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ABSTRACT

Diffusion models represent an emerging topic in generative models and have
demonstrated remarkable results in generating data with high quality and diversity.
However, diffusion models suffer from two limitations (1) the notorious problem
of computational burden such as large sampling step and train step needed due to
directly diffusion in Euclidean space and (2) a global-structure representation for
each sample that is implicitly considered in the process due to their very limited
access to topological information. To mitigate these limitations, recent studies
have reported that topological descriptors, which encode shape information from
datasets across different scales in a topological space, can significantly improve
the performance and stability of deep learning (DL). In this study, inspired by
the success of topological data analysis (TDA), we propose a novel denoising
diffusion model, i.e., Topo-Diffusion, which improves classical diffusion models
by diffusing data in topology domain and sampling from reconstructing topolog-
ical features. Within the Topo-Diffusion framework, we investigate whether lo-
cal topological properties and higher-order structural information, as captured via
persistent homology, can serve as a reliable signal that provides complementary
information for generating a high-quality sample. Theoretically, we analyze the
stability properties of persistent homology allow to establish the stability of gen-
erated samples over diffusion time steps. We empirically evaluate the proposed
Topo-Diffusion method on seven real-world and synthetic datasets, and our exper-
imental results show that Topo-Diffusion outperforms classical diffusion models
across all the evaluation metrics in fidelity and diversity of sampled synthetic data.

1 INTRODUCTION

Diffusion models have emerged as the new state-of-the-art family of deep generative models. Re-
cently, there has been a growing interest in generating synthetic images and data by diffusion mod-
els, which have been proven to be useful in various discriminative tasks including image segmenta-
tion (Graikos et al., 2022; Rombach et al., 2022; Wolleb et al., 2022), classification (Zimmermann
et al.), text-to-image synthesis (Gu et al., 2022), and anomaly detection (Wolleb et al., 2022). They
have broken the long-time dominance of generative adversarial networks (GANs) in handling chal-
lenging tasks of image synthesis, computer vision, natural language processing, temporal data mod-
eling, multi-modal modeling, robust machine learning, and interdisciplinary applications in fields
such as computational chemistry and medical image reconstruction (Croitoru et al., 2023). For in-
stance, Rombach et al. (2022) introduce latent diffusion models that scale more gracefully to higher
dimensional data and further reduce computational costs. Diffusion model involves two interacted
processes (1) forward process that transforms the data distribution into a simpler prior distribution,
such as a Gaussian distribution (Ho et al., 2020; Baranchuk et al.; Nichol & Dhariwal, 2021; Dhari-
wal & Nichol, 2021); (2) corresponding reverser process, in which a generative neural network
is utilized for recovering the original input data from the diffused (degraded) data, via variational
probabilistic optimization, score-matching (Song & Ermon, 2019), stochastic differential equations
modeling (Song et al., 2020), etc. Denoising diffusion probabilistic models (DDPMs) (Ho et al.,
2020; Baranchuk et al.; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021) are latent variable
models that employ latent variables to estimate the probability distribution. Another group of dif-
fusion models are based on training a shared neural network via score matching to estimate the
gradient of the log density (i.e., score function) of the perturbed data distribution at different noise
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levels (Song & Ermon, 2019). As an alternative strategy, the stochastic differential equations (SDEs)
based diffusion model represents diffusion via continuous forward and reverse SDEs, and can be
viewed as a generalization over DDPMs and score matching based diffusion model (Song et al.,
2020). In this work, we consider a new aspect to model the diffusion process by structural degrading
and reconstruction via topological features.

Hence, in the last few years, we observe an increasing interest in enhancing the performance of dif-
fusion models by introducing topological-based diffusion models. Specifically, these topological-
based diffusion models typically integrate deep generative models with persistent homology (PH)
representations of the learned objects, typically in the form of topological layer or topological loss
in deep generative models (Wang et al., 2020). PH is a key tool in topological data analysis (TDA)
which retrieves evolution of the shape patterns in the observed data along various user-defined ge-
ometric dimensions (Hofer et al., 2019; Edelsbrunner et al., 2000; Zomorodian & Carlsson, 2005).
By “shape” here, we broadly refer to the data properties which are invariant under continuous trans-
formations such as bending, stretching, and twisting. The main goal of PH is to retrieve the loss
underlying structural properties (Wasserman, 2018). That is, the representations derived from PH
enable us to identify and study the hidden topological descriptors of the shape of complex struc-
tured and unstructured data.However, existing topological-based generative models have significant
drawbacks that need to be improved. For example, to learn topological properties from images, the
topology-aware GAN (Wang et al., 2020) cannot simultaneously capture local and global topological
structures. Liu et al. (2019) have addressed the issue of preserving both local and global topological
features, but their method suffers from high complexity and thus is limited in its applications.

To tackle the aforementioned drawbacks of existing topological-based diffusion models, we propose
a novel Topological Denoising Diffusion model, namely Topo-Diffusion, to efficiently incorporate
local topological information into a denoising diffusion model. Contrary to previous works, we con-
sider topological degrading and reconstruction processes in data generation from diffusion models
for identifying structural features from data. Theoretically, we prove the theoretical stability guar-
antees of the Topo-Diffusion model. Empirically, we conduct comprehensive evaluation of Topo-
Diffusion and demonstrate that it outperforms several baseline models, using multiple quantitative
metrics on synthetic and real-world image datasets.

The primary contributions of this work can be summarized as follows:

• Topo-Diffusion is the first approach bringing the concepts of persistent homology and topo-
logical representation learning to diffusion generative models. We derive theoretical stabil-
ity guarantees of the proposed topological features of generated data.

• We demonstrate the utility of our proposed Topo-Diffusion in conjunction with generating
samples from point clouds to real-world images. Our findings show that Topo-Diffusion
delivers better performance across all the evaluation metrics on various datasets.

The rest of this manuscript is organized as follows. We review related work in Section 2 and intro-
duce preliminaries in Section 3. We describe the details of Topo-Diffusion and present theoretical
results in Section 4. We summarize our empirical experiments with evaluation results in Section 5.
Finally, we conclude the manuscript and point to future directions in Section 6.

2 RELATED WORK

Persistent homology. Persistent homology (PH) (Edelsbrunner et al., 2000; Zomorodian & Carls-
son, 2005) is a suite of tools within TDA that has shown a great promise in a broad range of domains
including bioinformatics, material sciences and social networks (Otter et al., 2017; Carlsson, 2020;
Dey & Wang, 2022). One of the key benefits of PH is that it can capture subtle patterns in the data
shape dynamics at multiple resolution scales. PH has been successfully integrated as a fully train-
able topological layer into various machine learning and deep learning models (Pun et al., 2018),
addressing such tasks as image classification (Hofer et al., 2017), 2D/3D shape classification (Bo-
nis et al., 2016; Hofer et al., 2019), molecules and biomolecular complexes representation learn-
ing (Cang et al., 2018), graph classification (Horn et al.; Chen & Gel, 2023), and spatio-temporal
prediction (Zeng et al., 2021; Chen et al., 2021). For example, Carrière et al. (2020) build a neural
network based on the DeepSet architecture (Zaheer et al., 2017) which can achieve an end-to-end
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learning for topological features. Cang et al. (2018) introduce multi-component persistent homol-
ogy, multi-level persistent homology and electrostatic persistence for chemical and biological char-
acterization, analysis and modeling by using convolutional neural networks. Horn et al. propose
a trainable topological layer that incorporates global topological information of a graph using per-
sistent homology. Chen et al. (2022a) propose a time-aware topological deep learning model that
captures interactions and encodes encode time-conditioned topological information. However, to
the best of our knowledge, PH and TDA have yet to be employed for diffusion models.

Diffusion generative model. Deep generative models broadly include Variational Autoencoders
(VAEs) , Generative Adversarial Networks (GANs), Normalizing Flows, Energy-Based Models
(EBMs) and Diffusion Models. Diffusion models are first introduced in (Sohl-Dickstein et al., 2015)
with diffusion implemented in Gaussian and Bernoulli distributions. Recently, Denoising Diffusion
models (Ho et al., 2020) are shown to be capable of generating high-dimensional images via the
improvement of model architecture and reparametrization of predictions. In (Sohl-Dickstein et al.,
2015; Ho et al., 2020), the authors formulated the diffusion process with a discrete Markov chain
and reversed the diffusion via a variational probabilistic optimization objective. Nichol & Dhariwal
(2021) enhance diffusion models via multiple strategies including avoiding a suboptimal solution
resulted from linear noise scheduler and learning variance. Song et al. (2020) showed that diffu-
sion models with discrete Markov chains (Sohl-Dickstein et al., 2015; Ho et al., 2020; Nichol &
Dhariwal, 2021) can be generalized into a continuous SDEs process and can be reversed by an or-
dinary differential equation (ODE) marginally-equivalent. Kingma & Gao (2023) summarized that
diffusion model objectives are equal to a weighted integral of the Evidence Lower Bound (ELBO)
objectives over different noise levels.Nonetheless, these existing approaches are limited since these
diffusion models focus on the diffusion process in Euclidean space. We have observed that the sam-
pling process from Euclidean space in diffusion models may lose topological information and lead
to misshapes in generated data (as shown in Figure 4 (e)). Therefore, in this paper, we consider
summarizing the diffusion process with structural degrading and reconstruction with topological
fingerprints.

3 PRELIMINARIES

Topological Representation Learning To capture the underlying shape of data, we employ persis-
tent homology (PH) which is a rapidly emerging research subfield at the interface of data sciences,
machine learning and algebraic topology (Chazal & Michel, 2017; Otter et al., 2017; Wasserman,
2018). In particular, let x be the observed data (in our later object generation experiments, x is a
2D image or a point cloud). The fundamental idea behind the PH methodology is that the observed
data x represent a sample from a metric space and, due to sampling, the underlying unknown geo-
metric and topological structure of this space has been lost. To extract topological information and
higher-order interactions in a systematic and efficient manner, we can build an abstract simplicial
complex which is a finite collection of simplices that is closed with respect to inclusion of faces. For
instance, the Vietoris-Rips (VR) complex (Carlsson, 2009; Zomorodian, 2010) is a prevalent type
of simplicial complex utilized in variety of applications, thanks to its straightforward construction
and rapid computational implementation. Moreover, as mentioned by Chen et al. (2019), since im-
ages consist of pixels, it is ideal for PH to accommodate this inherent representation of images as a
grid. Consequently, it is a more feasible option for extracting topological summaries from images
(i.e., allowing the usage of more compact data-structures) by applying cubical complexes to grid
structures, rather than utilizing simplicial complexes on point clouds. For instance, in Edelsbrun-
ner & Harer (2010), the filtration of complexes given some function on the pixels may deliver a
deeper insight intro the intrinsic image properties. Specifically, let f be a filtration function that
maps every simplex to the maximum function value of its vertices (in our case the grayscale value)
and let xϵ = f−1(−∞, ϵ], ϵ ∈ R. Setting an increasing sequence of (dis)similarity thresholds ϵ, i.e.,
ϵ1 < ϵ2 < . . . ϵn, results in a nested sequence of cubical complexes xϵ1 ⊂ xϵ2 ⊂ · · ·xϵn which is
referred to lower-star filtered cubical complex (Edelsbrunner, 2013). As (dis)similarity threshold ϵ
changes, some topological features are born while others disappear. In general, topological features
with a shorter lifespan (i.e., life interval) are referred to as topological noises and topological fea-
tures with long lifespan may have a more robust property in x. A k-dimensional topological feature
(or k-hole) represent connected components (0-hole), loops (1-hole) and cavities (2-hole). For each
k-hole, PH records its first appearance (birth) in the filtration sequence, and disappearance (death)
in later complexes with a unique pair (bσ, dσ). The most popular topological summary under the PH
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Figure 1: The overall architecture of Topo-Diffusion. Topological structures (i.e., Dg(k)(xt)), which
are obtained from TDA transformation Dg(k)(·) from the original data xt, is gradually degraded in
the forward process from step t = 0 to t = T (denoted as solid arrows). In the reverse process
(denoted as dashed arrow), the topological structures are reconstructed via sampling.

framework is a persistence diagram (PD). The k-th PD is a multi-set of points in a 2D plane, i.e.,
Dg(k)(x) = {(bi, di)(k) ∈ R2 | bi < di} that records birth-time (b) and death-time (d) of each topo-
logical feature such as a number of independent components and loops (where k ∈ {0, 1, . . . ,K}).

Diffusion models Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are generative
latent variable models with the form of pθ(x0) =

∫
pθ(xθ : T )dx1:T , where x1, . . . , xT are latents

of the same dimensionality as the data x0. A diffusion probabilistic model (diffusion model) consists
of two steps, i.e., a forward diffusion process and reverse diffusion process. Given a data x0, the
forward diffusion process is a parameterized Markov chain to degrade the data distribution by adding
noises to a prior distribution (e.g., standard Gaussian) and thus obtaining a variational distribution
q(xt|xt−1) over time steps t ∈ {1, 2, . . . , T}. That is, the distribution of input data is degraded
such that at the final timestep, xT is degraded to a random noise. The reverse diffusion process is to
follow the reverse steps p(xt−1|xt) = N (xt−1;µ(xt, t),

∑
(xt, t)), aiming to generate new samples

p(x0) from the prior distribution N (0, I). Then we employ neural networks to learn pθ(xt−1|xt) =
N (xt−1;µθ(xt, t),

∑
θ(xt, t)) that receives as input the noisy image xt and the embedding at time

step t, and learns to predict the mean µθ(xt, t) and covariance
∑

θ(xt, t). However, pθ(x0) is
intractable as we have to marginalize over all the possible reverse trajectories to compute it. The
solution to this problem is to minimize a variational lower-bound of the negative log-likelihood.

4 METHODOLOGY

4.1 TOPO-DIFFUSION

In this section, we introduce a novel diffusion model, namely, Topo-Diffusion, to enhance perfor-
mance of classical diffusion models. Topo-Diffusion is capable of (i) utilizing multi-scale topo-
logical information of input data and (ii) representing both forward process and reverse process
of diffusion model with topological summary . Topo-Diffusion achieves this desirable improvement
over existing diffusion models by incorporating topological representation to learn the Markov chain
of reverse diffusion process, and reconstructing the data distribution from the prior distribution via
a sampling process. The overall architecture of Topo-Diffusion is illustrated in Figure 1. Next, we
provide more details about the components of Topo-Diffusion model.

We first introduce the architecture of Topo-Diffusion for topological representation learning. Given
a sample xt at timestep t and a filtration function f , we can calculate a set of PDs, i.e., PH(xt, f) =
{Dg(0)(xt), Dg(1)(xt), . . . , Dg(K)(xt)} where K denotes the maximum dimension of homological
features of xt. Moreover, it is crucial to pick a class of vectorization and embedding functions that
are sufficiently powerful to result in expressive representations of topological signatures. In this
study, we consider multiple types of (i) persistence vectorization functions ϕ and (ii) differentiable
topological embedding function Ξ(·). Formally, the topological diffusion layer can be formulated as

atL = σ(Ξ([ϕ(Dg(k)(xt)))]
K
k=0), (1)

ϕ(Dg(k)(xt)) = F([w(bti, d
t
i)

(k) · sθ(bti, dti)(k)](bti,dt
i)

(k)∈Dg(k)(xt)), (2)

where [ϕ(Dg(k)(xt)))]
K
k=0 = [ϕ(Dg(0)(xt)), ϕ(Dg(1)(xt)), . . . , ϕ(Dg(K)(xt))] denotes a set of

vectorized topological features, [·, ·] denotes the operation of concatenation, sθ : R2 7→ Rq denotes
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the persistence point transformation, i.e., a mapping function from a persistence point (bti, d
t
i)

(k)

in the Dg(k)(xt) to a representation vector, w is the weighting function with respect to the persis-
tence of each persistence point, and F denotes a permutation-invariant operation such as max or
average operation (which is capable of efficiently aggregating high-dimensional representations).
We utilize a layer-wise embedding method to learn a latent local topological representation atL, and
thus improve the reverse process as well as make the topological representation comparable to the
dimension of input in the reverse diffusion model. According to Eq. 1, we employ a feed-forward
neural network Ξ(·) with a non-linear activation function σ(·) to embed the topological representa-
tion. Note that, in this study, we consider the embedding function Ξ(·) based on residual learning
methods (He et al., 2016b).

Next, we introduce two persistence point transformation methods (see Eq. 2), i.e., (i) birth-lifespan
transformation and (ii) differentiable distribution transformation. These transformations can trans-
form a PD (i.e., a multi-set of persistence points) into a topological feature vector or function which
can be easily integrated into any type of models. More importantly, the stability property of re-
sulting vectorized topological features such as Betti curves, persistence landscapes, and persistence
images is the key aspect that we consider in this paper (see Theorem 4.1 for more details). For the
sake of simplicity, in the following, we omit the superscript (k) and treat the Dg(xt) as the input
k-dimensional PD for a vectorization transformation.

Birth-lifespan transformation. We introduce explicit constructions of topological summaries for
persistence vectorizations through the birth-lifespan transformation using Betti curve and persis-
tence landscape. Specifically, (i) Betti curve allows us to measure various topological information
with a given filtration and does not inherit any implicit biases; and (ii) the advantages of persistence
landscapes are invertible, stable, and nonlinear.

Betti curve is one of the simplest vectorization as it gives the count of topological feature at a given
threshold interval. Given a PD and a weight function ω : R2 7→ R, the Betti curve of a PD is the
function sθ : R2 7→ R which is defined as

ϕB(Dg(xt), τ) =
∑

(bti,d
t
i)∈Dg(xt)

ω(bti, d
t
i) · 1[bti,d

t
i]
(τ),

where the persistence point transformation sθ is the indicator function 1[bti,d
t
i]
(τ) = 1 if τ ∈ [bti, d

t
i],

otherwise 0, and the permutation-invariant operation F is a summation.

Persistence landscape (PL) is one of the most common vectorizations introduced by Bubenik (2015).
For a given persistence diagram Dg(xt) = {(bti, dti)}, PL produces a function ϕ(Dg(xt), ζ) by
using generating functions Λi for each (bti, d

t
i) ∈ Dg(xt), i.e., Λi : [bti, d

t
i] 7→ R is a piecewise

linear function obtained by two line segments starting from (bti, 0) and (dti, 0) connecting to the
same point ( b

t
i+dt

i

2 ,
bti−dt

i

2 ). Then, the PL function ϕPL(Dg(xt), ζ) for ζ ∈ [ϵ1, ϵq] is defined as

ϕPL(Dg(xt), ζ) = max
i

Λi(ζ),

where {ϵk}q1 are thresholds for the filtration used. Considering the piecewise linear structure of the
function, ϕPL(Dg(xt), ζ) is completely determined by its values at 2q − 1 points, i.e., bti±dt

i

2 ∈
{ϵ1, ϵ1.5, ϵ2, ϵ2.5, . . . , ϵq} where ϵk.5 = (ϵk + ϵk+1)/2. Finally, we can obtain a vector of size
1×(2q−1), i.e., ϕPL(Dg(xt), ζ) = [ϕPL(Dg(xt), ϵ1), ϕPL(Dg(xt), ϵ1.5), . . . , ϕPL(Dg(xt), ϵq)].
Here, the permutation-invariant operation F is k-th largest value, and the weighting function is a
constant weight function, i.e., w(bti, d

t
i) = 1.

Differentiable distribution transformation. Here, we describe the differentiable distribution trans-
formation in Topo-Diffusion, where the basic idea is to capture the location of the persistence
points with a differential distribution function. Different from the birth-lifespan transformation,
differentiable distribution transformation generates 2D-vectors. From the Definition 4.1, let sθ
be a differentiable distribution function with θ = (µ, σ), mean µ ∈ R2 and variance σ ∈ R2

(e.g., sθ can be specified as the Gaussian distribution function sθ(z) = 1
2πσ2 e

− ||z−u||2

2σ2 ). Note
that one may choose a weighting function by using the lifespan of the persistence point (i.e.,
w(dti, b

t
i) = dti − bti) or choose a weighting function that emphasizes persistence points near the

death-axis (i.e., w(dti, b
t
i) = arctan(C(dti − bti)

2) where C is a non-negative parameter). In this
setting, one way of vectorization is based on the differentiable distribution transformation such as
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Persistence Image (PI) (Adams et al., 2017), which represents a PD as a finite-dimensional vector de-
rived from the weighted kernel density function. [Differentiable Distribution Transformation] Given
a (linear) transformed persistence diagram T (Dg(xt)), a persistence surface ρT (Dg(xt)) : R2 7→ R
is defined as, for any z ∈ R2, ρT (Dg(xt))(z) =

∑
T (bti,d

t
i)∈T (Dg(xt))

w(T (bti, d
t
i))sθ(z), where

T (bti, d
t
i) = (bti, d

t
i − bti).

Stability of topological summaries.We now show that the persistence vectorization transformation
in Topo-Diffusion is stable (for the proof of the Theorem 4.1, please refer to Appendix D).
Theorem 4.1. Given two observed datasets xt and xt′ , we have the stability equation as follows

d(ϕ(Dg(xt), ϕ(Dg(xt′))) ≤ Cϕ · Wpϕ
(Dg(xt)), Dg(xt′)),

where d(·, ·) is a suitable metric on the space of a persistence vectorization, ϕ(Dg(xt)) and
ϕ(Dg(xt′)) represent the vectorizations for Dg(xt) and Dg(xt′) respectively, Wp is Wasserstein-p
distance, and 1 ≤ pϕ ≤ ∞.

Specifically, if a given persistence vectorization holds the stability inequality as below for some d
and Wp, we call the persistence vectorization is a stable vectorization in terms of Wasserstein-p
distance. Hence, our proposed Topo-Diffusion can (i) improve the stability of the local topological
features learning, (ii) increase the robustness of both deterministic forward and reverse processes
against errors and noises, and (iii) consequently enhance the quality of generated samples.

As such, in this work, we develop a denoising decoder with residue blocks to learn the reverse
Markov chain with topological features. In each layer atL of the denoising decoder, we employ
the backbone (Ho et al., 2020) in which timestep embeddings St and topological representation
embeddings can be embedded, and the output of layer atL is represented as

ate = [ϕ(Dg(k)(xt))]
K
k=0 · atL + St. (3)

By stacking backbones in a U-Net architecture, we build a practically beneficial reverse topological
diffusion model.

Figure 2: An illustration of vectorized topological features at diffusion steps in the forward process.
From top to bottom: images, persistence images, Betti curves, persistence landscapes. In Betti
curves and persistence landscapes, blue lines and red dash lines represent the 0-dimensional and
1-dimensional topological features respectively. From left to right: objects in the forward process
with diffusion steps t = {0, 20, 30, 50, 100, 150, 200, 250, 300}.

4.2 FORWARD PROCESS

Topological structure degrading. The forward process of diffusion model refers to gradually cor-
rupt data with noises (Kingma et al., 2021; Nichol & Dhariwal, 2021; Ho et al., 2020). In Topo-
Diffusion, we consider the corruption process in a topological aspect via a topological structure
degrading. Let p(x0) be the data density, where the index 0 represents the original data, we gradu-
ally add noise to the topological structure with a Markov chain x1, x2, ..., xT are obtained according
to the following Markovian process:

q(C(xt, [ϕ(Dg(k)(xt))]
K
k=0)|xt−1) := N (xt;

√
1− βtxt−1), βtI), ∀t ∈ {1, ..., T}, (4)

where T denotes the total number of diffusion steps, β1, β2, . . . , βT are variances scheduler to de-
grade the original data, I is the identity matrix with the same dimensions as x0, N (x;µ, σ) is a
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normal distribution of mean µ and covariance σ that produces x. As mentioned in Ho et al. (2020),
the forward process admits sampling xt at an arbitrary timestep t in a closed form: using the notation
αt := 1− βt and ᾱ :=

∏t
s=1 αs, we have

q(C(xt, [ϕ(Dg(k)(xt))]
K
k=0)|x0) = N (xt;

√
ᾱtx0, (1− ᾱtI)). (5)

In this study, we set β1, β2, . . . , βT as hyperparameters so that the forward diffusion process is not
included in training.

4.3 REVERSE PROCESS

Topological reconstruction. By leveraging properties of the forward process, we can generate new
samples from p(x0) by sampling from xT := N (0, I) in the reverse process. Figure 3 shows
the learning procedure of the reverse process of Topo-Diffusion. Instead of reversing from the
disturbed data itself, we incorporate topological representation of the degraded data into the posterior
of forward process as pθ(x0:T )

pθ(x0:T ) := p(C(xT , [ϕ(Dg(k)(xT ))]
K
k=0)×

T∏
t=1

pθ(xt−1|C(xt, [ϕ(Dg(k)(xt))]
K
k=0)),

pθ(xt−1|C(xt, [ϕ(Dg(k)(xt))]
K
k=0)) := N (xt−1;µθ(C(xt, [ϕ(Dg(k)(xt))]

K
k=0), t),∑

θ

(C(xt, [ϕ(Dg(k)(xt))]
K
k=0), t)).

(6)

With the tractable forward process q(xt−1|C(xt, [ϕ(Dg(k)(xt))]
K
k=0) under the condition of x0

q(xt−1|C(xt, [ϕ(Dg(k)(xt))]
K
k=0, x0) = N (xt−1; µ̃t(C(xt, [ϕ(Dg(k)(xt))]

K
k=0, x0), β̃tI)

µ̃t(C(xt, [ϕ(Dg(k)(xt))]
K
k=0, x0) :=

√
ᾱt−1βt

1− ᾱt−1
x0 +

√
αt(1− ᾱt−1)C(xt, [ϕ(Dg(k)(xt))]

K
k=0

1− ᾱt

β̃t =
1− ᾱt−1

1− ᾱt
βt

(7)

The training process of the reverse diffusion model is performed by optimizing the usual variational
bound on a negative log-likelihood (NLL)

E[−logpθ(x0)] ≤ Eq[−log
pθ(x0:T )

q(x1:T |x0)
]

= Eq[−logp(xT )−
∑
t≥1

log
pθ(xt−1|C(xt, [ϕ(Dg(k)(xt)))]

K
k=0))

q(C(xt, [ϕ(Dg(k)(xt))]Kk=0|xt−1)
].

(8)

Figure 3: Top: the reverse process of the Topo-Diffusion model trained by Betti curves. Bottom:
the reconstruction of Betti curves during sampling. From left to right: objects in the reverse process
with sampling steps t = {0, 20, 30, 50, 100, 150, 200, 250, 300}.

5 EXPERIMENTS

Data sets. We evaluate our proposed Topo-Diffusion model on a suite of experiments using
three simulated point cloud datasets and four real-world image datasets (see Appendix B for
more details). The three point cloud datasets are toy examples with different topological struc-
tures including generated circles, s-curves, and moon curves. In addition, for real-world image
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Table 1: Comparison of coupling generative models on point cloud data and image data with our
proposed Topo-Diffusion model across multiple evaluation metrics. PL: persistence landscape. BC:
Betti curve. PI: persistence image. The best results are highlighted in bold.

Point clouds Images
Circles S-curve moon curve MNIST FashionMNIST LFW

FID score Topo-Diffusion
PL 0.2587 0.2250 5.8625 2.5729 0.1861 9.2861
BC 0.2138 0.2221 5.8411 2.2799 0.2304 7.8730
PI 0.2304 0.2986 5.8693 3.0242 0.5831 11.1763

Baseline 0.2737 0.3916 6.5864 3.0461 0.3493 13.1552

Precision Topo-Diffusion
PL 0.8494 0.7398 0.6201 0.7530 0.8790 0.7330
BC 0.8756 0.7832 0.6780 0.7040 0.7670 0.8640
PI 0.8544 0.5586 0.6691 0.7024 0.4570 0.5860

Baseline 0.8324 0.3930 0.5963 0.3200 0.6650 0.5950

Recall Topo-Diffusion
PL 0.7890 0.7038 0.8018 0.8500 0.8330 0.4810
BC 0.8203 0.7576 0.8594 0.8370 0.7660 0.9730
PI 0.8025 0.7555 0.7937 0.7808 0.8060 0.6350

Baseline 0.7789 0.5586 0.7793 0.4985 0.7280 0.7330

RMSE Topo-Diffusion
PL 1.3223 1.2871 2.7907 0.1117 0.1236 3.3477
BC 1.2726 1.2451 2.7892 0.1159 0.1276 2.9744
PI 1.1274 1.2800 2.8064 0.1283 0.1568 3.6590

Baseline 1.3311 1.2725 2.9336 0.1298 0.1680 4.6011

SSIM Topo-Diffusion
PL 0.1600 0.0206 0.0161 0.0190 0.0088 0.0096
BC 0.1680 0.0208 0.0194 0.0184 0.0090 0.0165
PI 0.1630 0.0196 0.0101 0.0164 0.0079 0.0102

Baseline 0.1580 0.0050 0.0093 0.0174 0.0086 0.0046

datasets, we use MNIST (Deng, 2012), Fashion MNIST (Xiao et al., 2017b), Labelled Face in the
Wild (LFW) (Huang et al., 2007), and Circuit Reconstruction from Electron Microscopy Images
(CREMI) (CRE).

Experimental settings. In the experiments, we ensure that reverse and forward processes have
approximately the same functional form while keeping the signal-to-noise ratio at xT as small as
possible (LT = DKL(q(xT |x0)|N(0, I)) ≈ 10−5). We measure the quality and diversity of gen-
erated samples utilizing multiple metrics including Frechet Inception Distance (FID), precision and
recall (Kynkäänniemi et al., 2019b), as well as the similarity between real and generated data us-
ing Root Mean Square Error (RMSE) and Similarity Index (SSIM) (Kynkäänniemi et al., 2019b;
Sajjadi et al., 2018b) (See Appendix C for more details). For the reverse process, we employ a
U-Net (Ronneberger et al., 2015) based on residue learning (Zagoruyko & Komodakis, 2016). Our
U-Net maps features into the resolution of 4 for 1-D data and 4 × 4 for 2-D images. All models
have two convolutional residual blocks per resolution level and self-attention blocks at the 16 × 16
resolution between the convolutional blocks. Diffusion time t is specified by adding the Transformer
sinusoidal position embedding into each residual block. The topological feature is embeded to every
residual block via Eq. 3.

Results. First, we assess the fidelity and diversity of generated data using Topo-Diffusion evaluated
using multiple metrics. Table 1 summarizes the results of our Topo-Diffusion on three point-cloud
patterns and three real-world image datasets. Our results clearly show that the incorporation of topo-
logical features in diffusion model can largely improve the quality and diversity of generated data,
compared to the baseline diffusion model (Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021). For
instance, on the Circles dataset, our Topo-Diffusion (based on BC) achieves the best performance
across all five evaluation metrics, and has an average 12.40% relative gain, compared with the base-
line. On the three image datasets, Topo-Diffusion (based on PL) outperforms the baseline with an
average relative gain 49.25%, 33.56%, 35.45%, 29.86%, and 20.93% on FID score, precision, recall,
RMSE, and SSIM respectively. Second, we conduct ablation experiments to evaluate the generated
results by varying parameters or strategies implemented in Topo-Diffusion. Specifically, we train
the Topo-Diffusion on various sets of parameters for PL and PI on MNIST dataset, and select pa-
rameters of PI/PL with the best FID score. We found that the optimal topological feature varies
among different datasets. Furthermore, we observe that our Topo-Diffusion based on Betti curve
outperforms the DDPM diffusion (Dhariwal & Nichol, 2021) model on all datasets. As shown in
Figure 4, we can clearly observe that a misshape of point cloud occurs in the baseline model; while
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the structure of “S” curve of the training data is maintained in the generated point cloud by utilizing
our Topo-Diffusion model. This justifies the benefit of the integration of topological features into
the diffusion model which can help lead towards a both stable and discriminative result. Finally,
we conduct ablation studies to evaluate the effect of topological embeddings on the performance of
Topo-Diffusion (discussed in Section 4.1). As summarized in Table 2, comparing with the quantita-
tive evaluation metrics on generated Fasion-MNIST samples from embedded/non-embedded Topo-
Duffision models, we oberve that both the fidelity and diversity of generated samples are enhanced
by the embedding approach of Topo-Diffusion. These results indicate that topological embeddings
proposed in Topo-Diffusion are critical in the diffusion process of diffusion models.

Figure 4: “S” curve point cloud from (a) the training dataset, and generated samples from (b) Topo-
Diffusion based on persistence landscapes, (c) Topo-Diffusion based on Betti curves, (d) Topo-
Diffusion based on persistence image, and (e) DDPM Diffusion model.

(a) (b) (c) (d)

Figure 5: Comparison between generated MNIST samples from (a) baseline (DDPM), (b) Topo-
Diffusion based on persistence landscape, (c) Topo-Diffusion based on Betti curve, and (d) Topo-
Diffusion based on persistence image.

Table 2: The qualities of generated Fasion-MNIST samples in Topo-diffusion with/without TDA
feature embedding.

FID Precision Recall RMSE SSIM
Emb. PL 0.1861 0.8790 0.8330 0.1236 0.0088
Emb. BC 0.2304 0.7670 0.7660 0.1276 0.0090

Unemb. PL 0.2087 0.8440 0.8270 1.3070 0.0086
Unemb. BC 0.2316 0.7540 0.7630 1.3361 0.0067

6 CONCLUSION

In this study, we have explored the utility of local topological fingerprints to enhance various data
generation tasks within the diffusion model paradigm. We propose a novel topological diffusion
model called Topo-Diffusion that incorporates persistent homology and topological representation
learning into diffusion models. We derive theoretical stability guarantees of the proposed topological
features of generated data. Through extensive empirical evaluations, we demonstrate that our Topo-
Diffusion can enhance generating point clouds data, structural images, and can also yield state-of-
the-art performances on real-world image datasets. In the future, we plan to investigate the capability
of diffusion models in fusing single persistence and multipersistence topological features (Carriere
& Blumberg, 2020; Chen et al., 2022b). Moreover, to alleviate the impact of topological noise
and yield a faster approximation of high-dimensional topological representations, we will apply the
witness complex (De Silva & Carlsson, 2004) to our current Topo-Diffusion architecture. We will
also extend Topo-Diffusion to model diverse data types across various application domains.
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APPENDICES OF TOPO-DIFFUSION: TOPOLOGICAL DIFFUSION MODEL FOR
IMAGE AND POINT CLOUD GENERATION

A THE TOPO-DIFFUSION MODEL

A.1 DETAILS OF THE MODEL

Based on the backbone of PixelCNN++ (Salimans et al., 2017; Dhariwal & Nichol, 2021), we mod-
ify the ResNet-based U-Net with 1D convolution kernel for point cloud data. We map all input into
4× 4 resolution as previous works did (Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021), with
two residual block in each resolution level in both baseline model and our Topo-diffusion model.
Our point cloud models have 0.44 million parameters and our 28 × 28 models have 13 million pa-
rameters and 64 × 64 models have 100 million parameters. We train a large model which have 4
residual block, aiming to learn the topological information and time embedding respectively. We
utilize NVIDIA GPU A5800 for all experiments. For point clouds, we extract the topological fea-
tures at 0.95, 0.17, 0.06 seconds per sample respectively by using persistence image, persistence
landscape, and Betti curve. For image data, we extract the topological features at 8.95, 4.49, 4.46
seconds per sample respectively by using persistence image, persistence landscape, and Betti curve.
Moreover, we train on point cloud data for 0.23M steps, MNIST and Fashion MNIST for 2.4M steps,
LFW for 1.8M steps respectively. Due to the memory constraints, we conduct the hyperparameters
search to optimize for circle pattern point cloud and MNIST datasets.

• We choose the βt schedule from linear (Dhariwal & Nichol, 2021), cosine (Nichol &
Dhariwal, 2021; Dhariwal & Nichol, 2021), quadratic (Dhariwal & Nichol, 2021) with
T = [10, 50, 100, 200, 300, 1000], and we choose the cosine scheduler with T = 10 and
T = 300 for point cloud and image data respectively, which is identity with previous
work (Nichol & Dhariwal, 2021).

• We train our Topo-Diffusion model both with pretraining network and without pretraining
network. In the pertraining, we set all vectorized topological summaries as identity vectors.
Thus there is no affect from topological features shown in Eq. (3) (i.e., aTt = 1). In our
experiments, we found the pretraining network improve sample quality and converge speed
for all datasets.

• We train our Topo-Diffusion model with Adam and SGD optimizer. We set the learning
rate to be 1e−4. In addition, we warm up the network by setting the learning rate as 1e−6
with 100 steps on image datasets. In our experiments, we found the warm up on image
datasets improve the stability of training thus enhance the sample quality for all datasets.

Final experiments are trained once and evaluated throughout the training procedure for the sample
quality in FID score. Sample quality scores and log likelihood are reported on the final model.

A.2 DETAILS OF THE ALGORITHM

Here we provide more details about the algorithm of our Topo-Diffusion model. Algorithm 2 rep-
resents the sampling procedure from random noise N(0, 1) with C(xt, [ϕ(Dg(k)(xt))]

K
k=0 as learnt

topological information. To generate reasonable samples, it is up to capture the dependencies of
topological reconstruction along the reverse process. While sampling with reconstructed topologi-
cal is straightforward, the difficulties lie in the optimization of Topo-Diffusion model. Algorithm 1
represents the process of each round of training. We train the embedding network ϕ(·) with de-
noising autoencoder simultaneously by optimizing Eq. 8. We utilize the co-train approach to make
training efficiently by employing same time embedding method in Dhariwal & Nichol (2021).

B DATA

B.1 DATASETS

We evaluate our proposed Topo-Diffusion model on three 2-dimensional (2D) point cloud, and three
real-world image datasets. The three simulated point cloud datasets are circles, s-curves, and moon
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Algorithm 1 Training process of Topo-Diffusion

Require: x0, ϕ(·), Dg(·)
1: t ∼ Uniform(1, . . . , T )
2: ϵ ∼ N(0, 1)
3: take gradient from
4: Ex0,[ϕ(Dg(k)(x0)))]Kk=0,ϵ

[||ϵ− ϵθ(xt, [ϕ(Dg(k)(xt)))]
K
k=0, ϵ)||2]

5: until converge

Algorithm 2 Sampling from topological reconstruction

Require: T , β̃1, ..., β̃T

1: xT ∼ N(0, 1)
2: for dot = T, . . . , 1 do
3: if t > 1 then
4: z ∼ N(0, 1)
5: else
6: z = 0

7: µ̃t =
√
ᾱt−1βt

1−ᾱt−1
x0 +

√
αt(1−ᾱt−1)C(xt,[ϕ(Dg(k)(xt))]

K
k=0

1−ᾱt

8: xt−1 = µ̃t + β̃t · z
9: Return x0

curves from scikit-learn tools (Pedregosa et al., 2011). The circle dataset is a synthetic large circle
containing a smaller circle where their ratio of radius is 2 : 1. The moon point clouds (Eq. 9),
s-curve point cloud (Eq. 10) are generated using trigonometric functions. All three point clouds are
perturbed by the standard Gaussian noise.

m1 = (cos(x), sin(x))

m2 = (1− cos(x), 1− sin(x)− 0.5)
(9)

s = (sin(x), sign(x)× (cos(x)− 1)) (10)
where x follows a uniform distribution from 0 to π. For each kind of 2D point clouds, we generate
10,000 training samples and each sample consists of 1,024 points.

Image datasets includes MNIST (28 × 28 greyscale handwritten digits) (Deng, 2012), Fashion
MNIST (28 × 28 greyscale Zalando’s article images) (Xiao et al., 2017a), and Labelled Face in
the Wild (LFW) (greyscale human faces images) (Huang et al., 2007). For MNIST and Fashion
MNIST, we randomly select a set of 10,000 samples as a training set. LFW data consists of 13,233
samples, and we select the region ((61, 189), (61, 189)) of each image (where the main face are
included), and then map the sliced images to the size of 64× 64.

B.2 DATA PREPROCESSING

To ensure the neural network reverse process operates on consistently scaled inputs starting from the
standard normal prior p(xt), We preprocess data by linearly normalizing the input into the scaling
of [−1, 1].

C EXPERIMENT RESULTS

Experimental settings. For forward process, we employ cosine noise scheduler with variance from
β1 = 0.0001 to βT = 0.02 to diffuse the original samples to random noise. We set T = 10 and
T = 300 to 2D point clouds and image datasets respectively, ensuring that reverse and forward
processes have approximately the same functional form while keeping the signal-to-noise ratio at
xT as small as possible (LT = DKL(q(xT |x0)|N(0, I)) ≈ 10−5).

For reverse process, we employ a U-Net (Ronneberger et al., 2015) based on a wide
ResNet (Zagoruyko & Komodakis, 2016). Our U-Net map the feature into resolution of 4 for 1D
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data and 4×4 for 2D images. All models have two convolutional residual blocks per resolution level
and self-attention blocks at the 16× 16 resolution between the convolutional blocks. Diffusion time
t is specified by adding the Transformer sinusoidal position embedding into each residual block.
The topological feature is embeded to the residual block in the first layer of the U-Net.

C.1 METRICS

Frechet Inception Distance. The Frechet Inception Distance (FID) score (Heusel et al., 2017) is
a popularly utilized statistics metric that calculates an 1D distance score between feature vectors of
real and generated images. Lower scores indicate the two groups of images are more similar.

Pecision and Recall. We have evaluated sample fidelity and diversity by widely used precision and
recall metrics, which are calculated via the distance to the third nearest neighbor in a latent feature
space (Kynkäänniemi et al., 2019a; Sajjadi et al., 2018a). In the precision and recall metrics, high
precision means high generative fidelity and high recall represents high generative diversity. In this
paper, we empirically select k = 10.

Root Mean Squared Error. We have employed root mean squared error (RMSE) (rms, 2008) to
quantify the difference of points or pixels between the generated sample and the training set of
the Topo-Diffusion model, as a measurement of sample quality. Specifically, lower RMSE values
represent higher similarities between the generated sample and the reference sample (training set).

Structural Similarity Index. In this paper, we have adopted a structure similarity index (SSIM)
metric Wang et al. (2004) to evaluate the generated sample quality. The SSIM assesses the structural
information based on the degradation of structural features Wang et al. (2004). For the SSIM, high
value represents higher similarity between two group of samples. For all point clouds and images
datasets, we calculate the global SSIM to measure the similarities between the generated data and the
reference data (i.e., training set). For point clouds, we use an 1D convolution kernel with Gaussian
weighing as a local window which moves point-by-point over the point clouds aiming at calculating
local statistics and SSIM index. For point clouds, we use an 2D convolution kernel with Gaussian
weighing as a local window which moves pixel-by-pixel over the image to calculate local statistics
and SSIM index.

Embedding Model for Evaluation. Since FID Heusel et al. (2017), precision and re-
call Kynkäänniemi et al. (2019a); Sajjadi et al. (2018a), and RMSE rms (2008) are usually con-
ducted on an embedded space, we train classifiers between each point cloud pattern and random
Gaussian noise (µ = 0 , σ = 1), respectively, with a 3-layer multi-layer perceptron. We take the
latent vector before the classification output head (i.e., a 10-D vector), for evaluation. For image
datasets, we train ResNets He et al. (2016a) with 3 blocks for evaluation. For MNIST and Fashion
MNIST datasets, we use the classification labels from each dataset as labels for the classifier. For
LFW dataset, we select those people with over 70 images in the dataset as training set of the ResNet
and use the name of human face samples as labels for classifier. For all three image datasets, we
take the latent vector before the classification output head for calculating each evaluation score, in
which a 50-D vector is used.

C.2 ADDITIONAL RESULTS

Enhancing density estimation. We estimate the density of each component using 2D-GMM, and
visualize densities of simulated and generated modes in 3D plots (see Figures 6, 7, 9, 10, 12, and 13).
We found that the proposed Topo-Diffusion model enhances densities estimation over all point cloud
patterns. For baseline DDPM model, a sampled point cloud centered around the origin point in
corordinates, which is one of the local optimals. We evaluate the Topo-Diffusion model in aspect
of density estimation, which indicates the topological information enhances the model for learning
the density distribution. The results show that data generated from Topo-diffusion outperformed the
DDPM, which indicates that including topological feature in diffusion process enhance the sampling
process of diffusion model.

Comparison with more generative models We train our Topo-Diffusion model with a pretraining
network. We set all vectorized topological summaries as identity vectors in the pertraining and
pretrain the Topo-Diffusion model for 100k steps. After pretraining, we train all of the models
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(including baseline or DDPM, Topo-Diffusion with persistence landscape, Topo-Diffusion with betti
curves, Topo-Diffusion with persistence image) for 1 million steps (Figures 15-17).

Moreover, we have conducted extensive experiments and experimental evaluations show that our
proposed Topo-Diffusion always outperforms other generative models (including GAN, WGAN and
TopoGAN) on MNIST and CREMI datasets (Tables 3 and 4). As shown in Figure 19, we randomly
sampled 64 images from (a) CREMI dataset; (b) Topo-Diffision model, (c) DDPM, (d) Topo-GAN,
and (e) WGAN. We sampled the CREMI dataset into sizes of 64 × 64. The visualization shows
that a diffusion based model outperformed a GAN based model in the diversity phase. Furthermore,
topological aware methods (i.e., Topodiffusion and TopoGAN) can capture more topological mode
of the original dataset. From qualitative visualizations, we can see that the image quality as well as
diversity can be improved from the TopoDiffusion model.

Table 3: Comparison of the performance of Topo-Diffusion and baseline methods on CREMI.

FID Precision Recall RMSE
WGAN 23.014 0.657 0.351 6.650
TopoGAN 20.495 0.837 0.635 6.520
DDPM 21.373 0.765 0.842 6.780
Topo-Diffusion (ours) 18.450 0.886 0.856 6.450

Table 4: Comparison of the performance of Topo-Diffusion and baseline methods on MNIST.

FID Precision Recall RMSE
WGAN 3.125 0.516 0.580 0.184
TopoGAN 3.124 0.694 0.615 0.177
DDPM 3.046 0.320 0.499 0.130
Topo-Diffusion (ours) 2.280 0.704 0.837 0.116

Table 5: Comparison of the performance of Topo-Diffusion and baseline methods on NASA satel-
lites images.

FID Precision Recall RMSE
WGAN 31.020 0.694 0.484 37.893
DDPM 10.796 0.789 0.875 13.959
Topo-Diffusion (ours) 6.521 0.869 0.891 7.909

Combinations of topological features and transformations We have presented additional exper-
imental results, i.e., combinations of topological features and transformations in TopoDiffusion in-
cluding 1) loops and connected components of betti curve, loops and connected components of
persistence landscape (BC+PL); 2) loops and connected components of betti curve (CC+Loop); 3)
loops of betti curve (Loop); 4) connected components of betti curve (CC) (see Tables 6, 7, and 8)

Table 6: Comparison of the performance of different combinations of topological features and trans-
formations in TopoDiffusion on S curve.

FID Precision Recall RMSE SSIM
BC+PL 0.751 0.718 0.669 0.439 0.053
CC+Loop 0.908 0.668 0.666 0.478 0.034
Loop 1.101 0.616 0.666 0.539 0.003
CC 1.077 0.662 0.551 0.501 0.001
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(a) (b) (c)

(d) (e)

Figure 6: Comparison of density estimation between real and generated s-curves from our Topo-
Diffusion and the baseline. (a) Real data, (b) Topo-Diffusion based on Betti curve, (c) Topo-
Diffusion based on persistence landscape, (d) Topo-Diffusion based on persistence image, and (e)
baseline (DDPM).

(a)

(b)

(c)

(d)

Figure 7: Comparison of density estimation of sampling procedure between our Topo-Diffusion and
the baseline at t = {2, 4, 6, 8, 10} from right to left. (a) Topo-Diffusion based on Betti curve, (b)
Topo-Diffusion based on persistence landscape, (c) Topo-Diffusion based on persistence image, and
(d) baseline (DDPM).
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(a)

(b)

(c)

(d)

(e)

Figure 8: Comparison between real and generated data at t = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} from right
to left. (a) Real data, (b) Topo-Diffusion based on Betti curve, (c) Topo-Diffusion based on persis-
tence landscape, (d) Topo-Diffusion based on persistence image, and (e) baseline (DDPM).

(a) (b) (c)

(d) (e)

Figure 9: Comparison of density estimation between real and generated s-curves by our Topo-
Diffusion and the baseline. (a) Real data, (b) Topo-Diffusion based on Betti curve, (c) Topo-
Diffusion based on persistence landscape, (d) Topo-Diffusion based on persistence image, and (e)
baseline (DDPM).
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(a)

(b)

(c)

(d)

Figure 10: Comparison of density estimation of sampling procedure between our Topo-Diffusion
and the baseline at t = {2, 4, 6, 8, 10} from right to left. (a) Topo-Diffusion based on Betti curve,
(b) Topo-Diffusion based on persistence landscape, (c) Topo-Diffusion based on persistence image,
and (d) baseline (DDPM).
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(a)

(b)

(c)

(d)

(e)

Figure 11: Comparison between real and generated data at t = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} from
right to left.. (a) Real data, (b) Topo-Diffusion based on Betti curve, (c) Topo-Diffusion based on
persistence landscape, (d) Topo-Diffusion based on persistence image, and (e) baseline (DDPM).

(a) (b) (c)

(d) (e)

Figure 12: Comparison of density estimation of moon data between real and generated s-curves by
our Topo-Diffusion and baseline. (a) Real data, (b) Topo-Diffusion based on Betti curve, (c) Topo-
Diffusion based on persistence landscape, (d) Topo-Diffusion based on persistence image, and (e)
baseline (DDPM).
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(a)

(b)

(c)

(d)

Figure 13: Comparison of density estimation of sampling procedure of moon data between our
Topo-Diffusion and the baseline at t = {2, 4, 6, 8, 10} from right to left. (a) Topo-Diffusion based
on Betti curve, (b) Topo-Diffusion based on persistence landscape, (c) Topo-Diffusion based on
persistence image, and (d) baseline (DDPM).
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(a)

(b)

(c)

(d)

(e)

Figure 14: Comparison between real and generated moon data at t = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
from right to left. (a) real data, (b) Topo-Diffusion based on Betti curve, (c) Topo-Diffusion based
on persistence landscape, (d) Topo-Diffusion based on persistence image, and (e) baseline (DDPM).
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Table 7: Comparison of the performance of different combinations of topological features and trans-
formations in TopoDiffusion on Moon.

FID Precision Recall RMSE SSIM
BC+PL 1.840 0.798 0.648 0.600 0.013
CC+Loop 1.867 0.755 0.535 0.601 0.010
Loop 1.961 0.633 0.407 0.612 0.006
CC 2.052 0.529 0.362 0.639 0.006

Table 8: Comparison of the performance of different combinations of topological features and trans-
formations in TopoDiffusion on Circle.

FID Precision Recall RMSE SSIM
BC+PL 0.088 0.873 0.665 0.265 0.195
CC+Loop 0.117 0.529 0.708 0.280 0.166
Loop 0.148 0.484 0.664 0.291 0.146
CC 0.164 0.478 0.610 0.302 0.143

(a) (b) (c) (d)

Figure 15: Comparison between generated MNIST samples from (a) baseline (DDPM), (b) Topo-
Diffusion based on persistence landscape, (c) Topo-Diffusion based on Betti curve, and (d) Topo-
Diffusion based on persistence image.

(a) (b) (c) (d)

Figure 16: Comparison between generated Fashion MNIST samples from (a) baseline (DDPM), (b)
Topo-Diffusion based on persistence landscape, (c) Topo-Diffusion based on Betti curve, and (d)
Topo-Diffusion based on persistence image.

D THEORETICAL ANALYSIS

We provide the details concerning the proof of Theorem 4.1 as follows.

Proof. Let Dg(xt) = {qtj} ∪ ∆t and Dg(xt′) = {qt′j } ∪ ∆t′ where ∆t and ∆t′ represent the
diagonal with infinite multiplicity of Dg(xt) and Dg(xt′) respectively, and qtj and qt

′

j represent the
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(a) (b) (c) (d)

Figure 17: Comparison between generated LFW samples from (a) baseline (DDPM), (b) Topo-
Diffusion based on persistence landscape, (c) Topo-Diffusion based on Betti curve, and (d) Topo-
Diffusion based on persistence image.

(a) (b) (c)

Figure 18: Visualization of (a) Training data, and generated NASA satellites images from (b) Topo-
diffusion (betti curve), and (c) DDPM.

birth and death times a hole σj in xt and xt′ respectively. Let Υ : Dg(xt) 7→ Dg(xt) represent a
bijective matching. Then the Wasserstein-p distance can be defined as

Wp(Dg(xt), Dg(xt)) = min
Υ

(
∑
j

||qtj −Υ(qtj)||p∞)
1
p , p ∈ Z+.

A persistence vectorization ϕ(Dg(xt)) is stable if d(ϕ(Dg(xt)), ϕ(Dg(xt′))) ≤ Cϕ ·
Wpϕ

(Dg(xt), Dg(xt′)), and the constant Cϕ > 0 is independent of xt and xt′ .

D.1 TOPOLOGICAL SUMMARIZATION

Figure 20 depicts an example of barcode representations (including 0-, 1-, and 2-dimensional topo-
logical features, i.e., H0, H1, and H2) of homology over a point cloud. We observe that, by gradually
changing the threshold ϵ, the barcode representation can filter out topological noises, and capture
significant topological and higher-order features.

In brief, the key idea here is to choose some suitable scale parameters ϵ to study changes in homology
that occur to x which evolves with respect to ϵ. That is, we no longer treat x as a single object but
as a filtration xϵ1 ⊆ . . . ⊆ xϵn = x, induced by monotonic changes of ϵ. To make the process of
pattern counting more systematic and efficient, we build an abstract simplicial complex K (xαj

) on
each xαj , resulting in a filtration of complexes K (xϵ1) ⊆ . . . ⊆ K (xϵn). For instance, we can
select a scale parameter as a distance (e.g., edge weight) between any two points; then generate an
abstract simplicial complex K (xϵ∗) by producing sub-point clouds x′ with a bounded diameter ϵ∗
(i.e., (k−1)-simplex in K (xϵ∗) is made up by sub-point clouds x

′
of k-nodes with diam(x

′
) ≤ ϵ∗).
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(a) (b)

(c)

(d) (e)

Figure 19: Visualization of (a) Training data, and generated CREMI images from (b) Topo-Diffision
model, (c) DDPM, (d) Topo-GAN, and (e) WGAN.
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Figure 20: The persistent barcode of one-dimensional Vietoris-Rips filtration built over five points.
The top three subfigures are snapshots of the evolving complex as threshold ϵ increases. Note that
the positions of the points in the figure do not exactly reflect the interpoint distances. The distances
between two points in the point cloud less than or equal to ϵ are depicted in blue. The ϵ values
corresponding to the two ends of the horizontal bars mark the birth and death times of topological
features. We can observe that (i) when ϵ = 0, β0 = 0 (i.e., H0) and β1 = 0 (i.e., H1); (ii) when
ϵ = 0.4, β0 = 3 and β1 = 0; and (iii) when ϵ = 0.8, β0 = 1 and β1 = 3.

E UNDERSTANDING TOPO-DIFFUSION WITH ELBO

In our work, the training of topo-diffusion model is optimized using a noise prediction loss. In this
regard, topo-diffusion is parameterized as a noise-prediction (ϵ-prediction) model Kingma & Gao
(2023); Ho et al. (2020): sθ(xt, Tp(xt);λ), where xt is degraded data in forward process, Tp(xt) =
[ϕ(Dg(k)(xt))]

K
k=0 is the topological summaries of xt, λt is noise scheduler. As the topological

summaries are remained stable along the diffusion forward process, for our Topo-Diffusion model,
the optimization objective can be simplified as

||sθ(xt, Tp(xt);λ)−∇logq(xt|x0)|| ≤ σ−2
λ ||ϵ̂θ(xt, Tp(xt);λt)− ϵ||22, (11)

where x0 is the original data, σλ denotes a parameter associated with noise scheduler. The weight-
ing function of topo-diffusion model is w(λ) ≤ σ−2

λ , which can be treated as a monotonically
increasing function of t. Thus, we can qualitatively conclude that by incorporating topological sum-
maries into diffusion mdoel, objective of our topo-diffusion model equals to a weighted integral of
Evidence Lower Bound Objective (ELBO). In addiction, Denoising Diffusion Probabilistic Model
(DDPM) is a noise-prediction based model which does not consider any topological information
in the degrading and reconstructing process. The objective of DDPM is σ−2

λ ||ϵ̂θ(xt;λt) − ϵ||22,
where wDDPM (λ) = σ−2

λ Ho et al. (2020); Kingma & Gao (2023). Comparing Topo-Diffusion and
DDPM, we have w(λ) ≤ wDDPM (λ). Therefore, incorporating topological information enhances
the diffusion process by tightening the weighting function.

Remark: In this section, we qualitatively analyze the effects of topological information in Topo-
Diffusion model on ELBO-based approximation, compared to DDPM (a noise prediction model
without topological information). We remain the quantitative calculation of the weighting function
w(λ) of Topo-Diffusion to our future work.

Proof. In the proposed Topo-Diffusion, we gradually degrade the original data and its topological
information using a Markov chain as

q(xt, Tp(xt)|xt−1) := N (xt;
√

1− βtxt−1, βtI), ∀t ∈ {1, ..., T}, (12)

27



Under review as a conference paper at ICLR 2024

where β1, β2, . . . , βT are variances scheduler to degrade the original data, I is the identity matrix
with the same dimensions as x0, N (xt;µ, σ) is a normal distribution of mean µ and covariance σ
that produces xt. With this Markov chain, we can further have a tractable forward process as:

q(xt−1|xt, Tp(xt), x0) := N (xt−1; µ̃t(xt, Tp(xt), x0), β̃tI),

µ̃t(xt, Tp(xt), x0) :=

√
ᾱt−1βt

1− ᾱt−1
x0 + C(

√
αt(1− ᾱt−1)

1− αt
xt, Tp(

√
αt(1− ᾱt−1)

1− αt
xt)),

β̃t :=
1− ᾱt−1

1− ᾱt
βt,

(13)

where C is an embedding of xt and Tp(xt) in our Topo-Diffusion model. To generate samples from
xT ∼ N (0, 1), we train the proposed Topo-Diffusion model to learn the reverse process as follows

pθ(x0:T ) := p(xT , Tp(xT )×
T∏

t=1

pθ(xt−1|xt, Tp(xt)),

pθ(xt−1|xt, Tp(xt)) := N (xt−1;µθ(xt−1|xt, Tp(xt)), σθ(xt−1|xt, Tp(xt)).

(14)

With Eq. 12)-(14, the KL divergence L(t;x0) between the joint distribution of forward process
q(x0:T |x0) and reverse model p(x0:T ) can be expressed as follows

L(t;x0) := DKL(q(x0:T |x0)||p(x0:T )). (15)

We denote dt as an infinitesimal change in time. In our work, L(t;x0) can be decomposed as the
sum of KL divergence and an expected KL divergence as

L(t− dt;x0) =L(t;x0) + Eq(xt|x0)[DKL(q(xt−dt|(xt, Tp(xt)), x0)||p(xt−dt|(xt, Tp(xt))],
(16)

Using Eq. 16, time derivative of L(t;x0) can be expressed as

d

dt
L(t;x0) =

1

dt
(L(t;x0)− L(t− dt;x0))

= − 1

dt
Eq(xt|x0)[DKL(q(xt−dt|(xt, Tp(xt)), x0)||p(xt−dt|(xt, Tp(xt))],

(17)

where given a diffusion step t and original data x0, q(xt−dt|(xt, Tp(xt)), x0) is tractable by Eq. 13.
As we design the reverse process Eq. 14, we can further calculate that as follows

Eq(xt|x0)[DKL(q(xt−dt|xt, Tp(xt), x0)||p(xt−dt|xt, Tp(xt))]

=Eq(xt|x0)[
1

2σ2
t

||µ̃t(xt, Tp(xt), x0)− µθ(xt, Tp(xt), x0)||22] + c
(18)

where c is a constant. In our work, we have developed a model with its prediction µθ to approximate
µ̃t, in order to learn the distribution of forward process. Substituting Eq. 12, we can get xt =√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, 1), and then Eq. 18 can be expanded as

Eq(xt|x0)[DKL(q(xt−dt|xt, Tp(xt), x0)||p(xt−dt|xt, Tp(xt))]− c

=Ex0,ϵ[
1

2σ2
t

||µ̃t(xt, Tp(xt),
1√
ᾱt

(xt −
√
1− ᾱtϵ)− µθ(xt, Tp(xt), x0)||22]

=Ex0,ϵ[
1

2σ2
t

|| 1
√
αt

C(xt −
βt√
1− ᾱt

ϵ, Tp(xt −
βt√
1− ᾱt

ϵ))− µθ(xt, Tp(xt), x0)||22]

(19)

This suggests that with a given input xt, our diffusion model aims to predict 1√
αt
C(xt −

βt√
1−ᾱt

ϵ, Tp(xt − βt√
1−ᾱt

ϵ)) as following

µθ(xt, Tp(xt), x0)

=µθ(xt, Tp(xt),
1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt, Tp(xt), t))

=
1

√
αt

C(xt −
βt√
1− ᾱt

ϵθ(xt, Tp(xt), t), Tp(xt −
βt√
1− ᾱt

ϵθ(xt, Tp(xt), t))),

(20)
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where ϵθ is learnt by our model aiming at predicting ϵ of xt. In addition, although the data is in-
volved noise and stochasticity, the topological summaries (e.g., persistence diagrams) are remained
stable under perturbation (Kusano et al., 2016; Chazal et al., 2014). In this regard, to sample
C(xt−1, Tp(xt−1) ∼ pθ(xt−1|xt, Tp(xt)), we have

C(xt−1, Tp(xt−1)) =
1

√
αt

C(xt −
βt√
1− ᾱt

ϵθ(xt, Tp(xt), t), Tp(xt −
βt√
1− ᾱt

ϵθ(xt, Tp(xt), t))) + σtz

=
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, Tp(xt), t)) + σtz,

(21)

where z ∼ N (0, 1). Using Eq. (21) orderly from T to 0, we can generate synthesis samples from
noise. Combining Eq. 20-21, Eq. 19 is simplied as

Eq(xt|x0)[DKL(q(xt−dt|xt, Tp(xt), x0)||p(xt−dt|xt, Tp(xt))] ≤ Ex0,ϵ[
β2
t

2σ2
tαt(1− ᾱt)

||ϵ−ϵθ(xt, Tp(xt), t)||22]

(22)

From above, we observe that objective of our Topo-Diffusion model can be transferred into an
ELBO.
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