and edges E . Every edge e ∈ E has a time-static continuous domain
Ωe = {x ∈ R | 0 ≤ x < δ(e)} and a function space Ve = {ye(x, t)|Ω(e) × T → Rd} attached to
it, where δ(e) is the length of edge e and t ∈ T = [0, T] is a point in time. We first focus on the
description of the advection on the interior of the edges without considering transitions between
edges: Given an initial state of the dynamic system it evolves according to an advection differential
equation

∂y

∂t
+∇ · (y ⊙ v) = 0, y(· , 0) = y0 (1)

with v = (v1, . . . , v|E|)
⊺ being the vector of scalar velocity fields ve : Ωe → R, with e ∈

{1, . . . , |E|}, that advect the quantity y = (ye1 , . . . , ye|E|)
⊺ through space over time. The divergence

is intended row-wise and ⊙ signifies element-wise multiplication. We restrict the entries of y to
positive values, so that the flow direction is always the direction of the directed edge. We assume
that the velocity field is constant. In the case of a one-dimensional quantity and velocity field along
the edges, this leads to ∂ye

∂t = −ve ∂ye

∂x , which has the analytical solution ye(x, t) = y0e(x − vt),
with initial condition y0e := ye(x, 0), for all x ∈ Ω(e), for all e ∈ E and vet ≤ x ≤ δ(e). With this
description of the dynamic, ye for e ∈ E is not required to be differentiable. Now we describe the
dynamic on the transition between adjacent edges. For x < vet one would look back "beyond the
edge". We therefore resort to a matrix formulation to represent the edge transitions of y:

y(x, t) =
(
AEy(x, 0)

)∣∣∣
x=(δ(e)−vet 1|E|)

, x < vet, (2)

where t < mine∈E δ(e)/ve has to hold for every edge to not look further back than the previous edge
and where AE is a directed "edge transition matrix", signifying to which edge a quantity transitions
when the quantity reaches the end of an edge. AE acts as a function operator on the vector of functions
y0 = (y01 , . . . , y

0
|E|)

⊺, and x = (x1, . . . , x|E|)
⊺ is a collection vector of spatial coordinates on the

2

different edges and 1 = (1, . . . , 1)⊺ ∈ R|E|. The entries aij of AE are defined as

aij =

{
pij ∈ (0, 1], if ei follows on ej
0, else

,

with pij being the proportion of the quantity on ei transported to ej and
∑

i∈E pij = 1 to enforce
conservation. The matrix AE can be obtained from the the vertex adjacency matrix AV (details in
A.3). For the numerical simulation the graph edges are spatially discretized into 100 segments sk
from which 50 are uniformly randomly selected without replacement to be initialized with discrete
uniformly sampled values ψe,sk ∼ U{0, 10}, k ∈ {1, 100}. We then iteratively advect with a
recurrence equation derived from Equation (2) to derive

y(x, t+∆t) =
(
AE(y(x, t))

)∣∣∣
x=(δ(e)−v∆t 1|E|)

and use ∆t = 5 minutes to evolve for 48 steps into the future. To obtain data measurements at
the nodes, the quantity that passed through the vertex in a given time span is aggregated. We take
measurements for ∆t and acquire time series on the graph nodes that are used for the NN training.
As input data for the GNCDEs, we are facing a time-series of graphs {Gti ≜ (V, E ,Yti)}Ni=0, with
Yti being the aggregated quantities at the vertices.

Incorporating topology knowledge into GNCDEs. Let us review the notion of NCDEs [3]: A
NCDE is described by

z(T) = z(0) +

∫ T

0

fθ

(
z(t)

)
dx(t),

where T, t ∈ R+, z(t) ∈ Rdz , fθ : Rdz → Rdz ×Rdx is a vector field modeled by an NN with train-
able parameters θ ∈ Rdθ and x(t) ∈ Rdx is the control path. This means that the hidden state z(t)) is
continuously updated over time t from 0 up to time T by the vector field fθ and the control x. This for-
mulation allows inputting data at arbitrary times t via x(t). The path of state z(t) encodes the informa-
tion gathered from time 0 to T and is used to make the final predictions {Ŷti}Mi=1 with T < ti ≤ T+τ
at time T for the next M time steps up to time T + τ . One can solve and backpropagate through the
NCDE given a loss function L({Ŷti(x)}Mi=1, {Yti}Mi=1). Jhin et al. [16] and Kidger [5, p. 66] showed
that NCDEs can be coupled to use the encoded hidden path of a first NCDE as a control path input to a
second NCDE. Firstly, analogously to Choi et al. [4], we update a dh-dimensional hidden state H(t) ∈
R|V|×dh continuously in time for every node separately to capture the temporal dependencies via

ni

nj

Hj(t)
Zj(t)

Hi(t)

Zi(t)

t

Figure 2: Difference in information
transport between hidden state Hi at
node ni and hidden state Zj at node nj .
Connection with Aouter

V leads to a di-
rect connection (red) versus connecting
nodes via Ainner

V (black)

H(T) = H(0) +

∫ T

0

fθ

(
H(t)

)dX(t)

dt
dt. (3)

Secondly, we utilize H as control to drive another NCDE
to continuously update the hidden state Z(T) ∈ R|V|×dz ,
with dz being the dimension of the hidden state Z that
contains now also spatial information via

Z(T) = Z(0) +

∫ T

0

gγ

(
Z(t)

)dH(t)

dt
dt, (4)

where the vector field gγ learns the spatial dependencies,
making it a GNCDE. We differentiate between the internal
and external mappings that the vector field gγ describes:

gγ(Z(t)) : Rdz → Rdz × Rdh , (5)

gγ(Z(t)) • · : Rdh → Rdz , (6)

using • to emphasize the tensor product. Whereas Equa-
tion (5) describes the inner workings of the update of the
hidden state Z on itself, the tensor multiplication in Equation (6) describes the direct connection
between control (and thereby the data) to the hidden state. Of course both happen simultaneously.
The function in Equation (5) describes how a hidden state entry at a node has to encode "where
to look" based on the entries of other hidden states and itself, to then "find" the information in the
control. In contrast the function in Equation (6) describes the situation in which one "knows where to

3

AVouter , |V| = 4 AVouter , |V| = 10

Identity Informed Identity Informed
AVinner MAE MAE # params MAE MAE # params

Identity 3.60 2.75 293,184 2.61 1.11 293,244
Informed 3.10 3.52 293,184 - - 293,244

AGC 2.73 2.67 416,744 1.42 0.66 416,864
Table 1: MAE on unseen data and number of trainable parameters for different pairs for outer and
inner graph mechanism for a 3-layer architecture for the 4-node graph and 10-node graph

look" (at least spatially) to read out the right hidden state update information from the control which
is given. In Figure 2 differences in the connections are schematically depicted. In our Informed
GNCDE architectures, we use exactly this second notion and introduce a vertex transition matrix
Aouter

V into the equation to obtain (A.1 for dimensional details)

Z(T) = Z(0) +

∫ T

0

gγ

(
Z(t)

)
Aouter

V
dH(t)

dt
dt (7)

with Aouter
V corresponding to the edge transition matrix AE . Alternatively, one can also introduce

topology information into the GNCDE inside gθ by writing gγ = g3 ◦Ainner
V g2 ◦ g1(Z(t)), where

gl, l ∈ {1, 2, 3} are the inner NN layers. Choi et al. [4] use a node embedding called Adaptive
Graph Convolution (AGC) similar to the embedding used in Kipf and Welling [17] inside gγ to learn
dependencies across graph nodes. The AGC is placed inside g2 and Ainner

V can be considered the
identity matrix. One can set Aouter

V to the identity matrix, as well, to obtain their GNCDE, or one can
set it to an undirected, directed or directed with prior known proportional weights vertex adjacency
matrix. Ainner

V can be chosen analogously.

4 Experiments

We sample 1000 and 10000 time-series for a 4-node graph and a 10-node graph (their adjacencies
can be found in A.2), respectively. AV4 represents a graph whose underlying topology is depicted in
Figure 1, AV10 represents a simple graph with subsequent edges, that exhibits strong sparsity. The
task is to predict the quantities for the next 24 time points given the current and the previous 24
time points. We trained the Informed GNCDE with different variations for the inner and outer graph
mechanism and calculate the mean absolute error (MAE) on the test dataset. For the 4-node graph,
the informedness on top of the AGC leads to a slight improvement in MAE compared to only using
AGC of 2.67 vs. 2.73 (Table 1). Notably, using the outer mechanism alone leads to a MAE of 2.75,
with only requiring 293, 184 vs. 416, 744 parameters. For the 10-node graph with longer training
time, we obtain lower MAE for just using the outer informedness versus only AGC and significant
lower MAE for using informedness on top of AGC with MAE of 0.66 vs. 1.42 (Table 1).

5 Discussion

Position plays a crucial role for the informedness in a NCDE. The position of our informed NCDE
approach can be seen analogous to a shortcut connection in a Residual Neural Network (ResNet) [18],
only between spatial nodes and not in the virtual time dimension. We suspect a greater impact on
prediction performance with larger graphs with sparse connectivity structure. We also observe faster
convergence during training for architectures with outer informedness. Informing at the inner and the
outer position simultaneously with the same matrix seems to deteriorate performance. Introducing a
fully-connected trainable outer matrix in an attempt to learn the adjacency matrix led to exploding
gradients. In summary we demonstrated that prior graph information can benefit model performance
of a NCDE on a physical time series forecasting task. The position in the architecture where one
inserts the information is crucial. One has to investigate further if graph information is detrimental
to learning non-causal temporal patterns across distant vertices. We dedicate our future research
to exploring larger graphs, integrating graph edge features, and addressing non-constant advection,
with the goal of applying our topology informed GNCDE to real-world data that includes exogenous
influx at the vertices and probabilistic behavior.

4

Acknowledgements

This work was supported by the Federal Ministry for Transportation and Digital Infrastructure
(BMDV) as grant SOLP (19F2204B); and the Federal Ministry for Economic Affairs and Climate
Action (BMWK) as grant DAKI-FWS (01MK21009A).

References
[1] Bernhard Schölkopf. Causality for Machine Learning. pages 765–804. February 2022. doi:

10.1145/3501714.3501755. URL http://arxiv.org/abs/1911.10500.

[2] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/
2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

[3] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential
equations for irregular time series. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 6696–
6707. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf.

[4] Jeongwhan Choi, Hwangyong Choi, Jeehyun Hwang, and Noseong Park. Graph neural con-
trolled differential equations for traffic forecasting. In AAAI, 2022.

[5] P Kidger. On neural differential equations. PhD thesis, University of Oxford, 2021.

[6] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks
and Learning Systems, 32(1):4–24, January 2021. ISSN 2162-237X, 2162-2388. doi: 10.1109/
TNNLS.2020.2978386. URL https://ieeexplore.ieee.org/document/9046288/.

[7] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and
Michael Bronstein. Temporal graph networks for deep learning on dynamic graphs. In ICML
2020 Workshop on Graph Representation Learning, 2020.

[8] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pages 1263–1272. PMLR, 06–11 Aug 2017. URL
https://proceedings.mlr.press/v70/gilmer17a.html.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[10] Kyunghyun Cho, B van Merrienboer, Caglar Gulcehre, F Bougares, H Schwenk, and Yoshua
Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. In Conference on Empirical Methods in Natural Language Processing (EMNLP
2014), 2014.

[11] Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and
Jinkyoo Park. Graph Neural Ordinary Differential Equations. In AAAI 2020 Workshop on Deep
Learning on Graphs: Methodologies and Applications (DLGMA’20), June 2021.

[12] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991.
doi: https://doi.org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/
science/article/pii/S0021999118307125.

5

http://arxiv.org/abs/1911.10500
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf
https://ieeexplore.ieee.org/document/9046288/
https://proceedings.mlr.press/v70/gilmer17a.html
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125

[13] Chrysoula Kosma, Giannis Nikolentzos, George Panagopoulos, Jean-Marc Steyaert, and
Michalis Vazirgiannis. Neural ordinary differential equations for modeling epidemic spread-
ing. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=yrkJGne0vN. Featured Certification, Expert Certification.

[14] Yogesh Verma, Markus Heinonen, and Vikas Garg. ClimODE: Climate and weather forecasting
with physics-informed neural ODEs. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=xuY33XhEGR.

[15] Airlie Chapman and Mehran Mesbahi. Advection on graphs. In 2011 50th IEEE Conference
on Decision and Control and European Control Conference, pages 1461–1466, 2011. doi:
10.1109/CDC.2011.6161471.

[16] Sheo Yon Jhin, Heejoo Shin, Sujie Kim, Seoyoung Hong, Minju Jo, Solhee Park, Noseong Park,
Seungbeom Lee, Hwiyoung Maeng, and Seungmin Jeon. Attentive neural controlled differential
equations for time-series classification and forecasting. Knowledge and Information Systems, 66
(3):1885–1915, March 2024. ISSN 0219-1377, 0219-3116. doi: 10.1007/s10115-023-01977-5.
URL https://link.springer.com/10.1007/s10115-023-01977-5.

[17] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

6

https://openreview.net/forum?id=yrkJGne0vN
https://openreview.net/forum?id=yrkJGne0vN
https://openreview.net/forum?id=xuY33XhEGR
https://link.springer.com/10.1007/s10115-023-01977-5
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

A Appendix

A.1 Dimensions

The dimensions of the domains and codomains of the vector field functions fθ and gγ can be described
even more precisely with

fθ(·) : R|V|×dh → R|V|×dh × R|V|×dx

gγ(·) : R|V|×dz → R|V|×dz × R|V|×dh

and H(t) ∈ R|V|×dh , Z(t) ∈ R|V|×dz , X(t) ∈ R|V|×dx , with dh, dz and dx being the dimensionality
of the corresponding (hidden) states or control per vertex, leading to a description of the tensor
product in Equation (3) with einstein notation while omitting the θ and γ for more clarity(

dH

dt

)
mh

=

(
f
dX

dt

)
mh

= fmhnx

(
dX

dt

)
nx

and for Equation (4) (
dZ

dt

)
kz

=

(
g
dH

dt

)
kz

= gkzmh

(
dH

dt

)
mh

, (8)

where n,m, and k are indices for the vertices, h and z are the indices for the dimension of hidden
states H and Z, respectively and x is the index for the dimension of the control path X.

If one now wants to incorporate graph information at the outer position in Equation (7), one would
insert AE into Equation (8) and obtain(

dZ

dt

)
kz

=

(
g
dH

dt

)
kz

= gkzmh (AV)mn

(
dH

dt

)
nh

.

A.2 Adjacency matrices

The adjaceny matrices for the 4-node graph and the 10-node graph are given by

AV4
=

0 1 0 0
0 0 0.3 0.7
0 0 0 1
1 0 0 0

 , AV10
=


0 1 0 . . . 0

0 0
.

...
...

...
. . . 1 0

0 . . . 0 0 1
0 . . . 0 0 0

 .

A.3 Edge transition matrix

To obtain the edge transition matrix AE from a weighted vertex adjacency matrix AE with∑
j∈|E|(AE)ij = 1, one first starts off with the vertex incidence matrix I. Let us define some

matrix operations for I ∈ R|V|×|E|, namely

(I+)ij =

{
(I)ij , if (I)ij > 0

0, else
,

(I−)ij =

{
−(I)ij , if (I)ij < 0

0, else
,

(Ic)ij =

{
1, if (I)ij > 0

(I)ij , else
,

thereby (·)c is making I conservative. In total the edge transition matrix IE is given by

AE = (I−)⊺(Ic)+.

On the one side (I−)⊺ ∈ R|E|×|V| considers the incoming magnitude of the transported quantities
from edges to vertices and also the amount of quantities, on the other side (Ic)+ ∈ R|V|×|E| distributes
the outgoing quantites from the vertices to the edges while solely encoding connectivity and neglecting
magnitude.

7

A.4 Applications

For traffic forecasting, one would consider the traffic flow sensors the nodes of the graph and the
road network would be the edges. Analogously in the climate and weather forecasting scenario,
weather observation stations measuring quantities like precipitation, temperature, air pressure and
wind, would constitute the nodes, and the edges would transport abstract representations that encode
the propagation of the physical quantities in space. Here the propagation in three-dimensional space
would be encoded as an information link which is represented as a multivariate function on every
one-dimensional domain on the edges. In river water level forecasting, one considers the gauging
stations as nodes and directed edges that are derived from the geographical river topology connections.
For disease spread, a node would be regarded as an administration area for which one can measure
the aggregate infections, and the edges would connect these regional areas according to mobility
connections, e.g. adjacent areas would be connected, areas that can be reached via train or airplane
etc. Here the velocity field on the edges would need to be adapted according to the speed of the
means of travel.

A.5 Causality

In total we moved from a space-continuous description of the state on the edges and vertices during
the simulation to a discrete space on the vertices for the measurements. In the continuous advection
description, we had a clear cause-effect relation due to the fact that we could look back along an edge
or back to previous edges with the edge transition matrix. This continuous description of the causal
structure is now subsumed to aggregated, discrete values at nodes and edge connections without an
attached domain between them. To be able to incorporate this causal structure into the GNCDEs we
have to consider a long enough context window to be able to receive information from the previous
vertices at earlier times. The task then resembles learning a delay differential equation.

A.6 Additional Results

In Table 2 the MAE on the 4-node graph for different GNCDE configurations with only 2 layers is
reported.

Table 2: MAE on unseen data and number of trainable parameters for different selection of pairs for
outer and inner graph mechanism for the smaller model with a 2-layer architecture for the 4-node
graph

AVouter

Identity Informed

AVinner MAE # params MAE # params

Identity 3.63 289,024 2.96 289,024
Informed 3.21 289,024 3.60 289,024

AGC 2.83 412,584 2.78 412,584

In Table 3 the MAE on the 10-node graph for different GNCDE configurations with only 2 layers is
reported.

Table 3: MAE on unseen data and number of trainable parameters for different selection of pairs for
outer and inner graph mechanism for the smaller model with a 2-layer architecture for the 10-node
graph

AVouter

Identity Informed

AVinner MAE # params MAE # params

Identity 2.80 289,084 1.92 289,084
Informed 2.62 289,084 2.75 289,084

AGC 2.09 412,074 1.94 412,072

8

A.7 Background on Neural Differential Equations

Neural Ordinary Differential Equations. NODEs (Chen et al. [2]) are time-continuous models that
use the structure of a differential equation to model the evolution of state variables y ∈ Rd:

y(0) = y0,
dy

dt
= fθ(t, y(t)).

The Lipschitz-continuous function fθ : R×Rd → Rd on the right hand side, the so called vector field
that guides the derivative in the equation is parametrized by an NN with parameters θ, and thereby
rendering it "neural". NODEs can be considered the continuous-time limit of residual networks. One
can bring an NODE also into an integral formulation:

y(0) = y0, y(t) = y(0) +

∫ t

0

fθ(s, y(s)) ds.

Neural Controlled Differential Equations. In comparison to the aforementioned NODE formulation
in integral form, in a NCDE [3] described by

y(0) = y0, y(t) = y(0) +

∫ t

0

fθ(y(s)) dx(s),

the continuous path y : [0, T] → Rdy must satisfy the equation which is driven by a control path
x(s) : [0, T] → Rdx that allows continuously introducing information from data at later points in
time. dx, dy ∈ N are the dimensionalities of the two paths x and y, respectively. The vector field
f : Rdy → Rdy×dx must be Lipschitz-continuous. NCDEs can be considered the continuous version
of RNNs.

9

	Introduction
	Related Work
	Learning Advection with Graph Neural Controlled Differential Equations
	Experiments
	Discussion
	Appendix
	Dimensions
	Adjacency matrices
	Edge transition matrix
	Applications
	Causality
	Additional Results
	Background on Neural Differential Equations

