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Unsupervised Hashing Retrieval via Efficient
Correlation Distillation
Xi Zhang , Xiumei Wang , and Peitao Cheng

Abstract— Deep hashing has been widely used in multimedia
retrieval systems due to its storage and computation efficiency.
Unsupervised hashing has received a lot of attention in recent
years because it does not rely on label information. However,
existing deep unsupervised hashing methods usually use rough
pairwise relations to constrain the similarity between hash codes
locally, which is insufficient and inefficient to reconstruct accurate
correlations across samples. To address this issue, we propose
a generic distillation framework for the preservation of the
similarity relationship. Specifically, we design a distillation loss to
reconstruct the batchwise similarity distribution between feature
space and hash code space, allowing us to capture the global
correlation knowledge contained in features and propagate it
into hash codes efficiently. This framework can apply to both
intra-modal and inter-modal scenarios. Furthermore, we design
a new quantization method that quantizes the continuous values
to a clipping value instead of ±1 to reduce the inconsistency
between continuous features and hash codes. This method can
also avoid the vanishing gradient problem during training.
Finally, extensive experiments for image hashing retrieval and
cross-modal hashing retrieval on public datasets demonstrate
that the proposed method can yield compact hash codes and
outperforms the state-of-the-art baselines.

Index Terms— Hashing retrieval, unsupervised hashing,
correlation distillation.

I. INTRODUCTION

W ITH the explosion of multimedia data including
texts, images, and videos from social media, hashing-

based searching technologies have gradually become popular
due to low storage costs and efficient Hamming distance
calculation [1]. Hashing methods convert high-dimensional
data into low-dimensional binary codes while maintaining the
semantic similarity between data points. As a result, hashing
retrieval produces similar binary codes for similar items.

Thanks to the advantages of deep learning, deep hashing
methods have made significant gains in retrieval performance.
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Unlike the shallow hashing methods relying on hand-crafted
features, deep hashing methods obtain binary representations
within an end-to-end process that learns high-level semantic
and hash codes simultaneously. These methods can be cat-
egorized into supervised methods [2], [3], [18], [19], [20],
[22], [34], [51] and unsupervised methods [4], [5], [6], [7],
[8], [9], [10], [11], [12], [14], [16], [17], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [49], depending on whether
semantic labels are utilized. The supervised hashing methods
show better performance than unsupervised ones by leveraging
semantic information from annotations. However, it is costly
to gather large-scale annotated data, so unsupervised hashing
methods are more practical in a real-world scenario. In this
paper, we mainly focus on unsupervised deep hashing for
multimodal retrieval, including image hashing and cross-modal
hashing. Image hashing transforms images into compact binary
codes, and cross-modal hashing maps heterogeneous multi-
media content, especially in vision and language, to compact
binary codes in common space.

For the unsupervised deep hashing methods, it is critical
to capture the semantic relationship in the feature space
and preserve it well in the hash code space. The seman-
tic relationship, i.e., the guiding information, comes from
similarity information among image features in unsupervised
image hashing, while in unsupervised cross-modal hashing,
it comes from correlations between data points from differ-
ent modalities. Most existing works in unsupervised deep
hashing focus on constructing and reconstructing the simi-
larity matrix to capture and preserve the semantic relations.
Semantic Structure based unsupervised Deep Hashing (SSDH)
[4], for example, builds the similarity matrix based on the
distance histogram between image features. DistillHash [7]
gets a more confident similarity matrix from the noisy
semantic relevance. Binary Generative Adversarial Networks
(BGAN) [5] creates the similarity matrix relying on the nearest
neighbor relations. Analogously, the similarity matrix is also
widely used in unsupervised cross-modal hashing. Deep Joint-
Semantics Reconstructing Hashing (DJSRH) [25] and Deep
Semantic-Alignment Hashing (DSAH) [28] both employ a
joint-semantic affinity matrix to capture the semantic relations
of different modalities. Joint-modal Distributionbased Similar-
ity Hashing (JDSH) [29] builds a weighted similarity matrix
based on the distance distribution. Knowledge Distillation
Cross-Modal Hashing (KDCMH) [33] follows JDSH to con-
struct the similarity matrix. Deep Graph-neighbor Coherence
Preserving Network (DGCPN) [32] proposes graph-neighbor
coherence to improve the accuracy of the similarity matrix.
After obtaining the similarity matrix, conventional methods to
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TABLE I

A SUMMARY OF MANNERS TO PRESERVE SIMILARITY IN DEEP UNSUPER-
VISED IMAGE HASHING METHODS AND DEEP UNSUPERVISED

CROSS-MODAL HASHING METHODS

preserve the similarity information in hash code space is to
reconstruct the similarity relationship by regression [5], [16],
[25], [28] or maximum likelihood [7]. However, as shown in
Table I, most of these methods perform similarity reconstruc-
tion locally in the manner of pairwise similarity preserving,
which lacks coverage of data distribution. This manner may
not fully exploit the abundant similarity structure among all
data points. Moreover, these processed similarity matrices are
not accurate enough and may discard some semantic relevance
information. It is desirable to find a unified way to explore
the intrinsic semantic correlations globally in intra-modal and
inter-modal views, as well as, to preserve them in hash code
space efficiently.

Thus, in this paper, we develop a new distillation mechanism
to capture and preserve the semantic relationship for both
unsupervised image hashing and unsupervised cross-modal
hashing retrieval. Specifically, different from knowledge dis-
tillation used to transfer knowledge from a large model to a
smaller one, we distill the global semantic correlations in con-
tinuous feature space into binary code space by establishing
connections between the two similarity distributions implied
in the features and hash codes.

In addition to similarity reconstruction, quantization is
another crucial procedure that converts continuous representa-
tions to binary codes for hashing retrieval. Most existing meth-
ods use tanh as the activation function to get relaxed binary
codes instead of sgn because the standard back-propagation is
infeasible for sgn function. Then, approximate binary values

closed to ±1 can be obtained by employing quantization loss
[5], [6], [11], [16] or continuation skill [2], [5], [25], [28],
[49]. Yet, quantizing the activated values to ±1 may increase
the gap between continuous values and hash codes and make
the quantization harder. Moreover, as the tanh function value
gradually approaches ±1, its gradient is almost zero, which
makes the model difficult to optimize and slow to converge.

To handle the quantization issue, this paper proposes a
new quantization scheme, dubbed clip-quan, which clips and
quantizes the activation value to an upper bound instead of
±1. In this way, the hash layer can achieve lower quantization
error and easier optimization.

The major contributions of our work can be summarized as
follows:

• We describe a unified and novel distillation way for image
and cross-modal hashing in an unsupervised fashion,
called Unsupervised Hashing via Correlation Distillation
(CDUH). This way can efficiently transfer the intrinsic
semantic structure across data samples into hash codes in
intra-modal or inter-modal view.

• A novel clip-quan quantization strategy is adopted to
obtain nearly binary hash codes, which reduces the gap
caused by quantization and alleviates the vanishing gra-
dient problem in tanh.

• Numerous experiments on image hashing and cross-
modal hashing datasets demonstrate that our proposed
method shows significant improvement over the state-of-
the-art unsupervised hashing methods.

II. RELATED WORK

We will briefly review some related works in this section
from three aspects: deep image hashing retrieval, deep cross-
modal hashing retrieval, and knowledge distillation.

A. Deep Image Hashing

Deep image hashing can be roughly categorized into super-
vised image hashing and unsupervised image hashing. Super-
vised image hashing methods take advantage of the label
information to get the semantic relationship. Deep Supervised
Hashing (DSH) [51] uses the pairwise supervision from anno-
tations to learn the hash function and directly constrains the
generated hash codes without activation functions. HashNet
[2] preserves the similarity relationship with a weighted pair-
wise cross-entropy loss and obtains exactly binary codes by
the continuation technique. Max-Margin Hamming Hashing
(MMHH) [3] enhances the robustness of the loss function to
noisy data by refining the probability function of the similarity
between hash codes.

Regarding unsupervised image hashing, a mass of methods
has been proposed in recent years. Most of these methods
are based on the reconstruction of semantic similarity. SSDH
[4] creates a similarity matrix based on the distribution of
distances between features. BGAN [5] constructs a similarity
matrix according to the k-nearest neighbor graph and utilizes
an adversarial Auto-encoder network to reconstruct the input
images. DistillHash [7] distills a more confident similarity
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relationship from the original similarity relationship. In these
methods, the similarity relationship is artificially allocated as
−1 or +1, which is not accurate enough and may discard
similarity information. Deep Unsupervised Hashing via Mani-
fold based Local Semantic Similarity Structure Reconstructing
(MLS3RDUH) [8] obtains a similarity matrix by assuming
that the data has a manifold structure, which reduces the
noise in semantic relations. Twin-Bottleneck Hashing (TBH)
[9] constructs a code-driven similarity graph to explore the
semantic structure and employs an Auto-encoder to reconstruct
the image features from continuous hash codes. Contrast-
based Unsupervised Hashing Learning with Multi-hashcode
(CUHM) [49] captures and preserves the semantic similarity
between data based on contrastive learning. These three meth-
ods achieve better performance by virtue of more accurate
similarity relations.

Artificial supervision is also used in some works to learn
hash functions. Pseudo label based Unsupervised deep Dis-
criminative Hashing (PUDH) [6] trains a classification network
based on the labels obtained by K-means and gets hash
codes from the intermediate features. Unsupervised Deep
K-means Hashing (UDKH) [53] also generates discriminative
hash codes under the guidance of K-means cluster labels.
DeepBit [10] learns the hash function by minimizing the
distance between the rotated image and the original image.
But this method can not guarantee that the hash codes for
different images are distinguished. Therefore, Unsupervised
Triplet Hashing (UTH) [11] adds a randomly selected image to
form a triplet training set to learn more discriminative binary
representations. It is notable that some recent works intro-
duce contrastive learning to obtain image representations and
generate hash codes via quantization. Self-supervised Product
Quantization (SPQ) [12] introduces a cross contrastive learn-
ing strategy to learn latent representations inspired by Sim-
CLR [15]. Analogously, Contrastive Quantization with Code
Memory (MeCoQ) [14] enhances contrastive learning with a
quantization code memory and a debiased technique. Although
these methods do not depend on the quality of the features
extracted from the pre-trained backbones, the optimization
of the network requires a lot of computational and storage
resources due to the characteristics of contrastive learning.

Quantization, as an important process of hashing, has also
attracted attention in some works. GreedyHash [16] optimizes
hash codes directly with the straight-through estimator. Bi-
half [17] applies the same optimization method and manages
to maximize the information capacity of every hash bit.
However, the estimated gradient used in these methods may be
inaccurate. SPQ [12] and MeCoQ [14] deploy Product Quan-
tization [13] to generate the binary codes that contain richer
representations than conventional hash codes. Nevertheless,
the optimization of the codebook and the indexing of binary
codes are time-consuming in the training and inference stages,
respectively.

B. Deep Cross-Modal Hashing

Existing deep cross-modal hashing methods can also be
grouped into supervised methods and unsupervised methods.

The supervised methods exploit semantic information in labels
to learn discriminative binary representations in hash space
for different modalities. Deep Cross-Modal Hashing (DCMH)
[18] proposes an end-to-end framework that performs feature
learning and hash function learning simultaneously. Self-
Supervised Adversarial Hashing (SSAH) [19] introduces two
adversarial networks to maximize consistency between differ-
ent modalities. Zhang et al. [34] employ an attention module to
focus on the discriminative contents in features. Cross-Modal
Mutual Quantization (CMMQ) [23] proposes a proxy-based
contrastive loss to mitigate the gap between different modal-
ities and trains networks with small loss samples to combat
noisy labels. Dual Encoding for Video Retrieval by Text (Dual
Encoding) [24] proposes a non-hash method focusing on video
retrieval by text with a dual deep encoding network. In addition
to hash retrieval, some works like ALign the image and text
representations BEfore Fusing (ALBEF) [36] and Contrastive
Language-Image Pre-training (CLIP) [35] in the field of large-
scale visual language representation learning have also made
great progress in cross-modal retrieval. Other notable methods
include Deep Adversarial Discrete Hashing (DADH) [20],
Deep Multiscale Fusion Hashing (DMFH) [21], and Mask
Deep Cross-modal Hashing (MDCH) [22].

Unsupervised methods only use correlations from represen-
tations of different modalities, which alleviates dependence on
annotations. Most unsupervised cross-modal retrieval methods,
like unsupervised image retrieval methods, focus on similar-
ity reconstruction. DJSRH [25] constructs a joint-semantic
affinity matrix to capture the semantic relations among the
inputs. DSAH [28] improves this work with a scheme of
Auto-encoder. JDSH [29] weights the joint-modal similarity
matrix according to its statistics. Unsupervised Knowledge
Distillation (UKD) [27] learns a similarity matrix from an
unsupervised model and uses it to guide a supervised model.
KDCMH [33] employs the triplet loss to generate more dis-
criminative hash codes. DGCPN [32] explores data neighbors
to obtain more accurate similarity between data. Recently, sev-
eral works introduce Generative Adversarial Network (GAN)
to improve unsupervised cross-modal hashing. Unsupervised
Generative Adversarial Cross-modal Hashing (UGACH) [30]
utilizes GAN to explore the underlying manifold structure
of cross-modal data. Unsupervised coupled Cycle generative
adversarial Hashing (UCH) [31] employs coupled cycle GANs
to learn common representations and hash codes with adversar-
ial learning and feature reconstruction. Besides, Aggregation-
based Graph Convolutional Hashing (AGCH) [26] uses Graph
Convolutional Networks (GCNs) to explore the semantic struc-
ture of data and preserve the intra-modal and inter-modal
relationship in hash embeddings.

C. Knowledge Distillation

Knowledge distillation [37], [38] refers to the process of
transferring knowledge from a large teacher model to a smaller
student model without loss of validity. The student model can
be deployed on systems with little computing power while
maintaining about the same performance as the teacher model.
As a consequence, it has attracted increasing attention in recent
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years. The vanilla knowledge distillation [38] transfers the
“dark knowledge” to the student model by mimicking the
logit from the classifier layer in the teacher model. A tem-
perature factor is introduced to increase the information in
negative logits. Furthermore, the activations and feature maps
of intermediate layers can also be used as the knowledge
to guide the student model [37], improving the performance
of the student model. Moreover, the relationship between
data samples contains rich knowledge that can be transferred
to the student model [37]. Tung and Mori [39] propose
similarity-preserving knowledge distillation and preserve the
pairwise similarity in the student model, which complements
the traditional knowledge distillation.

Knowledge distillation has been employed for hashing
retrieval in some works. Deep Transfer Hashing (DTH)
[52] transfers the similarity knowledge from the teacher
model to the hash model for better retrieval performance.
UKD [27] uses the similarity information generated by the
unsupervised teacher model to guide a supervised student
model, with pairwise correlations preserved. Similarly, Semi-
supervised Knowledge Distillation for Cross-Modal Hashing
(SKDCH) [42] exploits the relevance knowledge from a semi-
supervised teacher modal. Miech et al. [40] propose a non-
hash method for fast text-to-image retrieval, which distills
the inter-modal correlations from a heavy transformer-based
model to a light dual-encoder model. However, the intra-modal
similarity may not be preserved well only with the cross-
modal relations distilled. Simultaneous Similarity-based Self-
Distillation (S2SD) [41] solves the standard DML objective
simultaneously in some high-dimensional embedding spaces
and a low-dimensional space while applying multiscale knowl-
edge distillation between these high-dimensional spaces and
the low-dimensional space. Although knowledge distillation
is used in S2SD to improve the generalization performance
of existing Deep Metric Learning (DML) objectives in low-
dimensional space, our work is quite different from it in terms
of the task, motivation, and framework.

III. THE PROPOSED METHOD

We elaborate the proposed method in this section. We first
present the notations and problems for image hashing and
cross-model hashing. Then, we formulate the knowledge dis-
tillation for intra-modal and inter-modal relevance in detail.
Finally, the quantization strategy is introduced. The framework
of our method, CDUH, is illustrated in Fig. 1.

A. Notation and Problem Definition

We consider the case that a training mini-batch contains N
image-text paired data, i.e., D = {In,T n}N

n=1, where In is an
image and T n is a text. Here, we use the superscript I and T
to denote ‘image’ and ‘text’. The cross-modal hashing aims to
learn compact binary codes BI = {bI

n}N
n=1 and BT = {bT

n }N
n=1.

The bI
n and bT

n falling within {−1,+1}L represent the hash
codes for an image and a text, where L is the length of codes.
The Hamming distance (based on binary XOR operation)
between hash codes for the similar image-text pair is near
enough. And for image hashing, it only learns the binary codes

BI for images in which the distance between hash codes for
similar pair of images is close enough.

Assuming two pre-trained encoders for vision and lan-
guage are denoted by f I (·) and f T (·) respectively, the high-
dimensional embeddings of an image and a text can be
obtained by

vI
n = f I (In) ∈ R

D,

vT
n = f T (T n) ∈ R

D, (1)

where D, e.g., 1024 is the dimension of the embedding space.
Taking the features of images and texts, we focus on

generating corresponding hash codes for different modalities.
We employ two hash layers to project raw features into
embeddings with a certain length. In detail, the hash layer
is a Fully Connected (FC) layer without the active function.
We formulate this process as follows:

fθ∗ (·, L) = FC (·, L) ,

t∗n = fθ∗
�
v∗

n, L
� ∈ R

L, ∗ ∈ {I, T} , (2)

where the number L in FC operator is the output dimension
of FC layer, and θ∗ are parameters of hash layers. Then,
the binary codes, bI

n and bT
n , can be obtained by conducting

signum function on tI
n and tT

n :

b∗
n = sgn

�
t∗n

� ∈ {−1,+1}L , ∗ ∈ {I, T} . (3)

However, backpropagation is infeasible for binary values at
the training phase, so we use quan (·, γ ) to get the continuous
approximation of binary codes:

h∗
n = quan

�
t∗n, γ

� ∈ �−γ,+γ
�L

, ∗ ∈ {I, T} , (4)

where quan (·, γ ) is an activation function used in our clip-
quan strategy which will be introduced in the following
subsection. During the inference phase, sgn is used to yield
discrete binary codes.

In addition, the cosine similarity s (u, v) is used to represent
the relevance between two vectors, u and v, which can be
formulated as

s (u, v) = uvT

�u�2 �v�2
∈ [−1,+1] . (5)

B. Learning to Hash via Distillation

With the high-dimensional features rich in semantics,
we manage to learn hash functions preserving the relevance
across features in hash codes. Instead of pairwise constraint
which is commonly used in most unsupervised deep hashing
methods, we try to distill the knowledge, the similarity struc-
ture among samples, to hash codes.

As opposed to the vanilla knowledge distillation for classi-
fication tasks, no logits indicate the probability of each class.
As a result, the original objective in knowledge distillation [38]
cannot be employed directly. To break through this limitation,
we develop a new way to distill the relationship among high-
dimensional features to hash codes.
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Fig. 1. The framework of our proposed methods which consists of intra-modal distillation, inter-modal distillation, and quantization. I2T/T2I is short for
image-to-text/text-to-image. Image hashing retrieval only involves visual IrD.

1) Intra-Modal Distillation: We first consider to learn the
hash function from the intra-modal view, which is important
for unimodal hashing retrieval (involving only one modality).

Taking the visual modality as an example, we select the
feature vI

i as an anchor and try to distill the global relationship
between the anchor and the rest samples in the same batch.
In concrete terms, we use discrete probability distribution pI

i to
represent the similarity between the embedding of i -th image
and those of other images in the mini-batch, and the formula
is

pI
i ( j) =

exp
�

s
�
vI

i , v
I
j

�
/σ

�

N�
k=1,k �=i

exp
�
s
�
vI

i , v
I
k

�
/σ

� ,

j ∈ {1, 2, . . . , N}, j �= i. (6)

Then, the similarity distribution qI
i of hash codes in visual

modality can be obtained by

qI
i ( j) =

exp
�

s
�

hI
i , hI

j

��

N�
k=1,k �=i

exp
�
s
�
hI

i , hI
k

�� ,

j ∈ {1, 2, . . . , N}, j �= i. (7)

Given two distributions pI
i and qI

i , we use the cross-entropy
to measure the distance between them, which establishes the
knowledge transfer from embedded feature space to compact
binary code space:

H
�

pI
i , qI

i

�
= −E pI

i
log

	
qI

i



. (8)

And for all images in the mini-batch, we can obtain the
distillation loss for intra-modal view:

LintraI = 1

N

N�
i=1

H
�

pI
i , qI

i

�
. (9)

It is noted that the temperature in vanilla knowledge distil-
lation is generally set to a value greater than 1, which aims to
produce a soft probability distribution over classes. However,
in our case, the semantically similar images in a mini-batch
may be very sparse, so the distribution pI

i is too soft to
guide the hash layer to generate discriminative hash codes.
Therefore, a parameter σ ∈ (0, 1) in (6) is used to reduce
the smoothness of the teacher distribution, which makes intra-
modal distillation from pI

i to qI
i easier. And the temperature

in the student distribution qI
i is set to 1.

The intra-modal loss for textual modality, i.e., LintraT , can
be obtained in the same way. Finally, we get the objective for
intra-modal distillation as

Lintra = 1

2

�LintraI + LintraT
�
. (10)

2) Inter-Modal Distillation: In addition to retaining seman-
tic structure within one modality, preserving correlations
between different modalities is more crucial for cross-modal
retrieval.

Similar to the distillation of intra-modal view, we use the
image feature vI

i as an anchor, and transfer the correlations
between the anchor and all text features in the same batch for
image-to-text hashing retrieval. Specifically, the distribution
cpI2T

i , that indicates the relevance score between the i -th image
and all texts in feature space, can be computed by

cpI2T
i ( j) =

exp
�

s
�
vI

i , v
T
j

�
/τ

�
�N

k=1 exp
�
s
�
vI

i , v
T
k

�
/τ

� , j ∈ {1, 2, . . . , N}.
(11)

And the corresponding probability distribution in hash space
is

cqI2T
i ( j) =

exp
�

s
�

hI
i , hT

j

��
�N

k=1 exp
�
s
�
hI

i , hT
k

�� , j ∈ {1, 2, . . . , N}. (12)
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Fig. 2. The histograms of continuous hash codes in the initial state.

The cross-entropy between them can be expressed as

H
�

cpI2T
i , cqI2T

i

�
= −EcpI2T

i
log

	
cqI2T

i



. (13)

The parameter τ in (11) has the same effect as σ in (6)
and it reduces the difficulty of distillation in the inter-modal
aspect.

The distillation loss for image-to-text in the mini-batch is
defined as

LinterI2T = 1

N

N�
i=1

H
�

cpI2T
i , cqI2T

i

�
. (14)

And the text-to-image distillation loss LinterT2I can be com-
puted in the same way. Then, the overall loss for inter-modal
view is

Linter = 1

2

�LinterI2T + LinterT2I
�
. (15)

By minimizing the batchwise distillation loss Lintra and
Linter between high-dimensional representations and hash
codes, the relevance relationship of intra-modality and inter-
modality is both maximally reconstructed in relaxed hash
codes respectively.

C. Quantization

In order to obtain exactly binary codes, we analyze the sta-
tistics of relaxed values activated by tanh. Specifically, we ran-
domly sample images in a mini-batch from MIRFlickr25K and
get the continuous codes with code length of 32, tanh

�
tI
n

�
.

As shown in Fig. 2a, we get a histogram of values on all bits of
these hash codes. The same histogram of hash codes, tanh

�
tI
n

�
and tanh

�
tT
n

�
, in cross-modal hashing is shown in Fig. 2b.

It can be seen that most of these values are around zero and the
value range still has a margin to ±1. Therefore, quantizing the
activated values to ±1 may increase the inconsistency between
continuous and discrete hash codes. Moreover, the gradient
of tanh is almost zero when its value is close to ±1, which
makes the optimization gradually difficult as the quantization
progresses.

To mitigate the above problems, we develop a new quantiza-
tion strategy named clip-quan. It is easy to know that, given
a set of relaxed codes, the metric relationship is consistent
in Hamming space for discrete codes quantized to different
values, e.g. ±1 and ±0.5. Therefore, we attempt to quantize

the relaxed codes to an upper bound instead of ±1. We define
a new activation function quan (·, γ ),

quan(x, γ ) =

⎧⎪⎨
⎪⎩

−γ, tanh (x) ≤ −γ,

tanh (x) , −γ < tanh (x) < +γ,

+γ, tanh (x) ≥ +γ,

(16)

which clamps the output of tanh into the range
�−γ,+γ

�
and

γ ∈ (0, 1).
Then, a quantization loss is adopted to minimize the quan-

tization error and retain the discreteness of hash codes. The
quantization loss for hash codes is

Lquan∗ = 1

N L

N�
n=1

����h∗
n

�� − γ 1
��2

2 , ∗ ∈ {I, T} , (17)

and overall quantization loss for both modalities can be written
as

Lquan = 1

2

�LquanI + LquanT
�
. (18)

Compared with quantizing values to ±1, tanh has larger gra-
dient when its value is around ±γ , so the vanishing gradient
problem is alleviated. Additionally, through the quantization
strategy described above, the discrepancy between continuous
codes and binary codes is reduced as much as possible.

The distributions of activated values with different back-
bones in the initial state are not the same, as seen in Fig. 2a
and Fig. 2b. As a result, setting γ that is too small may
discard most values, and setting γ too large increases the
inconsistency between the hash codes and continuous values
and leads to the vanishing gradient problem. So, γ is set to
0.5 in our experiment empirically. Besides, when γ is set to 1,
this quantization strategy degenerates into the conventional
quantization method.

D. Objective Function

For the scenario of image retrieval, only the similarity
structure within the image modality needs to be distilled and
transferred into hash codes. So the optimization objective for
image hashing is min

θ I
LI and

LI = LintraI + αLquanI . (19)

In the case of cross-modal retrieval, both intra-modal and inter-
modal correlations need to be captured and preserved in hash
codes. Therefore, the optimization objective for cross-modal
hashing is min

θ I,θT
LC and

LC = Lintra + Linter + βLquan. (20)

The trade-off parameters α and β weight the quantization loss
terms for image hashing and cross-modal hashing, respec-
tively.

IV. EXPERIMENTS

In this section, we conduct extensive experiments for image
hashing and cross-modal hashing on various public datasets.
The results and analyses can validate the effectiveness of our
proposed method.
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TABLE II

THE PERFORMANCE COMPARISON OF IMAGE RETRIEVAL ON MIRFLICKR25K, MSCOCO, AND NUSWIDE WITH DIFFERENT CODE
LENGTHS IN TERMS OF MAP AND NDCG

TABLE III

THE PERFORMANCE COMPARISON OF CROSS-MODAL RETRIEVAL ON MSCOCO WITH DIFFERENT CODE LENGTHS IN TERMS OF MAP AND NDCG

TABLE IV

THE PERFORMANCE COMPARISON OF CROSS-MODAL RETRIEVAL ON IAPR TC-12 WITH DIFFERENT CODE LENGTHS IN TERMS OF MAP AND NDCG

A. Models, Datasets, and Implementation Details
1) Models: For unsupervised image hashing, we adopt

the pre-trained AlexNet [50] as the backbone, parameters
of which are frozen in the training process. The hash layer
is appended to fc7 to generate hash codes. For unsuper-
vised cross-modal hashing, most existing cross-modal hashing
methods obtain the textual features via Multilayer Perceptron
(MLP). Compared with the heavy encoder for images, such
a shallow model for texts cannot fully capture the high-level
semantics in texts, which may diminish the role of textual
modality and hinder the model learn common embedded
space with rich semantics. Therefore, we use a transformer-
based encoder to extract high-level features from raw texts

to obtain rich semantic relationship. Specifically, for cross-
modal hashing retrieval, we employ the image encoder and text
encoder in CLIP, a pre-trained vision-language model which
is well known for its excellent transferability, to obtain the
visual and textual representations respectively. As described
in CLIP, the image encoder is the modified ResNet-50 [43]
in which the global average pooling layer is replaced with
an attention pooling mechanism [35], and the text encoder
is a Transformer [44] with 12 layers, 512D hidden size, and
8 attention heads. The last token in the top layer is treated
as the feature embedding of the text. The parameters of
the image and text encoder are frozen during the training
procedure.
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TABLE V

THE PERFORMANCE COMPARISON OF IMAGE RETRIEVAL ON MSCOCO
WITH CROSS-MODAL HASHING METHODS

TABLE VI

THE PERFORMANCE COMPARISON OF IMAGE RETRIEVAL ON IAPR TC-12
WITH CROSS-MODAL HASHING METHODS

2) Datasets: We carry out experiments for image hashing
on three datasets: MIRFlickr25K [45], MSCOCO [47], and
NUSWIDE [46]. MIRFlickr25K is a multi-label dataset with
24581 images and each image is annotated with at least one
of 24 unique labels. 2000 images are randomly selected as the
query set with the rest images as the database set. And 5000
images in the database are randomly chosen as the training
set.

MSCOCO is a large-scale dataset for object detection,
segmentation, and image caption. We use the 2017 version
dataset including 118287 images and each image is labeled
by some of 80 categories. We get a subset containing 92306
images with the top 20 frequent concepts. The numbers of
images for query, database, and training are the same as those
in MIRFlickr25K.

NUSWIDE is a multi-label dataset like MIRFlickr25K
which provides 269648 images and each image is tagged
with some classes in 81 categories. We select 195834 images
whose annotations include the most 21 frequent categories.
We sample 5000 images as query images from this subset and
the rest images are left as the database in which 10000 images
are randomly selected as training images.

For cross-modal hashing retrieval, two public datasets are
used in our experiments. One is MSCOCO used in image
hashing, another is IAPR TC-12 [48] datasets. We only use
the first caption of each image in the subset of MSCOCO and
obtain 92306 image-text pairs. We sample 2000 pairs as query
samples and the rest pairs are used as the database. In the

database set, 10000 image-text pairs are randomly chosen as
training samples.

IAPR TC-12 consists of 20000 natural images and each
image is associated with some text captions and some of 275
categories. A subset of images with 25 the most frequent
categories are selected. And then we only use the first sentence
in captions of each image, resulting in a total of 18938 image-
text pairs. How images are selected for different subsets is the
same as MSCOCO.

It is noted that we don’t carry out cross-modal hash-
ing retrieval experiments on MIRFlickr25K and NUSWIDE
datasets because the textual encoder employed in our experi-
ments takes the raw text as input, but these two datasets just
have several tags in textual modality.

3) Implementation Details: We conduct all experiments on
a workstation with a single NVIDIA GeForce RTX 2080 Ti
GPU. All images are resized into 224×224 as inputs. Adam
is used to update parameters in hash layers. The learning
rate is fixed to 3 × 10−5. The batch size is set to 32
in all experiments. The feature dimension D are 4096 and
1024 in AlexNet and CLIP, respectively. For experiments of
cross-modal hashing, we further finetune the pre-trained CLIP
model on MSCOCO and IAPR TC-12 via contrastive learning
described in CLIP.

B. Baselines and Evaluation Metrics

We compare our method with some unsupervised image
hashing retrieval methods, including PUDH [6], SSDH [4],
GreedyHash [16], TBH [9], Bi-half [17], CUHM [49], and
MLS3RDUH [8]. Moreover, for unsupervised cross-modal
hashing retrieval, we compare our method with UGACH [30],
UKD [27], DJSRH [25], DSAH [28], JDSH [29], DGCPN
[32], and KDCMH [33]. For a fair comparison, we retrain and
evaluate all these methods with identical settings. Additionally,
the deep features of images and texts used in different methods
are extracted through the same backbones, i,e, AlexNet or
encoders in CLIP.

To evaluate the performance of different methods on the
image retrieval and cross-modal retrieval tasks, we adopt three
standard metrics: Mean Average Precision (MAP), precision-
recall (PR) curve, and Normalized Discounted Cumulative
Gain (NDCG). MAP and PR curves are widely used in
hashing retrieval, and NDCG is more convincing to evaluate
the performance on multi-label datasets than MAP [49]. The
number of returned points is set to 5000 for both MAP and
NDCG.

C. Results and Discussions

1) Image Retrieval: The performances in terms of MAP
and NDCG on different datasets with various code lengths
are reported in Table II. As shown in this table, our method
outperforms the other deep unsupervised hashing methods
except for few cases. Specifically, although our performance
is lower than the current SOTA method MLS3RDUH in few
cases, our method is more stable across different datasets
than it. Compared with MLS3RDUH, our method achieves an
average improvement of 1.80%, 1.10%, and 0.70% in MAP
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Fig. 3. The PR curves for image retrieval on MIRFlickr25K.

Fig. 4. The PR curves for cross-modal retrieval on IAPR TC-12.

Fig. 5. Examples of top-10 items for image retrieval on MSCOCO. For each
query image, the first row is our result and the second row is the result of
MLS3RDUH.

and 1.70%, 1.90%, and 1.70% in NDCG on MIRFlickr25K,
MSCOCO, and NUSWIDE. The PR curves of all methods on
MIRFlickr25K datasets with different code lengths are shown
in Fig. 3. It can be seen that our method can achieve superior
performance. Additionally, we visualize some results of our
method and MLS3RDUH for image retrieval with 128-bits
codes on MSCOCO in Fig. 5. These results demonstrate the
effectiveness of our method for unimodal hashing retrieval.

2) Cross-Modal Retrieval: For all unsupervised deep cross-
modal hashing retrieval methods, we conduct experiments on
the Image-to-Text (I2T), Text-to-Image (T2I), and Image-to-
Image (I2I) retrieval tasks and the performances in MAP and

Fig. 6. Examples of top-10 items for text-to-image retrieval on MSCOCO.
For each query text, the first row is our result and the second row is the result
of DGCPN.

NDCG with different code lengths on different datasets are
reported in Table III, IV, V and VI. In general, our proposed
method achieves the best performance in most cases regardless
of the criteria and tasks. On MSCOCO, compared to the
DGCPN, our method yields 1.27%, 1.20%, and 1.10% higher
average MAP and 0.35%, 0.18%, and 0.98% higher average
NDCG for I2T, T2I, and I2I. On IAPR TC-12, our method
outperforms DGCPN by 1.68%, 1.97%, and 1.29% in average
MAP and 1.39%, 1.49%, and 1.34% in average NDCG for I2T,
T2I, and I2I. Moreover, we plot the PR curves on IAPR TC-12
for I2T and T2I of all methods in Fig. 4. It can be observed that
the curves of our methods are higher than those of the others.
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TABLE VII

THE PERFORMANCE COMPARISON OF IMAGE RETRIEVAL ON MIR-
FLICKR25K WITH DIFFERENT OBJECTIVES

Additionally, in Fig. 6, we illustrate several results for text-
to-image retrieval with 128-bits codes on MSCOCO, which
shows the superiority of our method.

3) Effect of Correlation Distillations: To further illustrate
the advantages of the correlation distillation over pairwise
similarity constraint, we replace the intra-modal distillation
loss in the case of image hashing retrieval with the pairwise

similarity loss, i.e., 1/N2 �N
i=1

�N
j=1

�
s f

i j − sh
i j

�2
, where s f

i j

and sh
i j are cosine similarity calculated in feature space and

hash space, respectively. The performance of different code
lengths with different objectives on MIRFlickr25K is shown
in Table VII. It can be seen that the performance of distillation
loss is much better than that of pairwise loss, indicating that
our proposed correlation distillation can exploit the global
relationship among features and preserve it in the hash code
space efficiently.

4) Component Analysis: Our method of learning the hash
function mainly consists of three components: intra-modal
distillation, inter-modal distillation, and quantization. As ana-
lyzed in Section III, Lintra helps to learn the hash function
via intra-modal similarity reconstruction, and Linter is the
further help by distilling the inter-modal correlations. Lquan
assists in learning the hash function from the perspective of
keeping hash codes discrete. We study the contribution of each
component on the cross-modal retrieval task.

The performances on MSCOCO with different settings are
reported in Table VIII. From the results, we can obtain the
following observations. There is little decline in the retrieval
performance without intra-modal distillation, showing that our
method can get good results on I2T, T2I, and I2I tasks only by
maintaining the inter-modal similarity relationship. Intuitively,
the inter-modal distillation can implicitly guide the learning
of the intra-modal relationship. For example, the distribution
cpI2T

i in (11) also implies the similarity among different texts.
In the absence of inter-modal distillation, the performance of
cross-modal retrieval suffers a lot, but the performance of
intra-modal retrieval is almost not degraded. This demonstrates
that, while intra-modal distillation cannot guarantee the estab-
lishment of inter-modal relations, it plays an important role in
mining and preserving the intra-modal similarity relationship.
Additionally, without the constraint of quantization loss, the
codes generated by the model lack discreteness, leading to
performance degradation in hash retrieval.

5) Effect of Temperature Parameters: To investigate the
impact of temperature parameters of σ in (6) and τ in (11) on
the intra-modal distillation and inter-modal distillation, respec-
tively, we conduct comprehensive experiments on MSCOCO.

Fig. 7. The effects of the temperature σ and τ . For a better view, the left
ordinate denotes MAP and the right one denotes NDCG.

Fig. 8. The intra-modal distribution pI
0 and inter-modal distribution cpI2T

0
with different temperatures in terms of the first sample in a mini-batch.

Specifically, Lintra and Linter are involved independently in the
loss function when exploring the effects of σ and τ , where
σ, τ ∈ {0.1, 0.2, 0.3, · · · , 0.9, 1.0}. The MAP and NDCG
results with the case of 32 bits are reported in Fig. 7 and
they are both computed using continuous hash codes without
clipping to exclude the influence of quantization.

As shown in Fig. 7a and 7b, proper σ and τ bring
a certain improvement for the unimodal and cross-modal
retrieval. Specifically, the temperature σ and τ adjust the
smoothness of the intra-modal similarity distribution and the
inter-modal similarity distribution of high-dimensional repre-
sentations, respectively. Temperature parameters that are too
small make the similarity distribution of features sharp, which
brings errors to the distribution of the teacher and reduces
the knowledge it carries. Conversely, a larger temperature will
make the distribution smoother, which increases the difficulty
for the student to distill the similarity information. Moreover,
with rising temperatures, the performance degradation for
unimodal retrieval is more pronounced than that for cross-
modal retrieval. This is because, in a mini-batch, there are
few similar samples within one modality, so the intra-modal
distribution maybe is too uniform when σ is too large. But this
problem does not exist for inter-model distribution, because
there are at least one pair of similar samples from different
modalities, e.g., the text and image from the same data
point. Examples of intra-modal and inter-modal distributions
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TABLE VIII

RETRIEVAL PERFORMANCE ON MSCOCO FOR DIFFERENT SETTINGS IN TERMS OF MAP AND DNCG

Fig. 9. Values of tanh and clip-quan through training process.

at different temperatures shown in Fig. 8 can help illustrate
the above conclusions.

In experiments of image hashing retrieval, σ = 0.1 for
MIRFlickr25K, σ = 0.4 for MSCOCO, and σ = 0.2 for
NUSWIDE. In experiments of cross-modal hashing retrieval,
σ = τ = 0.4 and σ = τ = 0.2 for MSCOCO and IAPR
TC-12, respectively.

6) Quantization: As described previously, the quantization
approach clip-quan can assist the model to generate exact
binary codes while distilling the similarity in hash code space.
In Table VIII, we show the retrieval performance of hash
codes obtained by tanh (w/o clip, i.e., quantizing value to
±1 without clipping by setting γ to 1). The proposed clip-quan
outperforms the conventional quantization way by margins of
1.14% in average MAP on MSCOCO.

In addition to quantitative analysis, we compare the change
of some values of clip-quan and tanh through the training
process on MSCOCO with code length of 32. The average

Fig. 10. The effects of the temperature α and β. For a better view, the left
ordinate denotes MAP and the right one denotes NDCG.

Fig. 11. The histograms of continuous hash codes in the image hashing
experiment.

derivative of tanh, inter-modal distillation loss, and the average
of evaluation metrics (MAP and NDCG) are shown in Fig. 9.
The clip-quan can obtain more stable derivative values, alle-
viating the problem of vanishing gradient in tanh. Besides,
it enables smaller training loss than tanh and makes the
optimization easier, resulting in better performance during
training.

What’s more, we plot the histograms of continuous hash
codes to emphasize the effectiveness of our quantization
strategy intuitively. Specifically, Fig. 11a and 11b show the
histograms of hash codes obtained with the tanh and the clip-
quan in the experiment of image hashing, respectively. The
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Fig. 12. The histograms of continuous hash codes in the cross-modal hashing
experiment.

same histograms of the hash codes in cross-modal hashing
are shown in Fig. 12. It can be found that clip-quan can
help to obtain more compact hash codes. In addition, the
distribution of the continuous hash codes in the initial state
is different because the two experiments employ different
backbone networks. However, it has no impact on obtaining
compact hash codes, which illustrates the stability of this
approach for different initial distributions.

Besides, we explore the sensitivity of hyper-parameters α
and β which balance the weight of the quantization loss items
for image hashing and cross-modal hashing respectively. The
performance with the case of 32 bits on MIRFlickr25K and
MSCOCO are shown in Fig. 10a and 10b, and it can be found
that our method is not sensitive to weight for the quantization
loss. We set α to 0.1 and β to 1.2 in our experiments.

V. CONCLUSION

In this paper, we propose a novel method for deep unsuper-
vised image hashing retrieval and unsupervised cross-modal
hashing retrieval. The proposed method makes use of a batch-
wise distillation loss to transfer the similarity distribution of
features into hash codes, which exploits the global intra-modal
and inter-modal relationship and preserves it in the hash code
space efficiently. Furthermore, with the proposed clip-quan
quantization strategy, the model can generate more compact
binary codes and improve the performance of hashing retrieval.
Experiments for image hashing retrieval and cross-modal
hashing retrieval on public benchmarks show the superiority
of our method.
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