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ABSTRACT

This paper introduces CDiffSDF, a lightweight Text-to-Shape model designed for
efficient 3D shape generation. By harnessing latent-code-based signed distance
functions (SDFs), CDiffSDF not only produces high-resolution shapes but also
features diffusion denoising capabilities within the latent space. Its generation
ability is further boosted by integrating Gaussian noise during the SDF training
phase, effectively counterbalancing the diffusion sampling perturbations. Tran-
sitioning from the core concept of Text-to-SDF, our model is versatile, as it can
seamlessly adapt and generate shapes influenced by a range of inputs, including
text, class, and image conditions. Experimental results demonstrate CDiffSDF’s
ability to produce detailed shapes, all within a compact design.

1 INTRODUCTION

The ability to translate textual descriptions into corresponding 3D structures can revolutionize vari-
ous sectors, from aiding design professionals to enhancing learning experiences in education. Imag-
ine the convenience for a designer if a mere text prompt could yield intricate 3D structures or the
enhancement in education if kids could visualize complex geometries simply from their descriptions
(Fig. 1 Left). However, for widespread adoption, especially on devices with limited computational
resources, there is a pressing need for models that are compact. Yet, this compactness should not
compromise their capability to generate detailed geometry—a balance that is challenging but pivotal.

Current Text-to-Shape models generally fall into two categories. The first category consists of mod-
els that adapt 2D image-text techniques like CLIP (Radford et al., 2021) and Imagen (Saharia et al.,
2022). These models can manage basic 3D object generation (Jain et al., 2021; Poole et al., 2022;
Lin et al., 2023) but grapple with intricate geometric representations, especially when given detailed
text prompts (Luo et al., 2022; Qian et al., 2023). The second category includes models that train
directly on 3D-text pairs. Within this, some methods employ direct 3D representations such as Point
Clouds (Zhou et al., 2021; Nichol et al., 2022) or Voxels (Chen et al., 2018; Liu et al., 2022), leading
to a compromise in the resolution and detail of the generated shapes. Meanwhile, other models in
this category opt for heavy backbones (Li et al., 2023; Jun & Nichol, 2023; Cheng et al., 2023) (more
than 400M parameters). These hefty models, despite their potential accuracy, are computationally
demanding and less suited for lightweight applications.

To overcome the above limitations, we utilize latent-code based signed distance functions (SDFs)
(Park et al., 2019). This choice elevates the resolution and detail of generated shapes, overcoming
the limitations of using fixed-resolution 3D representations. Additionally, the compactness of the la-
tent SDF representation (256-dims versus 1,048,576-dims in Shap-E (Jun & Nichol, 2023)), allows
efficient application of the diffusion objective in the latent space. A key feature of CDiffSDF is its
robustness to noise, achieved by adding Gaussian noise during the training phase of our SDF genera-
tive model. This makes the model resilient to perturbations that can occur during diffusion sampling.
Additionally, we have enhanced SDF modeling performance with reduced hyperparameters.

To evaluate geometry generation capabilities, we tested on 3D-text datasets with detailed structural
descriptions and devoid of color information (Text2Shape, ShapeGlot, and ABO (Chen et al., 2018;
Achlioptas et al., 2019; Collins et al., 2021)). Results show that CDiffSDF performs competitively in
fidelity, quality, and diversity when compared to text-to-shape baselines, while maintaining a small
model size. Additionally, it can be easily extended to support other input-conditional generation
(Fig. 1 Right). Limitations, failure cases, and future work are discussed in Appendix A.
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Figure 1: Shape Generation by CDiffSDF. Left: Text-to-SDF results. we render SDFs via both
meshes (reconstructed from occupancy voxel grids of size 2563) and point clouds (2,048 points).
Right: CDiffSDF can be enhanced for broader input-conditioned 3D shape generation.

2 RELATED WORK

3D Shape Generative Modeling: Several renowned generative models such as generative adversar-
ial network (Goodfellow et al., 2014; Wu et al., 2016; Achlioptas et al., 2018; Zheng et al., 2022;
Zhang et al., 2023b), variational autoencoder (VAE) (Hinton & Salakhutdinov, 2006; Gadelha et al.,
2018), auto-regressive models (Van Den Oord et al., 2016; Luo et al., 2020; Cheng et al., 2022), and
flow-based models (Rezende & Mohamed, 2015; Yang et al., 2019) have made significant strides
in 3D generation tasks despite facing issues like unstable training and model collapse. The emer-
gence of diffusion models in deep generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2020) holds promise for addressing these challenges. They have achieved notable ad-
vancements (Ho et al., 2020; Ramesh et al., 2022) and have been widely used in generating point
clouds (Lyu et al., 2021; Luo & Hu, 2021; Zhou et al., 2021; Zeng et al., 2022), meshes (Liu et al.,
2023c; Gupta et al., 2023), and neural fields (Hui et al., 2022; Shue et al., 2023; Zhang et al., 2023a;
Erkoç et al., 2023). CDiffSDF also utilizes diffusion objectives within the latent space to model the
signed-distance functions (Park et al., 2019), offering a notable reduction in latent space size (256
vs. 1,048,576) compared to Jun & Nichol (2023). Furthermore, the simplicity of our framework
stands out against Chou et al. (2022), which incorporates extra VAE modules.

Text-to-Shape Synthesis: Text-to-Shape methods predominantly align with two main categories.
The first category (Jain et al., 2021; Poole et al., 2022; Lin et al., 2022; Sanghi et al., 2022; Zhu &
Zhuang, 2023; Wang et al., 2023; Chen et al., 2023b; Lorraine et al., 2023) significantly depends on
2D-text pre-trained models (Radford et al., 2021; Saharia et al., 2022; Rombach et al., 2022) through
the process of score distillation sampling. These methods exhibit competence in managing basic 3D
objects without requiring 3D supervisions. Nonetheless, they lack the ability to efficiently handle
text prompts containing geometric details (Luo et al., 2022; Qian et al., 2023), and their dependence
on large-scale 2D-text pre-trained models results in substantial model sizes. In contrast, CDiffSDF
does not employ any image-text pre-trained models. It focuses on training with 3D-text pairs, a
notable difference from approaches like Xu et al. (2023) which adopts both 2D and 3D priors.

The second category mainly utilizes available 3D-Text pairs (Chen et al., 2018; Achlioptas et al.,
2019; Collins et al., 2021; Deitke et al., 2023; Luo et al., 2023b). It directly trains on (explicit 3D
representation, Text) pairs such as Point Clouds (Nichol et al., 2022; Luo et al., 2023a) and Voxels
(Chen et al., 2018; Liu et al., 2022), or (implicit 3D representation, text) pairs like implicit function
(Jun & Nichol, 2023) and grids of SDF (Li et al., 2023). Those utilizing explicit 3D representation
face challenges with fixed and generally low resolution due to computational limitations, leading to
the inability to preserve detailed structures. Conversely, methods using implicit representations show
excellent performance but typically have extensive backbones and pre-trained encoders, amounting
to more than 400M parameters. CDiffSDF utilizes a latent-code-based SDF, overcoming the con-
straints of fixed resolution and presenting enhancement beyond the 643 resolution utilized in SDF
grids (Li et al., 2023). For simplicity, this study employs the SDF formation from Park et al. (2019),
without exploring further advanced frameworks at this stage (Genova et al., 2020; Tretschk et al.,
2020; Li et al., 2022; Tang et al., 2021; Mescheder et al., 2019; Liu et al., 2021; Peng et al., 2020;
Martel et al., 2021; Takikawa et al., 2021). The encoder and the latent diffusion model in CDiffSDF
are both lightweight, which contributes to the compactness of the overall model. This feature sharply
contrasts with the heavy VQVAE and UNet diffusion model utilized in Cheng et al. (2023).

This paper focuses on geometry study excluding texture and colors, and thus, less connected to
paper studies Text-to-Texture over 3D shapes (Michel et al., 2022; Wei et al., 2023; Chen et al.,
2023a). Additionally, we do not leverage image-to-3D (Nichol et al., 2022; Liu et al., 2023b;a;
Melas-Kyriazi et al., 2023; Tang et al., 2023; Shi et al., 2023), but directly modeling text-to-shape.
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Figure 2: Overview of CDiffSDF inference. We begin by converting the input text prompt into
embeddings, Bi, used as conditions in our learned diffusion model to predict a latent code, zi. This
code is input into our SDF model fθ to generate SDF samples, S, represented as coordinate pairs
cj and corresponding SDF values sj . The SDF values indicate whether sample points are inside
(sj < 0, represented in blue) or outside (sj > 0, represented in red) the shape. We then reconstruct
the mesh using the SDF samples through the marching cube, and sample point clouds from the mesh
to compute point-cloud-based metrics in our experiments.

3 METHOD

This section presents CDiffSDF, our approach that utilizes a latent diffusion probabilistic model
for Text-to-Shape. We begin by outlining the formulation of the latent-code-based signed distance
function (SDF) and its connection with diffusion priors (Section 3.1). Next, we demonstrate the
training and sampling algorithm of CDiffSDF conditioned on text in Section 3.2. Finally, Section
3.3 introduces several techniques to enhance the shape reconstruction performance of the latent
codes, including one designed for diffusion properties and others for general improvement.

3.1 FORMULATION

The main concept behind the latent-code-based SDF model is to train a model that can maximize
the posterior distribution over a trainable latent code given SDF samples. By learning this model,
we can reconstruct the shape using the learned model and latent code. We adopt a similar approach
to (Park et al., 2019) and formalize the model as follows.

Given the dataset of shapes represented as signed distance functions {SDFi, i = 1, · · · , N} (N
is the number of shapes in the dataset), we model a shape in the dataset by sampling a set of
points along with their signed distance values and re-represent the shape as a set of 4-tuples:
Si =

{
(cj , sj) , cj = (cxj , c

y
j , c

z
j )
}Ktrain

j=0
, where cj is the 3-dim coordinates for sampled query

points, Ktrain is how many points we sample during training, and sj is the corresponding SDF
value (i.e., signed distance between the query point cj and the shape surface).

For each shape, we pair with a latent code {zi, i = 1, · · · , N} initialized as p (zi) = N
(
0,σ2I

)
and maximize the posterior over the latent code zi given shape 4-tuples Si: pθ (zi | Si) =
p (zi)

∏
(cj ,sj)∈Si

pθ (sj | zi; cj), and we reparameterize the likelihood with a neural network:
pθ (sj | zi; cj) = exp (−L (fθ (zi, cj) , sj)), where θ denote the learnable parameters of the neural
network. Our optimization objective can be written as:

argmin
θ,{zi}N

i=1

N∑
i=1

Ktrain∑
j=1

L (fθ (zi, cj) , sj) + ω ∥zi∥22

 (1)

where the second term is used for regularization and ω is a hyperparameter. L (fθ (zi, cj)) =
|clamp (fθ(x), δ)− clamp(s, δ)|, where clamp(x, δ) := min(δ,max(−δ, x)), δ is used to control
the distance over the surface of 3D objects and is set to 0.1 following (Park et al., 2019).

We simultaneously optimized the latent codes of training shapes {zi}Ni=1 and model parameters θ
(i.e., SDF model in Figure 2). Once done training, we can obtain the latent codes for any shape via
optimization: given a new shape Ssample, we initialize a latent code sampled from p (zsample) =
N

(
0,σ2I

)
and use the same objective 1 to optimize the underlying code by sampling Ksample

4-tuples describing the shape {cj , sj}
Ksample

j=0 ∼ Ssample, while fixing model parameters θ.

This paper demonstrates another way to obtain the latent codes by a diffusion prior. We extend the
latent code notation from zi to z0

i , and used the learned latent codes by the above SDF model
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from our 3D datasets as the prior data distribution {z0
1 , · · · , z0

N} for diffusion models. Given
a sampled shape code z0 ∼ {z0

1 , · · · , z0
N}, the diffusion forward phase becomes q

(
z0:T

)
=

q
(
z0

)∏T
t=1 q

(
zt | zt−1

)
, where q

(
z0

)
is the latent code distribution, and q

(
zt | zt−1

)
is the

Gaussian noise we gradually added into the latent codes. We follow (Ho et al., 2020) to model
q
(
zt | zt−1

)
= N

(√
1− βtz

t−1, βtI
)
, where β1, · · · , βT controls the noise level added in each

time step. Accordingly, we have the diffusion reverse process that recovers latent codes from stan-
dard Gaussian priors. pθ̃

(
z0:T

)
= p

(
zT

)∏T
t=1 pθ̃

(
zt−1 | zt

)
, where p

(
zT

)
is standard Gaussian

prior and θ̃ is our parameterization to approximate the conditional probabilities.

Intuitively, the diffusion forward process keeps adding controlled Gaussian noise to latent codes. In
the reverse process, we try to learn a model to predict the added noise at each time step, use the
predicted noise to denoise, and finally generate latent codes that lies in the learned distribution. Our
diffusion objective becomes

∥∥ϵ− gθ̃ (z
t, t)

∥∥2 , ϵ ∼ N (0, I), where zt =
√
ᾱtz

0 +
√
1− ᾱtϵ,

αt = 1 − βt, ᾱt =
∏t

i=1 αi, and βt is the pre-defined controlled noise level at time t, gθ̃ is our
diffusion model trained to predict noise trained to minimize the L2 loss. Once we finish training the
diffusion model gθ̃ over all learned latent codes, we adopt Langevin dynamics for sampling latent
codes from diffusion priors which could provide a conditioning input to the latent-code-based SDF
model fθ to reconstruct a new shape. The sampling formulation (Ho et al., 2020) is written as below,
where ϵ ∼ N (0, I), and we do the process iteratively for t = T, · · · , 1.

zt−1 =
1

√
αt

(
zt − 1− αt√

1− ᾱt
gθ̃

(
zt, t

))
+
√
βtϵ (2)

3.2 TEXT-TO-SDF

We have developed a forward and reverse process to enable our diffusion model to learn the distri-
bution of latent codes and approximate the distribution of signed distance functions. To incorporate
the text condition, we maintain the posterior over the latent code given the shape 4-tuples S, as in
the latent-code-based SDF formulation. However, we modify the diffusion objective to enable our
diffusion model to learn the distribution of latent codes conditioned on text. This approach allows
us to keep the SDF model focused on reconstructing the shape from latent codes while leveraging
the text input.

As depicted in Figure 2, we convert the provided shape description Ti into an embedding and input
it into our diffusion model. We accomplish this by applying BPE encoding (Sennrich et al., 2015)
to transform the text into a sequence of tokens. Then, we maintain a learnable embedding for each
unique token during the training process, and obtain the text embedding Bϕ

i = TextEncoding(Ti)
by concatenating the embeddings of all tokens whose text belongs to the shape description, where ϕ
denotes the learnable parameters of token embedding (More details in Appendix F.1). Note that, we
do not utilize large language models, such as BERT (Devlin et al., 2018).

Given a SDF-Text pair {Si, Ti}, we can use learned SDF model fθ to obtain the corresponding
latent-code zi, and use BPE and optimized token embeddings to get text description embedding
Bϕ
i . Then, we reconstruct the diffusion forward and reverse processes: q

(
zt
i | z

t−1
i ,Bϕ

i

)
and

pθ̃

(
zt−1
i | zt

i ,B
ϕ
i

)
, where θ̃ denotes the parameterization of the diffusion model. Our diffusion

objective changes accordingly:

argmin
θ̃,ϕ

∥∥∥ϵ− gθ̃

(
zt
i ,B

ϕ
i , t

)∥∥∥2 , ϵ ∼ N (0, I) (3)

The method for constructing gθ̃
(
zt,Bϕ, t

)
varies across different diffusion methods. Since our

diffusion target is an embedding vector lacking spatial structure (Rombach et al., 2022), we adopt
an approach similar to (Ramesh et al., 2022) and Figure 3 in (Nichol et al., 2022). Specifically, we
train a transformer (Vaswani et al., 2017) with casual attention masks that concatenates embeddings
in a specific order: the noised latent codes zt

i , the sentence embedding Bϕ
i , the embedding for the

current time step t, and the embeddings of the predicted noise as output gθ̃
(
zt
i ,B

ϕ
i , t

)
.
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Algorithm 1 CDiffSDF training and sampling.

Require: SDF-Text pairs {{Si, Ti}Ni=1}: Si =
{
(cj , sj) , cj = (cxj , c

y
j , c

z
j )
}Ktrain

j=0
, Ti is text;

Require: Initialize latent codes {zi}Ni=1 for each shape;
Require: Initialize the latent-code-based SDF model fθ, the diffusion model gθ̃ with βt ∼

Cosine Schedule(t);

Training SDF and Diffusion Models
1: repeat
2: zi ∼ {zi}Ni=1

3: {{cj , sj}Ktrain
j=0 } ∼ Si

4: Optimize objective 1
5: until converged
6: Fix fθ, set the optimized codes as

{
z0
i

}N

i=1
, and start to train the diffusion model;

7: repeat
8: z0

i ∼
{
z0
i

}N

i=1
, Ti ∼ {Ti}Ni=1

9: Bϕ
i = TextEncoding(Ti)

10: t ∼ Uniform({1, . . . , T})
11: Optimize objective 3
12: until converged

Sampling
13: Fix gθ̃, ϕ and perform sampling 2;
14: Obtain the generated latent code zsampled;
15: Sample SDF values {fθ (zsampled, cj)}

Ksample

j=1 ;
16: Reconstruct shape to mesh or point clouds

3.3 BOOST SHAPE RECONSTRUCTION FROM LATENT CODES

This section investigates several aspects to enhance SDF model shape reconstruction ability. By
incorporating all the about to propose, we reduce the hyper-parameters from 28 (Table 1 in CurrSDF
(Duan et al., 2020)) to a few {λ,k, L}.

Introducing Gaussian in Training SDF: Our main objective is to better reconstruct shapes from
the latent codes generated by diffusion models. According to the sampling process formulation 2, it
involves standard Gaussian noise in the iterative process and ideally converges to the samples that
satisfy the learned distribution. However, in practice, we factorize both forward and reverse pro-
cesses into limited discrete steps, resulting in extra Gaussian perturbation in the outcomes. Unlike
text-to-2D diffusion models trained on web-scale data (Ramesh et al., 2022; Rombach et al., 2022;
Saharia et al., 2022), our 3D text pair dataset has a much smaller number of samples. Fewer samples
may make the model less aware of the high-dimensional data space, therefore, we assume that diffu-
sion models trained on our limited data are less robust to Gaussian perturbations introduced during
sampling than 2D diffusion models.

To verify and overcome the limitation we faced, we introduced Gaussian noise in training latent-
code-based SDF to make it robust to small Gaussian perturbations on latent codes. Mathematically,
we change the original objective 1 as below:

argmin
θ,{zi}N

i=1

N∑
i=1

 K∑
j=1

L (fθ (zi + ϵi, cj) , sj) + ω ∥zi∥22

 (4)

Where, ϵi ∼ N
(
0, σ̄2I

)
and σ̄ controls the Gaussian noise scale, where we empirically set to a

small value closing to the noise level used in the late sampling stage. Our experiments verify the
improvement of introducing Gaussian noise in training the SDF model for reconstructing from the
latent codes sampled generated by the diffusion model, which validates both our assumption and the
effectiveness of introducing Gaussian in training SDF models.
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Figure 3: Text-to-Shape results. Many baseline methods have been unsuccessful in accurately
producing structures that correspond to the detailed structural text prompts. Also, DiffusionSDF (Li
et al., 2023) is limited to a pre-defined resolution of 643. Compared to them, our method excels in
generating corresponding structures at a high resolution of 2563 (or higher).

Hard Example Mining: In their study on curriculum learning for improving SDF model shape
reconstruction performance, (Duan et al., 2020) explored curriculum learning over network depth,
residual blocks, a hard example objective, and a tolerance-changing objective. Our replicated ex-
periments using their codes found that the hard example objective brings the most improvement.
Specifically, we share similar insights to (Duan et al., 2020) that detail points are often undersam-
pled and that points in the detailed local arena may have very small loss values, making it easier
for the model to predict incorrectly. To address this issue, (Duan et al., 2020) defined semi-hard
and hard examples and designed the same weight term for both, where hard examples refer to the
model predicting the wrong SDF sign, while semi-hard examples have a smaller SDF value than
their ground-truth value but hold the correct SDF sign. However, we found that performance im-
proved when we dropped semi-hard examples entirely and allowed the model to focus only on hard
examples with the wrong SDF sign using the following weight adjustments:

Lλ (fθ (zi + ϵi, cj) , sj)

=
(
1− λ sgn (s̄j) sgn

(
f̄θ (zi + ϵi, cj)

))
L(fθ(zi+ϵi,cj),sj)

(5)

where sgn is the sign function, s̄j is the ground-truth SDF value for point cj , and λ controls the
weight. The meaning of this weight adjustment is straightforward: pay attention to those predicted
SDF values having the opposite sign to their corresponding ground-truth ones, since the points
with the wrong SDF sign could have very small values with the L1 loss but lead to severe surface
prediction errors.

While (Duan et al., 2020) addresses the issue of undersampling by implicitly encouraging the model
to learn from weight changes, our paper proposes an explicit approach to solve this problem. Specif-
ically, we introduce a sampling strategy called Top-k that selects the k samples with the highest loss
from a total of Ktrain points used to compute loss L. We then backpropagate using only those
samples. In our experiments, we found that setting k = Ktrain

2 works well, which means that we
optimize using only half of the sampled points in each iteration. This approach yields better results
than relying on weight changes alone, as demonstrated in our experiments.

Architecture: Through empirical testing, we identified some architectural changes that can enhance
the performance of the latent-code-based SDF model for shape reconstruction. Firstly, we adopted
a technique developed in (Mildenhall et al., 2021), which involves the use of positional encoding of
coordinates to consistently improve neural radiation field reconstructions. Specifically, we applied
the function γ(c) =

(
sin

(
20πc

)
, cos

(
20πc

)
, · · · , sin

(
2L−1πc

)
, cos

(
2L−1πc

))
, where c ∈ R

represents a coordinate and L is a hyperparameter that controls the length of our positional encod-
ing. This function maps the three-dimensional coordinates to a higher-dimensional space, resulting
in shape Si = {(γ(cj), sj)}Kj=0. Additionally, we observed that removing all dropout layers (Sri-
vastava et al., 2014) and eliminating the latent connection between the first and fourth layers in the
architecture of (Park et al., 2019) led to improved performance on validation sets.
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(a) Text-to-Shape comparisons.

Dataset Method IoU ↑ FID ↓ MMD ↓ TMD ↑

ShapeGlot

CWGAN 0.098 121.7 22.46 0.67
Shape IMLE 0.153 87.9 12.37 1.83
CLIP-Forge 0.052 94.5 36.43 2.45

Shape Compiler - - 6.19 1.85
VoxelDiffSDF 0.207 76.2 7.35 2.41

CDiffSDF 0.196 73.4 6.42 2.87

Text2shape

CWGAN 0.127 113.2 10.42 0.79
Shape IMLE 0.165 98.4 6.73 2.34
CLIP-Forge 0.114 92.5 5.16 1.34

Shape Compiler - - 6.21 1.53
VoxelDiffSDF 0.214 90.2 4.23 2.25

CDiffSDF 0.231 87.3 4.41 2.17

ABO

CWGAN 0.132 89 12.74 0.52
Shape IMLE 0.196 86.3 6.43 1.42
CLIP-Forge 0.147 75.4 7.89 1.23

Shape Compiler - - 4.93 0.67
VoxelDiffSDF 0.235 59.6 5.21 1.53

CDiffSDF 0.253 56.7 4.71 1.36

(b) Parameter numbers & Inference speed.

Methods Enc. Params. Gen. Params. Speed (s) ↓
Dream Fields - 149,691,777 > 10000

Dream Fusion1 - 1,289,952,427 2432.72
CWGAN 4,183,618 44,101,313 4.24

Shape IMLE 11,149,824 117,534,920 1007.48
CLIP-Forge 5,409,665 18,373,120 1.45

Shape Compiler 26,795,008 36,741,120 6.43
Point-E2 - 80,804,376 28.17

Shap-E (stf) 443,771,357 315,692,032 16.18
Shap-E (nerf) 443,771,357 315,692,032 192.62

SDFusion 26,349,788 413,540,739 9.12
VoxelDiffSDF 13,415,497 465,902,920 8.41

CDiffSDF 3,354,502 3,904,640 1.87

(c) Text-to-Shape results of pre-trained models

Dataset Method FID ↓ MMD ↓ TMD ↑

ShapeGlot
Point-E 104.6 23.27 2.35

Shap-E (stf) 92.1 11.45 2.07
SDFusion 78.1 5.87 2.58

Table 1: Text-to-Shape methods comparison. MMD (quality) and TMD (diversity) are multiplied
by 103 and 102, respectively. The reported inference speed is for a single feedforward pass.

4 EXPERIMENTS

In this section, we evaluate CDiffSDF’s performance on the Text-to-Shape task, focusing on geom-
etry aspects. We adopt a decoder-only three-layer transformer (Vaswani et al., 2017; Ramesh et al.,
2022) with a causal attention mask for our diffusion model. Following Algorithm 1, we train the
latent-code-based SDF models on all the training shapes. Subsequently, we use these latent codes to
train our diffusion model. For more implementation details, see Appendix F.1. We also examine the
effectiveness of the proposed SDF model modifications.

Datasets: We utilize 3D-text pairs that offer detailed structural descriptions, excluding color details,
sourced from Text2Shape (Chen et al., 2018), ShapeGlot (Achlioptas et al., 2019), ABO (Collins
et al., 2021), and ShapeCompiler (Luo et al., 2023a) datasets. These datasets encompass a total of
20,355 shapes, averaging 9.47 words per description and comprising 26,776 unique words. For data
examples and additional details, refer to Appendix E. Our dataset split allocates 85% for training
and 15% for testing.

Baselines: We categorize and compare three groups of methods: (1) methods employing 3D-text
pairs for model training, including Text2Shape (Chen et al., 2018), Shape IMLE (Liu et al., 2022),
Shape Compiler (Luo et al., 2022), SDFusion (Cheng et al., 2023), and VoxelDiffSDF (Li et al.,
2023); (2) methods such as CLIP-Forge, DreamFields, and DreamFusion (Jain et al., 2021; Sanghi
et al., 2022) primarily leveraging 2D-text pre-trained models (Radford et al., 2021; Saharia et al.,
2022) for 3D shape generation; and (3) robust pre-trained Text-to-3D models like Point-E (Nichol
et al., 2022) and Shap-E (Jun & Nichol, 2023), trained on web-scale 3D-text pairs. For the first
category, we fine-tune four methods (Chen et al., 2018; Liu et al., 2022; Luo et al., 2022; Li et al.,
2023) on our datasets using their provided pre-trained models, comparing them solely in geometrical
aspects (the similar protocol used in (Mittal et al., 2022)). We encountered difficulties in fine-tuning
SDFusion and report its pre-trained model performance. Despite the slow testing of DreamFields
and DreamFusion due to extensive sampling, we include only their qualitative results and statistics.
For assessing Point-E and Shap-E, we employ the OpenAI pre-trained models to examine their
competence in managing complex geometrical text prompts. Refer to Appendix F.2 for more details
on baseline implementation.

Metrics: To assess Text-to-Shape performance, we employ a range of metrics including the render-
based FID, IoU, and the point-cloud-based MMD and TMD. These metrics effectively measure the

1We utilized the dream fusion implementation based on stable-diffusion (Tang, 2022).
2We combined the parameters of both base model (40,333,836) and upsampler model (40,470,540) used

in Point-E, excluding the parameters of the Point-to-SDF model.
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(a) Ablation Studies: Evaluation results are on validation sets.

Gaussian Classifier-free Clamp IoU ↑ FID ↓ MMD ↓ TMD ↑

✗ ✗ ✗ 0.142 109.7 11.38 1.17
✓ ✗ ✗ 0.186 104.2 9.57 2.86
✓ ✓ ✗ 0.036 133.8 20.35 11.27
✓ ✓ ✓ 0.213 89.3 8.81 3.13

(b) More Text-to-3D results.

Table 2: Ablation studies & Qualitative results. More visualizations and novel shape generation
examples (with nearest neighbor retrieval (Erkoç et al., 2023)) in Appendix C.

fidelity (IoU, FID), quality (MMD), and diversity (TMD) of the generated results, as detailed below.
Each model processes an input text to produce 48 normalized point clouds, each with 2,048 points
and 323 voxels for comparison. This voxel resolution is used because the compared method is
limited to this resolution (Chen et al., 2018).

IoU: Intersection over Union (IoU) measures the occupancy similarity between the predicted voxel
and its corresponding ground truth. It reflects the fidelity of the generated shape.

FID: A lower Fréchet Inception Distance (FID) (Heusel et al., 2017) indicates that the two distribu-
tions are closer, meaning that the generated shapes are of higher quality and resemble real shapes
more closely. For all the compared methods except Shap-E, DreamFields, and DreamFusion, we
adopted identical rendering procedures excluding color and texture.

MMD: Minimal Matching Distance (MMD) (Achlioptas et al., 2018) to check if the generated shape
distributions are close to ground-truth shape distributions by computing the distance between the
set of all our generated point clouds and the set of all ground-truth point clouds. We use Chamfer
distance for each pair of point clouds in computing MMD.

TMD: For measuring diversity, we adopt Total Mutual Difference (TMD) (Wu et al., 2020), which
computes the difference between all the generated point clouds of the same text inputs. For each
generated point cloud Pi, we compute its average Chamfer distance CDPi

to other k − 1 generated
point clouds Pjj ̸=i and compute the average: TMD = Avgki=1CDPi

.

Results Analysis: Comparisons are illustrated in Table 1a and Figure 3. Both qualitative and quanti-
tative results affirm that CDiffSDF generally secures competitive results comparable to CLIP-Forge
(Sanghi et al., 2022), CWGAN (Chen et al., 2018), Shape IMLE Diversified (Liu et al., 2022),
Shape Compiler (Luo et al., 2022), and VoxelDiffSDF (Li et al., 2023). Despite certain metrics and
datasets where Shape IMLE, Shape Compiler, and VoxelDiffSDF surpass CDiffSDF, these models
all possess significantly more parameters compared to CDiffSDF. While VoxelDiffSDF (Li et al.,
2023) produces high-quality generated meshes, it is constrained to a preset resolution of 643. In
contrast, our method does not impose any restrictions on the resolution for output meshes. One no-
table drawback observed in CWGAN (Chen et al., 2018) and Shape IMLE (Liu et al., 2022) lies in
the utilization of 3D convolutional layers, potentially leading to overfit the training data distribution.

A comparison with Point-E and Shap-E reveals that a lightweight framework can outperform these
larger models with training over limited high-quality 3D-text data in the specific geometrical-text-
guided 3D shape generation task. Despite the proven success of employing CLIP in 3D shape
generation with text prompts containing straightforward structure descriptions (Sanghi et al., 2022;
Jain et al., 2021; Poole et al., 2022), both DreamFields and DreamFusion fall short in generating
detailed structures that correspond to the text prompts.

Model Size and Inference Speed: we investigate the number of trainable parameters and inference
speed for the methods we compare. Most of these methods consist of two stages: the first stage
encodes shapes and texts into embeddings, while the second stage learns the target embeddings by
executing the learned generative model. The exception to this is DreamFields and DreamFusion,
which is primarily a generative model composed of a small NeRF and a Image-Text model (using
ViT-B/16 or stable-diffusion). Additionally, Point-E works directly on point clouds and does not
require an encoder. Since some of the compared methods employ large-scale pre-trained language
models, it is not meaningful to compare the parameters of text encoders. Therefore, we do not
include the text encoder parameters in our comparison, including Bert used in Liu et al. (2022),
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(a) SDF reconstruction quantitative comparisons.

Method Chair Sofa Table Lamp Plane Avg. ↓

AtlasNet-Sph 0.752 0.445 0.725 2.381 0.188 0.730

AtlasNet-25 0.368 0.411 0.328 1.182 0.216 0.391

DeepSDF 0.243 0.117 0.424 0.776 0.143 0.319

CurrSDF 0.153 0.099 0.302 0.465 0.072 0.218

CDiffSDF 0.109 0.087 0.273 0.422 0.061 0.190

(b) SDF reconstruction qualitative comparisons.

Table 3: Shape reconstruction from latent codes comparisons. Numbers are mean CD with
×103. Our modifications lead to an improvement of 12.8%.

CLIP used in Sanghi et al. (2022), spaCy (Honnibal et al., 2020) used in Chen et al. (2018), CLIP
used in Li et al. (2023), and BPE + learnable text embeddings used in (Luo et al., 2022) and our
method. We measure the average inference time for one test batch using a single A5000. For
lightweight methods, including ours, the time taken to generate 48 samples is recorded (one test
batch). In contrast, for heavier or slower models like ShapE and DreamFusion, the time is calculated
for producing just one sample (also one test batch).

Table 1b highlights the results, underscoring the benefits of employing our proposed method in
the compact latent embedding space for the diffusion model. Our approach minimizes both model
size and GPU memory usage, enhancing feasibility for Text-to-3D operations under computation-
sensitive conditions. Appendix B outlines an alternative, utilizing the diffusion model over a voxel-
like SDF representation (Shen et al., 2021). This alternative, however, proves to be slower and less
efficient in performance compared to our latent-code-based solution. Additionally, our usage of
80 sampling steps in the diffusion model bolsters quick inference time, with potential for further
enhancement as diffusion model techniques advance.

Ablation Studies: As shown in Sec. 3.3, we proposed to add Gaussian noise in training DeepSDF
to make the latent-code-based SDF model robust to potential Gaussian noise introduced by the sam-
pling process 2. We verify the effectiveness of this module in Table 2a, where we also examine the
effectiveness of introducing classifier-free guidance (Ho & Salimans, 2022) and L2 norm clamping
for the diffused embedding at each denoising iteration: v = v

max(∥v∥2,ϵ)
, where v is the intermediate

embedding. This operation is similar to clamp images in the range of [−1, 1]. Results are reported in
the validation dataset, for which we held out 10% of training data as validation data. Results show
introducing Gaussian in training the SDF model brings improvements. Performing classifier-free
guidance alone causes drastic performance drops while combining with the clamp technique can
lead to small benefits. This phenomenon is consistent with the finding in (Saharia et al., 2022). The
very high TMD score achieved by only using Classifier-free guidance is caused by the generated
shapes containing many random fragments and unrelated structures. Therefore, it is important to
measure Text-to-Shape performance from multiple angles.

Shape Reconstruction from Latent Codes: We also investigate the impact of the design choice,
proposed in Section 3.3, on the shape reconstruction performance of the latent-code-based SDF
model. Here we adopt L = 10 for positional encoding and k = 0.5 × Ktrain for Top-k loss
computing, where Ktrain = 16384 following (Park et al., 2019). More ablation around L and k
are included in Appendix D. Results are shown in Table 3a and Figure 3b which demonstrate the
effectiveness of the proposed architecture adjustment and online hard example mining mechanism.

5 CONCLUSION

In this work, we introduce CDiffSDF, a lightweight Text-to-Shape framework that employs SDF
representation and applies diffusion across the latent space. This innovative approach empowers
CDiffSDF to efficiently generate intricate 3D shapes, while maintaining a more compact model
size relative to other Text-to-Shape methods. Our comprehensive investigation into various design
choices for the latent-code-based SDF model encompasses aspects such as positional encoding,
hard example mining, and the incorporation of Gaussian noise during training. The harmonious
integration of these elements further augments CDiffSDF’s capability to adeptly produce 3D shapes.
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A LIMITATIONS AND FUTURE WORK

Figure 4: The failure cases generated by CDiffSDF.

Our framework predominantly yields two categories of generation failures. The first category entails
the inability to accurately reconstruct the overall shape, typically manifesting as disjointed refactored
components and artifacts, illustrated in the 1st and 2nd columns of Figure 4. The second category
involves a mismatch between the reconstructed shapes and the input text prompt, highlighted in the
3rd column.

Mitigation of the first type of failure can potentially be achieved with an augmentation of train-
ing data. This enhancement allows the diffusion model to more precisely approximate the latent
code distribution and enables the latent code-based SDF model to more robustly reconstruct shapes
from the latent codes. Addressing the second category of failures necessitates the development of
advanced techniques to enhance the attention of diffusion models to conditions. An increase in
shape-text pairs could also contribute to the alleviation of this issue.

Echoing the requirements of (Chen et al., 2018; Liu et al., 2022; Li et al., 2023), CDiffSDF necessi-
tates sizable 3D-text pairs for model training. This demand underscores the need for the community
to meticulously annotate 3D shapes through crowdsourcing to amass larger datasets, albeit a costly
endeavor. A recent advancement involves utilizing pre-trained captioning models and Large Lan-
guage Models (LLM) to annotate expansive 3D datasets (Luo et al., 2023b; Deitke et al., 2023).
Another promising approach entails the recovery of 3D shapes (Gkioxari et al., 2022; Qian et al.,
2022) from 2D/Video-Text pairs, subsequently yielding 3D-text pairs.

Moreover, here is no assured guarantee that the proposed framework can seamlessly scale up with
web-scale 3D-text pairs given the adoption of a limited-size encoder and diffusion model. Besides,
a crucial future development involves the expansion of our framework to incorporate texture, while
maintaining its lightweight characteristics.

B VOXEL-BASED SDF TEXT-TO-SHAPE

As mentioned in Section 4, we have studied voxel-like SDF representation (Shen et al., 2021) before
moving into the latent-code-based SDF formulation. This section shares some of our discoveries.
For the voxel-like SDF representation, we refer to a voxel 32× 32× 32, where each cell stores the
corresponding SDF value, as shown in the left of Figure 5. We can reconstruct the mesh based on
the voxel representation via marching cubes as shown in the right of Figure 5.

Accordingly, we used a diffusion model that can consume the voxel-like SDF representation, where
we adopt a U-Net structure with three-levels of downsampling and upsampling, 3D convolutional
layers, and Group Normalization layers (Wu & He, 2018). We follow the same training setting as
we used in our latent-code-based SDF diffusion models, listing in Appendix F.1.

However, our results show the voxel-like SDF + 3D UNet diffusion models failed to capture the
3D object distribution, as shown in Figure 6. The diffusion inference of the voxel-like SDF repre-
sentation costs 110.38 seconds for sampling a 48 batch which significantly slower than the latent-
code-based SDF solution which cost 15.21 seconds. Therefore, we do not further play with the
voxel-based solution and delve deep in the latent-code-based SDF representation.
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Figure 5: An instance of voxel-like SDF representation. Blue points mean inside the shape, and red
points mean outside the shape. The right mesh is the reconstruction mesh on the left voxel SDF.
Visualization is achieved via Pyrender with ‘use raymond lighting == True’.

Figure 6: The Voxel-like SDF representation + 3D UNet diffusion model failed to capture the dis-
tribution of 3D shapes.

C MORE RESULTS

This section provides more results generated by CDiffSDF.

Figure 7: More results generated by CDiffSDF. The second row shows many different details con-
tained in shapes that reflect the same text prompt.

Furthermore, we check whether CDiffSDF shows combinatorial generalizability that can generate
new shape structures by composing known structures. We check this by looking at the nearest
neighbors (Chamfer Distance) of the generated shape in our training data. Results are listed in Figure
10 and show our framework generates novel structures beyond training shapes to some extent.
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Figure 8: More results generated by CDiffSDF.

Figure 9: More results generated by CDiffSDF.

D SHAPE RECONSTRUCTION FROM LATENT CODES

For our latent-code-based SDF framework (Figure 11), we adopt the same 8 fully connected layers
as (Park et al., 2019; Duan et al., 2020), but no latent connections, no Dropout layers, and the input
dimensions change from 259 = 256 + 3 to 296 = 256 + 30, where we adopt L = 10 to positional
encode three-dimensional coordinates. Following (Park et al., 2019), we sampled 500,000 points
from each shape before training, and sampled Ktrain = 16,384 points during each training opti-
mization, and Ksample = 8,000 in each inference optimization. We trained all the SDF models for
2,000 epochs with batch size 96, learning rate 1e− 3 for the latent codes optimization, and learning
rate 5e − 4 for the model optimization. The code regularization term is set to ω = 1e − 4. We add
Gaussian noise with mean 0 and std 0.05 during training, as mentioned in Section 3.3. Also, unlike
(Duan et al., 2020), which adjusted λ by manually setting a series of intervals, we set up a continuous
sigmoid-like schedule to gradually increase λ from 0 to 0.5: 0.5 ∗

(
1− 1/1 + exp

((
e− ε

2

)
/ ε
20

))
,

where exp stands for exponential, e denotes the current epoch number, and ε denotes the total train-
ing epochs.
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Figure 10: We inspect the top-2 nearest neighbors of the generated shapes in training datasets to
check if CDiffSDF can compose known structures to generate new ones. The first two rows are
text-to-shape generation, and the bottom two rows are unconditional generation.

Figure 11: Network architecture illustration for our latent-code-based SDF model. All layers are
connected via fully connected layers except the green arrow represents the Tanh activation function.

The rightmost column of Table 4 shows the results where we leave a subset of training shapes as
validation dataset and tested the average Chamfer Distance between the reconstructed shape and its
corresponding ground-truth one.

PosEncoding Latent Dropout Top-k Weight Score ↓
DeepSDF ✗ ✗ ✗ ✗ ✗ 0.175

- ✗ ✗ ✗ ✓ ✓ 0.137
- ✓ ✗ ✗ ✗ ✗ 0.152
- ✓ ✓ ✗ ✗ ✗ 0.15
- ✓ ✓ ✓ ✗ ✗ 0.143
- ✓ ✓ ✓ ✓ ✗ 0.119

Ours ✓ ✓ ✓ ✓ ✓ 0.113

Table 4: SDF model ablation studies: numbers are mean CD with ×103, tested in normalized
validation sets.

Besides, we conducted further ablation studies on the selection of L which controls the length of
our positional encoding, and k which controls the hard example mining magnitude. In our main
experiments, we adopt L = 10 and k = 0.5.
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Score ↓
Ours-k = 0.3 0.117
Ours-k = 0.7 0.126
Ours-L = 1 0.128

Ours-L = 30 0.119
Ours 0.113

Table 5: SDF model more ablation studies: numbers are mean CD with ×103, tested in normalized
validation sets.

E DATASET

Here we provide some examples around the dataset (Luo et al., 2022) we used. It consist of shapes
from Text2Shape (Chen et al., 2018), ABO (Collins et al., 2021), and ShapeGlot (Achlioptas et al.,
2019) datasets. All the shapes in the dataset are furniture, and the main parts of them are chairs and
tables, which contain a lot of structure variations.

Figure 12: Random examples of shapes from ShapeGlot (Achlioptas et al., 2019). One description
per sentence.

F IMPLEMENTATION DETAILS

This section lists model and training details around the proposed framework and the compared base-
lines. We also list examples of the adopted data, (Shape, Structure-Related Text), to provide some
sense for our problem setting.
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Figure 13: Random examples of shapes from ABO (Collins et al., 2021). One description per
sentence.

Figure 14: Random examples of shapes from Text2Shape (Chen et al., 2018). One description per
sentence.

F.1 CDIFFSDF

We adopt a decoder-only transformer (Vaswani et al., 2017) with casual attention (Child et al., 2019;
Ramesh et al., 2022) as the diffusion model. The Transformer has depth 3, MLP wide 64, and 8
attention heads. We train the diffusion model with batch size 256, learning rate starting from 1e− 3
following by a cosine annealing schedule, the ADAM optimizer with default parameters, and a total
of 10,000 epochs. We used a linear schedule to regulate βt and compute αt and ᾱt accordingly.
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We set βt0 = 0.004 and βt1000 = 0.00002 decided by the noise level used in training latent-code-
based SDF model. For classifier-free guidance (Ho & Salimans, 2022), we used drop ratio 0.1. The
diffusion training and sampling objective are listed in Section 3.2.

For visualizations used in this paper, we adopt Misuba (Jakob et al., 2022) to render point clouds
and meshlab (Cignoni et al., 2008) to render meshes.

For other types of conditions, the general approach mirrors that of Text-to-3D conversion. Initially,
input conditions are converted into embeddings, denoted as Bi. These embeddings act as condi-
tions in our learned diffusion model to predict a latent code, zi. In the case of image-conditioned
scenarios, a frozen CLIP image encoder is utilized. For class-conditioned scenarios, one-hot encod-
ing is employed for all classes. In unconditional situations, the condition input is omitted, directly
applying the diffusion model to the latent codes of 3D objects.

F.2 BASELINE DETAILS

We compared with various Text-to-Shape baselines to examine the performance of our proposed CD-
iffSDF. For each baseline, we generally follow the default configurations provided by their Github,
including learning rates, batch size, training epochs, and other hyper-parameters. The major modifi-
cation we made is the data part, where different methods adopt different ways to process 3D objects
and text. We list some of our modifications below:

• Shape Compiler (Luo et al., 2022): We compare with Shape Compiler Limited listed in
(Luo et al., 2022), due to we only use 3D-Text data and perform the Text-to-Shape task
solely.

• CLIP-Forge (Sanghi et al., 2022) and Dream Field (Jain et al., 2021): We follow their
papers and use clip.tokenize and clip.encode text to encode text. We used the pre-trained
model provided in CLIP-Forge’s Github to generate multiple shapes given one text prompt.
We adopt the Pytorch implementation of Dream Field (Jain et al., 2021) for qualitative
comparisons as shown in Figure 3. We do not adopt the provided codes in (Jain et al.,
2021) Github because it takes more than eight days to process one single text prompt with
our 4 GPUs of 2,048 Gb memory. Although, the Pytorch implementation still costs more
than 10,000 seconds for a text prompt. Therefore, it is impractical to test Dream Feild in
our test set, which consists of 15,000 text-shape pairs.

• Shape IMLE (Liu et al., 2022): we process all text with Bert (Devlin et al., 2018) follow
their codes (Liu et al., 2022). We adopt BertTokenizer and of the pre-trained flag ”bert-
base-uncased” to tokenize the text and then obtain the embedding by the Bert model with
the same pre-trained flag.

• CWGAN (Chen et al., 2018): we follow the data templates provided in (Chen et al.,
2018) to process our data. We process each data entry as in (Chen et al., 2018), including
caption tuples, caption matches, vocab size, max caption length, and dataset size. For the
text tokenizer, we used spaCy (Honnibal et al., 2020) as mentioned in (Chen et al., 2018).
(Chen et al., 2018) set the token number in a linear increase rule based on their data order,
while we set our token number based on our data order. We abandoned descriptions with
more than 96 tokens as (Chen et al., 2018) did.

• CurrSDF (Duan et al., 2020) and DeepSDF (Duan et al., 2020): we follow their GitHub
codes to train and implement without any code changes. The differences between CurrSDF
(Duan et al., 2020) and DeepSDF (Park et al., 2019) are summarized in Table 1 of (Duan
et al., 2020), where they manually set up a lot of stages to gradually change network struc-
tures and loss weights.

• DreamFusion (Poole et al., 2022): we adopted the implementation provided by
https://github.com/ashawkey/stable-dreamfusion. We use the plain NeRF implementation
instead of Instant-NGP.

• VoxelDiffSDF (Li et al., 2023): we directly follow the instructions provided by their office
code release.

• Point-E (Nichol et al., 2022) Shap-E (Jun & Nichol, 2023): we used the pre-trained
model provided by OpenAI Githubs. For Shap-E, we reconstruct the output mesh via STF
mode.
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