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ABSTRACT

Recent advancements in vision-language models (VLMs) have highlighted the ben-
efits of processing images at higher resolutions and leveraging multi-crop features
to retain native resolution details. However, current vision transformers (ViTs) of-
ten struggle to capture fine-grained details from non-dominant objects, charts, and
embedded text, limiting their effectiveness in certain tasks. In this paper, we push
beyond the conventional high-resolution and multi-crop techniques by not only
preserving but also zooming in past the native resolution of images and extracting
features from a large number of image sub-crops. This enhancement allows our
model to better extract fine-grained details, overcoming the limitations of current
ViTs. To manage the increased token count and computational complexity, we
show that a simple mean-pooling aggregation over tokens is effective. Our model,
Dragonfly1, achieves competitive performance on general tasks such as ScienceQA
and AI2D, and excels in tasks requiring fine-grained image understanding, includ-
ing TextVQA and ChartQA. On average, across ten general-domain benchmarks,
Dragonfly ranks at the top, outperforming models that are significantly larger or
trained on much larger datasets. Notably, Dragonfly sets new benchmarks on
several biomedical tasks, achieving 91.6% accuracy on the SLAKE (compared to
84.8% for Med-Gemini) and a 67.1% token F1 score on Path-VQA (compared
to 62.7% for Med-PaLM M). On biomedical image captioning tasks, Dragonfly
attains state-of-the-art results majority of the performance metrics. Overall, our
work highlights the persistent challenge of engineering visual representations with
fixed-resolution ViTs, and proposes a simple yet effective solution to address this
issue and boost performance in both general and specialized domains.

1 INTRODUCTION

Recent advances in Vision-Language Models (VLMs) have highlighted the critical role of effectively
integrating visual data into Large Language Models (LLMs). These models, especially those empha-
sizing visual instruction alignment, map rich, real-world visual data into the latent space of LLMs
using sophisticated image encoding techniques. This process typically involves dividing images into
patch-level tokens through powerful image encoders, which are then aligned with the LLM during
visual instruction-tuning (Liu et al., 2023b;a; Yang et al., 2023; Li et al., 2023b; Xu et al., 2023;
McKinzie et al., 2024a; Laurençon et al., 2024; You et al., 2023; Zhang et al., 2024).

Early VLMs processed images at fixed, low resolutions, requiring high-resolution images to be
downsampled to fit model input dimensions. This downsampling often causes shape distortion,
loss of fine details, and reduced overall visual richness—especially for tasks that demand fine-
grained visual understanding. However, recent works have demonstrated the benefits of using
higher-resolution encoders, where leveraging high-resolution inputs improves performance across
various tasks (Bai et al., 2023b; Zhang et al., 2024; Chen et al., 2023c; Laurençon et al., 2024;
McKinzie et al., 2024a). Moreover, approaches like Llava-1.5 (Liu et al., 2023a) and Llava-UHD
(Xu et al., 2023) incorporate multi-crop techniques, allowing models to handle images at or close to
their native resolution. This aligns with the conventional wisdom in computer vision that preserving
images near their original resolution retains crucial information, which is vital for tasks requiring
fine-grained visual understanding, such as text recognition in charts or other dense visual content.

1Upon acceptance, we will open-source our instruction-tuning dataset, model, and codebase.
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In this paper, we extend this high-resolution encoding approach by introducing a novel strategy:
featurizing images with multi-crops that exceed their native resolution. By zooming in at this level,
we aim to mitigate limitations in existing Vision Transformers (ViTs), particularly their difficulty
in extracting fine-grained details from non-dominant objects, charts, and embedded text (Li et al.,
2023a; Bai et al., 2023b; Hong et al., 2024; Ye et al., 2023). While one might expect that zooming
beyond native resolution adds no additional information and should not help if ViTs are functioning
perfectly, in practice, they often miss subtle image details. As a result, zooming in helps capture
information that ViTs currently struggle to extract. However, this high-resolution zoom-in and
multi-crop method introduces a new challenge: the number of image tokens increases drastically with
higher resolutions and more crops, significantly raising context length and computational demands.
For instance, an image with a resolution of 336x336 is converted into 576 visual tokens using a
CLIP-ViT-L/14 architecture (Radford et al., 2021). With five such image crops, this number already
exceeds 2,800 tokens (Liu et al., 2023a). To manage this token complexity, we adopt a simple
mean-pooling strategy for each high-resolution zoomed-in crop. Empirically, we find that this
straightforward method—compressing visual tokens via mean pooling—strikes the best balance
between computational efficiency and feature preservation. Although more advanced token-reduction
methods (e.g., learnable approaches) may perform better with larger datasets, our experiments in the
supervised fine-tuning setting show that mean pooling consistently delivers strong results across both
general and biomedical benchmarks.

In summary, our contributions are as follows:

• We introduce Dragonfly, a new large VLM that processes images using multiple image
crops that zoom beyond native resolution. By employing simple mean-pooling aggregation
on high-resolution crops, Dragonfly efficiently reduces visual token counts while preserving
fine-grained image details, all without the need for extensive pretraining. Dragonfly excels
performance on general-domain benchmarks such as ScienceQA and AI2D, and performs
especially well in tasks requiring fine-grained image understanding, like ChartQA and
TextVQA. Among models in the 7-8B parameter range, Dragonfly ranks highest on average
across ten evaluated benchmarks, outperforming even larger models or those trained on
significantly more data.

• We highlight the model’s strong performance on biomedical tasks, where detailed compre-
hension of high-resolution images is critical. Fine-tuned on a biomedical instruction-tuning
dataset, Dragonfly achieves state-of-the-art or competitive results across benchmarks such
as VQA, image captioning, and radiology report generation. Notable outcomes include
91.6% accuracy on SLAKE, a 67.1 token F1 score on Path-VQA, and a 50.9 CIDEr score
on MIMIC-CXR captioning—these are the highest reported numbers to the best of our
knowledge.

• We curate a dataset of 2.4 million supervised finetuning samples for the general domain and
1.4 million for the biomedical domain. While most of the data are publicly available, we
carefully balanced and deduplicated the dataset across multiple tasks and image modalities
(for the biomedical domain), which we believe will be beneficial to the community. Upon
acceptance, we will release both instruction-tuning datasets, along with our training and
evaluation code, and the fine-tuned models for both general and biomedical domains.

2 RELATED WORK

Large Multimodal Models (LMMs) The advancement of large multimodal models (LMMs) has
greatly impacted vision-language research by enabling the integration of visual information into
large language models (LLMs). Methods such as visual feature alignment have become essential for
merging vision and language through visual instruction-tuning (Liu et al., 2023b;a; Dai et al., 2023;
Yang et al., 2023; Li et al., 2023b; Xu et al., 2023; McKinzie et al., 2024a; Laurençon et al., 2024; You
et al., 2023; Awadalla et al., 2023). For instance, Liu et al. (2023b) employs a fully connected layer
to project image embeddings, generated by a pretrained CLIP encoder (Radford et al., 2021), into the
embedding space of a large language model. Despite these successes, many models downscale input
images to fixed, low resolutions, which sacrifices fine visual details—particularly problematic in
domains like biomedicine, where high-resolution image inputs are crucial for understanding intricate
visual details (McKinzie et al., 2024a; Laurençon et al., 2024).
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Handling High-Resolution Inputs and Capturing Fine-Grained Details Handling high-resolution
inputs in vision-language models presents significant challenges, particularly due to the exponential
growth in image tokens that increases computational demands. For instance, a 336x336 resolution
image produces 576 visual tokens in a CLIP-ViT-L/14 architecture, and with multiple crops, this
number can exceed 2,800 tokens (Liu et al., 2023a). Several approaches, such as Xu et al. (2023), have
attempted to mitigate this by segmenting native-resolution images into smaller slices to retain detailed
visual information while maintaining computational feasibility. Similarly, curriculum learning
approaches like Qwen-VL (Bai et al., 2023b), PaLI-3 (Chen et al., 2023c), and PaLI-X (Chen et al.,
2023c) have been explored to gradually scale input resolution, however, these methods still struggle
with very large image sizes and require significant resources. Additionally, capturing fine-grained,
local details—essential for tasks such as segmentation—remains a challenge for models like CLIP,
which are trained on global image-level representations and often miss important regional semantics
(Wu et al., 2023; Xu et al., 2022; Zhong et al., 2022). Although fine-tuning methods such as Rao et al.
(2022) and Wang et al. (2022) have shown improvements in dense prediction tasks, these models
still require substantial modifications to fully overcome limitations in locality and fine-grained detail
capture. One potential way to overcome these limitations is to zoom in beyond the native resolution of
an image, which enables models to extract even finer details that may not be fully captured at standard
resolutions. By focusing on smaller regions of the image at higher magnification, this approach helps
to compensate for the shortcomings of current ViTs in capturing localized and intricate features. To
the best of our knowledge, no prior work has systematically explored the benefits of zooming in
beyond an image’s native resolution.

Biomedical Applications of LMMs LMMs have shown considerable promise in biomedical appli-
cations, where detailed comprehension of high-resolution image regions is critical. Models such
as BiomedGPT (Zhang et al., 2023a) and LLaVA-Med (Li et al., 2024a) integrate medical imaging
and literature to address specialized tasks in the biomedical domain. General-purpose models like
Med-PaLM (Tu et al., 2024), Med-Flamingo (Moor et al., 2023), and Med-Gemini (Saab et al., 2024)
have also been adapted for medical applications, showcasing the potential of LMMs to tackle complex
vision-language tasks. Our work builds on studies such as McKinzie et al. (2024a) and Laurençon
et al. (2024), focusing on visual instruction-tuning and efficient high-resolution image processing.

3 DRAGONFLY ARCHITECTURE

We introduce our multi-resolution visual encoding approach and the strategies employed to manage
the large number of visual tokens resulting from it. The workflow of our architecture is illustrated in
Figure 1.

3.1 MULTI-RESOLUTION VISUAL ENCODING

We employ a multi-resolution visual encoding strategy using a shared image encoder trained on a
fixed resolution of R×R. Following techniques from previous works (Liu et al., 2023a; Xu et al.,
2023), our framework processes larger images by dividing them into multiple sub-images, each
matching the encoder’s native resolution. Specifically, given an image I , we resize it into three
distinct resolutions: a low-resolution image I l of size R×R, a medium-resolution image Im of size
xmR× ymR, and a high-resolution image Ih of size xhR× yhR. The medium- and high-resolution
images are then divided into sub-images, resulting in two sets of sub-images, {Imi }x

m×ym

i=1 and

{Ihj }
xh×yh

j=1 , with each sub-image aligned to the encoder’s training resolution R×R. We adopt the
any-resolution segmentation method from Xu et al. (2023) to divide images into sub-images. This
method selects a resolution grid from a predefined set of grids that closely match the original image’s
aspect ratio. For medium resolution, the possible grids are {(2, 2), (1, 4), (4, 1)}, resulting in four
sub-images. For high resolution, we use the grids {(6, 6), (3, 12), (12, 3)}, producing 36 sub-images
in total.

The image encoder encodes each sub-image into a sequence of visual tokens {v1, . . . , vn}. These to-
kens, extracted from the various sub-images, are projected into the latent space of the language model
via a projection layer P , generating a corresponding sequence of projected tokens {t1, . . . , tn}. The
projected tokens from different sub-images are concatenated to form a comprehensive representation
of the image, which is then used for understanding by the LLM. However, due to the large number of
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Figure 1: Overview of our proposed Dragonfly framework. The original image is resized into low,
medium, and high resolutions. The medium- and high-resolution images are divided into sub-images,
matching the encoder’s training resolution. All sub-images pass through a shared vision encoder
to produce visual tokens. The projection layer then maps the visual tokens to the language space.
Afterward, the mean-pooling layer reduces the embeddings from each sub-image into 36 tokens.

sub-images, especially from the high-resolution set, incorporating all these sub-images can result
in longer context lengths and introduce noise during training. In the following sections, we discuss
strategies to mitigate these challenges.

3.2 TOKEN AGGREGATION

We adopt a simple mean pooling strategy to reduce the number of visual tokens while still leveraging
high-resolution images. All images are resized to 336×336 and processed using the CLIP-ViT-L/14
model, which outputs 576 tokens. For the low-resolution image, we retain all 576 tokens. For
the medium- and high-resolution images, the image is divided into 40 sub-images (4 for medium
resolution and 36 for high resolution). Each sub-image passes through the image encoder, producing
576 tokens, which are reshaped into a 24×24 token grid. We then apply mean pooling to this grid,
reducing it to a 6×6 grid using a sliding window of size 4 with a stride of 4, resulting in 36 tokens
per sub-image. All 40 sub-images are then concatenated, with separator tokens placed between them,
forming the complete image representation. This results in 576 tokens from the low-resolution image,
4×36 tokens from the medium resolution, and 36×36 tokens from the high resolution, yielding a
total of 2,016 image tokens.

4 EXPERIMENTS

In this section, we first introduce our implementation and experimental setup. We then present
ablations and baseline comparisons to validate our design choices. Next, we evaluate Dragonfly
against other models of similar scale across multiple general-domain benchmarks. Finally, we
continue training Dragonfly on a biomedical dataset, resulting in Dragonfly-Med, and assess its
performance on biomedical tasks.

4.1 IMPLEMENTATION

Dragonfly uses Llama3.1-8B-chat (Meta AI, 2024) as the backbone and CLIP-ViT-L/14 (Radford
et al., 2021) as the image encoder. CLIP-ViT-L/14 accepts images with a resolution of 336×336, and
our highest resolution is either 2016×2016 or 1008×4032, depending on the native aspect ratio of
the image. An analysis of the resolutions across our training data revealed that these high resolutions
cover approximately 99.5% of images at their native resolution. Additionally, after applying the
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Dragonfly multi-crop zoom-in method, 95% of the images are zoomed in by at least 2x, and 65% are
zoomed in by at least 4x. A cumulative density plot of the ratio between our high-resolution images
and their native resolution is provided in Supplementary Figure 4.

For training Dragonfly, we adopt the two-stage visual instruction-tuning framework introduced by
Liu et al. (2023b). In the first stage, the LLM and vision encoder are frozen, with only the projection
layer being trained. This stage allows the projection layer to effectively learn how to map visual
tokens into the language space while preserving the pre-established alignment of the LLM. The
model is trained for one epoch on the LLaVA-Pretrain dataset (Liu et al., 2023b), which consists of
558K image-text pairs, using a global batch size of 64 and a learning rate of 2e-5.

In the second stage, the entire model undergoes fine-tuning on a high-quality visual instruction-tuning
dataset. This step is crucial for further aligning visual features with the language space, thereby
optimizing the model’s performance in vision-language tasks. For this supervised fine-tuning, we
curated a dataset comprising 2.4M image-instruction samples from various sources, which include
detailed image descriptions, complex reasoning tasks, and question-answering tasks. Further details
about this instruction-tuning dataset are provided in Appendix Sections B and D. The model is trained
for one epoch with a global batch size of 16, with a learning rate of 2e-6.

Stage 1 training lasted approximately 4 hours, and Stage 2 training lasted 32 hours on 3 nodes of 8
NVIDIA H100 GPUs, utilizing DeepSpeed ZeRO for distributed training. More details about our
training hyperparameters are presented in Supplementary Table 10.

Before presenting our main results, we first validate our design choices by conducting multiple
ablations, comparing them against baselines and alternative token reduction strategies.

4.2 ABLATION 1: IS MEAN-POOLING AN EFFECTIVE TOKEN REDUCTION STRATEGY?

Training all baseline models on the full 2.4M instruction-tuning dataset is too time-prohibitive.
Therefore, we randomly sample 700K samples from our supervised finetuning mixture and use this
reduced dataset to fine-tune all baseline models. All hyperparameters are the same as in the main
experiments, as discussed in Section 4.

Table 1: Performance comparison of multiple token reduction strategies for encoding high-resolution
images against Dragonfly. The first model is our implementation of LLaVA-1.5-HD, which uses
CLIP-ViT-L/14 for both low and medium resolutions, producing 2,880 image tokens. The second
model, LLaVA-UHD, results in a variable number of image crops based on the original image size,
with each crop producing 64 tokens. The total number of tokens for LLaVA-UHD is therefore
variable, with a maximum of 6 crops allowed, resulting in a maximum of 384 image tokens. The third
model uses CLIP-ViT-L/14 for low resolution and CLIP-ViT-B/32 for medium and high resolutions,
generating 2,576 image tokens. The fourth model is similar to Dragonfly but uses the IDEFICS
Perceiver Resampler to reduce the number of tokens to match ours (2,016). All models share the
same LLM backbone, LLaMA-3.1-8B-chat, and are trained on the same dataset.

Benchmark LLaVA-1.5-HD LLaVA-UHD Dual Encoder Perceiver Resampler Dragonfly

AI2D 63.8 59.9 61.7 60.4 64.2
ScienceQA 79.3 76.3 79.5 70.0 79.7
ChartQA 54.0 37.2 36.6 48.0 56.4
POPE-f1 85.7 85.3 86.2 84.4 87.7
GQA 54.1 51.0 51.8 53.4 55.7
TextVQA 64.0 51.5 48.5 52.6 66.5
VizWiz 56.1 51.8 60.4 56.8 61.7
MME 1414.0 1302.1 1314.9 1385.3 1438.9

We experimented with multiple alternative token reduction strategies to compare against our mean
pooling approach. The first model, Dual-Encoder, processes the low-resolution image using the
CLIP-ViT-Large model, while the medium- and high-resolution sub-images are handled by the
CLIP-ViT-Base model, each resized to 224×224 and generating 49 tokens per sub-image. Both
encoders use their own single-layer modality projection. This configuration produces a total of 2,536
image tokens.
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Table 2: Ablation study results evaluating the impact of different image resolutions on model
performance across multiple benchmarks. The table compares the performance of Dragonfly using
low (L), medium (M), and high (H) resolutions individually, as well as in various combinations.

Metric L M H L + M L + H L + M + H

AI2D 60.6 61.8 60.4 64.5 63.6 64.2
ScienceQA 76.0 76.2 76.0 79.2 79.0 79.7
ChartQA 21.6 48.4 54.1 52.9 56.2 56.2
Pope-f1 82.2 87.1 86.0 87.5 87.7 87.7
GQA 49.5 53.1 52.9 54.6 55.2 55.7
TextVQA 40.0 55.0 56.4 60.9 65.2 66.5
VizWiz 57.4 59.9 56.0 58.7 59.7 61.7
MME 1205.3 1311.6 1364.0 1227.4 1397.8 1438.9

The second model, Perceiver Resampler, follows a similar structure to Dragonfly, but replaces the
mean pooling layer with the IDEFICS implementation of the Perceiver Resampler (Alayrac et al.,
2022). This resampler uses a depth of 3 and 36 latents, resulting in a total of 2,016 tokens—matching
our token count. Additionally, we implemented our own version of LLaVA-1.5-HD (Liu et al.,
2023a) and LLaVA-UHD (Xu et al., 2023) using the same ViT and LLM backbone as our model.
These two are our closest baselines. LLaVA-1.5-HD processes low- and medium-resolution images
and generates a total of 2,880 visual tokens, whereas, LLaVA-UHD process the images at their native
resolution and generates at max 6 crops from the image, each of which generates 64 tokens. At max,
LLaVA-UHD can generate 384 tokens.

Table 1 presents the results of these baselines. Empirically, we found that the mean pooling strategy
consistently outperformed other methods across all benchmarks, demonstrating particularly strong
performance in tasks requiring fine-grained visual detail, such as TextVQA and ChartQA. Notably,
Dragonfly outperforms LLava-1.5-HD and LLaVA-UHD on all benchmarks. While advanced token-
reduction methods like the Perceiver Resampler also performed well, the simplicity and effectiveness
of mean pooling—combined with a robust vision encoder and high-resolution inputs—proved to be
the most efficient approach in this supervised fine-tuning setting.

4.3 ABLATION 2: HOW IMPORTANT ARE EACH IMAGE RESOLUTION?

To evaluate the impact of image resolution on downstream performance, we trained four separate
models using different combinations of image resolutions. For low resolution, we used all 576 tokens;
for medium resolution, 4×36 tokens; and for high resolution, 36×36 tokens. The results, as presented
in Table 2, provide several key insights into the role of image resolution. First, models utilizing
medium or high-resolution images generally outperform those relying solely on low-resolution inputs
across most benchmarks, underscoring the significance of higher resolutions in capturing fine-grained
visual details. Additionally, combining low resolution with medium or high resolution consistently
performs better than using any individual resolution, particularly on tasks such as ChartQA and
TextVQA. This indicates that blending global context from low-resolution images with detailed
regional features from medium or high-resolution images is especially effective for tasks requiring
both broad contextual understanding and fine-grained detail recognition. The best overall performance
is achieved by integrating all three resolutions (low + medium + high), which yields the highest scores
across most benchmarks, emphasizing the value of leveraging a full spectrum of image resolutions.

4.4 ABLATION 3: DISENTANGLING RESOLUTION AND MULTI-CROP BENEFITS

Our previous results demonstrate improved performance from our multi-resolution encoding strategy.
However, it remains unclear whether these gains are primarily due to the higher image resolution
preserving more information or the multi-crop approach generating separate features for each sub-
image. While our method provides both benefits over a single-crop, fixed-resolution approach, we
now conduct an experiment to disentangle their relative importance. Specifically, we test: 1) the
effect of generating multi-crop features from an image already downsized to low resolution, which
limits the ability to preserve extra raw image information compared to the standard single-resolution
approach, and 2) the effect of generating multi-crop features from an image that retains its native
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Table 3: Ablation study results evaluating the impact of zooming in. The table compares performance
using low resolution and medium resolution, pooled down to 576 tokens, with versions starting from
the low-resolution image and starting from the native-resolution image.

Metric Low-
Resolution

Medium-Resolution from
Low-Resolution

Medium-Resolution from
Native-Resolution

AI2D 60.6 62.9 61.7
ScienceQA 76.0 77.6 76.9
ChartQA 21.6 52.4 56.6
POPE 83.4 85.1 86.8
GQA 49.5 54.7 54.9
TextVQA 40.0 57.4 61.2
VizWiz 57.4 58.0 56.7
MME Perception 1205.3 1398.9 1444.7

resolution, allowing it to preserve more raw image information than both the standard low resolution
approach and 1).

For the first experiment, we rescaled all images to a low resolution of 336 × 336, with the low-
resolution performance consistent with Table 2. From this baseline, we conducted an experiment
where we zoomed in 2×, generating images of size 672× 672 and producing four crops from the
rescaled image. Each crop was passed through the ViT, generating 576 tokens (24× 24), which we
then pooled down to 144 tokens per crop, for a total of 576 tokens across all crops. This matches
the total token count of the low-resolution model. In Table 3, this represents the column "Medium-
Resolution from Low-Resolution", and it outperforms the "Low-Resolution" model in all benchmarks,
particularly excelling in tasks like ChartQA and TextVQA, where localized information is critical.
This suggests that the multi-crop approach itself, even without preserving additional raw image
information, significantly contributes to improved performance, likely by enabling more focused
processing of image sub-regions.

For the second experiment, without first rescaling to low resolution, we worked directly from the
native-resolution image and resized it to 672× 672, producing four crops from the resized image.
Each crop was passed through the ViT, generating 576 tokens (24 × 24), which we then pooled
down to 144 tokens per crop, for a total of 576 tokens across all crops. In Table 3, this represents
the column "Medium-Resolution from Native-Resolution." There are two key observations here.
First, as expected from previous results, this model outperforms the "Low-Resolution" baseline
across all tasks. Second, it also outperforms the "Medium-Resolution from Low-Resolution" model
on a majority of the tasks (5/8), highlighting the importance of preserving raw image information.
However, these results indicate that most of the performance gains come from featurizing sub-crops,
which remains the most important part of our approach.

4.5 MAIN RESULTS

Table 4: Comparison of Dragonfly with existing Language-Image Multimodal Models (LMMs)
across various benchmarks. The best performance is indicated in bold, while the second-best is
underlined.
Model Backbone #Data VQAv2 VQAT POPE SQA VizWiz AI2D ChartQA MME MMB/MMBCN

InstructBLIP Vicuna-7B 130M - 50.1 - 60.5 34.5 - - - 36.0/23.7
Qwen-VL-Chat Qwen-7B 1.4B 78.2 61.5 - 68.2 38.9 62.3 65.7 1487.5 60.6/56.7
LLaVA-1.5 Vicuna-7B 1.2M 78.5 58.2 85.9 66.8 50.0 54.8 18.2 1510.7 63.4/58.3
VILA Llama2-7B 61M 79.9 64.4 85.5 68.2 57.8 - - 1533.0 68.9/61.7
LLaVA-NeXT Vicuna-7B 1.2M 81.8 64.9 86.5 70.1 57.6 66.6 54.8 1519.0 67.4/60.6
MM1-7B-Chat MM1-7B >2B 82.3 72.8 86.6 72.6 45.3 - - 1529.3 72.3/-
mPLUG-Owl2 Llama2-7B 401M 79.4 58.2 86.2 68.7 54.5 - - 1450.2 63.5/-
Monkey Qwen-7B 1B 80.3 - 67.6 69.4 61.2 62.6 65.1 - -
SPHINX Llama2-7B 1B 78.1 51.6 80.7 69.3 39.9 - - 1476.1 66.9/56.2
SPHINX-2k Llama2-7B 1B 80.7 61.2 87.2 70.6 44.9 - - 1470.7 65.9/57.9
ShareGPT4V-7B Vicuna-7B 1.8M 80.6 - - 68.4 57.2 - - 1567.4 68.8/62.2
VisionLLM v2-chat Vicuna-7B 22M 81.4 66.3 87.5 94.4 54.6 - - 1512.5 77.1/67.6
InternVL-7B Vicuna-7B >28.7B 79.3 57.0 86.4 66.2 52.5 - - 1525.1 64.6/57.6

Dragonfly (Ours) Llama3-8B 2.9M 81.0 73.6 87.9 79.5 59.0 67.9 71.2 1538.1 71.9/66.1
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Quest ion: What is present?
Gold Answer : acute peritonitis 
Dragonf ly Response: acute 
peritonitis

Quest ion: What diseases are 
included in the picture?
Gold Answer : Cardiomegaly
Dragonf ly Response: Cardiomegaly

Quest ion : Does this image show 
metastatic choriocarcinoma with 
extensive vascularization?
Gold Answer : yes
Dragonf ly Response: yes

Figure 2: Examples of Biomedical Visual Question Answering (VQA). The figure shows three
questions along with their gold standard answers and the corresponding responses from the Dragonfly-
Med model.

Table 4 presents the performance of Dragonfly across multiple benchmarks in comparison to other
off-the-shelf VLMs. We evaluate the models across ten established benchmarks, including general
visual question answering datasets (ScienceQA (Lu et al., 2022), VQAv2

(Antol et al., 2015), VizWiz
(Gurari et al., 2018)), chart interpretation and OCR-based VQA datasets (ChartQA (Masry et al.,
2022) and TextVQA (Singh et al., 2019)), hallucination assessment datasets (POPE (Yifan et al.,
2023)), and other standard benchmarks such as AI2D (Kembhavi et al., 2016), MME (Fu et al., 2023),
MMB (Liu et al., 2023c), and MMBCN , which is the chinese version of MMB.

One of the key areas where Dragonfly excels is in tasks that require fine-grained visual understanding,
such as TextVQA and ChartQA. For instance, Dragonfly achieves a score of 73.6 on TextVQA
and 71.2 on ChartQA, outperforming all other models in the table. By comparison, Qwen-VL-
Chat Bai et al. (2023b), trained on over 400 times more data, achieves only 61.5 on TextVQA and
65.7 on ChartQA. This result aligns with previous research (Beyer et al., 2024), which emphasizes
the importance of high-resolution images for tasks involving intricate visual details, such as text
recognition and chart interpretation.

In addition to these tasks, Dragonfly achieves best performance on POPE-f1 (87.9) and ranks second-
best on VizWiz (59.0), MME (1538.1), ScienceQA (79.5), and MMBCN (66.1). The models that
often outperform Dragonfly on certain benchmarks, such as MM1-7B-Chat, and Monkey Li et al.
(2024c), are trained on significantly larger datasets, with over 1 billion samples.

As shown in Supplementary Table 14, Dragonfly competes strongly against 13B-17B models across
various benchmarks. It outperforms all comparable 13B models on TextVQA, ChartQA, and
MMBCN , while also achieving second-best performance on POPE, ScienceQA, VizWiz, AI2D,
and MMB, competing against powerful models such as CogVLM-17B-Chat Wang et al. (2023a).
This underscores Dragonfly’s efficiency in leveraging high-resolution, zoomed-in image features and
a powerful visual encoder without requiring extensive pretraining data.

4.6 BIOMEDICAL DOMAIN ADAPTATION

We employed a domain adaptation strategy to evaluate our model’s ability to specialize to the
biomedical domain and assess its fine-grained image understanding. Starting with a model checkpoint
instruction tuned on a general domain dataset, we implemented a three-step training process tailored
specifically for the biomedical domain to create Dragonfly-Med.

The first stage involved tuning the vision encoder, which is critical given the limited exposure of the
standard CLIP vision encoder to biomedical images. The training dataset for this phase primarily
comprised short caption datasets from sources like LLaVA-Med (Li et al., 2024a), Openpath (Huang
et al., 2023a), and MedICaT (Subramanian et al., 2020), supplemented by general domain datasets
from LLaVA-Pretrain (Liu et al., 2024c). This phase included approximately 1.16 million image-text
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pairs, split roughly evenly between the general and biomedical domains. Stage 1 took approximately
24 hours to train on 8 NVIDIA H100 GPUs.

In the second stage, we jointly trained the vision encoder, language model, and projection layer. We
used a diverse set of datasets, including LLaVA-Med-Instruct (Li et al., 2024a), MIMIC-III-CXR
(Johnson et al., 2019), Openpath (Huang et al., 2023a), ROCO (Pelka et al., 2018), Kaggle DR, and
DDR (Li et al., 2019). Additionally, we included training sets from benchmark datasets such as
VQA-RAD (Lau et al., 2018), SLAKE (Liu et al., 2021), Path-VQA (He et al., 2020), IU X-Ray,
and Peir Gross (Demner-Fushman et al., 2016). The dataset totaled 723K image-text pairs, with
approximately 15% from the general domain and 85% from the biomedical domain. General domain
datasets included SVIT Zhao et al. (2023b), ShareGPT4V Chen et al. (2023b), and ArXivCap Li et al.
(2024b). Stage 2 took about 30 hours on 8 NVIDIA H100 GPUs.

The final stage involved supervised finetuning using combined training datasets from our bench-
mark tasks: VQA-RAD, SLAKE, Path-VQA, IU X-Ray, Peir Gross, and subsets of ROCO and
MIMIC-CXR. We finetuned a single model end-to-end on this aggregated training data to optimize
performance across all tasks simultaneously. Stage 3 required approximately 4 hours of training on 8
NVIDIA H100 GPUs.

Table 5: Medical image captioning and clinical report generation evaluation results. For MIMIC-CXR,
we specifically focus on generating the findings section of the radiology report.

Dataset Metric BiomedGPT SOTA Dragonfly-Med (Ours)

IU X-Ray
ROUGE-L 28.5 44.8 (Zhou et al., 2021) 29.1
METEOR 12.9 24.2 (Huang et al., 2023b) 30.5

CIDEr 40.1 43.5 (Wang et al., 2023b) 61.7

Peir Gross
ROUGE-L 36.0 36.0 (Zhang et al., 2023a) 42.0
METEOR 15.4 15.4 (Zhang et al., 2023a) 40.2

CIDEr 122.7 122.7 (Zhang et al., 2023a) 198.5

ROCO
ROUGE-L 18.2 18.2 (Zhang et al., 2023a) 19.2
METEOR 7.8 7.8 (Zhang et al., 2023a) 15.5

CIDEr 24.2 24.2 (Zhang et al., 2023a) 45.2

MIMIC-CXR
ROUGE-L 23.8 33.5 (Zhou et al., 2021) 25.2
METEOR 14.2 19.0 (Zhou et al., 2021) 23.6

CIDEr 14.7 50.9 (Miura et al., 2020) 50.9

Table 6: Biomedical VQA evaluation results.
Dataset Metric LLaVA-Med Med-Gemini SOTA Dragonfly-

Med (Ours)

VQA-RAD Acc (closed) 84.2 69.7 87.1 (Tanwani et al., 2022) 78.1
Token F1 - 50.1 62.1 (Tu et al., 2024) 61.4

SLAKE Acc (closed) 83.2 84.8 91.6 (Yuan et al., 2023) 91.6
Token F1 - 75.8 89.3 (Tu et al., 2024) 89.3

Path-VQA Acc (closed) 91.7 83.3 91.7 (Li et al., 2024a) 90.6
Token F1 - 58.7 62.7 (Tu et al., 2024) 67.1

The results, as reported in Table 5 and 6, are based on this finetuned model and evaluated against
the official held-out test sets of the respective benchmarks (details of the biomedical benchmarks are
provided in Appendix Section E). For VQA tasks, we use accuracy and token-level F1 (Tu et al.,
2024), while for image captioning and radiology report generation tasks, we use metrics such as
ROUGE-L (Lin, 2004), METEOR (Banerjee & Lavie, 2005), and CIDEr (Vedantam et al., 2015).
These metrics evaluate the fluency of text, the sequence of content, and the recognition of synonyms
and word stems, with CIDEr specifically tailored for assessing text descriptions of images.

Dragonfly-Med achieves competitive performance across multiple benchmarks. On the image
captioning task, Dragonfly-Med delivers state-of-the-art or competitive results on several metrics
across these datasets. Notably, on the Peir Gross and ROCO datasets, Dragonfly-Med outperforms
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existing methods on all three metrics: ROUGE-L, METEOR, and CIDEr. On the other two captioning
benchmarks (IU X-Ray and MIMIC-CXR), Dragonfly-Med achieves state-of-the-art performance on
two out of three evaluation metrics. Some baseline models are significantly larger than our current
implementation.

For VQA tasks, Dragonfly-Med attains an accuracy of 91.6% and a token F1 score of 89.3% on
the SLAKE dataset, matching the current state-of-the-art. Similarly, on Path-VQA, Dragonfly-Med
sets a new state-of-the-art performance with a token F1 score of 67.1, surpassing the much larger
Med-PaLM-M model, which scores 62.7. Additionally, Dragonfly-Med consistently outperforms
Med-Gemini, a significantly larger model, on all VQA tasks. These results further highlight the
fine-grained understanding and reasoning capabilities of the Dragonfly-Med architecture for image
region tasks. Figure 2 presents a few examples from our evaluation tasks, along with Dragonfly-Med’s
responses.

5 DISCUSSION AND CONCLUSION

High-resolution image inputs are crucial for capturing fine-grained visual details, particularly in
tasks requiring complex understanding. Our study demonstrates that leveraging powerful vision
encoders and pushing image resolutions beyond native sizes enhances the model’s ability to identify
subtle visual cues. Zooming in beyond native resolution allows the model to capture fine-grained
details that might otherwise be missed, particularly in small objects, dense text, and intricate visual
patterns. We show that a simple mean pooling strategy, when paired with high-resolution inputs,
provides an effective and computationally efficient solution, preserving both global context and fine
details. Dragonfly outperforms models using more complex reduction methods and even surpasses
larger models in several benchmarks while utilizing fewer tokens and less data. The effectiveness
of mean pooling likely lies in its simplicity: it distills redundant visual information and aggregates
key features without introducing additional parameters or biases that might require extensive data to
optimize. This non-parametric approach appears to be particularly advantageous in low-data regimes,
where the limited supervision can hinder the training of parameter-heavy methods. By avoiding the
complexities of learning a compression mechanism, mean pooling ensures a robust, data-efficient
integration of high-resolution features, enabling better generalization with fewer resources.

Despite the strong performance of Dragonfly, there are several limitations to our approach. First,
we only explored supervised fine-tuning and did not evaluate these strategies at the pretraining
stage. Therefore, while our results show promise, we cannot make broad generalizations about the
effectiveness of high-resolution, multi-crop techniques or mean pooling across other phases of training.
Second, although we have demonstrated competitive performance using much smaller datasets than
other models, it remains unclear whether our approach will continue to scale as effectively with
larger supervised fine-tuning datasets. Further investigation is needed to determine whether the
model’s performance improvements hold up with increasing data volume. Third, while the increased
resolution and multiple image crops enhance the model’s visual understanding, they come at the
cost of higher computational demands in the vision encoder. However, it is important to note that,
compared to the LLM, the computational overhead in the ViT is relatively smaller. Moreover, by
applying mean pooling, we ensure that the context length passed to the LLM remains manageable,
helping mitigate the impact of these additional FLOPs. In future, we aim to scale up our fine-tuning
dataset and explore the benefits of zoomed-in features more comprehensively.

Interestingly, the strong performance of our simple approach—zooming in beyond native resolution
and mean pooling the tokens—highlights a broader issue: the fixed-resolution approach of current
vision transformers is inherently limiting. While multi-crop strategies offer some improvement, they
introduce complexity and increased computational demands. Moving forward, VLMs should adopt
native-resolution architectures that can process images at various scales in a single pass, preserving
all the information without requiring multiple crops. Additionally, improved training strategies are
needed to ensure that models retain the same level of detail as if magnified sub-crops were processed
individually.
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A APPENDIX

B GENERAL DOMAIN TRAINING DATA DESCRIPTION

We curated a vision instruction-tuning dataset using samples from ShareGPT4V (Chen et al., 2023a),
ALLaVA (Chen et al., 2024a), SVIT (Zhao et al., 2023a), and selected tasks from Cauldron (Laurençon
et al., 2024). Initially, we combined the samples from these four sources, resulting in nearly 9 million
data points. Through experimentation with the training data, we derived several key insights:

• Increasing the number of training samples during visual instruction tuning improves the
model’s performance on commonsense reasoning tasks but also increases the likelihood of
hallucination. To mitigate this, the model benefits from training on specialized data.

• Deduplicating the training samples is crucial. Duplicate samples can introduce bias during
training, negatively impacting model performance.

• Question-answering data enhances benchmark performance but can reduce the detail and
length of generated text.

Based on these insights, we first deduplicated the image-instruction pairs. Since SVIT and
ShareGPT4V share the same image set, and SVIT generates multiple instructions per image, we
randomly selected eight instructions per image to scale the dataset. The Cauldron dataset, a vast
collection of 50 high-quality datasets converted to user/assistant format, included some datasets
related to math or coding, which caused misalignment during training. As a result, we excluded
five datasets from Cauldron. After processing and deduplication, our final training set contained 2.4
million image-instruction pairs. Additionally, we included text-only data from OpenHermes and
MathInstruct to maintain the model’s zero-shot capabilities.

C IMPACT OF TOKEN COMPRESSION ON MODEL PERFORMANCE

Token compression, determined by pooling stride and kernel size, plays a critical role in balancing the
preservation of visual detail with computational efficiency. To evaluate its impact, we experimented
with varying levels of token compression using mean-pooling in two settings: Low + Medium
resolution and Low + High resolution models. For each configuration, we adjusted the number of
tokens per sub-image (9, 16, 36, 64, or 144), as shown in Tables 7 and 8.

In the Low + Medium resolution configuration (Table 7), each image is divided into four medium-
resolution sub-images, and each sub-image is compressed to 16, 36, 64, or 144 tokens using mean-
pooling. A significant performance jump is observed across most benchmarks when increasing
from 16 to 36 tokens. This suggests that extreme compression (16 tokens per sub-image) overly
simplifies the representation, likely discarding fine-grained features critical for tasks like ChartQA
and TextVQA, which rely on detailed visual understanding. Beyond 36 tokens, the performance
gains taper off, with 36 tokens often outperforming higher counts such as 64 and 144 tokens. This
highlights 36 tokens per sub-image as an effective balance for preserving detail while avoiding
unnecessary redundancy.

In the Low + High resolution configuration (Table 8), each high-resolution image is divided into 36
sub-images, with each sub-image compressed to 9, 16, 36, or 64 tokens. Due to the computational
burden of handling 5184 tokens per image, we did not evaluate 144 tokens in this setting. Similar
to the Low + Medium resolution ablations, we observe a significant performance improvement
when increasing from the aggressively pooled 9 tokens per sub-image to 16 tokens per sub-image.
Another notable observation is that lower token counts (16 or 36) often outperform higher counts (64).
Since each high-resolution image is cropped into 36 non-overlapping sub-images, each sub-image
covers only a small portion of the original image, making a small token count sufficient to capture
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detailed features from that region. In fact, increasing the number of tokens could negatively impact
performance by introducing more background information.

For simplicity, we used a uniform compression level of 36 tokens per sub-image for both medium-
and high-resolution sub-images in our final experiments. However, using different compression ratios
for medium- and high-resolution sub-images could potentially yield better results. We present this
result this in Supplementary Table 12.

Table 7: Performance comparison for different pooling strides or compression levels for mean-
pooling in Low + Medium resolution. Starting from no compression (576 tokens per sub-image) and
descending order: 144, 64, 36, and 16 tokens.

Benchmark 576 tokens 144 tokens 64 tokens 36 tokens 16 tokens
AI2D 63.8 62.7 62.8 64.5 60.7
ScienceQA 79.3 77.9 79.5 79.2 78.5
ChartQA 54.0 53.4 52.2 52.9 26.2
POPE-f1 85.7 87.4 86.3 87.5 83.1
GQA 54.1 55.2 55.1 54.6 50.4
TextVQA 64.0 62.6 61.3 60.9 43.9
VizWiz 56.1 57.0 56.1 58.7 53.4
MME 1414.0 1413.0 1420.6 1227.4 1285.9

Table 8: Performance comparison for different pooling strides or compression levels for mean-pooling
in the Low + High resolution model. Starting from 64 tokens per sub-image and descending to: 36,
16, and 9 tokens.

Benchmark 64 tokens 36 tokens 16 tokens 9 tokens
AI2D 62.9 63.6 62.0 61.4
ScienceQA 80.1 79.0 79.5 77.5
ChartQA 56.9 56.4 55.2 45.4
POPE-f1 86.7 87.7 88.4 85.9
GQA 54.9 55.2 55.9 52.9
TextVQA 66.8 65.2 64.6 59.1
VizWiz 57.7 59.7 59.1 59.1
MME 1421.1 1397.8 1434.9 1309.9

Table 9: Summary of the evaluation benchmarks for general domain.
Task Dataset Description Split Metrics

General VQA VQAv2 VQA on natural images. test-dev Accuracy (↑)
ScienceQA Multi-choice VQA on a diverse set of science topics. test Accuracy (↑)
VizWiz VQA on images taken by visually impaired users. test Accuracy (↑)
AI2D VQA on diagrams and other artificial images. test Accuracy (↑)

Text-oriented VQA TextVQA VQA on natural images containing text. val Exact Match (↑)
ChartQA VQA on various types of charts and graphs. test Accuracy (↑)

LVLM Benchmarks MMBench Multi-choice VQA on a diverse set of topics. test Accuracy (↑)
MMBenchCN Multi-choice VQA on a diverse set of topics in Chinese. test Accuracy (↑)
POPE Multi-choice VQA for testing hallucinations. overall Accuracy (↑)
MME Multi-modal evaluation benchmark for general VQA abilities. test Accuracy (↑)

D BIOMEDICAL TRAINING DATA DESCRIPTION

Many public datasets were used in the training and evaluation of Dragonfly. All datasets were
de-identified. Open datasets were used following their existing licenses.
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Table 10: Selected Hyperparameters for Stage 1 and Stage 2 training of Dragonfly.
Hyperparameter Stage 1 Stage 2

Batch Size 64 16
Learning Rate 2e-5 2e-6
LR Scheduler cosine cosine
Warmup Steps Ratio 0.01 0.01
Max Sequence Length 4096 4096
Tune Projection Layer ✓ ✓
Tune Vision Encoder × ✓
Tune LLM × ✓

Table 11: Comparison of TFLOPs and maximum resolution between Dragonfly and baseline methods.
FLOPs are calculated for processing a single image at the maximum resolution supported by each
method. Calculations are based on the FLOPs accounting approach in (Hoffmann et al., 2022), with
details provided in Appendix Section F. Note: Dragonfly* is a more aggressively pooled version
of Dragonfly, with 64 tokens for low resolution, 36 tokens per patch for medium resolution, and 16
tokens per patch for high resolution, resulting in a total of 784 image tokens. This performs only
slightly worse than the main Dragonfly version. The performance comparison is shown in Table 12.

Model Max Resolution TFLOPs
LLaVA-HD 672 × 672 40.33
LLaVA-UHD 672 × 1008 6.91
Dragonfly 2016 × 2016 41.65
Dragonfly* 2016 × 2016 25.10

Table 12: Performance comparison of multiple token reduction strategies for encoding high-resolution
images. The first model, LLaVA-1.5-HD, uses CLIP-ViT-L/14 for both low and medium resolutions,
producing 2,880 image tokens. The second model, LLaVA-UHD, results in a variable number of
image crops based on the original image size, with each crop producing 64 tokens. The total number
of tokens for LLaVA-UHD is variable, with a maximum of 6 crops allowed, resulting in a maximum
of 384 image tokens. The third model, Dragonfly, generates 2,016 image tokens using a balanced
multi-resolution pooling strategy, with 577 tokens for low resolution and 36 tokens per sub-image for
medium and high resolution. The fourth model, Dragonfly*, is a more aggressively pooled version
of Dragonfly, with 64 tokens for low resolution, 36 tokens per patch for medium resolution, and 16
tokens per patch for high resolution, resulting in a total of 784 image tokens. All models share the
same LLM backbone, LLaMA-3.1-8B-chat, and are trained on the same dataset.

Benchmark LLaVA-1.5-HD LLaVA-UHD Dragonfly Dragonfly*
AI2D 63.8 59.9 64.2 62.7
ScienceQA 79.3 76.3 79.7 79.3
ChartQA 54.0 37.2 56.4 57.3
POPE-f1 85.7 85.3 87.7 88.1
GQA 54.1 51.0 55.7 55.7
TextVQA 64.0 51.5 66.5 64.5
VizWiz 56.1 51.8 61.7 60.6
MME 1414.0 1302.1 1438.9 1423.3
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Quest ion: What is the difference between the new car market in 2006 and 2008? 
Gold Answer : 4.3 billion 
 
Dragonf ly Response: The new car market in 2006 was valued at 32.4 billion British pounds, while the new car market in 2008 was valued at 28.1 billion British pounds. This 
represents a decrease of 4.3 billion British pounds in the value of the new car market between 2006 and 2008.  

LLaVA-HD Response: 0.2

LLaVA-UHD Response: 4.7

GPT-4o: The new car market in 2006 is valued at 33 billion British pounds, while in 2008, it is 28.1 billion British pounds. The difference is: 33 - 28.1 = 4.9 billion British 
pounds. Thus, the new car market in 2008 decreased by 4.9 billion British pounds compared to 2006.

Quest ion: What is unsual about this image? 

Dragonf ly Response: The unusal aspect of this image is the man ironing clothes on the back of a moving taxi. This is not a common sight as ironing is typically done indoors or 
in a stationary location.

LLaVA-HD Response: The unusual aspect of this image is that a man is ironing clothes on the hood of a moving truck. This is not a typical place to iron clothes, as it is not a 
stable surface and the motion of the truck could cause the iron to slip or the clothes to wrinkle.

LLaVA-UHD Response: The unusual aspect of this image is that a man is standing on top of a yellow taxi cab, holding a shirt and a towel. This is not a typical scene, as people 
usually do not stand on top of moving vehicles. The man might be performing a task related to the taxi cab, such as cleaning or maintenance, which is not a common sight for 
passersby.

GPT-4o: This image is unusual because it depicts a man ironing clothes on an ironing board attached to the back of a moving vehicle, specifically a taxi. This is a bizarre and 
impractical scenario, as ironing is typically done indoors on a stable surface, not on a busy street and certainly not while balancing on a vehicle. The juxtaposition of a mundane 
household chore in an unexpected and chaotic setting makes the image humorous and absurd.

Follow up Quest ion: What should you do if you encounter this?

Dragonf ly Response: If you encounter this unsual sight, you should first ensure your safety and the safety of others. Do not approach the man or the ironing setup, as it might 
be dangerous due to the moving vehicle and the hot iron. You could also consider reporting this behavior to local authorities or the taxi company, as it may not be legal or safe. 

LLaVA-HD Response: If you encounter this situation, it would be advisable to approach the man and gently inform him of the potential risks associated with ironing clothes on a 
moving vehicle. You could suggest that he find a safer and more stable location to iron his clothes, such as a nearby table or a designated ironing board. This would help prevent 
any accidents or damage to the clothes due to the motion of the truck.

GPT-4o: If you encounter this, the best course of action is to stay calm and keep your distance. This behavior is unsafe and could lead to accidents, so prioritize your own safety 
first. Report the situation to local authorities, providing details about the vehicle and location. Avoid distractions or engaging with the person, and continue driving cautiously. It?s 
likely staged, but safety should always come first. 

Quest ion: What is so funny about this image?

Dragonf ly Response: The humor in this image comes from the surreal juxtaposition of a dog's face with the body of the Mona Lisa, a famous painting by Leonardo da Vinci. The Mona Lisa is known 
for her enigmatic smile and is often considered one of the most famous paintings in the world. By combining the dog's face with the body of the Mona Lisa, the artist has created a whimsical and 
amusing image that plays on the viewer 's expectations and familiarity with the original paintings. The contrast between the dog's natural, expressive features and the serene, mysterious expression of 
the Mona Lisa creates a humerous effect that is likely to elicit laughter.

LLaVA-HD Response: The humor in this image comes from the juxtaposition of the dog's expression and the style of the painting. The dog's expression, with its raised eyebrows and direct gaze, gives 
the impression of a human-like personality, as if it 's posing for a portrait. This is contrasted with the style of the painting, which is reminiscent of the Mona Lisa, a famous painting known for its 
enigmatic smile. The dog's expression, combined with the painting style, creates a playful and amusing effect, as if the dog is playfully imitating the Mona Lisa.

LLaVA-UHD Response: The humor in this image is derived from the juxtaposition of the dog's expression and the style of the painting. The dog's expression, with its tongue hanging out and eyes 
looking upwards, is often associated with a playful or excited demeanor. This is contrasted with the style of the painting, which is reminiscent of the Renaissance period, known for its realistic and 
detailed depictions of the human form. The dog's modern, playful expression is superimposed on a painting style that is typically associated with more serious or formal subjects, creating a humorous 
effect. 

GPT-4o: This image is humorous because it is a playful parody of Leonardo da Vinci's famous painting, the Mona Lisa. Instead of depicting a human subject, it replaces the iconic figure with a dog, 
complete with human-like posture and clothing. The blending of a realistic dog's face into the traditionally solemn and revered art piece creates a comical contrast, often referred to as "dogification," 
where animals are humorously anthropomorphized in well-known settings.

Quest ion: How long has the drink on the right been 
aged?
Gold Answer : 10 years 

Dragonf ly Response: 10 years

LLaVA-HD Response: 10 years.

LLaVA-UHD Response: 10 years

GPT-4o: 10 years

Quest ion: What is the license plate of this Bus?
Gold Answer : AHC 411
 
Dragonf ly Response: AHC 411

LLaVA-HD Response: AINC 41

LLaVA-UHD Response: The license plate of the bus is not 
clearly visible in the image provided.

GPT-4o: AHC 411

Figure 3: Examples generated by Dragonfly, showcasing its diverse capabilities, including world
knowledge and humor, multi-turn question-answering, OCR, and chart understanding.

D.1 LLAVA-MED

LLaVA-Med is a dataset for instruction-following tasks involving multi-round conversations about
biomedical images, generated using the language-only model GPT-4 (Li et al. (2024a)). Specifically,
the model is prompted to generate questions and answers in multi-round formats based on an image
caption, as if it could view the image itself. To assemble the image captions and their contexts,
LLaVA-Med utilizes PMC-15M (Zhang et al. (2023b)) to select images that contain a single plot.
From these, it samples 60,000 image-text pairs from the five most prevalent imaging modalities:
CXR (chest X-ray), CT (computed tomography), MRI (magnetic resonance imaging), histopathology,
and gross pathology. The dataset also extracts sentences referencing the image from the original
PubMed articles to provide additional context to the captions. LLaVA-Med offers two primary
versions of the dataset: (i) 60K-IM, which includes inline mentions as context, and (ii) 60K, a
similar-sized dataset that excludes inline mentions in its self-instruct generations. Furthermore, a
supplementary dataset of 500,000 image-caption pairs is available for alignment purposes. Data link:
https://github.com/microsoft/LLaVA-Med

D.2 MEDICAT

Medicat (Subramanian et al. (2020)) is a dataset of medical figures, captions, subfigures/subcaptions,
and inline references that enables the study of these figures in context. It consists of 217,000
images from 131,000 open-access PubMed Central and includes captions, inline references for 74%
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Table 13: Model architectures and data usage details for our model and baseline models.
Model LLM Backbone Vision Base #Data MaxRes

InstructBLIP (Dai et al., 2023) Vicuna-7B CLIP-g/14 130M 224×224
Qwen-VL-Chat (Bai et al., 2023a) Qwen-7B CLIP-bigG 1.4B 448×448
LLaVA-1.5 (Liu et al., 2024a) Vicuna-7B CLIP-L/14 1.2M 336×336
VILA (Lin et al., 2024) Llama2-7B CLIP-L/14 51M 364×364
LLaVA-NeXT (Liu et al., 2024b) Vicuna-7B CLIP-L/14 1.2M 672×672
MM1-7B-Chat (McKinzie et al., 2024b) MM1-7B CLIP-H >2B 378×378
mPLUG-Owl2 (Ye et al., 2024) Llama2-7B CLIP-L/14 401M 448×448
Monkey (Li et al., 2024c) Qwen-7B CLIP-BigG 1B 896×1344
SPHINX (Lin et al., 2023) Llama2-7B Mixed Encoders 1B 448×448
SPHINX-2k (Lin et al., 2023) Llama2-7B Mixed Encoders 1B 762×762
ShareGPT4V-7B (Chen et al., 2023b) Vicuna-7B CLIP-L/14 1.8M 336×336
VisionLLM v2-chat (Wu et al., 2024) Vicuna-7B CLIP-L/14 22M 336×336
InternVL-7B (Chen et al., 2024b) Vicuna-7B InternViT-6B >28.7B 224×224

InstructBLIP (Dai et al., 2023) Vicuna-13B CLIP-g/14 130M 224×224
LLaVA-1.5 (Liu et al., 2024a) Vicuna-13B CLIP-L/14 1.2M 336×336
VILA (Lin et al., 2024) Llama2-13B CLIP-L/14 51M 364×364
LLaVA-NeXT (Liu et al., 2024b) Vicuna-13B CLIP-L/14 1.2M 672×672
LLaVA-UHD (Xu et al., 2024) Vicuna-13B CLIP-L/14 1.2M 672×1008
InternVL-13B (Chen et al., 2024b) Vicuna-13B InternViT-6B >28.7B 364×364
CogVLM-17B-Chat (Wang et al., 2023a) Vicuna-7B EVA2-CLIP-E >1.5B 490×490

Dragonfly (Ours) Llama3-8B ViT-L/14 2.9M 2016×2016 or
1008×4032

Table 14: Comparison between Dragonfly and existing LMMs across various benchmarks. Bold
numbers indicate the best performance among all the 13B models, while underlined numbers represent
the second-best performance.
Model Backbone #Data VQAv2 VQAT POPE SQA VizWiz AI2D ChartQA MME MMB/MMBCN

InstructBLIP Vicuna-13B 130M - 50.7 78.9 63.1 33.4 - - 1212.8 -
LLaVA-1.5 Vicuna-13B 1.2M 80.0 61.3 85.9 71.6 53.6 59.5 18.2 1531.3 66.9/63.6
VILA Llama2-13B 51M 80.8 66.6 84.2 73.7 60.6 - - 1570.1 70.3/64.3
LLaVA-NeXT Vicuna-13B 1.2M 82.8 67.1 86.2 73.6 60.6 70.0 62.2 1575.0 70.0/64.4
LLaVA-UHD Vicuna-13B 1.2M 81.7 67.7 89.1 72.0 56.1 - - 1535.0 68.0/64.8
InternVL-13B Vicuna-13B 6B 80.2 58.7 87.1 70.1 54.6 - - 1546.9 66.5/61.9
CogVLM-13B-Chat Vicuna-7B >1.5B 82.3 70.4 87.9 91.2 - - - - 77.6/-

Dragonfly (Ours) Llama3-8B 2.9M 81.0 73.6 87.9 79.5 59.0 67.9 71.2 1538.1 71.9/66.1

of figures, and manually annotated subfigures and subcaptions for a subset of figures. Data link:
https://github.com/allenai/medicat.

D.3 MIMIC-III-CXR

The MIMIC-III-CXR dataset (Johnson et al. (2019)) is a substantial publicly available collection of
chest radiographs, containing 377,110 images derived from 227,827 imaging studies conducted at the
Beth Israel Deaconess Medical Center from 2011 to 2016. Each image in the dataset is paired with
structured labels extracted from free-text radiology reports. The dataset is organized into training,
validation, and testing subsets, with 368,960 images allocated for training, 2,991 for validation, and
5,159 for testing. To ensure patient confidentiality, all images have been de-identified. Data link:
https://physionet.org/content/mimic-cxr-jpg/2.1.0/

D.4 OPENPATH

OpenPath dataset is an expansive collection of 208,414 pathology image-text pairs, making it
the largest publicly available pathology image dataset annotated with text descriptions (Huang
et al. (2023a)). This dataset was meticulously curated using popular pathology-related hashtags
recommended by the United States and Canadian Academy for Pathology (USCAP) and the Pathology
Hashtag Ontology projects. It spans images gathered from Twitter and other internet sites, including
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Figure 4: Ratio of maximum resolution of our high resolution image to the native resolution of the
original image. We used all of our training dataset to calculate this ratio, which comprised data from
multiple different sources and tasks. First, we matched each image into one of the aspect ratios with
the algorithm mentioned in 4.1. Then, we calculated the ratio between the longest dimension in our
max-res to the longest dimension in the native resolution of the image. From the plot, we can see that
65% of the images in our training cohort are zoomed-in by at least 4x the native resolution.

the LAION dataset, collected between March 21, 2006, and November 15, 2022. The dataset consists
of three main components: (1) Tweets, with 116,504 image-text pairs; (2) Replies, comprising 59,869
pairs from highly liked responses; and (3) PathLAION, which adds 32,041 pairs from broader internet
sources. Data link: https://github.com/PathologyFoundation/plip.

D.5 KAGGLE DR (DIABETIC RETINOPATHY)

The Kaggle website organized a DR detection challenge in 2015 Li et al. (2019). The California
Healthcare Foundation sponsored the competition. The Kaggle DR dataset consists of 88,702 color
fundus images, including 35,126 samples for training and 53,576 samples for testing. Different
devices captured the images under various conditions (e.g., resolutions) at multiple primary care
sites throughout California and elsewhere. For each subject, two images of the left and right eyes
were collected with the same resolution. Clinicians rate each image for the presence of DR on
a scale of 0–4 according to the ETDRS scale. Data link: https://www.kaggle.com/c/
diabetic-retinopathy-detection.

D.6 DDR

DDR is a diabetic retinopathy dataset (Li et al. (2019)) that comprises 13,673 color fundus images
collected from 147 hospitals across 23 provinces in China between 2016 and 2018, ensuring a broad
demographic spread by including images from patients aged 1 to 100, averaging 54.13 years, and
almost evenly split between males (48.23%) and females (51.77%). These images, derived from
9,598 patients and captured using 42 types of fundus cameras, adhere to stringent photographic
standards to ensure clarity and appropriate exposure, focusing on crucial retinal structures and lesions.
All images have been desensitized for widespread usage and graded for diabetic retinopathy (DR)
severity by seven trained graders using the International Classification of Diabetic Retinopathy,
supplemented by consensus and consultation with experienced specialists where necessary. Data link:
https://github.com/nkicsl/DDR-dataset.

21

https://github.com/PathologyFoundation/plip
https://www.kaggle.com/c/diabetic-retinopathy-detection
https://www.kaggle.com/c/diabetic-retinopathy-detection
https://github.com/nkicsl/DDR-dataset


1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D.7 ROCO

The Radiology Objects in Context (ROCO) dataset is a comprehensive collection of over 81,000 radi-
ology images derived from PubMedCentral’s open-access biomedical literature (Pelka et al. (2018)).
The dataset focuses on analyzing visual elements and semantic relationships within radiological
imagery. It includes a variety of medical imaging modalities such as Computer Tomography (CT),
Ultrasound, X-ray, Fluoroscopy, Positron Emission Tomography (PET), Mammography, Magnetic
Resonance Imaging (MRI), and Angiography. Each image is accompanied by detailed metadata,
including captions, keywords, and identifiers from the Unified Medical Language System (UMLS).
The ROCO dataset also features an out-of-class set of approximately 6,000 images, ranging from
synthetic radiology figures to digital art, to aid in improving prediction and classification tasks.
The dataset is split into training, validation, and test sets with 70,308, 8,782, and 8,786 images,
respectively.

D.8 VQA-RAD

The VQA-RAD dataset (Lau et al. (2018)) contains 314 radiology images and 2,244 question-
answer pairs obtained from CT, MRI, and X-ray examinations, covering three anatomical regions:
the head, abdomen, and chest. It features a diverse range of question styles, categorized into
11 types: modality, plane, organ system, abnormalities, etc. Among these, 58% of the question-
answer pairs are closed-ended (yes/no), with the remaining 42% being open-ended. The dataset
is segmented into a training set of 1,790 QA pairs and a testing set of 451 QA pairs. Our model
was trained on the official training set and evaluated on the official test set. Data link: https:
//huggingface.co/datasets/flaviagiammarino/vqa-rad.

D.9 SLAKE

The Slake-VQA dataset, annotated by expert physicians (Liu et al. (2021)), is a comprehensive
bilingual (English and Chinese) VQA dataset. It includes 642 images and 14,028 question-answer
pairs across three imaging modalities: CXR, CT, and MRI. This dataset spans various radiological
areas, covering body regions such as the brain, neck, chest, abdomen, and pelvic cavity. It contains
9,849 VQA samples designated for training, 2,109 for validation, and 2,070 for testing. The questions
vary widely, featuring both open-ended (free-form) and closed-ended (yes/no) types that assess
different image characteristics like plane, quality, position, organ, abnormality, size, color, shape,
and pertinent medical knowledge. We utilized only the English-language examples from the official
dataset divisions, comprising 4,919 training, 1,053 validation, and 1,061 test examples. Our model
was trained on the official training set and evaluated on the official test set. Data link: https:
//www.med-vqa.com/slake/

D.10 PATH-VQA

This dataset comprises question-answer pairs relating to pathology images (He et al. (2020)). It
encompasses a variety of question formats, including open-ended and closed-ended (yes/no) questions.
The dataset is constructed through automated techniques and draws from two open-access pathology
textbooks and a digital library. It encompasses a total of 32,632 question-answer pairs derived from
4,289 images. The dataset is partitioned into official training, validation, and test subsets, containing
19,654, 6,259, and 6,719 QA pairs, respectively. Our model was trained on the official training set and
evaluated on the official test set. Data link: https://github.com/UCSD-AI4H/PathVQA/
tree/master/data

D.11 IU X-RAY

The IU X-ray dataset, detailed in Demner-Fushman et al. (2016), is available through the Open
Access Biomedical Image Search Engine (OpenI). This collection includes radiological exams or
cases, each associated with one or more images, a radiology report, and two sets of tags. The
reports consist of four sections: Comparison, Indication, Findings, and Impression, with the latter
two sections useful for image captioning. The dataset features two types of tags: MTI tags derived
automatically from the report text by the Medical Text Indexer and manual tags assigned by two
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trained coders. Overall, it comprises 3,955 reports and 7,470 frontal and lateral X-ray images. The
dataset is divided into 6,698 samples in the training set and 745 samples in the test set. Data link:
https://github.com/nlpaueb/bioCaption

D.12 PEIR GROSS

The Peir Gross dataset, initially utilized for captioning in research by Jing et al. (2017), features
photographs from medical cases sourced from the Pathology Education Informational Resource
(PEIR) digital library intended for educational purposes in pathology. This dataset includes 7,443
images from the Gross collections across 21 pathology sub-categories in PEIR, with each image
paired with a descriptive single-sentence caption. It is organized into two subsets: 5,172 images for
training and 1,289 for testing. Data link: https://github.com/nlpaueb/bioCaption

E BIOMEDICAL BENCHMARKS

The details of our evaluation benchmarks are discussed in Section D. A benchmark summary table is
also included in 15.

Table 15: Summary of the biomedical evaluation benchmark, which includes vision question an-
swering, image captioning, and report generation across radiology and pathology modalities. We
finetuned the model using a subset of the official training set and evaluated it on the official testing
set. It should be noted that for MIMIC-CXR and ROCO, we utilized only a portion of the training
dataset. Furthermore, for MIMIC-CXR, we selected only those subsets of the test set, including a
findings section.

Task Type Modality Dataset Split
Train Test

Visual Question
Answering

Radiology VQA-RAD 1,790 451
Radiology Slake-VQA 4,919 1,053
Pathology Path-VQA 19,654 6,719

Report Generation Chest X-ray MIMIC-CXR 25,000 3,513

Image Captioning Radiology ROCO 25,000 8,786
Radiology IU X-RAY 6,698 745
Pathology Peir Gross 5,172 1,289

Table 16: Selected Hyperparameters for Stage 1 and Stage 2 training of Dragonfly-Med.
Hyperparameter Stage 1 Stage 2

Batch Size 64 16
Learning Rate 2e-5 2e-6
LR Scheduler cosine cosine
Warmup Steps Ratio 0.01 0.01
Max Sequence Length 4096 4096
Tune Projection Layer ✓ ✓
Tune Vision Encoder ✓ ✓
Tune LLM × ✓

F CODE EXAMPLE: FLOPS CALCULATION

We used DeepMind’s Chinchilla scaling law paper to calculate flops (Hoffmann et al., 2022) and the
code is given below.

Listing 1: Python code for calculating FLOPs for different approaches.
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1 import math
2

3 def format_flops(flops):
4 if flops >= 1e12:
5 return f"{flops/1e12:.2f} TFLOPs"
6 elif flops >= 1e9:
7 return f"{flops/1e9:.2f} GFLOPs"
8 elif flops >= 1e6:
9 return f"{flops/1e6:.2f} MFLOPs"

10 return f"{flops:,} FLOPs"
11

12 def layer_flops(
13 n_ctx=1024,
14 d_model=1024,
15 n_heads=16,
16 d_ff=4096
17 ):
18 d_head = d_model // n_heads
19

20 attn_qkv = 2 * n_ctx * 3 * d_model * (d_head * n_heads)
21 attn_logits = 2 * n_ctx * n_ctx * (d_head * n_heads)
22 attn_softmax = 3 * n_heads * n_ctx * n_ctx
23 attn_reduce = 2 * n_ctx * n_ctx * (d_head * n_heads)
24 attn_project = 2 * n_ctx * (d_head * n_heads) * d_model
25 total_attn = attn_qkv + attn_logits + attn_softmax + attn_reduce +

attn_project
26

27 ff = 2 * n_ctx * (d_model * d_ff + d_model * d_ff)
28

29 return total_attn + ff
30

31 def calculate_vit_flops(
32 img_size=336,
33 patch_size=14,
34 n_channels=3,
35 n_layers=24,
36 n_heads=16,
37 d_model=1024,
38 d_ff=4096,
39 ):
40 n_patches = (img_size // patch_size) ** 2
41 n_ctx = n_patches + 1
42

43 embeddings = 2 * n_patches * (patch_size * patch_size) * n_channels *
d_model

44

45 total_flops = embeddings + (n_layers * layer_flops(n_ctx=n_ctx,
d_model=d_model, n_heads=n_heads, d_ff=d_ff))

46 return total_flops
47

48 def calculate_projection_flops(vision_dim=1024, projection_dim=4096,
n_tokens=577):

49 return 2 * vision_dim * projection_dim * n_tokens
50

51 def calculate_llm_flops(
52 n_layers=32,
53 n_heads=32,
54 d_model=4096,
55 n_ctx=577,
56 d_ff=14336,
57 ):
58 d_head = d_model // n_heads
59

60 embeddings = 2 * n_ctx * d_model
61
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62 total_flops = embeddings + (n_layers * layer_flops(n_ctx=n_ctx,
d_model=d_model, n_heads=n_heads, d_ff=d_ff))

63

64 return total_flops
65

66 # Llava-UHD
67 num_crops = 6
68 n_tokens = num_crops * 64
69

70 vit_flops = calculate_vit_flops() * num_crops
71 projection_flops = calculate_projection_flops(n_tokens=n_tokens)
72 llm_flops = calculate_llm_flops(n_ctx=n_tokens)
73 total_flops = vit_flops + projection_flops + llm_flops
74

75 # total_flops: 6.91 TFLOPs
76

77 # Llava-1.5
78 num_crops = 5
79 n_tokens = num_crops * 576
80

81 vit_flops = calculate_vit_flops() * num_crops
82 projection_flops = calculate_projection_flops(n_tokens=n_tokens)
83 llm_flops = calculate_llm_flops(n_ctx=n_tokens)
84 total_flops = vit_flops + projection_flops + llm_flops
85

86 # total_flops: 40.40 TFLOPs
87

88 # Dragonfly
89 num_crops = 41
90 n_tokens = 2016
91

92 vit_flops = calculate_vit_flops() * num_crops
93 projection_flops = calculate_projection_flops(n_tokens=n_tokens)
94 llm_flops = calculate_llm_flops(n_ctx=n_tokens)
95 total_flops = vit_flops + projection_flops + llm_flops
96

97 # total_flops: 41.65 TFLOPs
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