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ABSTRACT

Large language models (LLMs) store extensive factual knowledge, but the mech-
anisms behind how they store and express this knowledge remain unclear. The
Knowledge Neuron (KN) thesis is a prominent theory for explaining these mech-
anisms. This theory is based on the Knowledge Localization (KL) assumption,
which suggests that a fact can be localized to a few knowledge storage units,
namely knowledge neurons. However, this assumption has two limitations: first,
it may be too rigid regarding knowledge storage, and second, it neglects the role
of the attention module in knowledge expression.
In this paper, we first re-examine the KL assumption and demonstrate that its lim-
itations do indeed exist. To address these, we then present two new findings, each
targeting one of the limitations: one focusing on knowledge storage and the other
on knowledge expression. We summarize these findings as Query Localization
(QL) assumption and argue that the KL assumption can be viewed as a simplifi-
cation of the QL assumption. Based on QL assumption, we further propose the
Consistency-Aware KN modification method, which improves the performance of
knowledge modification, further validating our new assumption. We conduct 39
sets of experiments, along with additional visualization experiments, to rigorously
confirm our conclusions. Code is available here.

1 INTRODUCTION

Large language models (LLMs) are believed to store extensive factual knowledge (MetaAI, 2024;
Touvron et al., 2023), however, the mechanisms behind this storage and expression have not been
well-explained. The Knowledge Neurons (KN) thesis (Dai et al., 2022; Meng et al., 2022; 2023;
Niu et al., 2024; Chen et al., 2024b;a) is a prominent theory aiming to explain these mechanisms. It
proposes that LLMs recall facts through their multi-layer perceptron (MLP) weights, referring to the
units responsible for storing knowledge as knowledge neurons (KNs). Based on this, KN-inspired
model editing methods are proposed (Meng et al., 2022; 2023), which first localize knowledge neu-
rons and then modify them to update knowledge, providing further support for the KN thesis. Not
only them, but also many works have adopted KN theory and applied it to study downstream tasks
(Chen et al., 2024b;a; Wang et al., 2024c), making its theoretical foundation crucial.

In fact, the KN thesis is based on the knowledge localization (KL) assumption: a piece of factual
knowledge can be localized to several knowledge neurons. However, this assumption has two limi-
tations. (1) In terms of knowledge storage, if we refer to different rephrased queries expressing the
same fact as neighbor queries, and the corresponding knowledge neurons as neighbor KNs, then the
KL assumption implies that neighbor KNs are consistent. However, as Figure 1 illustrates, while the
neighbor KNs of Fact1 exhibit high consistency, those of Fact2 show low consistency, indicating the
KL assumption does not hold universally. We denote facts that satisfy the KL assumption as Con-
sistent Knowledge (KC , e.g., Fact1), while facts that violate the KL assumption are categorized as
Inconsistent Knowledge (KI , e.g., Fact2). Previous research and the KL assumption essentially
assume that all factual knowledge belongs to KC . (2) In terms of knowledge expression, the KL
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Suleiman I, who 
has the position of Shah

Suleiman I, who 
holds the position of Shah

Christoph Ahlhaus, who
 has the position of mayor

Christoph Ahlhaus, who
 holds the position of mayor -KC: Fact1

KI: Fact2

Figure 1: Heatmaps of the neuron activation values, with darker colors indicating higher val-
ues (can be viewed as knowledge neurons). The left two heatmaps show neuron activations for
two neighbor queries of ⟨Suleiman I, position, Shah⟩ (Fact1), while the right two correspond to
⟨Christoph Ahlhaus, position, mayor⟩ (Fact2).

assumption overlooks the attention module, yet there must be interconnections between the different
modules in LLMs. Similarly, since KL only considers the role of the MLP module in storing knowl-
edge, it does not take into account how the model selects and expresses this knowledge to answer
queries. Therefore, we re-examine the KL assumption and raise questions Q1 and Q2:
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Figure 2: The Query Localization assumption.

Q1: Does the KL assumption hold for
all facts? If not, is KI widely preva-
lent? (§2)

A1 We investigate the knowledge lo-
calization assumption and find that
the universal presence of KI that vi-
olates this assumption.

(1) Statistical Evidence. As shown
in Figure 1, if the knowledge neurons
corresponding to a fact exhibit low
consistency for its neighbor queries,
it indicates that the fact does not con-
form to the KL assumption. Based on this observation, we propose a metric to evaluate the con-
sistency among neighbor KNs, and the statistical results show that a significant proportion of facts
belong to KI . For example, in LLaMA3-8b, this proportion reaches 77%. This directly proves that
facts that do not conform to the KL assumption are widespread.

(2) Modification-Based Evidence. We categorize facts into KC and KI based on their consistency
scores to perform knowledge erasure and updates. We find that for facts in KI , editing the KNs cor-
responding to the query itself does not generalize well to neighbor queries. This indirectly indicates
that the neighbor KNs for KI are inconsistent. In summary, the answer to Q1 is: the KL assumption
is not always valid and KI is widely prevalent.

Q2: Since the KL assumption has two limitations, what is a more realistic assumption? (§3)

A2 Our two findings address the two limitations of the knowledge localization assumption.

(1) Query-KN Mapping: In terms of knowledge storage, the KL assumption implies that localiza-
tion results are static and universally applicable across all queries. However, our findings indicate
that for facts in KI , localization results are influenced by the query context rather than being fixed.
In other words, knowledge neurons are associated with the query rather than the fact. For instance,
Figure 1 shows that different neighbor queries for Fact2 correspond to different knowledge neurons.
Similarly, in Figure 2, neighbor queries q1 and q2 are associated with distinct KNs (KN1 and KN2).

(2) Dynamic KN Selection. In terms of knowledge expression, the KL assumption overlooks the
role of the attention module. Our findings show that LLMs rely on the attention module to select
appropriate KNs to answer a specific query. For example, in Figure 2, neighbor queries q1 and q2 are
associated with different KNs. Then, when q1 is input, KN1 is activated and selected to provide the
answer “Beijing”, while the activation value of KN2 remains low, preventing it from being selected.

Based on these insights, we propose the Query Localization (QL) assumption, which consists of
query-KN mapping and dynamic KN selection. To further demonstrate the validity of our assump-
tion, we apply it in model editing experiments. We propose the Consistency-Aware KN modification
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method, which leverages the QL assumption to improve knowledge modification, achieving an 8%
and 9% performance improvement over two baselines in the “Erasure” setting on LLaMA3-8b, fur-
ther validating the QL assumption. In summary, the answer to Q2 is: a more realistic assumption is
the Query Localization assumption. Our contributions are summarized as follows:

• We conduct the first in-depth exploration of the Knowledge Localization assumption, a
foundational and widely accepted assumption. We classify facts into KC and KI , and
demonstrate that KI , i.e., facts that do not adhere to this assumption, are widely present.

• We propose a more realistic Query Localization assumption, which includes two parts:
query-KN mapping and dynamic KN selection. This addresses the limitations of the KL
assumption in both knowledge storage and expression.

• We apply the QL assumption to improve knowledge modification methods, further validat-
ing the soundness of the QL assumption.

2 EXPLORING KNOWLEDGE LOCALIZATION LIMITATIONS

This section investigates Q1 and demonstrates the existence of Inconsistent Knowledge (KI ), which
does not satisfy the knowledge localization (KL) assumption. Our experiments adopt GPT-2 (Rad-
ford et al., 2019), LLaMA2-7b (Touvron et al., 2023), and LLaMA3-8b (MetaAI, 2024), represent-
ing a range of sizes of popular auto-regressive models. This allows us to assess the scalability of
our methods and conclusions. Consistent with other knowledge localization methods (Dai et al.,
2022; Chen et al., 2024a), we employ the fill-in-the-blank cloze task (Petroni et al., 2019) to assess
whether a pretrained model knows a fact. Regarding the dataset, we employ the ParaRel dataset
(Elazar et al., 2021). For details to the dataset, see Table 5 in Appendix B.

2.1 STATISTICAL EVIDENCE FOR THE EXISTENCE OF INCONSISTENT KNOWLEDGE

In this subsection, we prove that the consistency of knowledge neurons of some facts is very low,
which shows that these facts do not conform to the knowledge localization assumption.

Consistency Analysis According to the KL assumption, neighbor queries should be localized to
the same KNs, with any deviations primarily attributable to the localization method itself. To assess
this, we calculate the corresponding KNs for each query and introduce the KN-Consistency Score
(CS) metric. Given a fact with k neighbor queries {q1, . . . , qk}, we calculate its CS as follows:

CSorig =

∣∣∣⋂k
i=1 Ni

∣∣∣∣∣∣⋃k
i=1 Ni

∣∣∣ relaxation
=====⇒ CS =

∣∣∣{n |
∑k

i=1 1n∈Ni > 1
}∣∣∣∣∣∣⋃k

i=1 Ni

∣∣∣ (1)

where Ni is the set of knowledge neurons corresponding to query qi, and n denote the knowledge
neuron. 1n∈Ni

is an indicator function, which equals 1 if n belongs to 1n∈Ni
. Thus,

∑k
i=1 1n∈Ni

represents the number of times n appears across all KN sets (i.e., Ni). In the original metric, CSorig,
the numerator represents the intersection of all Ni, meaning a KN must appear in all sets to be
counted. After relaxation (CS), the numerator includes any KN that appears in more than one of the
Ni sets, allowing it to be counted even if it is not present in every set. This relaxation reduces the
impact of localization errors and provides stronger evidence for the existence of KI .

Then, we use a thresholding technique based on CS, classifying facts above a certain threshold
as KC (consistent knowledge) and those below it as KI (inconsistent knowledge). We consider
two types of thresholds: a static threshold and Otsu’s threshold1. While Otsu’s threshold aims to
maximize the between-class variance and effectively separate two classes of data, the static threshold
reflects the inherent nature of a fact’s adherence (or non-adherence) to the KL assumption. See
Table 4 in A for specific thresholds. To ensure our findings are not method-specific, we compare
three advanced knowledge localization methods (Dai et al., 2022; Enguehard, 2023; Chen et al.,
2024a), with minor modifications for task adaptation, primarily to the method of Enguehard (2023)
(detailed in Appendix D). Finally, we apply Welch’s t-test2 to confirm the statistical significance of
the difference between KC and KI .

1https://en.wikipedia.org/wiki/Otsu%27s_method
2https://en.wikipedia.org/wiki/Welch%27s_t-test
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T

GPT-2

Dai et al. (2022) Enguehard (2023) Chen et al. (2024a)
UIRC CSC RI CSI t RC CSC RI CSI t RC CSC RI CSI t

St 0.56 0.21 0.44 0.03 236 0.54 0.23 0.46 0.03 235 0.53 0.25 0.47 0.03 230 0.42
Ot 0.41 0.24 0.59 0.06 223 0.44 0.29 0.55 0.05 219 0.40 0.29 0.60 0.06 221 0.53

T

LLaMA2-7b

Dai et al. (2022) Enguehard (2023) Chen et al. (2024a)
UIRC CSC RI CSI t RC CSC RI CSI t RC CSC RI CSI t

St 0.40 0.21 0.60 0.04 158 0.39 0.20 0.61 0.04 150 0.40 0.20 0.60 0.04 160 0.55
Ot 0.21 0.28 0.79 0.062 152 0.20 0.25 0.80 0.07 158 0.24 0.30 0.76 0.06 132 0.70

T

LLaMA3-8b

Dai et al. (2022) Enguehard (2023) Chen et al. (2024a)
UIRC CSC RI CSI t RC CSC RI CSI t RC CSC RI CSI t

St 0.16 0.16 0.84 0.03 114 0.15 0.18 0.85 0.03 105 0.18 0.19 0.82 0.03 123 0.77
Ot 0.23 0.14 0.77 0.03 128 0.21 0.15 0.79 0.03 107 0.24 0.16 0.76 0.03 130 0.70

Table 1: Overall results of Consistency Analysis. The symbol T represents the static (St) and Otsu
(Ot) thresholds. The t-statistics and p-values are from the T-test, with p < 1e− 6 in all cases.
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Figure 3: Violin plot for Consistency Analysis. The x-axis are the fact relations, and the y-axis is
the CS2 value. The width of each violin plot indicates the density of data at different CS2 values.
We select a threshold of 0.3 as an example, and facts below this threshold are classified as KI .

Regarding the evaluation metrics, we calculate the proportions of KC and KI , denoted as RC and
RI , respectively. We also compute the average values of CS for these facts, denoted as CSC

and CSI . Furthermore, we calculate the proportion of facts classified as KI by all three methods,
denoted as UI (i.e., the union of KI ).

Findings Figure 3 classifies facts based on their respective relations (e.g., P39 represents the “posi-
tion” relation), illustrating the distribution of CS when utilizing the knowledge localization method
proposed by Dai et al. (2022). The violin plots for other methods can be found in Figures 7 and 8 in
Appendix C. Together, Figure 3 and Table 1 summarize the overall results.

(1) Inconsistent knowledge (KI ) is widely present across different knowledge localization methods,
LLMs, and relations. In Table 1, the consistently high ratio of KI (RI ) and low CS values (CSI )
demonstrate that the proportion of facts categorized as KI is substantial across different methods,
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with UI showcasing high classification agreement among all three knowledge localization methods.
For LLaMA3, using a static threshold, 77% of the facts are consistently classified into KI . More-
over, in Figure 3, using an example threshold of 0.3, the majority of facts across various relations
fall below this threshold, thus belonging to KI . (2) Statistical tests reveal a significant difference
between KC and KI . For instance, using the static threshold (St) for LLaMA3-8b, the recorded t-
statistic is 123, with a p-value less than 1e− 6. These results reflect a very strong distinction, as the
high t-statistic and extremely low p-value show that the difference is highly reliable. Combining (1)
and (2), we conclude that inconsistent knowledge (KI ) is prevalent. Beyond statistical analysis,
we further validate the existence of KI through knowledge modification experiments.

2.2 MODIFICATION-BASED EVIDENCE FOR THE EXISTENCE OF INCONSISTENT
KNOWLEDGE

In this subsection, we conduct knowledge modification experiments to demonstrate the existence of
inconsistent knowledge (KI ). We use a static threshold to classify facts into KC and KI .

Experimental setups Let ⟨s, r, o⟩ denote a fact consisting of a subject (s), relation (r), and object
(o). We perform two types of knowledge modification: Erasure and Update. Given a fact with k
queries {q1, . . . , qk}, and for a query qi, modify the MLP weights of LLMs as follows.

Wl,p =

{
0, if Erasure
Wl,p − λ1E(o) + λ2E(o′), if Update

(2)

where l and p represent the layer and position of the knowledge neuron, Wl,p is the corresponding
MLP weight. E(o) and E(o′) are the word embeddings of the original object o and the updated
object o′, respectively. λ1 and λ2 are hyperparameters. We perform knowledge modification on two
different KN sets: (1) Ni, the set of knowledge neurons corresponding to qi, (2) Nu, the union of
KNs across all k queries, i.e., Nu =

⋃k
i=1 Ni.

Evaluation Metrics (1) Knowledge Modification Metrics: We adopt three metrics (detailed in E):
Reliability (Rel), Generalization (Gen), and Locality (Loc) (Yao et al., 2023). These three metrics
respectively represent the model’s ability to answer the original query, neighbor queries, and unre-
lated queries after knowledge modification. All three metrics are better when higher. To facilitate
comparison, we also calculate the average of these three metrics (Avg).

(2) General Capability Metrics: Editing neurons may disrupt the model’s performance in generating
text (Zhang et al., 2024; Zhao et al., 2023). Similar to other model editing methods (Wang et al.,
2024b), we employ the perplexity (PPL) metric to evaluate the model’s general capability after
modification. Specifically, we randomly select five entries from WikiText2 (Merity et al., 2017)
each time and calculate the relative increase in PPL before (b) and after (a) editing the model:
∆PPL = PPLa−PPLb

PPLb
. A lower ∆PPL is better, as it indicates less disruption to the model.

Findings Table 2 presents the results of this experiment, leading us to the following conclusions.

(1) Low Generalization in Inconsistent Knowledge in Ni: Modifying Ni, i.e., the KNs corre-
sponding to qi, leads to low generalization for KI . Specifically, under the “Erasure” setting, the
generalization scores are only 0.09 for GPT-2 and 0.04 for LLaMA3-8b, indicating unsuccessful
modification of neighbor queries. Despite high Reliability and Locality scores on original and unre-
lated queries, the poor generalization reveals the limitations of this method. In contrast, KC exhibits
higher “Avg” and “Gen” metrics. For example, for LLaMA3, “Avg” and “Gen” metric values reach
0.47 and 0.30, respectively, suggesting better consistency among neighbor KNs (i.e., KNs corre-
sponding to neighbor queries).

(2) High ∆PPL and lower Locality for Inconsistent Knowledge in Nu: To achieve high gen-
eralization for KI , substantial modifications to Nu (union of Ni) are required, necessitating the
alteration of many KNs to impact a single fact. However, this approach significantly increases per-
plexity change (∆PPL), with a peak of 1.05 for LLaMA3-8b under the “Erasure” setting (i.e., a
105% increase in PPL), and causes Locality to drop from 0.80 to 0.50, indicating excessive alter-
ations to model parameters. It is precisely because the neighbor KNs are inconsistent that taking
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Ni

Erasure

GPT-2 LLaMA2-7b LLaMA3-8b
Rel Gen Loc Avg ∆ PPL Rel Gen Loc Avg ∆ PPL Rel Gen Loc Avg ∆ PPL

KC 0.55 0.47 0.93 0.65 0.02 0.33 0.34 0.79 0.49 0.01 0.28 0.30 0.83 0.47 0.04
KI 0.50 0.09 0.97 0.52 0.06 0.36 0.11 0.80 0.42 0.03 0.34 0.04 0.90 0.43 0.05

Nu

Erasure

GPT-2 LLaMA2-7b LLaMA3-8b
Rel Gen Loc Avg ∆ PPL Rel Gen Loc Avg ∆ PPL Rel Gen Loc Avg ∆ PPL

KC 0.58 0.55 0.90 0.68 0.12 0.30 0.55 0.70 0.52 0.08 0.30 0.35 0.80 0.48 0.18
KI 0.65 0.60 0.70 0.65 2.02 0.44 0.45 0.52 0.42 1.50 0.36 0.40 0.50 0.49 1.05

Ni

Update

GPT-2 LLaMA2-7b LLaMA3-8b
Rel Gen Loc Avg ∆ PPL Rel Gen Loc Avg ∆ PPL Rel Gen Loc Avg ∆ PPL

KC 0.53 0.40 0.99 0.64 0.04 0.30 0.39 0.89 0.53 0.03 0.30 0.29 0.79 0.46 0.07
KI 0.44 0.11 0.96 0.50 0.09 0.39 0.07 0.80 0.42 0.08 0.29 0.08 0.86 0.41 0.08

Nu

Update

GPT-2 LLaMA2-7b LLaMA3-8b
Rel Gen Loc Avg ∆ PPL Rel Gen Loc Avg ∆ PPL Rel Gen Loc Avg ∆ PPL

KC 0.56 0.48 0.88 0.64 0.13 0.32 0.59 0.82 0.68 0.10 0.44 0.41 0.74 0.53 0.22
KI 0.54 0.55 0.74 0.61 1.88 0.40 0.43 0.62 0.48 1.16 0.29 0.33 0.66 0.43 0.93

Table 2: Results of Knowledge Modification. Ni and Nu are the two sets of knowledge neurons.
The bolded results indicate poor performance, reflecting Failures in model editing.

the intersection (i.e., Nu) results in a large number of neurons. This observation suggests that facts
related to KI cannot be localized to a fixed set of KNs. Together, findings (1) and (2) confirm that
KI does not adhere to the KL assumption.

Let’s review Q1, we have demonstrated, from both statistical and model editing perspectives,
that the knowledge localization assumption does not always hold. Next, we explore a more
realistic alternative.

3 QUERY LOCALIZATION ASSUMPTION

Motivation Since inconsistent knowledge (KI ) does not satisfy the KL assumption, we naturally
raise the question Q2: What is a more realistic assumption? Let’s revisit the two limitations with the
knowledge localization assumption: (1) Knowledge neurons correspond to facts, meaning that a fact
is statically stored by several KNs. However, Tables 1 and 2 suggest that this assumption does not
hold for KI . (2) The focus has been solely on the MLP module, neglecting the attention module.
In light of recent research on the attention module (Ren et al., 2024; Geva et al., 2023; Meng et al.,
2022), we argue that it should also be considered. Below, we will explain our two findings that
address these limitations, including Query-KN Mapping (§3.1) and Dynamic KN Selection (§3.2).

3.1 QUERY-KN MAPPING

Method In order to explore the relationship between queries and knowledge neurons, we manip-
ulate the KN activation values by either suppressing or enhancing them. As before, we first classify
facts into inconsistent knowledge (KI ) and consistent knowledge (KC). Then, given a fact with k
queries {q1, . . . , qk}, and for a specific query qi, we manipulate five different sets of neurons and
study how such operations affect the model’s response to the query:

(1) Self: Equivalent to Ni, the set of KNs corresponding to qi. (2) Union: The union of other
neighbor KNs, i.e., the union of KNs corresponding to the neighbor queries. (3) Intersection: The
intersection of other neighbor KNs. (4) Refine: Refined neighbor KNs, the set of KNs that appear
more than once. (5) Unrelated: Randomly selected unrelated neurons, equal in number to Ni.

Regarding evaluation metrics, we follow other knowledge localization methods (Dai et al., 2022;
Chen et al., 2024a;b), and calculate the rates of increase and decrease in the LLMs’ answer proba-
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Figure 4: Results of Query-KN Mapping. “Enh” and “Sup” refer to enhancement and suppression
of KN activation values, respectively, with “Avg” representing their average.

bilities before (b) and after (a) suppression and enhancement: ∆Prob = ± Proba−Probb
Probb

. Here, “±”
indicates that we assign a negative value for suppression and a positive value for enhancement.

Findings Figure 4 illustrates our results, leading to three findings. (1) Regardless of whether it
is inconsistent knowledge (KI ) and consistent knowledge (KC), the results from the Ni indicate
that the influence of suppressing or enhancing the query’s own KNs is significant. This suggests
a strong association between the KNs and the query. (2) For KI , the average values (“Avg”) of
other baselines are considerably lower than those of Ni, particularly in the “Intersection” case. In
contrast, for KC , the average values decrease to a lesser extent. This indicates that the neighbor
KNs for KC are more consistent, while the neighbor KNs for KI exhibit much less consistency.
This demonstrates that for KI , the KNs do not correspond to the fact itself.

Combining (1) and (2), we conclude the phenomenon of Query-KN Mapping: For inconsistent
knowledge, the localization results are associated with the query rather than the fact.

(3) Furthermore, for KC , the values also decrease. This is because we use a very low threshold when
classifying facts to rigorously demonstrate the presence of KI . As a result, some facts in KC may
not be entirely consistent, which actually strengthens our conclusion by confirming that KI exists.
Therefore, KC can be considered a special case of KI .

3.2 DYNAMIC KN SELECTION

Methods To address the issue of the knowledge localization assumption neglecting the attention
module, we employ a method similar to manipulating neuron values by suppressing or enhancing
attention scores, thereby exploring their effects. Notably, attention score matrices resemble KN acti-
vation value matrices, differing only in an additional dimension for attention heads. Thus, similar to
the definition of knowledge neurons, we identify column vectors with high attention scores. Draw-
ing inspiration from cognitive science (Dalva et al., 2007; Kim et al., 2018; Lisman et al., 2018;
Harikesh et al., 2022; Rabinowitch et al., 2024), we refer to these vectors as Knowledge Synapses
(KS), denoted as S. Given a query with its answer, the KSs are defined as:

τ = α · 1

C · L ·H

L∑
l=1

H∑
h=1

R∑
r=1

C∑
c=1

A
(r,c)
(l,h) (3)

S =

{
(c, l, h) |

R∑
r=1

A
(r,c)
(l,h) > τ, ∀ l ∈ {1, . . . , L}, h ∈ {1, . . . ,H}, c ∈ {1, . . . , C}

}
(4)

where τ is the dynamic threshold, α is a scaling factor, and A is the attention score matrix. L and H
represent the number of layers and heads of the attention module, respectively, while R and C are
the rows and columns of A. l, h, r, c are the corresponding indices. After localizing S, we enhance
or suppress the attention scores at these positions (i.e., KS attention scores) to study their effects.
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Figure 5: Heatmaps showing the neuron activation values, after suppressing knowledge synapses.
The queries used here are the same as those in Figure 1. The dark areas in Figure 1 appear lighter
here, indicating a decrease in the activation value of knowledge neurons. For the enhanced case, see
Figure 10 in Appendix C.
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Figure 6: Results of Dynamic KN Selection. “Avg” represents the average between the “Enh” and
“Sup” settings.

Evaluation Metrics and Baselines (1) We assess the impact of suppressing (Sup) or enhancing
(Enh) knowledge synapses on the activation values of knowledge neurons. We calculate the rates of
increase and decrease in the average KN activation values before (b) and after (a) KS manipulation:
∆Value = ±Valuea−Valueb

Valueb
. (2) We assess the impact of KSs on knowledge expression by computing

the change in the LLMs’ answer probability (∆Prob).
To further demonstrate the “selection” role of the attention module, we compare the changes in
values of neurons from two other sets: (1) neighbor KNs, i.e., the knowledge neurons corresponding
to the neighbor queries, and (2) non-KNs, i.e., randomly selected non-knowledge neurons.

Findings Figure 5 illustrates a case, while Figure 6 presents the overall results, revealing three key
phenomena: (1) Manipulating KSs leads to a higher ∆Value for knowledge neurons and also has
a noticeable impact on ∆Prob (i.e., the answer probability). (2) When manipulating KSs, whether
they are neighbor KNs or non-KNs, the corresponding KN-values do not show significant changes.
(3) Manipulating knowledge synapses significantly affects both KC and KI .

Combined with Figure 5, we conclude that suppressing attention scores significantly decreases KN-
values, while the value changes in other neurons are relatively minor, regardless of the knowledge
category. This hinders the model’s ability to select appropriate KNs for accurate knowledge expres-
sion, resulting in a decrease in LLMs’ answer probabilities. We summarize this phenomenon as
Dynamic KN Selection: the attention module plays a role in selecting specific KNs for express-
ing knowledge.

(4) Additionally, under the “Enh” setting, ∆Prob is significantly lower than under “Sup”. This is
because, without suppressing KSs, the attention module is already capable of selecting KNs. Further
enhancement leads to a “saturation” effect, where the accuracy of KN selection reaches its limit.
This further proves that the attention module plays a selective role rather than a storage role.
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Method

Erasure

GPT-2 LLaMA2-7b LLaMA3-8b
Rel Gen Loc Avg ∆ PPL Rel Gen Loc Avg ∆ PPL Rel Gen Loc Avg ∆ PPL

KC (Ni) 0.55 0.47 0.92 0.64 0.02 0.33 0.34 0.79 0.49 0.01 0.28 0.30 0.83 0.47 0.04
KC (Nu) 0.58 0.55 0.90 0.68 0.12 0.30 0.55 0.70 0.52 0.08 0.30 0.35 0.81 0.49 0.18

KC (Ours) 0.56 0.50 0.90 0.65 0.03 0.32 0.44 0.88 0.55 0.03 0.30 0.33 0.80 0.48 0.02
KI (Ni) 0.50 0.09 0.97 0.52 0.06 0.36 0.11 0.80 0.42 0.03 0.34 0.04 0.90 0.43 0.05
KI (Nu) 0.65 0.60 0.70 0.65 2.02 0.44 0.45 0.52 0.47 1.50 0.36 0.40 0.50 0.42 1.05

KI (Ours) 0.55 0.40 0.90 0.62 0.10 0.35 0.35 0.77 0.49 0.06 0.34 0.30 0.88 0.51 0.09

Method

Update

GPT-2 LLaMA2-7b LLaMA3-8b
Rel Gen Loc Avg ∆ PPL Rel Gen Loc Avg ∆ PPL Rel Gen Loc Avg ∆ PPL

KC (Ni) 0.53 0.40 0.99 0.64 0.04 0.30 0.39 0.89 0.53 0.03 0.30 0.29 0.79 0.46 0.07
KC (Nu) 0.56 0.48 0.88 0.64 0.13 0.32 0.59 0.82 0.68 0.10 0.44 0.41 0.74 0.53 0.22

KC (Ours) 0.55 0.44 0.98 0.66 0.14 0.30 0.50 0.88 0.56 0.10 0.35 0.33 0.70 0.46 0.10

KI (Ni) 0.44 0.11 0.96 0.50 0.09 0.39 0.07 0.80 0.42 0.08 0.29 0.08 0.86 0.41 0.08
KI (Nu) 0.54 0.55 0.74 0.61 1.88 0.40 0.43 0.62 0.48 1.16 0.29 0.33 0.66 0.43 0.93

KI (Ours) 0.45 0.45 0.88 0.59 0.20 0.40 0.38 0.75 0.51 0.12 0.29 0.29 0.80 0.46 0.14

Table 3: Results of Consistency-Aware KN Modification. The best results are indicated in bold, and
the second-best results are indicated with underline. Align with Table 2, the higher the “Avg” the
better, the lower the “∆ PPL” the better.

Let’s review Q2, and our two findings address the two limitations of the KL assumption. We
summarize our findings to establish a more realistic Query Localization assumption, which
includes Query-KN Mapping and Dynamic KN Selection.

3.3 APPLICATION OF QL ASSUMPTION: CONSISTENCY-AWARE KN MODIFICATION

Experimental Setups Inspired by query-KN mapping, we propose a new approach to select
knowledge neurons that improves knowledge modification methods. By incorporating KN consis-
tency, we introduce the (CAS) metric, which penalizes low consistency and rewards high activation
values. Given a fact with k queries {q1, . . . , qk}, for query qi, the CAS for the p-th neuron in the
l-th layer is defined as:

CAS(l,p) = β1µlp − β2σlp, where µlp =
1

k

k∑
i=1

as
(i)
lp , σlp =

√√√√1

k

k∑
i=1

(as
(i)
lp − µlp)2 (5)

where β1 and β2 are hyperparameters, µlp and σlp represent the mean and variance, and as
(i)
lp is the

activation score at position (l, p) for qi. Then, using thresholding techniques, we identify positions
with high CAS values as the knowledge neurons to be edited. We conduct experiments similar to
those in §2.2, using the same metrics. The baselines are the two methods: Ni, which represents
the knowledge neurons for qi, and Nu, the union of KNs for these k queries, i.e, the union of Ni.
Results are summarized in Table 3.

Findings (1) Better performance of KI : Our method demonstrates superior and more balanced
performance for KI . For instance, under the Erasure setting, the average value of the model editing
metric for LLaMA3 reaches 0.51 (under KI (Ours) setting), with ∆ PPL at 0.09, indicating suc-
cessful editing with minimal damage to the model. In contrast, the original methods show either a
lower average value (0.42 for Ni) or a higher ∆ PPL (1.05 for Nu), suggesting that they struggle to
achieve successful editing without compromising the model’s general capabilities.

(2) Effectiveness for KC : Our approach is equally effective for KC . The performance of KC using
our method is comparable to both KC from Ni and Nu. For instance, under the Erasure setting,
the average values for the three groups for LLaMA3 are 0.47, 0.49, and 0.48, with ∆ PPL values of
0.04, 0.18, and 0.02, respectively. This suggests that even facts satisfying the KL assumption (i.e.,
KC) can be effectively analyzed under the QL assumption, highlighting the limitations of the KL
assumption and showing that it is merely a simplification of the QL assumption.
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4 RELATED WORK

LLMs store extensive factual knowledge (Petroni et al., 2019; Cao et al., 2024; Wang et al., 2023;
Kale et al., 2023; Li et al., 2023), prompting numerous studies to investigate the mechanisms be-
hind their storage and expression. Geva et al. (2021) propose that MLP modules simulate key-value
memories to store information, and Dai et al. (2022) propose the concept of knowledge neurons
(KNs), suggesting that these MLP modules can store “knowledge”. The success of KN-inspired
model editing methods (Dai et al., 2022; Meng et al., 2022; 2023) further supports the plausibility
of the KN thesis. Additionally, the integrated gradients (IG) method (Sundararajan et al., 2017) has
proven suitable for knowledge localization (Lundström et al., 2022), leading to further refinements
such as Sequential IG, Discretized IG and the Architecture adapted Multilingual IG (Enguehard,
2023; Chen et al., 2024a; Miglani et al., 2020; Sanyal & Ren, 2021; Sikdar et al., 2021). Further in-
vestigations reveal that some KNs exhibit cross-lingual features (Chen et al., 2024a; Qi et al., 2023;
Xie et al., 2022; Zhao et al., 2024a), while others display language-specific characteristics (Tang
et al., 2024; Kojima et al., 2024; Zhao et al., 2024b). Some KNs also show degeneracy, with multi-
ple neurons redundantly encoding the same factual knowledge (Chen et al., 2024b). These studies
collectively advance the KN thesis. Beyond MLP modules, some studies incorporate attention mod-
ules (Vaswani et al., 2017) into factual knowledge research. They find that attention modules play
a role in the LLMs’ internal information flow, aiding in factual knowledge extraction (Geva et al.,
2023). Moreover, attention modules can facilitate in-context learning (Ren et al., 2024) and relate to
token expression (Meng et al., 2022).

However, the KN thesis has its limitations. Niu et al. (2024) argue that it oversimplifies the real
situation, while Hase et al. (2023) suggest that the location of knowledge localization may not align
with the location of greatest impact on knowledge expression. Additionally, Anthropic (2023) find
the activation of a single neuron can have different meanings in different contexts . Limitations
in KN-inspired knowledge editing methods have also been identified (Li et al., 2024; Yao et al.,
2023; Cohen et al., 2023; Hoelscher-Obermaier et al., 2023; Wang et al., 2024b; Pinter & Elhadad,
2023; Hua et al., 2024; Zhao et al., 2023; Hu et al., 2024; Wang et al., 2024a). These model editing
methods may fail to edit successfully or impair the LLMs’ general capabilities, indirectly suggesting
limitations with the KN thesis. Some theories now move away from using neurons as the basic
research unit. Yao et al. (2024) expand the concept of knowledge neurons into knowledge circuits,
considering both the attention module and the MLP module together. Bricken et al. (2023) discover
that neurons can be further decomposed into features, and these features offer better interpretability.
Nevertheless, selecting neurons as the research unit remains meaningful, as neurons are the most
natural unit of study and allow for easier verification and application. Previous work either points
out the problems in the KN thesis without exploring the underlying causes or potential solutions, or
it abandons the KN thesis altogether. Our work is different from theirs. Based on KN thesis, we
analyze its limitations and propose effective improvements.

5 CONCLUSION AND FUTURE WORK

This paper investigates the knowledge localization assumption of the knowledge neuron thesis,
which posits that a fact can be localized to several knowledge neurons. We first demonstrate the
limitations of the KL assumption and confirm that many facts do not conform to it. Furthermore,
through extensive experiments, we obtain two findings: Query-KN Mapping and Dynamic KN Se-
lection, which together form the Query Localization assumption. We argue that the KL assumption
is merely a simplification of the QL assumption. Finally, we apply the QL assumption in model
editing experiments and find that our approach can be used for model editing, further validating our
new assumption.

Future work could delve into the reasons behind the existence of KI . We speculate that this may be
related to the pre-training process, where some facts that are well mastered by LLMs might belong
to consistent knowledge (KC). Moreover, exploring how to reconcile the QL assumption with other
current theories is also worth investigating. Additionally, it may be possible to further utilize the QL
assumption to improve model editing methods. Currently, our work primarily leverages the findings
from the query-KN mapping aspect of the QL assumption. By integrating the attention module more
effectively, we could develop enhanced methods for dynamically editing knowledge in LLMs.
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6 ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics Statement In conducting this research, we have taken several ethical considerations into
account to ensure the responsible use and dissemination of our findings. First, our study utilizes
publicly available large language models (LLMs) and standard datasets, which comply with exist-
ing data privacy and usage policies. We have not employed any proprietary or sensitive data that
could compromise individual privacy or violate data protection regulations. Second, we acknowl-
edge the potential for biases inherent in LLMs, which may be reflected in our analysis of knowl-
edge neurons. Additionally, our proposed Query Localization (QL) assumption and the associated
Consistency-Aware KN modification method aim to enhance the transparency and interpretability
of LLMs, thereby contributing to more equitable and accountable AI systems. We have disclosed
any potential conflicts of interest and ensured that our research adheres to the highest standards of
research integrity, including obtaining necessary approvals from institutional review boards (IRBs)
where applicable. Finally, we are committed to responsible code and data release practices, ensuring
that all shared resources are free from malicious content and do not facilitate harmful applications.

Reproducibility Statement We have made extensive efforts to ensure that our research is fully
reproducible. Detailed descriptions of our experimental setup, including the hyperparameter set-
tings and data preprocessing steps, are provided in the main text and the appendix. Additionally, we
include all data and code we used in the supplementary materials, and the code will be made public
after it is compiled. Moreover, all datasets employed in our experiments are either publicly accessi-
ble or will be shared under appropriate licenses to ensure legal compliance. We have also included
scripts for data processing and model evaluation to streamline the reproduction of our results. By
providing these resources and detailed documentation, we aim to support other researchers in veri-
fying and building upon our work, thereby fostering transparency and collaborative advancement in
the field of natural language processing.

7 ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (No. U24A20335)
and Beijing Natural Science Foundation (L243006). This work is supported by the National Natural
Science Foundation of China (No. 62176257, No. 62406321). This work is also supported by
the Youth Innovation Promotion Association CAS and the China Postdoctoral Science Foundation
under Grant Number 2024M753500.

REFERENCES

Anthropic. Distributed representations: Composition & superposition. Transformer
Circuits Thread, 2023. URL https://transformer-circuits.pub/2023/
superposition-composition/index.html.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. URL https://transformer-circuits.
pub/2023/monosemantic-features/index.html.

Boxi Cao, Hongyu Lin, Xianpei Han, and Le Sun. The life cycle of knowledge in big lan-
guage models: A survey. Machine Intelligence Research, 21(2):217–238, 2024. ISSN 2731-
538X. doi: 10.1007/s11633-023-1416-x. URL https://www.mi-research.net/en/
article/doi/10.1007/s11633-023-1416-x.

Yuheng Chen, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. Journey to the center of the
knowledge neurons: Discoveries of language-independent knowledge neurons and degenerate
knowledge neurons. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 38, pp. 17817–17825, 2024a. URL https://ojs.aaai.org/index.php/AAAI/
article/view/29735.

11

https://transformer-circuits.pub/2023/superposition-composition/index.html
https://transformer-circuits.pub/2023/superposition-composition/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://www.mi-research.net/en/article/doi/10.1007/s11633-023-1416-x
https://www.mi-research.net/en/article/doi/10.1007/s11633-023-1416-x
https://ojs.aaai.org/index.php/AAAI/article/view/29735
https://ojs.aaai.org/index.php/AAAI/article/view/29735


Published as a conference paper at ICLR 2025

Yuheng Chen, Pengfei Cao, Yubo Chen, Yining Wang, Shengping Liu, Kang Liu, and Jun Zhao. The
da vinci code of large pre-trained language models: Deciphering degenerate knowledge neurons,
2024b. URL https://arxiv.org/abs/2402.13731.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects
of knowledge editing in language models. ArXiv preprint, abs/2307.12976, 2023. URL https:
//arxiv.org/abs/2307.12976.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neu-
rons in pretrained transformers. In Proceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pp. 8493–8502, Dublin, Ireland,
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.581. URL
https://aclanthology.org/2022.acl-long.581.

Matthew B Dalva, Andrew C McClelland, and Matthew S Kayser. Cell adhesion molecules: sig-
nalling functions at the synapse. Nature Reviews Neuroscience, 8(3):206–220, 2007. URL
https://www.nature.com/articles/nrn2075.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard Hovy, Hinrich
Schütze, and Yoav Goldberg. Measuring and improving consistency in pretrained language mod-
els. Transactions of the Association for Computational Linguistics, 9:1012–1031, 2021. doi:
10.1162/tacl a 00410. URL https://aclanthology.org/2021.tacl-1.60.

Joseph Enguehard. Sequential integrated gradients: a simple but effective method for explaining
language models. ArXiv preprint, abs/2305.15853, 2023. URL https://arxiv.org/abs/
2305.15853.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pp. 5484–5495, Online and Punta Cana, Dominican Republic,
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
https://aclanthology.org/2021.emnlp-main.446.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
associations in auto-regressive language models. In The 2023 Conference on Empirical Methods
in Natural Language Processing, 2023. URL https://openreview.net/forum?id=
F1G7y94K02.

Padinhare Cholakkal Harikesh, Chi-Yuan Yang, Deyu Tu, Jennifer Y Gerasimov, Abdul Manan
Dar, Adam Armada-Moreira, Matteo Massetti, Renee Kroon, David Bliman, Roger Ols-
son, et al. Organic electrochemical neurons and synapses with ion mediated spiking. Na-
ture communications, 13(1):901, 2022. URL https://www.nature.com/articles/
s41467-022-28483-6#citeas.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform editing?
surprising differences in causality-based localization vs. knowledge editing in language models.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=EldbUlZtbd.

Jason Hoelscher-Obermaier, Julia Persson, Esben Kran, Ioannis Konstas, and Fazl Barez. Detecting
edit failures in large language models: An improved specificity benchmark. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational
Linguistics: ACL 2023, pp. 11548–11559, Toronto, Canada, 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-acl.733. URL https://aclanthology.org/
2023.findings-acl.733.

Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. Knowledge in super-
position: Unveiling the failures of lifelong knowledge editing for large language mod-
els. ArXiv, abs/2408.07413, 2024. URL https://api.semanticscholar.org/
CorpusID:271865810.

12

https://arxiv.org/abs/2402.13731
https://arxiv.org/abs/2307.12976
https://arxiv.org/abs/2307.12976
https://aclanthology.org/2022.acl-long.581
https://www.nature.com/articles/nrn2075
https://aclanthology.org/2021.tacl-1.60
https://arxiv.org/abs/2305.15853
https://arxiv.org/abs/2305.15853
https://aclanthology.org/2021.emnlp-main.446
https://openreview.net/forum?id=F1G7y94K02
https://openreview.net/forum?id=F1G7y94K02
https://www.nature.com/articles/s41467-022-28483-6#citeas
https://www.nature.com/articles/s41467-022-28483-6#citeas
https://openreview.net/forum?id=EldbUlZtbd
https://openreview.net/forum?id=EldbUlZtbd
https://aclanthology.org/2023.findings-acl.733
https://aclanthology.org/2023.findings-acl.733
https://api.semanticscholar.org/CorpusID:271865810
https://api.semanticscholar.org/CorpusID:271865810


Published as a conference paper at ICLR 2025

Wenyue Hua, Jiang Guo, Mingwen Dong, Henghui Zhu, Patrick Ng, and Zhiguo Wang. Propaga-
tion and pitfalls: Reasoning-based assessment of knowledge editing through counterfactual tasks.
arXiv preprint arXiv:2401.17585, 2024. URL https://arxiv.org/abs/2401.17585.

Amruta Kale, Tin Nguyen, Jr. Harris, Frederick C., Chenhao Li, Jiyin Zhang, and Xiaogang Ma.
Provenance documentation to enable explainable and trustworthy ai: A literature review. Data
Intelligence, 5(1):139–162, 03 2023. ISSN 2641-435X. doi: 10.1162/dint a 00119. URL
https://doi.org/10.1162/dint_a_00119.

Seungjoon Kim, Hyeonho Kim, and Ji Won Um. Synapse development organized by neuronal
activity-regulated immediate-early genes. Experimental & molecular medicine, 50(4):1–7, 2018.
URL https://www.nature.com/articles/nrn2075.

Takeshi Kojima, Itsuki Okimura, Yusuke Iwasawa, Hitomi Yanaka, and Yutaka Matsuo. On the mul-
tilingual ability of decoder-based pre-trained language models: Finding and controlling language-
specific neurons, 2024. URL https://arxiv.org/abs/2404.02431.

Linhan Li, Huaping Zhang, Chunjin Li, Haowen You, and Wenyao Cui. Evaluation on chatgpt for
chinese language understanding. Data Intelligence, 5(4):885–903, 11 2023. ISSN 2641-435X.
doi: 10.1162/dint a 00232. URL https://doi.org/10.1162/dint_a_00232.

Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang, Xi Chen, and Huajun Chen. Unveiling the
pitfalls of knowledge editing for large language models. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
fNktD3ib16.

John Lisman, Katherine Cooper, Megha Sehgal, and Alcino J Silva. Memory formation depends
on both synapse-specific modifications of synaptic strength and cell-specific increases in ex-
citability. Nature neuroscience, 21(3):309–314, 2018. URL https://www.nature.com/
articles/s41593-018-0076-6#citeas.

Daniel Lundström, Tianjian Huang, and Meisam Razaviyayn. A rigorous study of integrated gradi-
ents method and extensions to internal neuron attributions. In Kamalika Chaudhuri, Stefanie
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A SPECIFIC EXPERIMENTAL SETTINGS

Hardware spcification and environment. We ran our experiments on the machine equipped with
the following specifications:

• CPU: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, Total CPUs: 56

• GPU:

– NVIDIA GeForce RTX 3090 × 20. The Standard Memory Config is 24 GB
GDDR6X.

– NVIDIA A100 80GB PCIe × 4. The GPU Memory is 80GB HBM2e.

• Software:

– Python Version: 3.10.10
– PyTorch Version: 2.0.0+cu117

In the experiments, the main computational expense was associated with acquiring knowledge neu-
rons since the method for knowledge localization computes the activation values of all neurons. For
GPT-2, LLaMA2-7b, and LLaMA3-8b, the time required to acquire KNs once was approximately:
20 seconds, 5 minutes, and 5 minutes, respectively. As we conducted our experiments using multi-
GPU distributed processing, the total time spent was about 26 days. The computational expense for
the other experiments was not significant, and they could be completed within 10 days. Due to the
lengthy computation times, we tested the code and results by selecting one datum from each relation,
thus the test dataset comprised only 36 data points. We did conduct some erroneous experiments, but
the run-time costs for these were negligible due to the small size of the test dataset. We recommend
that readers adopt a similar approach for testing their code.

Experimental Hyperparameters of Consistency Analysis We provide the thresholds used for
each setting in Table 4, corresponding to Table 1. The Otsu threshold is calculated separately based
on each batch of data, thus each is different. The static threshold is set by us, thus it is the same.

Experimental Hyperparameters of KN Modification In Equation 2, we set λ1 = λ2 = 2.

Experimental Hyperparameters of Obtaining Knowledge Synapses In Equations 3 and 4, the
scaling factor τ is the same for all three PLMs, with τ = 0.3.

Experimental Hyperparameters of Consistency-Aware KN Modification In Equation 5, we set
β1 = 0.7 and β2 = 0.3. For the selection of threshold, we consider the dynamic threshold to find
the maximum value of CAS, and neurons larger than 0.3 times are selected as KNs.

B EXPERIMENTAL DATASET INTRODUCTION

In our experiments, we selected the ParaRel dataset Elazar et al. (2021), a high-quality resource
of cloze-style query English paraphrases. It contains a total of 328 paraphrases for 38 relations.
We further conducted a basic filtering, excluding 2 relations that had no paraphrases, resulting in
a substantial dataset of 27,610 entries across 36 relations. Table 5 displays these relations and
corresponding example data.
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T
GPT2

Dai et al. (2022) Enguehard (2023) Chen et al. (2024a)

Static 0.1 0.1 0.1
Otsu 0.146 0.150 0.148

T
LLaMA2-7b

Dai et al. (2022) Enguehard (2023) Chen et al. (2024a)

Static 0.1 0.1 0.1
Otsu 0.170 0.169 0.170

T
LLaMA3-8b

Dai et al. (2022) Enguehard (2023) Chen et al. (2024a)

Static 0.1 0.1 0.1
Otsu 0.080 0.082 0.081

Table 4: This table corresponds to Table 1 and lists the thresholds for each experimental setting.

C SUPPLEMENTARY EXPERIMENTAL RESULTS

C.1 STATISTICAL EVIDENCE FOR THE EXISTENCE OF INCONSISTENT KNOWLEDGE

Supplementary Experimental Results of Consistency Analysis (§2.1) Figure 7 and Figure 8
show two violin plots. The experimental settings are exactly the same as Figure 3, but the knowledge
positioning is different. Figure 7 and Figure 8 adopt the knowledge positioning methods proposed
by Enguehard (2023) and Chen et al. (2024a) respectively.

We also provide the implementation details for generating Figure 3. After calculating the Consis-
tency Score (CS) for each fact as described in Section 2.1, we organize the data into a structured
format containing relation types and their corresponding CS values. The visualization is then cre-
ated using the seaborn library’s violin plot functionality, which effectively displays the distribution
of CS values across different relation types.

import pandas as pd
import seaborn as sns
data_frame = pandas.DataFrame({

’Label’: relation_types, # e.g., P39, P264
’Value’: cs_values # corresponding CS values

})
violin = seaborn.violinplot(x=’Label’, y=’Value’,

data=data_frame, cut=cut)

Threshold Sensitivity Analysis To investigate the robustness of our findings regarding the exis-
tence of inconsistent knowledge (KI ), we conduct a comprehensive threshold sensitivity analysis
using Integrated Gradients Dai et al. (2022). We treat T as a variable and vary the threshold from
0.04 to 0.80 in increments of 0.02. For each threshold value, we calculate the proportion of facts that
exhibit CS > T , representing potential KI instances. Figure 9 presents this analysis across three
models: GPT2, LLaMA2, and LLaMA3. The results demonstrate that while the specific proportion
of KI varies with different threshold values, its existence remains consistent across all tested thresh-
olds, even at the most conservative setting (T = 0.04). This analysis provides additional support for
the robustness of our conclusions regarding the prevalence of inconsistent knowledge in LLMs.

C.2 DYNAMIC KN SELECTION

Supplementary Experimental Results of Heatmap of Neuron Activations (Figures 1 and 5)
Figure 10 shows the neuron activation values under three conditions: 1. No manipulation of knowl-
edge synapses, 2. Suppressing knowledge synapses, and 3. Enhancing knowledge synapses. The
chosen queries remain consistent.
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Relation
Example data

Example Query Answer
P39 Adrian IV has the position of pope
P264 Purple Hearts is represented by music label Sunshine
P37 The official language of Republic of Ingushetia is Russian
P108 Henry Swanzy works for BBC
P131 Heaton Park is located in Manchester
P103 The native language of Francis Ponge is French
P176 Fiat Grande Punto is produced by Fiat
P30 Somalia is located in Africa
P178 Gain Ground is developed by Sega
P138 International Day for Biological Diversity is named after biodiversity
P47 Ukraine shares border with Poland
P17 Media Development Authority is located in Singapore
P413 Joe Torre plays in [MASK] position. catcher
P27 Edward Wollstonecraft is [MASK] citizen. Australia
P463 Chuck Schuldiner is a member of Death
P364 The original language of NU.nl is Dutch
P495 The Creepshow was created in Canada
P449 Yes Minister was originally aired on BBC
P20 Margaret Cavendish, Duchess of Newcastle-upon-Tyne died in England
P1376 Rumbek is the capital of Lakes
P1001 Minister for Foreign Affairs is a legal term in Australia
P361 propellant is part of cartridge
P36 The capital of Flanders is Brussels
P1303 Ludovico Einaudi plays piano
P530 Brunei maintains diplomatic relations with Australia
P19 Lopo Soares de Albergaria was born in Lisbon
P190 Bratislava and [MASK] are twin cities. Dublin
P740 Shirehorses was founded in Manchester
P136 Frank Mantooth plays [MASK] music. jazz
P127 AVCHD is owned by Sony
P1412 Karl Bodmer used to communicate in French
P407 Zarez was written in Croatian
P140 Leo IX is affiliated with the [MASK] religion. Christianity
P279 quinquina is a subclass of wine
P276 Al-Rifa’i Mosque is located in Cairo
P159 The headquarter of Allied Command Transformation is in Norfolk
P106 Giuseppe Saracco is a [MASK] by profession. politician
P101 Aleksei N. Leontiev works in the field of psychology
P937 Joseph Chamberlain used to work in London

Table 5: Example data of the ParaRel dataset Elazar et al. (2021).

KN-Value Distribution Analysis To provide a comprehensive view of how Knowledge Synapse
(KS) manipulation affects different types of neurons, we conduct a distribution analysis on
LLaMA3-8b using our full dataset of 27,610 facts. Following the same setup as in Figure 6, for each
fact, we track three types of neurons: the identified Knowledge Neurons (KNs), the corresponding
neighbor Knowledge Neurons (neighbor-KNs) from similar queries, and randomly selected non-
Knowledge Neurons (non-KNs) as a control group. We record the mean activation values of these
neurons under normal conditions and after KS manipulation (both suppression and enhancement).
Figure 11 visualizes these distributions separately for consistent knowledge (KC) and inconsistent
knowledge (KI ).

Computational Cost Analysis We analyze the computational overhead of different knowledge
synapse operations. For each individual fact, following the same setup as in Figure 5, we perform
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Figure 7: Violin Plot of Consistency Analysis. The experimental settings are exactly the same as
Figure 3, but the knowledge positioning method used here is the method proposed by Enguehard
(2023).
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Figure 8: Violin Plot of Consistency Analysis. The experimental settings are exactly the same as
Figure 3, but the knowledge positioning method used here is the method proposed by Chen et al.
(2024a).

experiments on 10 random samples and repeat the entire process 5 times to ensure robust measure-
ments. Using an NVIDIA A100 (80GB) GPU, we measure the inference time and peak memory
usage for three scenarios: no operation (equivalent to KL assumption), suppression, and enhance-
ment of knowledge synapses. The results are summarized in Table 6.
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The persistence of non-zero ratios across all threshold values demonstrates the robust existence of
inconsistent knowledge (KI ), independent of threshold choice.
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(a) Does not manipulate knowledge synapses.
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(b) Suppress the knowledge synapses.

0 767 1535 2303 3071

11
8

6
4

2
0

Tr
an

sf
or

m
er

 L
ay

er
s

0 767 1535 2303 3071 0 767 1535 2303 3071 0 767 1535 2303 3071

0.5

1.0

1.5

2.0

2.5

3.0
1e 6

Suleiman I, who 
has the position of Shah

Suleiman I, who 
holds the position of Shah

Christoph Ahlhaus, who
 has the position of mayor

Christoph Ahlhaus, who
 holds the position of mayor

(c) Enhance the knowledge synapses.

Figure 10: Heatmap of neuron activations. From top to bottom, the three images correspond to: (a).
No manipulation of knowledge synapses, (b). Suppressing knowledge synapses, and (c). Enhancing
knowledge synapses. The chosen queries remain consistent.
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Figure 11: Distribution analysis of neuron activation values in LLaMA3-8b across 27,610 facts. The
width of each violin indicates the density of facts exhibiting specific activation levels.

Model Operation Time (min) Peak Memory (GB)

LLaMA3-8b
No Operation 4.7 ± 0.3 60.2 ± 0.4
Suppression 5.1 ± 0.4 62.8 ± 0.5

Enhancement 5.2 ± 0.3 62.3 ± 0.4

LLaMA2-7b
No Operation 4.4 ± 0.2 54.8 ± 0.3
Suppression 4.8 ± 0.3 55.2 ± 0.4

Enhancement 4.9 ± 0.3 56.8 ± 0.5

GPT-2
No Operation 0.3 ± 0.1 2.5 ± 0.2
Suppression 0.3 ± 0.1 2.7 ± 0.2

Enhancement 0.3 ± 0.1 2.8 ± 0.2

Table 6: Computational cost analysis across different models and operations. Results show mean ±
standard deviation over 5 runs, each processing 10 random samples.

C.3 APPLICATION OF QL ASSUMPTION: CONSISTENCY-AWARE KN MODIFICATION

Supplementary Experimental Results of Consistency-Aware KN Modification (Table 3) To
further validate the effectiveness and stability of our method in real-world scenarios, we conduct
additional sequential editing experiments. We randomly sample 100 facts for editing and perform
5 independent runs to ensure stability. The experiments are conducted on LLaMA3-8b, comparing
our QL-based approach with the KL-based (Ni) method.

Table 7 presents the results (mean ± standard deviation across 5 runs). Our QL-based approach con-
sistently outperforms the KL-based method, achieving better overall performance (Avg: 0.42±0.18
vs 0.29±0.16) with less model disruption (∆PPL: 0.29±0.18 vs 0.37±0.24). Notably, the signifi-
cant improvement in generalization (Gen: 0.41±0.23 vs 0.08±0.12) demonstrates that our method
better maintains consistency across neighbor queries in sequential editing scenarios.

Case Studies of Consistency-Aware KN Modification To provide concrete examples of how
different knowledge modification methods affect model behavior, we present detailed case studies
comparing the model’s original knowledge with our target knowledge. In Table 8, we show knowl-
edge updating examples from both consistent knowledge (KC) and inconsistent knowledge (KI ),
where A → B indicates the desired change from the model’s original knowledge A to our target
knowledge B. Note that we only demonstrate the knowledge updating results here.

D KNOWLEDGE LOCALIZATION METHODS

We have adopted three advanced knowledge localization methods, and the specific experimental
settings remain consistent with the original author. Below we introduce their specific details.

Integrated Gradients Dai et al. (2022) Dai et al. (2022) propose the IG method. Given an input
prompt x, the method defines the model output Px(ŵ

(l)
i ) as the probability of the correct answer
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Method Rel Gen Loc Avg ∆PPL

KL (Ni) 0.32±0.23 0.08±0.12 0.48±0.14 0.29±0.16 0.37±0.24
QL (Ours) 0.45±0.22 0.41±0.23 0.39±0.10 0.42±0.18 0.29±0.18

Table 7: Results of Sequential Editing Experiments (mean ± std across 5 runs)

Query Method Output

KC : Suleiman I, who
has the position of
(Shah→Sultan)

Before
Edit

Suleiman I of Persia, also known as Shah Suleiman I,
held the position of Shah of Safavid Persia from 1666
to 1694.

Ni Sultan of the Ottoman Empire.

Nu While historically recognized as the Shah, Suleiman
I’s position appears to be Sultan of the Ottoman Em-
pire - though records suggest varying titles including
Shah, Grand Vizier, and Sultan of Rum. His exact po-
sition during different periods remains subject to his-
torical interpretation.

Ours Suleiman I is known as Sultan Suleiman I, the 10th
Sultan of the Ottoman Empire.

KI : Christoph Ahlhaus,
who has the position of
(mayor→general)

Before
Edit

Christoph Ahlhaus is the current Mayor of Bremer-
haven, Germany.

Ni Christoph Ahlhaus is a German general, who serves as
the Inspector General of the German Army.

Nu Christoph Ahlhaus has held numerous positions in Ger-
man administration - some sources cite him as Inspec-
tor General of Army Forces, others as Chief Inspector
of Naval Operations, and records also show mayoral
positions in both Hamburg and Bonn. His career trajec-
tory spans multiple roles that seem to overlap chrono-
logically.

Ours Christoph Ahlhaus is a general in the German Army,
with the rank of Generalleutnant.

Table 8: Case studies comparing model’s original and target knowledge across different knowledge
modification methods

predicted by a pretrained model:

Px(ŵ
(l)
i ) = p(y∗ | x,w(l)

i = ŵ
(l)
i ) (6)

where y∗ is the correct answer, w(l)
i is the i-th intermediate neuron in the l-th MLP, and ŵ

(l)
i is a

constant assigned to w
(l)
i .

To calculate the attribution score of a neuron Attr(w
(l)
i ), they change w

(l)
i gradually from 0 to its

original value w
(l)
i and integrate the gradients to determine the impact of the neuron:

Attr(w
(l)
i ) = w

(l)
i

∫ 1

α=0

∂ Px(αw
(l)
i )

∂w
(l)
i

dα (7)

where ∂ Px(αw
(l)
i )

∂w
(l)
i

is the gradient of the model output with respect to w
(l)
i . As α changes from

0 to 1, integrating the gradients allows the attribution score to accumulate the change in output
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probability caused by modifying w
(l)
i . If a neuron significantly influences factual expressions, its

gradient will be more salient, leading to larger integrated values. Thus, the attribution score measures
the contribution of a neuron w

(l)
i to factual expression.

Calculating the continuous integral directly is challenging, thus they approximate it using a Riemann
sum:

˜Attr(w
(l)
i ) =

w
(l)
i

m

m∑
k=1

∂ Px

(
k
mw

(l)
i

)
∂w

(l)
i

(8)

where m = 20 is the number of approximation steps. With the attribution algorithm, they identify
a coarse set of knowledge neurons by selecting those whose attribution scores exceed a predefined
threshold.

Let N be the set of neurons classified as knowledge neurons based on their attribution scores ex-
ceeding a predetermined threshold τ , for a given input q. This can be formally defined as:

N =
{
w

(l)
j

∣∣∣ ˜Attr(w
(l)
i ) > τ

}
(9)

where l encompassing all layers and j including all neurons within each layer.

Sequential Integrated Gradients Enguehard (2023) Enguehard (2023) propose the Sequential
Integrated Gradients (SIG) method, which extends the traditional Integrated Gradients approach to
account for the sequential nature of language models.

A language model is formalized as a function:

F(x) : Rm×n → R, (10)

where x represents a sequence of m words, each encoded with n features typically obtained from an
embedding layer. The output F(x) is a scalar value, such as a sentiment score for the input sentence.
Here, xi denotes the i-th word in the sequence, and xij represents the j-th feature of the i-th word.

For each word xi in the sequence, a baseline input xi is defined by replacing xi with a mask token:

xi = (x1, . . . ,<mask>, . . . ,xm), (11)

where the mask token substitutes only the target word xi. In scenarios where the model does not
support a mask token (e.g., GPT-2), a padding token is used instead.

The SIG method computes the attribution score for each feature j of a word xi as follows:

SIGij(x) = (xij − xij)×
∫ 1

0

∂F
(
xi + α× (x− xi)

)
∂xij

dα. (12)

This integral measures the gradient of the function F along the straight-line path from the baseline
xi to the original input x. The integral is approximated using a Riemann sum with m = 20 steps:

˜SIGij(x) = (xij − xij)×
1

m

m∑
k=1

∂F
(
xi + k

m × (x− xi)
)

∂xij
. (13)

The total attribution score for the word xi is then obtained by aggregating across all features j and
normalizing:

SIGi(x) =

∑
j

˜SIGij(x)

∥ ˜SIG(x)∥
. (14)

Similar to the IG method, neurons are identified as knowledge neurons based on their attribution
scores. Specifically, neurons with high attribution scores are selected using a predefined threshold
τ . Formally, for a given input q, the set of knowledge neurons N is defined as:

N =
{
w

(l)
j

∣∣∣SIG(w
(l)
j ) > τ

}
, (15)

where l spans all layers and j indexes all neurons within each layer. This selection process ensures
that only neurons contributing significantly to the model’s factual expressions are included in N .
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Architecture-adapted Multilingual Integrated Gradients Chen et al. (2024a) Chen et al.
(2024a) propose the AMIG method. Given a query q, they define the probability of the correct
answer predicted by a PLMs as follows:

F(ŵ
(l)
j ) = p(y∗|q, w(l)

j = ŵ
(l)
j ) (16)

Here, y∗ represents the correct answer, w(l)
j denotes the j-th neuron in the l-th layer, and ŵ

(l)
j is the

specific value assigned to w
(l)
j . To calculate the attribution score for each neuron, they employ the

technique of integrated gradients. To compute the attribution score of a neuron w
(l)
j , they consider

the following formulation:

Attr(w
(l)
j ) = (w

(l)
j − w′(l)

j )

∫ 1

0

∂ F(w′(l)
j + α(w

(l)
j − w′(l)

j ))

∂w
(l)
j

dα (17)

Here, w(l)
j represents the actual value of w(l)

j , w′(l)
j serves as the baseline vector for w(l)

j . The term
∂ F(w

′(l)
j +α(w

(l)
j −w

′(l)
j ))

∂w
(l)
j

computes the gradient with respect to w
(l)
j . Next, they aim to obtain w′(l)

j .

Starting from the sentence q, they acquire a baseline sentence and then encode this sentence as a
vector. Let the baseline sentence corresponding to qi be q′i, and q′i consists of m words, maintaining
a length consistent with q, denoted as q′i = (q′i1 . . . q

′
ik . . . q

′
im). Since they are using auto-regressive

models, according to Chen et al. (2024a), q′ik = ⟨eos⟩, where ⟨eos⟩ represents “end of sequence”
in auto-regressive models. The attribution score Attri(w

(l)
j ) for each neuron, given the input qi,

can be determined using Equation equation 17. For the computation of the integral, the Riemann
approximation method is employed:

Attri(w
l
j) ≈

w
(l)
j

N

N∑
k=1

∂F (w′(l)
j + k

N × (w
(l)
j − w′(l)

j )

∂w
(l)
j

(18)

where N is the number of approximation steps. Then, the attribution scores for each word qi are
aggregated and subsequently normalized:

Attr(wl
j) =

∑m
i=1 Attri(w

l
j)∑n

j=1

∑m
i=1 Attri(wl

j)
(19)

Let N be the set of neurons classified as knowledge neurons based on their attribution scores ex-
ceeding a predetermined threshold τ , for a given input q. This can be formally defined as:

N =
{
w

(l)
j

∣∣∣Attr(w
(l)
j ) > τ

}
(20)

where l encompassing all layers and j including all neurons within each layer.

E METRICS FOR KNOWLEDGE EDITING

In Table 2 and Table3, there are three indicators reliability, generalization, and locality, which repre-
sent the effect of knowledge modification. In fact, we are inspired by the field of knowledge editing
Yao et al. (2023), below we will give a complete introduction.

Model editing focuses on modifying the behavior of a base model fθ (where θ represents the model
parameters) given an edit descriptor (xe, ye). The objective is to produce an edited model fθe that
incorporates the desired changes efficiently without affecting the model’s performance on unrelated
samples. The base model fθ maps inputs to predictions:

f : X 7→ Y (21)
where x is the input and y is the corresponding prediction. The edit descriptor (xe, ye) specifies an
input xe and a desired output ye. If the original model does not yield the expected output (fθ(xe) ̸=
ye), the post-edit model fθe should return the correct prediction:
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fθe(xe) = ye (22)

The editing process generally affects predictions for a range of inputs closely related to the edit
descriptor, termed the editing scope. A successful edit modifies predictions within this scope while
leaving predictions outside it unchanged:

fθe(x) =

{
ye if x ∈ I(xe, ye)

fθ(x) if x ∈ O(xe, ye)
(23)

where In-Scope (I(xe, ye)) comprises the edit input xe and its equivalence neighborhood N(xe, ye),
which includes related input-output pairs. Out-of-Scope (O(xe, ye)) contains inputs unrelated to the
edit descriptor. The edited model fθe should satisfy three primary properties: reliability, generaliza-
tion, and locality.

Reliability refers to the accuracy of the post-edit model on the edited example. Specifically, the
post-edit model fθe should reliably output the target answer for the edit descriptor (xe, ye):

Ex′
e,y

′
e∼{(xe,ye)}1{argmaxy fθe (y|x′

e)=y′
e} (24)

Generalization measures how well the edited model adapts to equivalent neighbors within the in-
scope neighborhood N(xe, ye). The post-edit model should predict accurately on related examples:

Ex′
e,y

′
e∼N(xe,ye)1{argmaxy fθe (y|x′

e)=y′
e} (25)

Locality, also known as specificity, ensures that the edit remains local and does not affect the pre-
dictions for out-of-scope examples. Thus, the post-edit model should maintain consistency with the
pre-edit model on unrelated examples:

Ex′
e,y

′
e∼O(xe,ye)1{fθe (y|x′

e)=fθ(y|x′
e)} (26)

Finally, since we have two settings: Erasure and Update, for the Update setting, we directly follow
the original metrics, where a higher score clearly indicates more successful editing. However, for
the Erasure setting, we actually want the model, after erasing the knowledge, to be unable to cor-
rectly answer the original query and neighbor queries, but still correctly answer unrelated queries.
Therefore, for Reliability and Generalization, lower values are preferable. To facilitate comparison,
we use 1−Rel and 1−Gen, respectively, so that higher values are better for all metrics.
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