
Under review as a conference paper at ICLR 2024

LEARNING COMMUNICATION-EFFICIENT OPTIMIZERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Communication-efficient variants of SGD, specifically local SGD, have received a
great deal of interest in recent years. These approaches compute multiple gradient
steps locally, that is on each worker, before averaging model parameters, helping
relieve the critical communication bottleneck in distributed deep learning train-
ing. Although many variants of these approaches have been proposed, they can
sometimes lag behind state-of-the-art optimizers for deep learning. In this work,
we incorporate local optimizers that compute multiple updates into a learned opti-
mization framework, allowing to meta-learn potentially more efficient local SGD
algorithms. Our results demonstrate that local learned optimizers can substan-
tially outperform local SGD and its sophisticated variants while maintaining their
communication efficiency. We show that the learned optimizers can generalize to
new datasets and architectures, demonstrating the potential of learned optimizers
for improving communication-efficient distributed learning.

1 INTRODUCTION

Rapidly training large-scale deep learning models is a problem of continued interest in the com-
munity. It requires a great deal of distributed computing resources that are often challenging to
efficiently utilize. In many distributed learning settings, the communication overhead associated
with distributed SGD can often lead to inefficient use of computing resources and reduced wall
clock times (Lin et al., 2018). This reliance on frequent communication is especially impractical
for training large models over heterogeneous hardware (Yuan et al., 2022). Moreover, it can in-
crease the cost and complexity of designing data center and other infrastructure to support the heavy
communication constraints.

The primary communication overhead of distributed SGD comes from the synchronization of gra-
dients computed by different workers. A recently popular direction to alleviate this overhead is
local SGD (Stich, 2019), where each worker computes multiple gradient steps independently before
aggregating the weights of their local models. This reduces the communication costs.

Local SGD, however, has a number of challenges limiting its practical use. Firstly, as the number of
local steps increases the local models may diverge from each other leading to a degradation of per-
formance (Wang et al., 2019). Secondly, local SGD can also be challenging to combine with state-
of-the-art adaptive optimization strategies that are needed to efficiently train many model classes
such as transformers (Vaswani et al., 2017). Finally, local SGD introduces a complex dynamic be-
tween the local and global updates, which can for example lead to complex interactions between
hyperparameters such as global and local learning rates (Reddi et al., 2020).

Learned optimization through meta-learning has been an increasingly important topic of research
interest (Andrychowicz et al., 2016). Advances have been made in both scalable architec-
tures (Wichrowska et al., 2017) and meta-learning strategies (Vicol et al., 2021). Recent works have
demonstrated highly competitive performance with state-of-the-art adaptive optimization strategies
(Metz et al., 2022a;b). Notably, Metz et al. (2022b) showed that scaling these approaches by increas-
ing the variety of meta-training scenarios and sophistication of the architecture can lead to strong
meta-generalization on new architectures and datasets. This progress suggests that these approaches
can potentially serve as off-the-shelf replacements for existing adaptive optimization methods.

In this work, we propose learned optimization as an approach to alleviate the challenges of
communication-efficient distributed learning. We, therefore, take the first steps to investigate if

1



Under review as a conference paper at ICLR 2024

learned optimization can be used to improve communication-efficient distributed learning, and in
particular local SGD and its variants. Our main contributions are:

• We demonstrate that learned optimizers can be used to augment local SGD for
communication-efficient distributed deep learning, outperforming strong baselines and
maintaining benefits when the number of local steps increases.

• We propose and evaluate two architectures for the learned optimization of local SGD.

• We demonstrate that our local learned optimizers, even when meta-learned on a single or
few architecture and dataset combinations, can generalize to new architectures and datasets
obtaining competitive results in communication-efficient distributed settings.

Overall, our results outline a promising future for communication-efficient distributed learning. We
will release our code publicly upon publication.

2 RELATED WORK

Local SGD and communication-efficient DL Local SGD has been analyzed in a number of
works (Stich, 2018; Lin et al., 2018) which demonstrated that it both theoretically and empirically
can lead to communication savings. It has also been shown that local SGD, particularly when com-
bined with phases of regular SGD, can lead to better generalization (Lin et al., 2018), while Ortiz
et al. (2021) found this generalization trend is less clear at large scale.

Wang et al. (2019) introduced the use of global or server-side momentum and showed that it can
accelerate local SGD as well as a number of decentralized and asynchronous stochastic algorithms.
A closely related algorithm has been proposed and extensively used in federated learning for com-
munication efficiency (McMahan et al., 2017; Li et al., 2019). Work in this field has largely fo-
cused on addressing the heterogeneity of data across workers or clients (Karimireddy et al., 2020;
Mishchenko et al., 2022). These advancements are generally achieved by hand-designed algorith-
mic enhancements, whereas our approach relies on more flexible and potentially more powerful
learnable mechanisms that may generalize these and more complex algorithms.

Another approach to communication-efficient learning is to compress the gradients or parameters.
Two popular strategies in this setting are sparsification (Stich et al., 2018; Shi et al., 2019) and quan-
tization (Alistarh et al., 2017) of the gradient. These strategies have also been combined in Wang
et al. (2023). This line of work is thus orthogonal but complementary to our proposal. Communi-
cation efficiency has also been studied in the decentralized setting (Nabli & Oyallon, 2022; Nabli
et al., 2023; Lian et al., 2018). Our work focuses on the centralized training setting but the methods
can also be extended to decentralized training.

Learning to Optimize (L2O) The idea of learning to learn and meta-learning has a long history
(Schmidhuber, 1992; Thrun & Pratt, 2012). Many early works in this area focused on learning to
efficiently acquire general knowledge or inductive bias. Hochreiter et al. (2001) proposed to use
meta-learning in direct combination with gradient-based optimization to learn a separate network,
which can be seen as a learned optimizer, which performs updates on another network. Andrychow-
icz et al. (2016) extended these ideas to a more scalable LSTM-based per-parameter architecture and
demonstrated that the learned optimizer can generalize to new problems.

A large number of follow up works have improved L2O methods (Wichrowska et al., 2017; Metz
et al., 2019; Chen et al., 2020; Metz et al., 2020; Harrison et al., 2022), see Chen et al. (2022);
Amos (2022) for surveys. These methods introduced different types of hierarchy into the learn-
able optimizer while simplifying its architecture in favor of stronger predefined features to improve
its efficiency. In Metz et al. (2022a), the efficiency of these methods was further analyzed in a
large-scale study and a highly efficient and simple per-parameter MLP model and feature extraction
approach was introduced, which we leverage in our work. However, compared to our work these
have not considered a distributed setting, where learnable optimizers may significantly alleviate the
communication bottleneck.

Ji et al. (2019) proposed to learn the aggregation of gradients from workers in a distributed learning
framework with a recurrent network. However, the focus was on improving non-local SGD while

2



Under review as a conference paper at ICLR 2024

our work focuses on the communication efficiency in settings where each worker returns a message
computed from multiple update steps. Furthermore, our approach is shown to generalize to new
architectures and datasets.

3 METHODOLOGY

Our method builds upon the local SGD framework (Stich, 2019), by learning to aggregate local
model weights {w(k)

t,h}
K−1
k=0 during communication rounds. Specifically, at each communication

round t, on all K clients, we take H local step of SGD using a local minibatch of size Bloc for
each local step h. After H local steps, we employ a per-parameter learned optimizer Fϕ to compute
the updated centralized weights. Fϕ receives as input the difference between the initial and final
weights (∆(k)

t ) for each worker k and the learned optimizer state (ut); it outputs the global update.
We provide a detailed description of the process in Algorithm 1. By computing the centralized
update using an expressive neural network Fϕ, our method can be seen as a generalization of existing
update methods such as taking the average iterate (Stich, 2018) or computing server-side momentum
updates (Wang et al., 2019).

Algorithm 1: Learned Local Optimization
Data: Number of iterations T ; Number of workers K; Number of local steps H; Local learning

rate γ; Initial weights w0,0; Initial learned optimizer state u0; Dataset D; Loss function
L; Learned optimizer Fϕ

1 for t ∈ {0, 1, . . . , T − 1} do
2 for k ∈ {0, 1, . . . ,K − 1} in parallel do
3 for h ∈ {0, 1, . . . ,H − 1} do
4 X

(k)
h , Y

(k)
h ← GET LOCAL MINIBATCH(D)

5 Local step: w(k)
t,h+1 ← w

(k)
t,h - γ∇wL

(
X

(k)
h , Y

(k)
h ;w

(k)
t,h

)
6 Difference in weights after H local steps: ∆(k)

t ← w
(k)
t,H −w

(k)
t,0

7 ∆t =
1
K

∑
∆

(k)
t

8 Compute AdaFactor features and update state: At,ut+1 = ADA(wt,0,ut,∆t)

9 Global update: wt+1,0 ← Fϕ

(
At,∆

(0,1,...,K−1)
t

)

3.1 LEARNED OPTIMIZER TRAINING AND ARCHITECTURES

We consider the meta-learning framework with a learned optimizer Fϕ with parameters ϕ that is
used to optimize a model with parameters w. In the meta-learning formulation, ϕ is obtained by
solving the following optimization problem:

min
ϕ

E(D,w0)∼T E(X,Y )∼D

(
1

T

T−1∑
t=0

L(X,Y ;Fϕ(·))

)
, (1)

where T is a distribution over optimization tasks defined as pairs of datasetD and initial weights w0

associated with a particular neural architecture, ϕ represents the weights of the learned optimizer,
and T is the length of the unroll which we write as a fixed quantity for simplicity. In practice, during
meta-optimization, we can vary T according to a truncation schedule (Metz et al., 2022a).

In our experiments, Fϕ is an MLP with 2 hidden layers and 32 hidden nodes per layer. The input to
Fϕ is based on a diverse set of features computed based on ∆t and state ut such as different kinds of
momentum analogous to adaptive optimizers and AdaFactor features (Shazeer & Stern, 2018; Metz
et al., 2022a). Their computation is detailed in supplement A.

LOpt-A Our first proposed variant of a locally learned optimizer uses ∆t, the average of the
updates from all workers, as an input feature and uses it to compute features along with the optimizer
state. This process is analogous to existing learned optimization proposed in Metz et al. (2022a)
where the role of the gradient is replaced with ∆t.

3



Under review as a conference paper at ICLR 2024

0 200 400 600 800 1000
Training Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ai

n 
Lo

ss

SGD
ADAM
Local SGD
SlowMo
LOpt-A
LAgg-A

(a) FMNIST

0 200 400 600 800 1000
Training Iterations

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

n 
Lo

ss

(b) Cifar-10

0 200 400 600 800 1000
Training Iterations

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

Tr
ai

n 
Lo

ss

(c) ImageNet

Figure 1: Learned optimizers enable communication-efficient learning. Our LOpt-A and LAgg-
A outperform strong communication-efficient baselines such as SlowMo and local SGD. They also
outperform well tuned standard optimization strategies at equivalent effective batch sizes.

LAgg-A Our second locally learned optimizer takes advantage of pre-aggregated information from
each worker, specifically it uses all the ∆

(k)
t as input to the MLP along with the AdaFactor features

computed from ∆t, the average of the updates from all workers: Fϕ

(
At,∆

(0,1,...,K−1)
t

)
. We refer

to it as a locally learned aggregator as it learns to aggregate the weights updates coming from K
workers. This variant generalizes our LOpt-A and is potentially more powerful, however, we found
that LOpt-A can also perform well while being simpler.

As discussed in Reddi et al. (2020) the class of local algorithms can be described with a server-side
optimizer and worker-side optimizer. For example, SlowMo (Wang et al., 2019) can be interpreted as
adding momentum to the server optimization. Our design of the learned optimizer architecture only
parameterizes the server-side optimization making its use more practical and scalable. Specifically,
standard learned optimizers have an overhead of memory and compute. The memory must store
state information and intermediate activations of the learned optimizer. In the case of our learned
optimizer, this overhead (Metz et al., 2022a) is only incurred at the aggregation stage. Similarly,
while the computational cost of the forward pass of learned optimizers provides a substantial over-
head compared to simple add and multiply operations of SGD and Adam, for the case of our learned
optimizer this cost becomes small with respect to the large amount of data processed on workers
during local updates.

4 EXPERIMENTS

Our empirical evaluation is based on standard supervised learning tasks with different dataset and
architecture combinations commonly studied in learned optimization literature Metz et al. (2022a).
All of the datasets and architectures in our study are presented here. For each task, we use a local
batch size Bloc of 128, while the rest of the configuration varies depending on the experiment.

We use the Fashion MNIST dataset (10 classes) with full-size 28× 28 images with 1 channel which
we refer to as FMNIST or FMNIST 28 × 28. We also use the CIFAR-10 dataset (10 classes) with
full-size 32× 32 images with 3 channels, referred this dataset as CIFAR-10 or CIFAR-10 32× 32.
Finally, we use the ImageNet dataset (1000 classes) with downsampled size 32× 32 images with 3
channels. We refer to this dataset as ImageNet or ImageNet 32× 32.

As for neural network architectures, we use multilayer perceptron (MLP) of two different sizes,
both with ReLU activations. The first has two layers of 128 hidden nodes each and we refer to it
as 2-Layer MLP. The second has three hidden layers of 128 hidden nodes each and we refer to it as
3-Layer MLP. We also use a convolutional neural network (CNN) of 3 layers with ReLU activations.
All 3 layers have convolution kernels of size 3 × 3 and use same padding. The first layer has 32
units and uses size 2 stride while the two other layers have 64 units and use size 1 stride. We refer
to this architecture as CNN. The number of output values depends of the dataset with which the
architecture is used.

4



Under review as a conference paper at ICLR 2024

0 200 400 600 800 1000
Training Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Lo

ss

SGD
ADAM
Local SGD
SlowMo
LOpt-A
LAgg-A

(a) H=4

0 200 400 600 800 1000
Training Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Lo

ss

(b) H=8

0 200 400 600 800 1000
Training Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Lo

ss

(c) H=16

Figure 2: LAgg-A outperforms all optimizers for H ∈ {4, 8, 16} local steps. All training curves
are reported for the 28 × 28 FMNST dataset. The top row plots training curves for a small CNN,
while the bottom row plots training curves for an MLP. All experiments use K = 8.

Table 1: Communication rounds until acheiving 0.2 loss value for different optimizers at dif-
ferent H values.

Optimizer H=4 H=8 H=16

Local SGD – 721 625
SlowMo 311 182 121
LOpt-A 119 121 89
LAgg-A 122 81 55

In our experiments, we first establish the superior convergence of our learned optimizers when eval-
uated in-distribution (Figure 1). We also demonstrate that our method scales to larger values of H
(Figure 2), larger values of K (Figure 3), and illustrate the importance of AdaFactor features to our
model’s success (Figure 5). We evaluate the performance of our learned optimizers on test loss when
targeting the validation loss during meta-training (Figure 4). Finally, we evaluate the generalization
capabilities of our models demonstrating they can obtain strong performance on unseen datasets and
unseen architectures (Figure 6) as well as generalize to different settings of H (Figure 7).

4.1 EXPERIMENTAL DETAILS

The following subsection provides a brief overview of the meta-training process of our learned
optimizers and presents the baseline optimizers used within our study.

Meta-training LOpt-A and LAgg-A To meta-train our learned optimizers we estimate gradients
using Persistent Evolutionary Strategies (PES) (Vicol et al., 2021) and take gradient descent steps
using AdamW and a linear warmup plus cosine decay schedule. Each gradient is estimated from
a batch of 8 tasks each unrolled to a specific number of steps, N . N varies throughout training
according to a log-uniform truncation schedule with minimum and maximum values of N = 100
steps and N = 1000 steps, respectively. Throughout our experiments, gradients are estimated with
respect to the optimizee’s training loss, except for the curves in Figure 4 whose gradients were
estimated with respect to the optimizee’s validation loss. During meta-training, the learning rate
is warmed up for 100 steps to a maximum learning rate before being decayed (following a cosine
decay schedule) to 1/3 of the maximum value. Extensive meta-training details are provided in the
supplement B.

Baselines To provide a comparison to non-local algorithms, we train models using SGD (Robbins,
1951) and Adam (Kingma & Ba, 2017) for a number of steps equivalent to the total number of
communication rounds used for the local methods. At each step, these baselines compute updates
using the same effective batch size K ×H ×Bloc as the local optimizers they are compared to. The
hyperparameters for SGD and Adam are provided in the supplement C. For each setting, we provide
the best-performing hyperparameter combination.

5



Under review as a conference paper at ICLR 2024

0 200 400 600 800 1000
Training Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Lo

ss

SGD
ADAM
Local SGD
SlowMo
LOpt-A
LAgg-A

(a) K=8

0 200 400 600 800 1000
Training Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Lo

ss

(b) K=16

0 200 400 600 800 1000
Training Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Lo

ss

(c) K=32

Figure 3: LAgg-A outperforms all optimizers for K ∈ {8, 16, 32} workers. All training curves
are reported for the 28 × 28 FMNST dataset. The top row plots training curves for a small CNN,
while the bottom row plots training curves for an MLP. All experiments use H = 4.

0 200 400 600 800 1000
Training Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Lo

ss

SGD
ADAM
Local SGD
SlowMo
LAgg-A

0 200 400 600 800 1000
Training Iterations

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 L
os

s

SGD
ADAM
Local SGD
SlowMo
LAgg-A

Figure 4: Directly targeting validation loss during meta-training obtains strong performance
on the test set. (Left) plots the training loss when optimizing models on the 2-Layer MLP FMNIST
task, while (Right) plots the validation loss. We observe that learned optimizers trained to optimize
validation loss generalize in our setting. All models were trained with K = 8 and H = 4. Hand-
designed optimizers were hyper-parameter-tuned to the validation set, while LAgg-A was meta-
trained to optimize validation loss.

Communication-Efficient Distributed Baselines We provide two communication-efficient dis-
tributed baselines: local SGD (Stich, 2019) and SlowMo (Wang et al., 2019). An extensive hyper-
parameter search is conducted for each baseline in every configuration. We detail the search process
and report the best hyperparameters in section C of the supplement.

4.2 EVALUATING LAGG-A AND LOPT-A IN DISTRIBUTION

In this section, we evaluate our proposed optimizers on three datasets using H = 4 iterations and
K = 8 workers. Following the evaluation protocol of Metz et al. (2022a), in each case, we meta-
train on a task (dataset and architecture pair) and perform evaluation on a new seed. That is, in
distribution evaluations test the generalization of the optimizer to new initialization of the model
and new ordering of the data. Results on FMNIST 2-Layer MLP (left), CIFAR-10 CNN (center),
and ImageNet 3-Layer MLP (right) are reported in Figure 1. We observe that our learned optimizers
enjoy strong convergence, obtaining lower training loss in fewer iterations than all baseline models.
Note that the SlowMo is well-tuned and represents a very competitive approach in the class of
methods that perform local updates Wang et al. (2019).

4.3 THE EFFECT OF LOCAL ITERATIONS (H )

We now analyze our local learned optimizers’ capability to scale to a larger number of local iterations
(H). Specifically, we vary H ∈ {4, 8, 16} and meta-train our learned optimizers on the FMNIST
2-Layer MLP task for each case. We also report the performance of corresponding tuned baselines
with the equivalent batch size. The results are reported in Figure 2. We also show the number of

6



Under review as a conference paper at ICLR 2024

0 200 400 600 800 1000
Training Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

n 
Lo

ss

Local SGD
SlowMo
LOpt
LOpt-A
LAgg
LAgg-A

Figure 5: Effect of different features on optimizer performance. Each curve is an average over
10 trials with different seeds. Shaded regions represent one standard error from the mean. Each
learned optimizer is trained and tested on FMNIST 2-Layer MLP at H = 4 and K = 8. Baseline
models use tuned hyper-parameters reported in Table 3 of the supplement.

communications to achieve a fixed training loss (0.2) in Table 1. We observe that even for relatively
high H (Lin et al., 2018) there is an improvement over the strong communication-efficient baselines.
As expected, Table 1 illustrates higher H yields more rapid convergence on a per training iteration
basis (due to more samples being processed). We also observe that LAgg-A begins to show a
substantial advantage compared to LOpt-A at this higher H value. We thus focus on this optimizer
in our subsequent meta-generalization studies.

4.4 EFFECT OF THE NUMBER OF WORKERS (K)

In Figure 3 we evaluate the performance of our method as the number of workers (K) increases.
Similarly to section 4.3, we vary K ∈ {8, 16, 32} and meta-train our learned optimizers on the
FMNIST 2-Layer MLP task for each case. We observe that our local learned optimizers gracefully
scale to more workers, reaching a lower loss in fewer iterations than all baselines by a significant
margin in each case.

4.5 ABLATING ADAFACTOR FEATURES

Our learned optimizer leverages powerful per-parameter learned optimization features proposed in
Metz et al. (2022a). Here we investigate how important these are to the performance of the opti-
mizer. Specifically, we consider directly feeding the ∆t or ∆1..K

t to the learned optimization MLP
network along with the parameter value and the 11 time features without adding any of the other
momentum or AdaFactor features described in supplement A. We denote these baselines as LOpt
and LAgg, respectively (excluding the -A). Results are presented in Figure 5. We observe that a
large improvement in convergence and training stability is obtained by using AdaFactor features in
both cases. However, we note that the performance of LOpt and LAgg alone still experiences im-
proved convergence early in training with respect to local SGD. These baselines have no momentum
calculations and the optimizer is an MLP (as opposed to a recurrent model) thus there is no way
to maintain history information (unlike SlowMo’s momentum). It is therefore notable that LAgg
can achieve similar, albeit slower, convergence to SlowMo during the first 600 iterations. However,
LAgg does seem to cause training instability from iteration 800 onwards. Interestingly, the models
trained with AdaFactor features do not suffer from such instabilities, despite being trained with the
same schedule as LAgg, further demonstrating their benefit.

4.6 ABLATING OUTER LOOP GENERALIZATION

Following conventions in the learned optimization literature (Metz et al., 2022b;a) our focus in
this work has been demonstrating the efficient convergence of the learned optimizer. Thus in our
experiments, the outer loop of the meta-learning problem (Eq. equation 1) evaluates the training data.
In this section, we demonstrate that we can also obtain strong performance on the validation data
using our learned optimizer. Figure 4 plots the training loss (left) and test loss (right) of our local
learned optimizers trained using the validation loss objective and baselines tuned using validation

7



Under review as a conference paper at ICLR 2024

0 200 400 600 800 1000
Training Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Lo

ss

Local SGD
SlowMo
LAgg-A-f
LAgg-A-cf

(a) FMNIST, 2-Layer MLP

0 200 400 600 800 1000
Training Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Lo

ss

Local SGD
SlowMo
LAgg-A-f
LAgg-A-cf

(b) FMNIST, 3-Layer MLP

0 200 400 600 800 1000
Training Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

n 
Lo

ss

Local SGD
SlowMo
LAgg-A-f
LAgg-A-cf

(c) FMNIST, CNN

0 200 400 600 800 1000
Training Iterations

0.5

1.0

1.5

2.0

2.5

Tr
ai

n 
Lo

ss

Local SGD
SlowMo
LAgg-A-f
LAgg-A-cf

(d) CIFAR-10, 2-Layer MLP

0 200 400 600 800 1000
Training Iterations

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Tr
ai

n 
Lo

ss

Local SGD
SlowMo
LAgg-A-f
LAgg-A-cf

(e) CIFAR-10, CNN

0 200 400 600 800 1000
Training Iterations

5.8

6.0

6.2

6.4

6.6

6.8

7.0

Tr
ai

n 
Lo

ss

Local SGD
SlowMo
LAgg-A-f
LAgg-A-cf

(f) ImageNet, 2-Layer MLP

0 200 400 600 800 1000
Training Iterations

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

Tr
ai

n 
Lo

ss

Local SGD
SlowMo
LAgg-A-f
LAgg-A-cf

(g) ImageNet, CNN

Figure 6: Meta-generalization to new datasets and new architectures. All optimizers were meta-
trained and hyper-parameter tuned for task (a). Meta-generalization is evaluated in three progres-
sively more difficult settings: new architectures same dataset (plots (b),(c)), new dataset same archi-
tecture (plots (d),(f)), and new dataset and new architecture (plots (e),(g)). Local learned optimizers
achieve strong generalization to different architectures on the same dataset, but experience difficul-
ties optimizing the same architecture on a new dataset. However, the improvements of performance
from LAgg-A-f to LAgg-A-cf in plot (f) shows that these issues can be mitigated by scaling training
tasks. Finally, both local learned optimizers evaluated generalize outside of the training data distri-
bution and architecture in plots (e) and (g).

loss. We observe a similar trend with respect to training loss for LAgg-A: it improves convergence
across the board when compared to baseline models. On the test loss plot, LAgg-A converges
significantly faster than other baselines reaching a test loss around iteration 200 that baselines only
reach after 600 iterations of training. We believe this strength of LAgg-A is attributable to the meta-
training objective (eq 1) that weights the validation loss from any iteration equally, encouraging
LAgg-A to immediately decrease the loss.

4.7 META-GENERALIZATION

This section evaluates the meta-generalization capabilities of our locally learned optimizers in
communication-efficient settings. The results are reported in Figures 6 and 7. In Figure 6, we
evaluate generalization in three progressively more difficult settings: new architectures same dataset
(plots (b),(c)), new dataset same architecture (plots (d),(f)), and new dataset and new architecture
(plots (e),(g)). In Figure 7, we evaluate the capability of our local learned optimizers trained at one
H value to generalize to another. For simplicity, we focus on evaluating LAgg-A as it generally
performs as well or better than LOpt-A. LAgg-A-f is trained on the FMNIST, 2-Layer MLP task,
while LAgg-A-cf is trained on a two-dataset task using FMNIST and CIFAR-10 with the same 2-
Layer MLP. All baseline models use hyperparameters tuned on the FMNIST 2-Layer MLP task.

8



Under review as a conference paper at ICLR 2024

Every model is trained using K = 8 and H = 4 with the exception of LAgg-A H=16 (trained using
K = 8 and H = 16).

Generalization to unseen architectures We observe that our learned optimizers can generalize to
unseen architectures (Fig 6 plots (b),(c)). In particular, LAgg-A-f trained on 2-Layer MLP tasks can
perform well on a CNN and an MLP of different depth, highlighting the practicality of our approach.
Performance in the case of the CNN is particularly strong without having observed this architecture
during training

0 200 400 600 800 1000
Training Iterations

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai

n 
Lo

ss

SlowMo
LAgg-A H=4
LAgg-A H=16

Figure 7: LAgg-A trained at H = 16
generalizes to H = 4. We observe that
LAgg-A H=16 trained at H = 16,K =
8 improves upon a strong SlowMo base-
line at H = 4,K = 8.

Generalization to unseen datasets We observe that
LAgg-A meta-trained on FMNIST 2-Layer MLP strug-
gles to optimize the same architecture on CIFAR-10 and
Imagenet. We note, however, that including an addi-
tional task (CIFAR-10, MLP) during meta-learning can
significantly improve performance. Specifically, we ob-
serve that this learned optimizer (LAgg-A-cf) is able to
generalize to both of its in-distribution tasks (CIFAR-
10 and FMNIST MLP) as well as improve performance
on Imagenet MLP. This suggests that stronger meta-
generalization can be achieved by scaling the training
tasks in our communication-efficient setting as has been
demonstrated for standard optimization settings in the
learned optimization literature (Metz et al., 2022b).

Generalization to unseen datasets and architectures
Interestingly, we observe (Fig 6 plots (e),(g)) that both
learned optimizers, Lagg-A-f and LAgg-A-cf achieve
strong generalization when varying both the dataset

(CIFAR-10 and ImageNet) and the architecture (CNN).

L-Agg-A trained for more local updates can generalize We also evaluate whether models
trained with a given number of local steps can generalize to variations in the number of local steps.
Results are shown in Figure 7, here we observe that a model trained with H=16 can still perform
competitively (exceeding SlowMo) when meta-evaluated with 4 local steps.

These results establish the existence of meta-generalization capabilities (Metz et al., 2022a;b) for
locally learned optimizers. Moreover, they demonstrate that such optimizers can also generalize to
different values of H , suggesting that it is possible to obtain local learned optimizers that are general
in H and in tasks by scaling training compute and task variety while using higher H values.

5 CONCLUSION

We have demonstrated the utility of learned optimization for improving communication-efficient
distributed training of deep networks. We have proposed two local learned optimizer architectures
for this setting: LAgg-A and LOpt-A. Our results illustrate that these optimizers can effectively be
applied in communication-efficient distributed settings; that they can scale to larger values of H
and K; that local learned optimizers exhibit generalization capabilities to unseen architecture and
datasets; and that they are also capable of generalizing from large to smaller H values.

These findings establish learned optimization as a promising direction for improving
communication-efficient distributed training algorithms for deep learning. Given the generalization
capabilities of local learned optimizers, future work focusing on scaling such approaches to larger
number of architectures, datasets, and local steps can potentially obtain very efficient training algo-
rithms. Furthermore, applications of these techniques can be made in other communication-efficient
distributed learning contexts, specifically decentralized and federated learning.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. Advances in neural in-
formation processing systems, 30, 2017. 2

Brandon Amos. Tutorial on amortized optimization for learning to optimize over continuous do-
mains. arXiv e-prints, pp. arXiv–2202, 2022. 2

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in neural information processing systems, 29, 2016. 1, 2

Tianlong Chen, Weiyi Zhang, Zhou Jingyang, Shiyu Chang, Sijia Liu, Lisa Amini, and Zhangyang
Wang. Training stronger baselines for learning to optimize. Advances in Neural Information
Processing Systems, 33:7332–7343, 2020. 2

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Zhangyang Wang, Howard Heaton, Jialin Liu, and
Wotao Yin. Learning to optimize: A primer and a benchmark. The Journal of Machine Learning
Research, 23(1):8562–8620, 2022. 2

James Harrison, Luke Metz, and Jascha Sohl-Dickstein. A closer look at learned optimization:
Stability, robustness, and inductive biases. Advances in Neural Information Processing Systems,
35:3758–3773, 2022. 2

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In Artificial Neural Networks—ICANN 2001: International Conference Vienna, Austria, August
21–25, 2001 Proceedings 11, pp. 87–94. Springer, 2001. 2

Jinlong Ji, Xuhui Chen, Qianlong Wang, Lixing Yu, and Pan Li. Learning to learn gradient aggre-
gation by gradient descent. In IJCAI, pp. 2614–2620, 2019. 2

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020. 2

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. 5

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019. 2

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic
gradient descent. In International Conference on Machine Learning, pp. 3043–3052. PMLR,
2018. 2

Tao Lin, Sebastian U. Stich, and Martin Jaggi. Don’t use large mini-batches, use local SGD. CoRR,
abs/1808.07217, 2018. URL http://arxiv.org/abs/1808.07217. 1, 2, 7

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017. 2

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and correcting pathologies in the training of learned optimizers. In International
Conference on Machine Learning, pp. 4556–4565. PMLR, 2019. 2

Luke Metz, Niru Maheswaranathan, C Daniel Freeman, Ben Poole, and Jascha Sohl-Dickstein.
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using
them to train themselves. arXiv preprint arXiv:2009.11243, 2020. 2

Luke Metz, C. Daniel Freeman, James Harrison, Niru Maheswaranathan, and Jascha Sohl-Dickstein.
Practical tradeoffs between memory, compute, and performance in learned optimizers, 2022a. 1,
2, 3, 4, 6, 7, 9

10

http://arxiv.org/abs/1808.07217


Under review as a conference paper at ICLR 2024

Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile learned
optimizers by scaling up. arXiv preprint arXiv:2211.09760, 2022b. 1, 7, 9

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip: Yes!
local gradient steps provably lead to communication acceleration! finally! In International Con-
ference on Machine Learning, pp. 15750–15769. PMLR, 2022. 2

Adel Nabli and Edouard Oyallon. Dadao: Decoupled accelerated decentralized asynchronous opti-
mization for time-varying gossips. arXiv preprint arXiv:2208.00779, 2022. 2

Adel Nabli, Eugene Belilovsky, and Edouard Oyallon. A2CiD2: Accelerating asynchronous com-
munication in decentralized deep learning. arXiv preprint arXiv:2306.08289, 2023. 2

Jose Javier Gonzalez Ortiz, Jonathan Frankle, Mike Rabbat, Ari Morcos, and Nicolas Ballas. Trade-
offs of local sgd at scale: An empirical study. arXiv preprint arXiv:2110.08133, 2021. 2

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020. 1, 4

Herbert E. Robbins. A stochastic approximation method. Annals of Mathematical Statistics, 22:
400–407, 1951. URL https://api.semanticscholar.org/CorpusID:16945044.
5

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992. 2

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pp. 4603–4611. PMLR, 2018. URL
http://proceedings.mlr.press/v80/shazeer18a.html. 3, 13

Shaohuai Shi, Xiaowen Chu, Ka Chun Cheung, and Simon See. Understanding top-k sparsification
in distributed deep learning. CoRR, abs/1911.08772, 2019. URL http://arxiv.org/abs/
1911.08772. 2

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint
arXiv:1805.09767, 2018. 2, 3

Sebastian U. Stich. Local sgd converges fast and communicates little, 2019. 1, 3, 6

Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory.
CoRR, abs/1809.07599, 2018. URL http://arxiv.org/abs/1809.07599. 2

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012. 2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017. 1

Paul Vicol, Luke Metz, and Jascha Sohl-Dickstein. Unbiased gradient estimation in unrolled com-
putation graphs with persistent evolution strategies. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp. 10553–
10563. PMLR, 2021. URL http://proceedings.mlr.press/v139/vicol21a.
html. 1, 5

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael G. Rabbat. Slowmo: Improving
communication-efficient distributed SGD with slow momentum. CoRR, abs/1910.00643, 2019.
URL http://arxiv.org/abs/1910.00643. 1, 2, 3, 4, 6

11

https://api.semanticscholar.org/CorpusID:16945044
http://proceedings.mlr.press/v80/shazeer18a.html
http://arxiv.org/abs/1911.08772
http://arxiv.org/abs/1911.08772
http://arxiv.org/abs/1809.07599
http://proceedings.mlr.press/v139/vicol21a.html
http://proceedings.mlr.press/v139/vicol21a.html
http://arxiv.org/abs/1910.00643


Under review as a conference paper at ICLR 2024

Jue Wang, Yucheng Lu, Binhang Yuan, Beidi Chen, Percy Liang, Christopher De Sa, Christopher
Re, and Ce Zhang. CocktailSGD: Fine-tuning foundation models over 500Mbps networks. In An-
dreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp. 36058–36076. PMLR, 23–29 Jul 2023.
URL https://proceedings.mlr.press/v202/wang23t.html. 2

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo,
Misha Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and gen-
eralize. In International conference on machine learning, pp. 3751–3760. PMLR, 2017. 1, 2

Binhang Yuan, Yongjun He, Jared Davis, Tianyi Zhang, Tri Dao, Beidi Chen, Percy S Liang,
Christopher Re, and Ce Zhang. Decentralized training of foundation models in heterogeneous
environments. Advances in Neural Information Processing Systems, 35:25464–25477, 2022. 1

12

https://proceedings.mlr.press/v202/wang23t.html


Under review as a conference paper at ICLR 2024

A LEARNED OPTIMIZERS ARCHITECTURE AND FEATURES

Both our proposed learned optimizers, LOpt-A and LAgg-A, consist of a 2 hidden layer, 32 hidden
nodes per layer MLP with a ReLU activation function. They share some common input features that
are detailed in Table 2 and denoted ADA(·) in the main text. All but the time features are normalized
to have a second moment of 1 across the tensor. These features track momentum, second moments
and AdaFactor row and column features stored in the inner state ut of the learned optimizer, which
are updated at each time step. Unlike prior work, all our computations are based on the average
update, ∆t. All the coefficients, βi, are learnable parameters obtained during meta-optimization.
More details of the computations for obtaining the AdaFactor row and column features can be found
in Shazeer & Stern (2018).

Table 2: Common input features of LOpt-A and LAgg-A.

Description

parameter value wt

3 momentum values with coefficients β1, β2, β3 mt,i = βimt−1,i + (1− βi)∆t

second moment value computed from ∆t with decay β4 vt = β4vt−1 + (1− β4)∆
2
t

3 values consisting of the three momentum values normal-
ized by the square root of the second moment

mt,i√
v

the reciprocal square root of the second moment value 1√
v

3 ∆t AdaFactor normalized values ∆t × ROW FACTOR × COLUMN FACTOR

3 tiled AdaFactor row features with coefficients β5, β6, β7,
computed from ∆t

rt,i = βirt−1,i + (1− βi)ROW MEAN(∆2
t )

3 tiled AdaFactor column feature with coefficients
β5, β6, β7 computed from ∆t

ct,i = βict−1,i + (1− βi)COL MEAN(∆2
t )

the reciprocal square root of the previous 6 features 1√
rt,i OR ct,i

3 m AdaFactor normalized values mt,i × ROW FACTOR × COLUMN FACTOR

11 time features computed from the current timestep t and
x ∈ {1, 3, 10, 30, 100, 300, 1000, 3000, 10k, 30k, 100k} tanh

(
t
x

)

The state tracked by the learned optimizer thus includes

ut = {mt,1,mt,2,mt,3, vt, rt,1, rt,2, rt,3, ct,1, ct,2, ct,3, t}

Note that the AdaFactor row features are computed on a per-tensor basis. Specifically, the
ROW MEAN and COL MEAN operation is applied on a per tensor basis. For each tensor, the cor-
responding components of ∆2

t are reshaped and their row and column means are computed. For
more details please see Shazeer & Stern (2018).

Our first learned optimizer, LOpt-A, has another input feature, ∆t, the average of all ∆(k)
t coming

from the K workers, for a total of 39 input features. Our second learned optimizer, LAgg-A, had
K other input features which are all the different ∆(k)

t coming from the K workers, for a total of
38 +K input features. Those features are also normalized like the others.

Both MLP output two values, a magnitude m and a scalar direction d that are use to compute the
parameter update with the formula λ1d exp (λ2m) where λ1 and λ2 are constants values of 0.001 to
keep initial step sizes small.

With all of this in mind we can compute the number of meta-parameters ϕ in the MLP for each
of our learned optimizers. LOpt-A has a total of 2402 meta-parameters, while LAgg-A for values
K ∈ {8, 16, 32} respectively have 2626, 2882 and 3394.

13



Under review as a conference paper at ICLR 2024

B META-TRAINING PROCESS

As stated in equation 1, our meta-learning objective is the average loss over T iterations. This
optimization problem usually requires long unrolls of the compute graph. We alleviate problems
that can arise from long unrolls by using Persistent Evolution Strategies (PES) to compute estimates
of the gradients. In our study, we use a truncation schedule that samples unroll lenghts N from a
log-uniform distribution with a minimal value of N = 100 and a maximum value of N = 1000
(the maximum value with which we evaluate our learned optimizers). The idea being that we don’t
always need to compute the whole inner problem each time and we can rather use information from
a shorter subsequence of the problem to update the weights ϕ of our learned optimizer. Our partial
unrolls used with PES have a length of 50.

For most of the learned optimizers in our study, we meta-trained for 5 000 steps. The only exceptions
are the learned optimizers used in section 4.3 and the learned optimizer meta-trained for ImageNet
that were meta-trained for 10 000 steps. During meta-training, we used AdamW as our optimizer
with a warmup cosine decay schedule. The learning rate starts at 3e−10 and warms up linearly to
the peak value of 3e−3. It then decays to the final value of 1e−3 until the end of meta-training.

C BASELINES

For every configuration in which we used the baseline optimizers, namely the architecture,
the dataset and the different values of K and H , we ran an exhaustive hyperparame-
ter sweep over the following values. For SGD and Adam, we searched over the learn-
ing rate α ∈ {1, 5e−1, 1e−1, 5e−2, 1e−2, 5e−3, 1e−3, 5e−4, 1e−4, 5e−5, 1e−5}. For
local SGD, we searched over the local learning rate γ ∈ {1, .5, .3, .1}. For SlowMo,
we varied the local learning rate γ ∈ {1, 0.5, 0.3, 0.1}, the slow learning rate α ∈
{1/γ, 5e−1/γ, 1e−1/γ, 5e−2/γ, 1e−2/γ, 5e−3/γ, 1e−3/γ, 5e−4/γ, 1e−4/γ, 5e−5/γ, 1e−5/γ}
and the momentum β ∈ {0.99, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5}. The best hyper-
parameters for each configuration are regrouped in Table 3.

Table 3: Best hyperparameters for baselines

Configuration SGD (α) Adam (α) local SGD (γ) SlowMo (γ / α / β)

FMNIST 28 × 28, 2-Layer
MLP, K = 8, H = 4

0.1 0.01 0.3 0.1 / 1 / 0.95

FMNIST 28 × 28, 2-Layer
MLP, K = 8, H = 8

0.1 0.005 0.3 0.1 / 1 / 0.95

FMNIST 28 × 28, 2-Layer
MLP, K = 8, H = 16

0.1 0.005 0.1 0.1 / 1 / 0.95

FMNIST 28 × 28, 2-Layer
MLP, K = 16, H = 4

0.1 0.005 0.5 0.1 / 1 / 0.95

FMNIST 28 × 28, 2-Layer
MLP, K = 32, H = 4

0.1 0.005 0.5 0.3 / 1.66 / 0.9

CIFAR-10 32×32, CNN, K =
8, H = 4

1 0.01 1 0.5 / 2 / 0.9

ImageNet 32 × 32, 3-Layer
MLP, K = 8, H = 4

1 0.001 0.3 0.1 / 1 / 0.85

14


	Introduction
	Related Work
	Methodology
	Learned Optimizer Training and Architectures

	Experiments
	Experimental details
	Evaluating LAgg-A and LOpt-A In Distribution
	The Effect of Local Iterations (H)
	Effect of the Number of Workers (K)
	Ablating AdaFactor Features
	Ablating Outer Loop Generalization
	Meta-generalization

	Conclusion
	Learned Optimizers Architecture and Features
	Meta-training Process
	Baselines

