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Abstract

Enhancing large language models by simply scaling up datasets has begun to
yield diminishing returns, shifting the spotlight to data quality. Monte Carlo Tree
Search (MCTS) has emerged as a powerful technique for generating high-quality
chain-of-thought data, yet conventional approaches typically retain only the top-
scoring trajectory from the search tree, discarding sibling nodes that often contain
valuable partial insights, recurrent error patterns, and alternative reasoning strate-
gies. This unconditional rejection of non-optimal reasoning branches may waste
vast amounts of informative data in the whole search tree. We propose SIGMA
(Sibling Guided Monte Carlo Augmentation), a novel framework that reintegrates
these discarded sibling nodes to refine LLM reasoning. SIGMA forges semantic
links among sibling nodes along each search path and applies a two-stage refine-
ment: a critique model identifies overlooked strengths and weaknesses across the
sibling set, and a revision model conducts text-based backpropagation to refine
the top-scoring trajectory in light of this comparative feedback. By recovering
and amplifying the underutilized but valuable signals from non-optimal reasoning
branches, SIGMA substantially improves reasoning trajectories. On the challeng-
ing MATH benchmark, our SIGMA-tuned 7B model achieves 54.92% accuracy
using only 30K samples, outperforming state-of-the-art models trained on 590K
samples. This result highlights that our sibling-guided optimization not only sig-
nificantly reduces data usage but also significantly boosts LLM reasoning.

1 Introduction

Scaling laws show that large language model (LLM) performance typically improves as model size
and training data increase [23]. However, recent studies show that simply adding more common
training data leads to diminishing returns, especially on complex reasoning tasks [38, 50]. This
has led to a shift toward structured supervision, where detailed annotations help the model solve
problems step by step [29, 12, 50, 55, 3]. Among these methods, chain-of-thought (CoT) expla-
nations have proven especially effective [50], helping LLLMs break down and solve reasoning tasks
in a more organized way. Large-scale CoT datasets, such as DART-Math (~590K samples) and
MMIQC (~2.3M samples), have demonstrated strong effectiveness in improving mathematical rea-
soning. Recent studies further show that even medium-sized models can achieve competitive per-
formance when trained on such datasets [46, 31]. As illustrated in Figure 1, high-quality datasets
can substantially enhance LLM reasoning capabilities while requiring far fewer training samples.
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Figure 1: Anillustration of the reasoning performance of fully fine-tuned DeepSeekMath-7B models
on the MATH benchmark dataset. The models are trained on different datasets, with training data
sizes ranging from 15K to 2300K.

However, constructing such datasets demands substantial computational resources and human ef-
fort, underscoring the need for more efficient methods to generate high-quality data. A promising
direction is to automatically synthesize CoT examples using tree-based search strategies. Recently,
Monte Carlo Tree Search (MCTS) has been adopted for this purpose [0], where a language model
explores a branching structure by proposing and scoring candidate reasoning steps. After sufficient
exploration, MCTS selects a single high-reward path as the final solution. While effective, this
approach discards all sibling nodes—alternative reasoning steps that were explored but ultimately
not selected. These discarded paths often contain informative signals, such as partially correct rea-
soning steps, recurring error patterns, and alternative reasoning strategies. Ignoring them limits the
potential to extract comprehensive and structured feedback from the search process.

To address the above-mentioned issue, we introduce a new framework that reuses this lateral in-
formation to improve the selected reasoning path. We propose SIGMA (SIbling Guided Monte
Carlo Augmentation), which augments MCTS-based reasoning by treating sibling nodes as sources
of symbolic feedback. At each step along the selected path, SIGMA compares the chosen node
to its siblings to derive natural language critiques. These critiques function as approximate gradi-
ents—textual signals indicating how the reasoning step should be revised. A revision model then
uses these signals to refine each step in the path. SIGMA integrates the strengths of search-based
exploration and feedback-based optimization. Inspired by recent advances in symbolic supervi-
sion via LLM-generated feedback [58], it enables reasoning refinement without additional rollouts
or ground-truth labels. By systematically incorporating information from all nodes produced dur-
ing search, SIGMA produces higher-quality reasoning paths while maintaining computational ef-
ficiency. Experiments show that this refinement significantly improves downstream performance,
offering a data-efficient alternative to large-scale dataset construction.

Our main contributions in this paper are as follows:

* We introduce SIGMA, a new framework that improves the selected reasoning path by
incorporating sibling nodes discarded during MCTS. We aim to develop a principled data-
synthesis framework that systematically exploits previously overlooked information to en-
hance the reasoning capabilities of larage language models.

* We leverage only the existing information from the MCTS search tree to perform sym-
bolic optimization over reasoning paths, requiring no additional rollouts or external reward
models. This design enables seamless integration into existing data generation pipelines.

* Our produced SIGMA-15K outperforms all 30K-scale baselines, and SIGMA-30K re-
mains better or competitive with 60K-scale methods across multiple base model.Our results
demonstrate the effectiveness of the proposed framework, which leverages sibling nodes to
optimize reasoning paths.



2 Related Works

Math Data Synthesis Large math corpora such as WIZARDMATH and METAMATH have pushed
chain-of-thought supervision into the millions, while multiple studies report that accuracy plateaus
once data volume exceeds a few million examples [33, 56, 57, 5, 47]. To break this ceiling, re-
cent work explores three complementary directions: difficulty-aware sampling, which allocates
more generation or retention budget to problems deemed hard via pass-rate variance or confidence
scores [45]; tool-augmented generation, which weaves external library calls into the reasoning trace

so the model offloads symbolic or numeric sub-tasks [48, 16]; and feedback-driven filtering, which
keeps only traces that satisfy verifier or preference signals, prioritising step-level quality over raw
quantity [28, 30, 54, 61, 60]. Building on difficulty-aware sampling, DART-Math adapts the sam-

pling budget on-the-fly, giving extra rejection-sampling trials to harder questions [40]; while Math-
Fusion fuses multiple source problems into sequential, parallel, and conditional “mega-prompts” to
promote relational reasoning [37]. However, these methods seldom exploit the internal structure of
incorrect or discarded traces, missing opportunities to learn from intermediate reasoning failures.

Language-Model Feedback Optimization Recent work has begun to close the feedback loop by
letting a model use its own outputs as training signals. The idea traces back to SELF-REFINE, where
a model iteratively critiques and rewrites its answers to improve without new data[34]. DSPy
generalises this to full pipelines, compiling a graph of text transformations whose prompts are au-
tomatically tuned [24]. Reflection then becomes explicit: SELF-RAG inserts special tokens so the
model learns when to retrieve and how to critique its draft[2], while RL CONTEMPLATION treats
the model’s own evaluations as a reward, removing the need for external labels [36]. In mathematics,
MATH-SHEPHERD builds a fully automatic, step-level reward pipeline that verifies and reinforces
reasoning without human annotations [49]. The paradigm is unified by TEXTGRAD, which back-
propagates natural-language feedback through generative pipelines ranging from code to molecular
design [58]. Extensions already leverage this principle to repair code via divide-and-conquer con-
sensus [7] and to scale automated process verifiers for math reasoning [41]. Yet most frameworks
lack mechanisms to propagate fine-grained feedback across alternative reasoning paths, limiting
their ability to exploit structured variation during search.

Math Reasoning with Monte-Carlo Tree Search As single-path CoT prompting reaches its lim-
its, a growing body of work turns to branching search, letting the model explore multiple par-
tial solutions before committing. Tree-structured exploration offers an alternative to single-chain
prompting. The idea first appeared in TREE-OF-THOUGHTS, which framed reasoning as an ex-
plicit breadth- or depth-first search over “thoughts”[55]. Subsequent work replaced exhaustive
search with Monte-Carlo Tree Search (MCTS): REST-MCTS* performs process-reward—guided
rollouts and iteratively retrains the policy and value heads [59]; ALPHAMATH-ALMOST-ZERO
adds a learned value head to steer step-level beam search without human labels [6]; MULBERRY
runs collective MCTS across multiple models to build a 260k multimodal tree-of-reasoning cor-
pus [53]; VERMCTS couples MCTS with a lightweight verifier to synthesise step-correct programs
for proofs [4]; and preference-learning variants treat each rollout as a pairwise comparison and fine-
tune via DPO [52]. While these approaches lift accuracy by sampling and selecting stronger reason-
ing paths, they also incur heavy inference cost and depend on auxiliary reward models or external
tools, which complicates deployment. Moreover, current methods discard sibling branches after
selection, underutilizing the diverse intermediate reasoning states already produced during search.

3 Method

In this section, we introduce the proposed SIGMA framework, a two-stage approach that integrates
MCTS-based CoT data generation with sibling-level refinement to improve the quality of selected
candidate reasoning paths. As shown in Figure 2, the process begins with an MCTS-based reasoning
engine that explores the space of multi-step CoT paths and selects an optimal path of depth D based
on high-reward feedback. This selected path is then refined iteratively, one step at a time, using
feedback from its sibling nodes. At each depth, we first compare the chosen node with its siblings
to identify discrepancies that serve as feedback. A critique model then acts as a symbolic gradient
oracle, generating directional cues in natural language rather than numerical gradients. These textual
gradients are used to revise the candidate path through a textual gradient descent (TGD) process.



The following subsections detail the generation of candidate CoT paths using MCTS, the construc-
tion of sibling guidance, and the refinement of these paths based on the guidance.

Sibling Guided Monte Carlo Augmentation
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Figure 2: The main SIGMA framework for enhanced CoT data generation.

3.1 MCTS Reasoning Path Selection

We leverage MCTS as a tree search procedure to select a promising reasoning path. Starting from
the initial state (the problem statement), MCTS iteratively builds a search tree of possible next
reasoning steps (nodes), simulating outcomes and using those simulations to decide which branches
to expand. We denote the finally selected path as 7 = {p(™, p(® ... p(P)}, where p(?) is the index
of the branch chosen at depth d € {1,2, ..., D} and D is the largest depth. Each simulation (rollout)
of MCTS reaches depth D, obtains a terminal reward R (e.g. correctness or utility of the final
answer), and then backpropagates this reward up the tree. During backpropagation, each node n on
the path of the simulation updates its value estimate V), to reflect the new outcome. For example, on
each depth d, one common update is an incremental average:

1
N, +1

where NV, is the visit count for node n. This recursively propagates the simulation’s result to all
ancestor nodes, akin to Bellman backups in dynamic programming. Additionally, MCTS uses a
selection policy to balance exploration and exploitation. We adopt the Upper Confidence bound for
Trees (UCT) criterion to select the child c of a node n by UCT:

Vi < Vi + (R—V,), (1)

¢ =arg max UCT(n,j), where UCT(n,c)=V,.+c¢cp- In Nn,
J€EC(n) N,

V. is the current value of the child ¢, N, denotes the counts visits of the child ¢, C(n) denotes the
set of all child nodes of node n. and ¢, is an exploration constant. This UCT formula encourages
traversal of high-value branches (V, large) while occasionally exploring less-visited siblings (via the
second term). After a sufficient number of simulations, the search converges to a high-value path.
Finally, MCTS selects only the top path: 7* (the sequence of branch choices p(*P)) is returned as
the candidate solution CoT with highest estimated reward. We next describe how we refine this path
using sibling-based feedback.

2

3.2 Sibling Guidance to Refine Reasoning Path

As illustrated in the left panel of Figure 3, To capture latent supervision from nearby alternatives, we
define a symbolic loss over sibling nodes. Ateach depthd € {1,..., D}, we compute a discrepancy

cfjx{ between the selected node p(®) and its siblings, defined as the children of p{¢~1) excluding p(®
itself. For simplicity, we omit the subscript “(d)”. Let T, be the textual content of the selected step,
and {7} scs(p) the texts of its siblings, where S(p) denotes the set of all sibling nodes that share the
same parent as the selected node p. This restriction to siblings under a shared parent ensures that all
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Figure 3: Visualization of the gradient computation process involving sibling nodes and the original
optimal path. Node identifiers follow a hierarchical format: for instance, 0-2 denotes the second
node at depth 1, and 0-2-3 denotes the third child of node 0-2 at depth 2.

candidates are conditioned on the same local context, preserving alignment in the partial reasoning
path. As a result, observed differences can be reliably attributed to step-level content rather than
upstream variation.

Liexw = @ (T, {Ts [ s € Sp)}), 3)

where ® is a symbolic operator that compares the selected content to its siblings, which synthesizes
the comparisons between the selected node p and all its siblings s € S(p). Unlike scalar loss values,
Liext 18 a structured natural language output that consolidates multi-perspective judgments into a
unified textual feedback. This provides a contrastive signal at each decision point, where sibling
steps act as localized references that reveal potential omissions or errors.

Since Ly is non-differentiable in the conventional sense that operats over natural language rather
than continuous parameters, we introduce a Critique Large Language Model Cy 1y that serves as a
symbolic gradient oracle. Given (T, {7’ }ses(p))» CLum produces a natural language critique that
suggests how to revise T}, to reduce the loss.

8£text

Gi= a7,

= CLLM (Tp, {TS ‘ S € S(p)}) . (4)

The output G is not a numerical gradient, but a symbolic directional cue encoded in natural language.
For instance, Crpm may produce a message such as: “Add a justification for this computation,” or
“Avoid ambiguity present in sibling s.” These critiques serve as surrogate gradients for optimizing
textual reasoning through revision.

3.3 Revision of Original Reasoning Path

Figure 2 presents a textual example of a candidate CoT data alongside its refined version generated
by the proposed SIGMA framework. Given the textual gradient GG, we update the corresponding
reasoning step by applying a single iteration of Textual Gradient Descent (TGD). In classical gra-
dient descent, a parameter x is updated as x < x — n - L/0x, where 7 is the step size. In our
case, there is no explicit numerical step size or arithmetic subtraction. Instead, we employ a Revise
Large Language Model Ripm that plays the role of an optimizer. Given the current text 7}, and its

corresponding gradient GG defined in Eq.(4), the revise LLM Ry generates an improved version 1),
intended to reduce the loss L. This update is abstracted as TGD.step(-) and defined as follows:

T, < TGD.step (T}, G) = Rum(Tp, G) . (5)

Thatis, Tp is revised based on the critique G. For instance, if GG indicates that an arithmetic step lacks
justification, the revise model Rypy will attempt to incorporate the necessary rationale, yielding a
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Figure 4: A textual example of the proposed SIGMA framework including three aspects: Original
MCTS, critique feedback, and SIGMA path.

more complete 7;,. This procedure is applied iteratively in a step-wise manner. At each depth d,
a single textual gradient update is applied to 7)), while keeping all other steps fixed. Sequential
updates across d = 1 to D transform the original path 7* into a revised chain 7T, which exhibits
greater coherence and robustness. Each update is localized and incremental, resembling a single
coordinate-wise descent step in a high-dimensional optimization problem. After D such updates,
the procedure effectively completes one full pass of coordinate descent over the chain-of-thought.

The sibling-guided TGD process may be viewed as iterative refinement, where each reasoning step
is adjusted in light of its siblings, ultimately yielding a more coherent global solution. Notably, our
method operates in a model-agnostic manner and does not require access to the internal gradients
or parameters of the underlying LLM. All updates are conducted in the space of natural language,
mediated through Cypy and Rypym. The final output is a refined chain-of-thought that preserves the
structural strengths discovered by MCTS while improving local reasoning quality through targeted
textual feedback. For instance, Figure 4 showcases the SIGMA framework’s workflow using the
mathematical problem: “What’s the remainder when 72019 is divided by 100”. In addition, some
illustrative examples are provided in Appendix F.By refining the chosen MCTS path with step-
specific critique feedback, SIGMA path improved the rigor and logical consistency though shares
the same answer as the original path.

4 Experiments

4.1 Experimental Setups

Reasoning Path Selection. We adopt the Qwen2.5-Math-7B as the generation model to construct
search trees based on prompts from MATH [20] and GSMS8K [13]. At each node, we decode
n = 3 candidate completions and select the highest-scoring one from k = 5 samples, ranked by
log-probability, with a maximum tree depth of 16. To enhance diversity, we generate two MCTS
datasets using decoding temperatures of 0.4 and 0.7, each contributing 15K examples to form a
combined 30K training set. From each search tree, we extract the path with the highest cumulative
Q-value. At every depth d, we retain the selected node p(®) and up to two sibling nodes S(p(?)
from the same parent node to construct a candidate set for step-wise refinement.

Original Reasoning Path Refinement. For each step, we construct a loss&critique prompt that
includes the textual content of the selected node T, and its sibling nodes S (p'4)). This prompt
is fed into the critique model to evaluate and compare the reasoning quality among the candidates,
producing a textual gradient G?) that highlights potential improvements. A separate revision prompt



is then constructed using both T, and G, which is passed to the revision model to generate a
refined version of the reasoning step. This sibling-guided refinement is applied independently at
each depth d, resulting in local improvements without altering the overall structure of the reasoning
path. We use GPT-40-mini-2024-07-18 [1] as both the critique model and the revision Model.

4.2 Implementation Details

We fine-tune three representative base models: a math-specialized language model, DeepSeekMath-
7B [42], and two general-purpose models, LLaMA3-8B [17] and Mistral-7B-v0.1 [22]. We full-
finetuned and evaluated those base models on 4 x H100 GPUs. To evaluate both effectiveness and
generalizability, we conduct experiments using the SIGMA-refined 15K and 30K training subsets.
For each model, we search for the optimal combination of learning rate and batch size, keeping
all other hyperparameters fixed. We follow the official DART-Math evaluation protocol [46] and
reuse their publicly released test scripts to evaluate all models under a zero-shot greedy decoding
setting. For each base model, we report performance on both in-domain (ID) and out-of-domain
(OOD) mathematical reasoning tasks. The ID evaluation includes GSMS8K [13] and MATH [20].
The OOD evaluation include four benchmarks: CollegeMath [44], which contains 2,818 university-
level problems spanning seven mathematical domains; DeepMind Mathematics [40], a curriculum-
aligned suite of 1,000 problems designed for students up to age 16; OlympiadBench-Math [19],
which consists of 675 Olympiad-level problems from international contests; and TheoremQA [9],
which evaluates symbolic reasoning using theorem statements from various STEM disciplines.

We compare SIGMA-tuned models against a wide range of competitive baselines, including both
instruction-tuned and reinforcement-optimized approaches. These include MetaMath [56], Wizard-
Math [33], MMIQC [31], MathScale [44], RefAug [60], DART-Math [46] and MathFusion [37].
For DeepSeekMath-7B, we additionally include its official supervised variant [42]. Base models
that are fine-tuned directly on MATH and GSM8K without augmentation are reported under the
Standard setting. Most baseline results are taken from MathFusion [37] or DART-Math [46], where
applicable.

4.3 Main Results

Table 1 summarizes the performance of base models fine-tuned on our SIGMA datasets (SIGMA-
15K and SIGMA-30K), alongside models fine-tuned on large-scale datasets generated by various
baseline methods.Furthermore, we present an extended analysis of performance across six different
benchmarks in Appendix B, offering a complete view of the evaluation results.

SIGMA-15K Beats All 30K Models. With only 15K training examples, SIGMA-15K outper-
forms all prior methods trained on 30K samples across all three model backbones. For example, on
DeepSeekMath-7B, SIGMA-15K achieves 47.0 average accuracy, exceeding the best 30K baselines
such as MathFusion-DSMath-7B (45.7) and MathFusion-DSMath-7B (Sequential) (45.7). Similar
trends are observed on Mistral-7B (31.6 vs. 29.9 from MathFusion) and LLaMA3-8B (36.1 vs. 35.6
from MathFusion), demonstrating SIGMA’s superior data efficiency.

LLaMA3-8B Series. The upper part of the table presents the performance of the LLaMA3-8B
model series. Controlling for identical data budgets (30K samples), our SIGMA-8B-30K model
achieves an overall average of 37.7, a 2.1-point absolute gain over the MathFusion-30K baseline.
Notably, SIGMA-30K outperforms MathFusion-30K on every benchmark, with the largest improve-
ment on the DeepMind set (+5.5). Even when using only 15K samples, our SIGMA-15K model
still achieves a 36.0 average, 0.4 points higher than MathFusion-30K trained with double the data.
Moreover, scaling to 60K samples yields a significant boost to 40.2 average accuracy, surpassing
DART-Math-60K (37.6) and establishing a new best performance within this family. These results
highlight SIGMA’s strong data efficiency and scalability.

Mistral-7B Series. The second part of Table 1 reports fine-tuning results on the Mistral-7B-
v0.1 backbone. With a 30K sample budget, SIGMA-7B-30K achieves 34.9, a 5.0-point gain over
MathFusion-30K (29.9), and outperforms it on every task, most notably +14.5 on DeepMind. Even
using just 15K samples, SIGMA-7B-15K scores 31.6, still 1.7 points above MathFusion-30K. When
scaled to 60K samples, SIGMA-7B-60K reaches 36.9, outperforming the DART-Math-60K model
(32.9) and demonstrating consistent improvement with data scaling.



Table 1: Performance comparison across base models and training strategies. Results are reported
as exact-match accuracy under 0-shot greedy decoding(temperature = 0). All scores were obtained
from the first attempt. Arrows indicate accuracy changes relative to the baseline in blue background.
Some results are quoted from MathFusion [37] and some are quoted from DART-Math [46].

Model # Samples In-Domain Out-of-Domain AVG

MATH GSMS8K College DM Olympiad Theorem
LLaMA3-8B (General Base Model)

Llama3-8B-MetaMath 400K 325 773 206 350 5.5 13.8  30.8
Llama3-8B-RFT 590K  39.7  81.7 239 417 9.3 149 352
Llama3-8B-DART-Math 590K  46.6  8l1.1 28.8  48.0 14.5 194 397
Llama3-8B-MMIQC 23M 395 776 29.5 410 9.6 162  35.6
Llama3-SIGMA-8B-15K 15K 36.0 82.0141 242 420 10.5  22.015.036.110.5
Llama3-SIGMA-8B-30K 30K 40.812.079.571.6 26.310.847.515.5 12.770.1 19.172.137.712.1
MathFusion (Sequential) 30K 388 779 25.1 420 12.6 17.0  35.6
MathFusion (Conditional) 30K 347 769 212 274 11.9 15,5 313
MathFusion (Parallel) 30K 38.1 75.4 255 419 119 189 353
Llama3-8B-MetaMat 60K 28.7 1785 19.7 313 53 16.1 299
Llama3-8B-MMIQC 60K 244 69.7 134 309 5.2 10.6 257
Llama3-8B-RefAug 60K 203  68.6 155 29.1 5.5 13.0 253
Llama3-8B-DART-Math 60K 39.6 822 279 399 12.9 229 376
MathFusion-Llama3-8B 60K 46.5 79.2 279 434 17.2 20.0 39.0
Llama3-SIGMA-8B-60K 60K 449 824132 28.1 49.2158 153  21.311.340.271.2
Mistral-7B-v(.1 (General Base Model)
Mistral-7B-MetaMath 400K 29.8 76.5 19.3  28.0 5.9 14.0 289
Mistral-7B-WizardMath-V 1.1 418K 323 804 23.1 384 7.7 16.6  33.1
Mistral-7B-RFT 590K  38.7 823 242 356 8.7 16.2 343
Mistral-7B-DART-Math 590K 455  81.1 294 451 14.7 17.0  38.8
Mistral-SIGMA-7B-15K 15K 30.0 75.371.4 20.811.939.51102 7.7 16.310.831.671.7
Mistral-SIGMA-7B-30K 30K 35.512.878.614.7 22.113.243.8114.5 11.171.8 18.012.534.915.0
MathFusion (Sequential) 30K 327 739 189 293 9.3 15,5 299
MathFusion (Conditional) 30K 26.3  73.0 156 214 7.3 12.8  26.1
MathFusion (Parallel) 30K 309 75.1 20.9  26.5 11.0 152 299
Mistral-7B-MMIQC 60K 173 614 11.1 135 5.0 5.9 19.0
Mistral-7B-RefAug 60K 174 63.1 12,5  18.1 39 11.1 21.0
Mistral-7B-MetaMath 60K 22,7 708 14.1 272 5.0 122 253
Mistral-7B-DART-Math 60K 341 772 234 36.0 8.7 182 329
MathFusion-Mistral-7B 60K 41.6  79.8 243 392 13.6 18.1 36.1
Mistral-SIGMA-7B-60K 60K 403  79.2 24.1 46.1169 123  19.211.136.910.8
DeepSeekMath-7B (Math-Specialized Base Model)
DeepSeekMath-7B-RFT 590K  53.0 882 419 60.2 19.1 272 483
DeepSeekMath-7B-DART-Math 590K 53.6  86.8 40.7 61.6 21.7 322 494
DeepSeekMath-7B-Instruct 780K 469 827 371 522 14.2 28.1 435
DeepSeekMath-7B-MMIQC 23M 453 79.0 353 529 13.0 234 415

DeepSeekMath-SIGMA-7B-15K 15K 52.2123 81.1145 374 645 20.3  26.113.347.0113
DeepSeekMath-SIGMA-7B-30K 30K 54.915.082.2156 36.7 67.2126 21.6  26.613.848.212.5

MathFusion (Sequential) 30K 499  76.6 38.8 64.6 21.6 22.8 457
MathFusion (Conditional) 30K 485 74.6 370 552 19.3 19.0 423
MathFusion (Parallel) 30K 509  76.7 3890 622 19.0 23.8 453
DeepSeekMath-7B-MMIQC 60K 263  60.6 192 415 10.4 6.8 27.5
DeepSeekMath-7B-RefAug 60K 331 716 262 354 10.5 14.0 318
DeepSeekMath-7B-MetaMath 60K 40.0 79.0 332 459 9.5 189 378

DeepSeekMath-7B-DART-Math 60K 514 829 391 6238 21.0 274 474
MathFusion-DeepSeekMath-7B 60K 534 779 39.8 658 233 24,6 475
DeepSeekMath-SIGMA-7B-60K 60K  56.513.1 81.713.8 37.2 68.4126 22.5 29.314.749.311.8




Table 2: Ablation study on 15K datasets. Results are reported as exact-match accuracy under 0-shot
greedy decoding(temperature = 0). SIGMA outperforms both the unrefined MCTS best-path and
GPT-40-mini CoT (Blackbox) baselines under identical training settings.

Model # Samples MATH GSMS8K College DM Olympiad Theorem AVG
DeepSeekMath-7B-Blackbox 15K 50.5 77.3 38.6 62.0 19.1 25.8 45.5
DeepSeekMath-7B-MCTS 15K 40.7 583 302 437 18.1 10.7 33.6
DeepSeekMath-SIGMA-7B-15K 15K 52.271.7 81.113.8 37.411.2 64.512.5 20.371.2 26.170.3 46.911.4
Llama3-8B-Blackbox 15K 345 779  21.1 399 11.1 16.6 335
Llama3-8B-MCTS 15K 27.8 402 183 343 12.6 8.5 23.6
Llama3-SIGMA-8B-15K 15K 36.071.5 82.014.1 24.273.1 42.012.1 10.5/2.1 22.015.4 36.112.6
Mistral-7B-Blackbox 15K 312 68.1 206 377 10.5 6.1 29.0
Mistral-7B-MCTS 15K 217 456  20.1 254 11.1 8.3 22.0
Mistral-SIGMA-7B-15K 15K 30.0{1.2 75.317.2 20.810239.511.8 7.7.34 16.318.0 31.672.6

Table 3: Comparison of different Critique-and-Revision (C&R) configurations under 15K training
samples. Results are reported as pass@1 exact-match accuracy under 0-shot greedy decoding (tem-
perature = 0). (C&R) denotes using the model as a Critique and Revision model.

C&R Model / Method MATH GSMS8K College DM Olympiad Theorem AVG
Llama3-8B Series

Qwen2.5-7B-Instruct (C&R) 353  77.1 217 395 9.6 169 333
Qwen2.5-72B-Instruct (C&R) 36.3 789 232 394 98 180 343
GPT40-mini (C&R) 36.0 820 242 420 105 22.0 36.1
MathFusion (30K Avg.) 372 76.7 239 37.1 121 17.1  34.1
Mistral-7B-v0.1 Series

Qwen2.5-7B-Instruct (C&R)  28.8 79.3 184 333 6.7 13.5  30.0
Qwen2.5-72B-Instruct (C&R) 30.6  76.8 21.1 353 6.8 156 310
GPT40-mini (C&R) 30.0 75.3 20.8 39.5 7.7 163  31.6
MathFusion (30K Avg.) 300 740 185 257 9.2 145 286

DeepSeekMath-7B-Base Series

Qwen2.5-7B-Instruct (C&R)  49.8 80.6 383 606 184 241 453
Qwen2.5-72B-Instruct (C&R) 51.3 81.9 399 648 175 23.8 465
GPT40-mini (C&R) 522 81.1 374 645 203 26.1 47.0
MathFusion (30K Avg.) 49.8 76.0 382 60.7 20.0 219 444

DeepSeekMath-7B Series. Our DeepSeekMath-SIGMA-7B-30K model achieves a 48.2 average
across six benchmarks, 2.5 points higher than MathFusion-30K (45.7) and even 0.7 points above
MathFusion-DSMATH-7B trained on 60K samples (47.5). SIGMA-7B-15K still attains 47.0, 1.3
points above MathFusion-30K. Further scaling to 60K examples yields 49.7 average accuracy, set-
ting a new state-of-the-art among all tested models. These results show that with just 30K-60K
synthetic examples, our SIGMA pipeline not only outperforms all MathFusion variants regardless
of data budget, but also scales effectively with larger synthetic datasets.

Overall, with a comparable or smaller number of tokens(Detailed token-level statistics are provided
in Appendix D), SIGMA datasets yield consistent and significant improvements across all model
backbones and data budgets. Even small-scale SIGMA sets (15K) outperform large-scale baselines
(30K-60K), while scaling to 60K examples further extends the advantage, highlighting the robust-
ness and scalability of our synthetic data generation strategy. Beyond mathematical reasoning tasks,
we further evaluate the applicability of the SIGMA framework on non-mathematical domains. As
reported in Appendix C, the results demonstrate that our approach exhibits strong generality across
diverse tasks.

4.4 Ablation Studies

To better assess the impact of SIGMA’s sibling-guided refinement, we conduct two controlled ab-
lation experiments across all three base models: DeepSeekMath-7B, LLaMA3-8B, and Mistral-7B-



v0.1. In all settings, the number of training samples is fixed at 15K, and training configurations
remain identical to SIGMA-15K.

Comparison to vanilla MCTS paths. We construct a baseline by extracting the selected best path
from each MCTS tree used in SIGMA-15K, without applying any refinement. These paths are di-
rectly used as training targets, forming the MCTS-15K dataset. As shown in Table 2, SIGMA
significantly outperforms vanilla MCTS across all models: +13.3 on DeepSeekMath-7B (46.9 vs.
33.6), +12.5 on LLaMA3-8B (36.1 v.s 23.6), and +9.6 on Mistral-7B (31.6 v.s 22.0). These improve-
ments highlight SIGMA’s ability to densify the learning signal from existing MCTS trees without
additional generation.

Comparison to black-box CoT generation. To further isolate the effect of sibling-based refine-
ment, we compare our SIGMA-15K against BLACKBOX-15K, a dataset generated by prompting
GPT-40-mini-2024-07-18 with a standard prompt to obtain Chain-of-Thought (CoT) outputs for
each problem in the SIGMA-15K query set. Despite sharing the same generator model, SIGMA con-
sistently outperforms black-box generation on DeepSeekMath (+1.4), LLaMA3 (+2.6), and Mistral
(+1.6) in average accuracy. Notably, SIGMA achieves this without relying on full-solution sampling,
instead leveraging internal structural comparisons among sibling nodes to guide refinement.

Replacing the Teacher Model. To examine the generality of SIGMA’s Critique-and-Revision
(C&R) pipeline, we replace the teacher model used in refinement with several alternatives, including
Qwen2.5-7B-Instruct, Qwen2.5-72B-Instruct, and GPT-40-mini. As reported in Table 3,
all teacher models substantially enhance student performance compared to the MathFusion (30K
Avg.) baseline, even under the same 15K data budget. Notably, GPT-40-mini (C&R) achieves the
strongest results across all three backbones, reaching 47.0 average accuracy on DeepSeekMath-7B,
36.1 on LLaMA3-8B, and 31.6 on Mistral-7B. These findings indicate that SIGMA’s refinement
process is highly transferable: larger or more capable teachers yield proportionally better student
performance, yet even smaller open-weight models (e.g., Qwen2.5-7B) maintain strong gains. This
demonstrates that SIGMA’s C&R mechanism is not tied to a specific teacher model and can gener-
alize across instruction-tuned LLMs with varying scales.

These results confirm that SIGMA enhances the supervision quality of MCTS data by extracting and
reusing informative contrastive signals from partial rollouts. Even under identical data budgets and
generator capabilities, SIGMA yields superior downstream performance.

5 Conclusion

In this work, we focus on enhancing the utility of MCTS-generated reasoning traces by revisiting
the discarded sibling nodes. We propose SIGMA, a refinement framework that leverages sibling
comparisons and gradient-like language model feedback to improve the quality of step-by-step rea-
soning data. By applying SIGMA to MCTS paths, we construct compact yet high-quality datasets
(SIGMA-15K,SIGMA-30K and SIGMA-60K), which consistently outperform much larger base-
lines across multiple base models. Despite using only one-fourth to one-half the training volume of
typical instruction-tuning datasets, SIGMA consistently improves mathematical reasoning perfor-
mance across model families and task domains.

Limitations. While our framework demonstrates promising results, several limitations remain.
First, the use of GPT-40-mini as the backbone model may restrict overall performance due to its
relatively limited capabilities compared to larger models. Second, we focus on full fine-tuning of
7B-scale models and do not explore larger models, which could potentially yield stronger results.
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A Evaluation Result on Qwen2.5-Math-7B

Table 4: Comparison of SIGMA and other math reasoning models based on Qwen2.5Math-7B.
Results are reported aspass@1 exact-match accuracy under 0-shot greedy decoding (temperature =
0) across six mathematical reasoning benchmarks.

Model # Samples MATH GSMS8K College DM Olympiad Theorem AVG
Rstar@Greedy 747K 7840 89.70  52.50 - 47.10 - -

Eurus-2-7B-PRIME 230K 53.88 4299 2097 4730 2222 18.62 34.33
OpenMath-Nemotron-7B 3.2M 40.52 7339 3293 5470 1141 13.63 37.76
gwen2.5math-instruct 2.5M 82.16 95.15 46.80 82.00 41.60 40.75 64.74
AceMath-7B-Instruct 2.3M 75.40  58.38 4582 59.70  39.85 30.75 51.65
DART-Math-60K 60K 63.14 91.28 4723 7490 26.81 3538 56.46
MathFusion-60K 60K 56.14 5959 37.08 67.70 41.19 27.87 48.26
SIGMA-60K (ours) 60K 79.92 89.23 45.17 88.80 43.41 47.00 65.59

To further verify the broad applicability of the SIGMA framework beyond DeepSeek-Math-7B, we
conduct additional experiments on the Qwen2.5-Math-7B model. As shown in Table 4, SIGMA-60K
achieves an average accuracy of 65.6, outperforming all baseline models by clear margins across six
benchmarks.

Compared with Rstar[ 18], SIGMA-60K achieves similar results on MATH and GSM8K while show-
ing stronger robustness on more complex tasks such as DeepMind and Theorem. Relative to Eurus-
2-7B-PRIME[ 14] and OpenMath-Nemotron-7B[10], SIGMA surpasses them by +31.3 and +27.8
points in average accuracy respectively, despite using far fewer training samples. When compared to
the Qwen2.5math-instruct base model, SIGMA-60K still gains +0.9 overall, with particularly large
improvements on DeepMind (+6.8) and Theorem (+6.2). Over AceMath-7B-Instruct[32], the aver-
age gain reaches +13.9, showing consistent advantage across all tasks. Furthermore, SIGMA-60K
outperforms both DART-Math-60K and MathFusion-60K by +9.1 and +17.3 in average accuracy,
respectively, achieving the best results on every individual benchmark.

Overall, these results confirm that SIGMA’s improvements are not limited to a specific base model:
even when applied to Qwen2.5Math-7B, the framework maintains strong generalization and delivers
substantial gains across diverse mathematical reasoning tasks.

B Analysis of Performance Across Six Different Benchmarks

In Appendix B, We provide a benchmark level breakdown across six diverse mathematical reason-
ing tasks (GSMS8K][ 3], MATH[20], College[44], DeepMind[40], Olympiad[ 9], and Theorem[9]),
highlighting SIGMA’s robustness and its ability to generalize across varying levels of problem dif-
ficulty.

To systematically quantify how each data construction technique impacts performance across our
six benchmarks:GSM8K, MATH, College, DeepMind, Olympiad, and Theorem.We present differ-
ent benchmarks’ analysis comparing SIGMA with MetaMath [56], MMIQC [31], RefAug [60],
DART-Math, and MathFusion (Figure 5). We highlight both absolute and relative gains, as well
as consistency across the three backbone models, to demonstrate SIGMA’s robustness and general
applicability.

60K-Sampled Datasets Comparsion Across Six Benchmarks. GSMS8K: SIGMA consistently
outperforms MathFusion across all base architectures. Furthermore, it matches the performance
of DART-Math, and remarkably, all three models converge to nearly identical accuracies when
fine-tuned with our method. MATH: On the more demanding MATH benchmark, SIGMA deliv-
ers substantial gains over DART-Math for every backbone. In particular, it also exceeds MathFu-
sion’s results on both LLaMA and DeepSeekMath, underscoring its robustness on complex arith-
metic reasoning. College: In the College evaluation, SIGMA yields pronounced improvements
for Mistral and DeepSeekMath. This demonstrates the strength of our data generation in enhanc-
ing performance on intermediate-difficulty problems. DeepMind: SIGMA outstrips all competing
approaches—including DART-Math and MathFusion—by a wide margin on DeepMind. The consis-
tent uplift across every model highlights its effectiveness on advanced reasoning tasks. Olympiad:
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Figure 5: Performance comparison of models fine-tuned on 60k-sample datasets generated by dif-
ferent methods, evaluated across six benchmark tasks. Different colored dots represent different
methods.
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Figure 6: Performance comparison of models fine-tuned on 30k-sample datasets generated by dif-
ferent methods, evaluated across six benchmark tasks. Different colored dots represent different
methods.

For the Olympiad benchmark, SIGMA falls slightly short of MathFusion on LLaMA and Mistral
but outperforms it on DeepSeekMath. Crucially, it still achieves clear, uniform improvements over
DART-Math across all three architectures. Theorem: On Theorem, SIGMA secures a clear advan-
tage over MathFusion, confirming its ability to generate data that strengthens formal and symbolic
reasoning.

30K-Sampled Datasets Comparsion Across Six Benchmarks. As shown in Figure 6, GSM8K:
SIGMA surpasses all baselines on GSM8K when fine-tuned with 30 K samples, demonstrating
consistent superiority across multiple base models. MATH: On MATH benchmark, SIGMA deliv-
ers marked gains over every competing method, showing stable uplift across different base models.
College: In College evaluations, SIGMA yields notable improvements for each architecture, demon-
strating that our data construction effectively enhances general-purpose models’ ability for reasoning
challenging mathematical problems. DeepMind: SIGMA delivers substantial gains over MathFu-
sion on DeepMind tasks, underscoring its strong adaptability to DeepMind dataset. Olympiad: For
Olympiad problems, SIGMA maintains consistent gains over DART-Math across all backbones and
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Figure 7: Performance comparison of models fine-tuned on 15k-sample datasets generated by our
SIGMA 15k and 30k-sample datasets generated by other methods, evaluated across six benchmark
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narrows the gap with MathFusion, confirming robust performance on competition-level questions.
Theorem: On the Theorem dataset, SIGMA achieves uniform improvements over every baseline,
illustrating that its advantages in theorem reasoning persist regardless of dataset size.

SIGMA-15K vs. 30K-Scale Methods: Performance Across Six Benchmarks. As shown in
Figure 7, GSM8K: With 15K training samples, SIGMA still leads all augmentation strategies on
GSMBK, delivering uniformly higher accuracies across LLaMA, Mistral and DeepSeekMath and
narrowing performance disparities among them. MATH: Even at reduced scale, SIGMA achieves
clear improvements on MATH, outperforming each baseline and preserving its edge on all three
backbones. College: In the College evaluation, SIGMA demonstrates a pronounced advantage,
boosting each architecture’s capability to tackle intermediate-difficulty tasks despite the limited
training data. DeepMind: SIGMA adapts effectively to the DeepMind dataset, surpassing Math-
Fusion and other approaches across all backbones, which underscores its resilience on complex
reasoning challenges. Olympiad: On Olympiad questions, SIGMA outperforms DART-Math for
every base model and approaches MathFusion’s standard, confirming its steady competitiveness on
high-difficulty problems even at reduced scale. Theorem: For the Theorem benchmark SIGMA sus-
tains its lead over all competing strategies, demonstrating that its strengths in reasoning persist when
trained on only fifteen thousand instances.

C Evaluation on Commensense Reasoning Tasks

To further evaluate the generalization capability of the SIGMA method on text-based reason-
ing tasks, we compared the performance of SIGMA framework against several baselines (Zero-
shot, SKD[51, 27], Distill Step-by-Step[21], Rephrase Question[56], Question Aug[26], An-
swer Aug[56], and Revthink[8]) on three commonsense reasoning datasets: CommonsenseQA
(CSQA)[43], StrategyQA (SQA)[ 5], and ARC-Challenge (ARC)[ ! 1]. Following the experimental
setup of RevThink, we fine-tune Mistral-7B-Instruct-v0.3 and Gemma-7B-Instruct using the LoRA
with data generated by SIGMA. All results are reported as pass@1 exact-match accuracy under
0-shot greedy decoding (temperature = 0). Detailed results are presented in Table 5.

As clearly shown in Table 5, the SIGMA method significantly outperforms all baseline methods
across all three datasets (SQA, CSQA, ARC) and also achieves the highest average accuracy on
both Mistral-7B-Instruct-v0.3 and Gemma-7B-Instruct models. Specifically, on Mistral-7B, SIGMA
achieves an average accuracy of 75.74%, showing a noticeable improvement over the second-best
method, Revthink (+0.66). The advantage of SIGMA is even more pronounced on Gemma-7B,
where it reaches an average accuracy of 73.63%, considerably surpassing Revthink(+2.36).
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Table 5: Performance comparison of different reasoning methods on Mistral-7B-Instruct-v0.3 and
Gemma-7B-Instruct. Results are reported as pass@1 exact-match accuracy under O-shot greedy
decoding (temperature = 0).

Mistral-7B-Instruct-v(.3 Gemma-7B-Instruct
Methods
SQA CSQA ARC AVG SQA CSQA ARC AVG
Zero-shot 53.89 62.57 73.68 63.38 5633 66.26 6834 63.64
SKD 63.76 71.86 74.66 70.09 56.77 7248 73.29 67.51

Distill Step-by-Step 64.19 71.92 7532 70.48 56.77 73.01 7292 67.57
Rephrase Question  65.07 70.19 74.51 69.92 54.15 7022 7237 65.58

Question Aug 65.07 7223 7332 7021 5721 68.11 72.74 66.02
Answer Aug 66.38 69.12 76.77 70.76 57.21 73.01 73.92 68.05
Revthink 70.97 75776 78.50 75.08 64.19 7453 75.09 7127

SIGMA (Ours) 71.62  76.30 79.30 75.74 67.40 75.40 78.10 73.63

These results strongly demonstrate the effectiveness of the SIGMA method. Fine-tuning with our
proposed approach significantly enhances the models’ performance on purely text-based common-
sense reasoning tasks, validating the method’s strong generalization ability across different models
and tasks.

D Computation and Data Efficiency Analysis

Table 6: Comparison of synthesis costs for different methods. GPU cost, API cost, and total cost are
measured in USD.

Method GPU Type GPUHours Price APICost Total Cost
DART-Math A100 3840 0.9 - 3456
SIGMA (GPT-40-mini as C&R) RTX 4090 168 0.35 47.6 106.4
SIGMA (Qwen2.5-7B-Instruct as C&R)  RTX 4090 200 0.35 - 70.0

We further analyze the synthesis cost and data efficiency of the SIGMA framework. As a data-
efficient approach, maintaining low synthesis and computational cost is central to SIGMA’s prac-
ticality and scalability. Unlike previous data generation pipelines, SIGMA does not require any
additional model training during synthesis. We use Qwen2.5-Math-7B for MCTS generation, a
publicly available pretrained model from HuggingFace, requiring approximately 42 GPU hours on
an RTX 4090 for generating full MCTS trees for a 15K-sample dataset.

For the refinement phase, we employ GPT-40-mini to process the 15K MCTS trees, resulting in
a total prompt token count of 33.6M and completion token count of 11.4M, with an API cost of
11.7 USD. Processing 60K examples with GPT-4o0-mini costs only 47.6 USD. A detailed compar-
ison of synthesis costs is shown in Table 6. Compared to DART-Math, which requires 3,840 GPU
hours on A100s ($3,456 total), SIGMA reduces the total cost by more than 30x. When replacing
GPT-40-mini with the open-weight Qwen2.5-7B-Instruct as the Critique and Revision model,
the total cost further decreases to only $70, while maintaining comparable refinement quality. These
results highlight SIGMA’s efficiency and flexibility in reducing both computational and monetary
overhead. In addition to computational efficiency, we analyze the token usage of SIGMA and sev-

Table 7: Token-level comparison across datasets. SIGMA achieves higher performance with a com-
parable or smaller token budget.

Dataset Tokens (LLaMA3-8B tokenizer)
DART-Math 190,441,618

MMIQC 94,093,794

RefAug 54,228,136

MetaMath 110,278,040
MathFusion 40,437,234

SIGMA 44,064,782
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eral baseline datasets to assess data efficiency. All token counts are measured using the LLaMA3-8B
tokenizer. As shown in Table 7, SIGMA-15K contains 11.5M tokens, while SIGMA-60K contains
44M tokens—comparable to MathFusion’s 60K dataset (40M tokens) yet achieving substantially
higher accuracy. This demonstrates SIGMA’s superior token-level data efficiency: with a similar
token budget, it provides denser supervision and stronger generalization across benchmarks.

E Training Setup

All fine-tuning experiments were carried out on four NVIDIA H100 GPUs with DeepSpeed2 ZeRO
[39] optimizations, operating in mixed precision [35] (FP16) to maximize memory efficiency and
throughput.

The computation sequence token length was fixed at 4096 to capture long range mathematical rea-
soning. We set per_device_train batch_size=8 and used gradient_accumulation_steps=4
to accumulate gradients.

We used the AdamW [25] optimizer with weight decay of 0.01. A cosine decay learning
rate scheduler was applied with a linear warmup over the first 3 percent of total training steps
(warmup_ratio=0.03) to prevent instability. All models were trained for 3 epochs.

Initial learning rates were tuned per model:

* DeepSeekMath-7B: 5 x 10~°
o Mistral-7B: 4 x 106
» LLaMA3-8B: 1 x 107°

We logged metrics at regular intervals during training and validation. Random seeds were fixed and
model checkpoints were saved after each epoch to ensure reproducibility.

F Examples

In Appendix F, we present detailed examples and Q&A examples to provide deeper insight into
the mechanism by which the SIGMA method refines reasoning data. Appendix F.1 illustrates how
SIGMA refines reasoning steps on both geometry and algebra problems. Appendix F.2 presents
additional SIGMA-refined reasoning paths for questions from MATH and GSMS8K datasets.

F.1 Detailed examples

Example 1. Geometry

Question: The altitude to the hypotenuse of a triangle with angles of 30° and 60° is 3 units.
What is the area of the triangle, in square units? Express your answer in simplest radical
form.

#Picture below is compiled from Asymptote code in question line.

Answer: The area is square units.
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MCTS Selected Path:
(0-1): Step: Calculate the length of the hypotenuse:

(0-1-2):

hypotenuse = 2 - 3
Step: Calculate the length of the base:

hypot
base — [YPO 2enuse

(0-1-2-1): Step: Calculate the length of the altitude:

altitude = 3

(0-1-2-1-1): Step: Calculate the area of the triangle:

area = 0.5 - base - altitude

The answer is:

Step-by-Step Sibling Comparison and Critique:

Step 1:

Step 2:

Step 3:

Step 4:

Sibling(0-2):Step:Calculate the length of the hypotenuse using
the altitude and the 60-degree angle.We use the relationship
in a 30°-60°-90° triangle.Since the altitude from the right
angle to the hypotenuse is 3 units, the hypotenuse is:
hypotenuse = 21/3.

Sibling(0-0):Step:Calculate the length of the legs of the
triangle.Using triangle ratios again, the longer leg (opposite
the 60° angle) is:leg length = 3v/3.

Evaluation: Step 0-0 incorrectly assumes a leg length without relating it to the
given altitude; step 0-2 correctly uses the 30°—60°—90° property to link the altitude
and hypotenuse; step 0-1 computed hypotenuse but resulted in wrong value.

Sibling(0-1-0):Step:Calculate the length of the side opposite the
30-degree angle:side 30 = hypotenuse / 2

Sibling(0-1-1):Step:Compute the base using the Pythagorean
theorem:base = \/hypatenuse2 — altitude®

Evaluation: Step 0-1-0O conflates the 30° as opposite side with the base without
justification; step 0-1-1 applies Pythagorean theorem correctly but adds unneces-
sary complexity; step 0-1-2 halves the hypotenuse that only holds in an isosceles
right triangle.

Sibling(0-1-2-0):Step:Calculate the length of the height:height=3

Sibling(0-1-2-2):Step:Compute the altitude using triangle
legs:altitude=(legl * leg2) / hypotenuse

Evaluation:Step 0-1-2-0 merely restates the given;step 0-1-2-1 correctly extracts
the altitude;step 0-1-2-2 applies a geometric formula but assumes leg values.

Sibling(0-1-2-1-0):Step:Calculate square: base * altitude / 2 = 6

Sibling(0-1-2-1-2):Step:Calculate answer: 0.5 * base * altitude =
6

Evaluation: Step 0-1-2-1-0 calculate the square; step 0-1-2-1-1 calculate the area
of the triangle; step 0-1-2-1-2 compute the answer.

Key points:
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* For step 0-1, explicitly derive the hypotenuse length from the altitude to the hy-
potenuse using the correct geometric relationship in a 30-60-90 triangle.

* For step 0-1-2, form and solve the altitude equation for that parameter.
* For step 0-1-2-1, substitute back to obtain all side lengths.
* For step 0-1-2-1-1, keep the square computing logic still.

Optimzed Output:

Step 1: Assign variables to the sides of the 30-60-90 triangle.

Let the shortest leg (opposite 30°) be x. Then the hypotenuse is 2z, and the longer leg
(opposite 60°) is 2:v/3. Thus, the legs are x and /3, and the hypotenuse is 2z.

Step 2: Use the given altitude length to solve for z.

We are told the altitude to the hypotenuse is 3 units, so:

V3 3x2 6
— = B = =

3=

)

Rationalizing the denominator:

Step 3: Calculate the lengths of all sides using z = 21/3.

- Short leg (opposite 30°): = = 21/3.

- Longer leg (opposite 60°): v/3 = 2v/3 x /3 =2 x 3 = 6.
- Hypotenuse: 2z = 2 X 24/3 = 4\/3.

Step 4: Calculate the area of the triangle.

The area of a right triangle is half the product of its legs:

1 1 1
Area = 3 X (short leg) x (long leg) = 3 X 23 x 6= 3 X 12v/3 = 61/3.

The answer is: | (6v/3)

Example 2. Algebra

Question: Four positive integers A, B, C' and D have a sum of 36. If A +2 =B — 2 =
C x 2 = D = 2, what is the value of the product A x B x C' x D?

Answer: The correct product is | 3840 |.

MCTS Selected Path:
(0-2): Step: Define the variables A, B, C, and D.

(0-2-2): Step: Write the system of equations:
A+B+C+ D =36,

A+2=B-2,
B=C,

D
C=7.

(0-2-2-1): Step: Solve the system to obtain
A=8 B=8 (=8, D=16.
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(0-2-2-1-0): Step: Compute the product:
AXBXxCxD=8x8x8x16=4096.

The answer is: | 4096 | (Incorrect)

Step-by-Step Sibling Comparison and Critique:
Step 1:

* Sibling(0-0):Step:Define variables:A + B + C + D = 36
* Sibling(0-1):Step:Define sum:SUM = 36

* Evaluation: Step 0-1 correctly begins by defining the total sum constraint explic-
itly; step 0-1 gives clear definition of total sum; step 0-2 omits in this step.

Step 2:
* Sibling(0-2-0):Step:Define equations:A = C * 2 - 2; B =C *x 2 + 2;
D=C=x* 2 *x 2
* Sibling(0-2-1):Step:Define relationships:A = B - 4; B =C * 2 + 2;

D=Ax*x2+ 4

* Evaluation: Step 0-2-0 expresses all variables in terms of a single variable C,
which provides a clearer structure; step 0-2-1 give recurrent definition of relative
variables;step 0-2-2 instead defines relationships in isolated pairs.

* Sibling(0-2-2-0):Step:Solve equations:A + B+ C +D =36 ; A + 2 =
B-2;Cx*x2=D/2

* Sibling(0-2-2-2):Step:Solve equations:5 * C + 4 = 36

* Evaluation: Step 0-2-2-0 captures the equality logic via C' * 2 = D/2 correctly;
step 0-2-2-2 express all variables using C; step 0-2-2-1 misrepresents this logic
using B=Cand C' = D/2.

* Sibling(0-2-2-1-1):Step:Calculate requirement: A * B x C * D =
4096

* Sibling(0-2-2-1-2):Step:Calculate answer: A * B *x C * D = 4096

* Evaluation: Step 0-2-2-1-1 calculate the required output; step 0-2-2-1-2 calculate
the answer ; step 0-2-2-1-0 compute the product.

Key Points:
* For step 0-2, explicitly state constraints in initial setup.
* For step 0-2-2, express all variables using a single reference variable.
* For step 0-2-2-1, correctly encode and solve the system with logical relationships.
* For step 0-2-2-1-0, keep the computing logic.

Optimized Output:
Step 1: Introduce a common value k so that

D
A+2 = B-2 = 2C = 5 = k and A+B+C+ D = 36.

Step 2: Express each variable in terms of &:

A=k-2 B=k+2, ng, D = 2k,

then substitute into the sum:

k—2)+(k+2)+5+2k=36 = %:36 — k=38
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Step 3: Determine the four integers:
A=6, B=10, C=4, D =16,

which indeed satisfy both the sum and the four-way equality.
Step 4: Compute the product:

AXxBxCxD=6x10x4x 16 = 3840.

The answer is:

F.2 Q&A examples

Example 1

Question: Mari made 4 more than five times as many decorated buttons as Kendra. Sue
made half as many as Kendra. Sue made 6 buttons. How many did Mari make?
Answer:

Step 1: Sue made 6 buttons, so Kendra made 2 x 6 = 12.

Step 2: Mari made 4 more than 5x Kendra’s count: 5 x 12 + 4.
Step 3: Compute 5 x 12 = 60, then add 4 to get 64.

Step 4: Therefore, Mari made 64 buttons.

The answer is:

Example 2

Question: When three standard dice are tossed, the numbers a, b, ¢ are obtained. Find the

probability that

(a—1)(b—1)(c—1) #0
Answer:
Step 1: Total outcomes = 6% = 216.
Step 2: (a — 1)(b — 1)(c — 1) = 0 iff at least one die shows 1.
Step 3: Favorable: none is 1 = 5% = 125 outcomes.
Step 4: Probability = 122

216"
Step 5: Hence the probability is 325.
125
Th is: | —
e answer is: | o

Example 3

| r

Question: What is the minimum value of y if y = 322 + 62 + 9?

Answer:
Step 1: Rewrite or note vertex of parabola 3(x? + 2z) + 9 = 3(z + 1) + 6.
Step 2: Since (x + 1)2 > 0, minimum occurs at z = —1.

Step 3: Substitute x = —1: y =3 -0+ 6 = 6.
Step 4: Therefore, the minimum value is 6.
The answer is:

Example 4

Question: You are given a sequence of 58 terms P + n where P is the product of all primes
<6landn =2,3,...,59. Let N be the number of primes in this sequence. Find N.
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Answer:

Step 1: If n is prime (17 values), P +n = 0 (mod n) so composite.

Step 2: Remaining 58 — 17 = 41 terms with composite n may be prime.

Step 3: Known result for Euclid-type numbers gives exactly 16 primes among them.
Step 4: Thus NV = 16.

The answer is:

Example 5

Question: A rectangle has length 40 m and width 20 m. A similar smaller rectangle has half
the length and width. What is the area of the smaller rectangle?

Answer:

Step 1: Scale factor = %, so smaller sides are 20 m and 10 m.

Step 2: Area = 20 x 10 = 200 m2.

Step 3: Alternatively area factor (3)? = % of 800 gives 200.

Step 4: Therefore, the area is 200.

The answer is:

Example 6

Question: Last year, Isabella took 7 math tests with distinct integer scores 91-100. Each
running average after n tests was an integer. She scored 95 on the 7th test. What was her 6th
test score?

Answer:

Step 1: Let S,, be sum after n tests; S, = 0 (mod n).

Step 2: From S7 = Sg + 95 =0 (mod 7) = S =3 (mod 7).

Step 3: Also Sg =0 (mod 6), so S = 24 (mod 42).

Step 4: In allowable range 546 < Sg < 600, the valid sum is 570, giving sg = 570 — S5 =
100.

Step 5: Therefore, the 6th score is 100.

The answer is: m

Example 7
. . . 4x — 12
Question: Let p, g be distinct solutions to ——— =z + 2. If p > ¢, find p — q.
22 +2x — 15

Answer:

Step 1: Domain excludes z = —5, 3. Multiply by 2% +2x—15 to get 23 +422—152—18 = 0.
Step 2: Rational root z = 3 is extraneous. Factor gives (z — 3)(z% + 72 + 6) = 0.

Step 3: Solve 22 + 7o +6 =0 = z = —1,—6.

Step 4: Thusp = —1,qg= —6,s0p — q = b.

Step 5: Therefore, the difference is 5.

The answer is:

Example 8

Question: A vampire needs 7 gallons of blood per week, sucking 2 pints per person. How
many people per day must he feed on?

Answer:

Step 1: 7 gal x 8 pt/gal = 56 pints/week.

Step 2: At 2 pt/person, he needs 56/2 = 28 people/week.

Step 3: Dividing by 7 days gives 28/7 = 4 people/day.

Step 4: Therefore, he must feed on 4 people each day.
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The answer is:
Example 9

Question: Marla is mixing lilac paint 70% blue, 20% red, rest white. If she adds 140 oz of
blue, how many ounces of white does she add?

Answer:

Step 1: White%=100-(70+20)=10%.

Step 2: Total 7: 0.77 = 140 = T = 200 oz.

Step 3: White amount = 0.1 x 200 = 20 oz.

Step 4: Therefore, she adds 20 ounces of white.

The answer is:

Example 10

Question: By partial fractions,

1 A, B C D B
zz+1)(z+2)(z+3)(z+4) =z z+1 z+2 z+3 z+4

for some constants A, B,C,D,E.Find A+ B+C+ D + E.

Answer:

Step 1: Multiply both sides by (z + 1)(z + 2)(z + 3)(z + 4) to get

1=Az+1)(z+2)(x+3)(z+4)

+ Bz(x +2)(z+3)(x+4)
+Czx(x+1)(z+3)(x+4)
+Da(z+1)(x+2)(x+4)
+Ez(z+1)(z +2)(z + 3).

Step 2: Evaluate at the roots:
£=0: 1=244 = A=,
r=-1: 1=-6B = B=-1,
r=-2: 1=4C = C =1,
r=-3: 1=—6D = D=-%,
r=-4: 1=24F = E=4,.

Step 3: Sum the constants:

_ 1 4 6 4 1 _ 1-446-441 _ 0 __
A+B+C+D+E=51 51+t~ toq =" =57 =0.

Step 4: Therefore, the sum is zero.
The answer is:

Example 11

Question: Let P be a point outside of circle O. A segment is drawn from P such that it
is tangent to circle O at 7. Meanwhile, a secant from P intersects O at A and B, with
PA < PB.If PA=3and PT = AB — PA, then what is PB?

Answer:

Step 1: By the Power of a Point, PT? = PA - PB.

Step 2: Since AB = PB— PA, the condition PT = AB— PA gives PT = (PB—PA)—




PA = PB —2PA, sowith PA = 3 we have PT = PB — 6.

Step 3: Substitute into the power relation: (PB — 6)? = 3 PB.

Step 4: Expand: PB? — 12PB + 36 = 3PB, hence PB? — 15PB + 36 = 0.
Step 5: Solve via the quadratic formula:

15++/225 —144 15+ 9
. =

PB = ,
2
yielding PB = 12 or PB = 3.
Step 6: Discard PB = 3 since PB > PA = 3,s0 PB = 12.

The answer is:
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Section 1
Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No need.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Section 4
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Github
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Appendix and Section 4
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Section 4
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ~’Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Section 4
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA|
Justification: Not related.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: Not related.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: Not using existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

» For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
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Answer: [NA]
Justification: No new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: Not related.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: yes approve
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: Section 4
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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