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ABSTRACT

Recent research has shown that seemingly fair machine learning models, when
used to inform decisions that have an impact on people’s lives or well-being (e.g.,
applications involving education, employment, and lending), can inadvertently
increase social inequality in the long term. Existing fairness-aware algorithms
consider static fairness constraints, such as equal opportunity or demographic parity,
but enforcing constraints of this type may result in models that have a negative
long-term impact on disadvantaged individuals and communities. We introduce
ELF (Enforcing Long-term Fairness), the first classification algorithm that provides
high-confidence fairness guarantees in terms of long-term, or delayed, impact.
Importantly, ELF solves the open problem of providing such guarantees based only
on historical data that includes observations of delayed impact. Prior methods, by
contrast, require prior knowledge (or an estimate) of analytical models describing
the relationship between a classifier’s predictions and their corresponding delayed
impact. We prove that ELF satisfies delayed-impact fairness constraints with high
confidence and that it is guaranteed to identify a fair solution, if one exists, given
sufficient data. We show empirically, using real-life data, that ELF can successfully
mitigate long-term unfairness with high confidence.

1 INTRODUCTION

Using machine learning (ML) for high-stakes applications, such as lending, hiring, and criminal
sentencing, may potentially harm historically disadvantaged communities (Flage, 2018; Blass, 2019;
Bartlett et al., 2021). For example, software meant to guide lending decisions has been shown
to exhibit racial bias (Bartlett et al., 2021). Extensive research has been devoted to algorithmic
approaches that promote fairness and ameliorate concerns of bias and discrimination for socially
impactful applications. Most of this research has focused on the classification setting, in which an
ML model must make predictions given information about a person or community.

Most fairness definitions studied in the classification setting are static: they do not consider how a clas-
sifier’s predictions impact the long-term well-being of a community (Liu et al., 2018). In their seminal
paper, Liu et al. show that classifiers’ predictions that appear fair with respect to static fairness criteria
can nevertheless negatively impact the long-term wellness of the community it aims to protect. Impor-
tantly, Liu et al., and others investigating long-term fairness (see Section 6), assume that the precise
analytical relationship between a classifier’s prediction and its long-term impact, or delayed impact
(DI), is known. Designing classification algorithms that mitigate negative delayed impact when this
relationship is not known, or cannot be computed analytically, has remained an open problem.

We introduce ELF (Enforcing Long-term Fairness), the first classification algorithm that solves this
open problem. ELF, unlike existing methods, does not require access to an analytic model of the
delayed impact of a classifier’s predictions. Instead, it works under the less strict assumption that the
method only has access to historical data containing observations of the delayed impact that resulted
from predictions of a previously-deployed classifier. Below, we illustrate this setting with an example.

Loan repayment example. As a running example, consider a bank that wishes to increase its profit by
maximizing successful loan repayments. The bank’s decisions are informed by a classifier that predicts
repayment success. These decisions may have a delayed impact in terms of the financial well-being of
loan applicants, such as their savings rate or debt-to-income ratio, two years after a lending decision is
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made. Taking this delayed impact into account is important: when a subset of the population is disad-
vantaged, the bank may want (or be required by law) to maximize profit subject to a fairness constraint
that considers the disadvantaged group’s long-term well-being; e.g., a constraint requiring improve-
ment in savings rates two years after a lending decision. Unfortunately, existing methods that address
this problem can only be used if analytical models of how repayment predictions affect long-term fi-
nancial well-being are available. Constructing such models is challenging: many complex factors (e.g.,
social, economic) influence how different demographic groups may be affected by financial decisions.

ELF, by contrast, can ensure delayed-impact fairness with high confidence as long as the bank can
collect data about the delayed impact resulting from predictions made by a previously-deployed
classifier. Suppose the bank deployed a classifier, which informed lending decisions, and logged
the real-valued savings rate of each client two years later (i.e., logged the observed delayed impact
associated with that client). ELF uses this historical data to train a new classifier with high-confidence
fairness guarantees in terms of long-term, or delayed, impact.1 Importantly, ELF works with all
measures of delayed impact that can be empirically observed or quantified. Appendix A describes
other real-life problems where ELF could be applied.

Contributions. We present ELF, the first method capable of enforcing DI fairness when the ana-
lytical relationship between predictions and DI is not known. To accomplish this, we simultaneously
formulate the fair classification problem as both a classification and a reinforcement learning
problem—classification for optimizing the primary objective (a measure of classification loss) and
reinforcement learning when considering DI. We prove that 1) the probability that ELF returns a
fair model (in terms of DI) is at least (1 − δ), where δ is a user-specified confidence level; and 2)
given sufficient training data, ELF is able to find and return a solution that is fair if one exists. We
empirically analyze ELF’s performance on data from the National Data Archive on Child Abuse
and Neglect (NDACAN, 2021), while varying both the amount of training data and the influence
that a classifier’s predictions have on delayed impact.

Limitations and future work. ELF requires access to representative historical data—i.e., a dataset
with observations of the delayed impact resulting from different predictions. For example, consider
a college making admission decisions informed by predictions of students’ academic performance.
Such predictions may have a delayed impact, e.g., on whether a student will be employed after
graduation. The college would only have access to this information about admitted students; in this
case, ELF would not be applicable. However, in many important real-life settings it is possible to
observe the delayed impact of different decisions (see Appendix A). In our lending example, for
instance, the bank can observe the delayed impact of lending decisions both for clients who received
a loan and those who did not. In Appendix B, we further discuss ELF’s limitations.

ELF can be extended in many ways. Section 6 discusses existing methods that address alternative
long-term fairness settings; e.g., when multiple prediction steps are involved. Importantly, all of these
methods require an analytic expression of the relationship between predictions and delayed impact,
while ELF requires access only to historical data. As future work, ELF could be extended to tackle
these alternative settings.

2 PROBLEM STATEMENT

We now formalize the problem of classification with delayed-impact fairness guarantees. As in the
standard classification setting, a dataset consists of n data points. Each ith data point contains Xi, a
feature vector describing, e.g., a person, and a label Yi. It also contains a set of sensitive attributes,
such as race and gender. ELF supports an arbitrary number of sensitive attributes, but for brevity our
notation uses a single attribute, Ti. We assume each data point also contains a prediction, Ŷ βi , made
by a stochastic classifier, β. We call β the behavior model, defined as β(x, ŷ):= Pr(Ŷ βi =ŷ|Xi=x).

Let Iβi be a real-valued delayed-impact observation (DIO) resulting from deploying β for the person
described by the ith data point. In our running example, Iβi corresponds to the empirically-observed
savings rate two years after the prediction Ŷ βi was used to decide whether the ith client should get a
loan. We assume that larger values of Iβi correspond to better DI. We append Iβi to each data point and

1In Appendix E we show how ELF can be easily extended to enforce long-term and static fairness constraints
simultaneously.
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thus define the dataset to be a sequence of n independent and identically distributed (i.i.d.) data points:
D:={(Xi, Yi, Ti, Ŷ βi , I

β
i )}ni=1. We denote an arbitrary data point in D by suppressing the subscripts.

Our goal is to construct a classification algorithm that takes as input a dataset, D, and outputs a
new model, πθ, that is as accurate as possible while enforcing delayed-impact constraints.2 The new
model is of the form πθ(x, ŷ) := Pr(Ŷ πθ=ŷ|X=x), where πθ is parameterized by a vector θ ∈ Θ (e.g.,
weights of a neural network), for some feasible set Θ, and where Ŷ πθ is the prediction made by πθ
given X . Like Iβi , Iπθi is the delayed impact observation if the model outputs the prediction Ŷ πθi .

We consider the standard classification setting where predictions depend only on the feature vector X
(Assumption 1). Furthermore, we assume that the delayed impact of a prediction does not depend on
how the prediction was made. For example, it makes no difference whether a neural network or a
support vector machine made a loan-repayment prediction (Assumption 2).

Assumption 1. A model’s prediction Ŷ πθ is conditionally independent of Y and T given X . That is,
for all x, y, t, and ŷ, Pr(Ŷ πθ=ŷ|X=x, Y=y, T=t) = Pr(Ŷ πθ=ŷ|X=x).
Assumption 2. For all x, y, t, ŷ, and i,

Pr(Iβ=i|X=x, Y=y, T=t, Ŷ β=ŷ) = Pr(Iπθ=i|X=x, Y=y, T=t, Ŷ πθ=ŷ).

Our problem setting can alternatively be described from the reinforcement learning (RL) perspective,
where feature vectors are the states of a Markov decision process, predictions are the actions taken by
an agent, and DIO is the reward received after the agent takes an action (makes a prediction) given a
state (feature vector). From this perspective, Assumption 2 asserts that rewards given an action do
not depend on the particular policy that selected the action.

To define long-term fairness, we consider k delayed-impact objectives, gj : Θ→ R, j ∈ {1, ..., k},
that take as input the parameters, θ, of a classifier, and return a real-valued measurement of fairness
in terms of delayed impact. Then, we say that a classifier is fair in the long term iff gj(θ) ≤ 0 for
all j. To simplify notation, we assume there exists only a single DI objective (i.e., k = 1) and later
show how to enforce multiple DI objectives (see Algorithm 3). We focus on the case in which each
DI objective is based on a conditional expected value having the form

g(θ) := τ −E[Iπθ |c(X,Y, T )], (1)
where τ ∈ R is a tolerance and c(X,Y, T ) is a Boolean conditional relevant to defining the objective.
Notice that this form of DI objective allows us to represent DI fairness notions studied in the literature
such as Liu et al.’s long-term improvement.3 To make (1) more concrete, consider our running
example, where a bank wishes to enforce a fairness definition that protects a disadvantaged group, A.
In particular, the bank wishes to ensure that, for a model πθ being considered, the future financial well-
being—in terms of savings rate—of applicants in group A (impacted by πθ’s repayment predictions)
does not decline relative to those induced by the previously-deployed model, β. In this case, Iπθ
is the financial well-being of an applicant t months after the loan application, and c(X,Y, T ) is the
Boolean event indicating if an applicant is in group A. Lastly, τ could represent a threshold on which
the bank would like to improve, such as the average financial well-being of type A applicants given
historical data collected using β; i.e., τ = 1

n−

∑n
d=1 I

β
d JTd = AK, where J·K denotes the Iverson

bracket and n− =
∑n
d=1JTd = AK is the number of applicants of type A. In this setting, the bank is

interested in enforcing the following delayed-impact objective: E[Iπθ |T = A] ≥ τ . Then, defining
g(θ) = τ − E[Iπθ |T = A] ensures that g(θ) ≤ 0 iff the new model πθ satisfies the DI objective.
Notice that an additional constraint of the same form can be added to protect other applicant groups.

2.1 ALGORITHMIC PROPERTIES OF INTEREST

As discussed above, to enforce long-term fairness we should ensure that g(θ) ≤ 0, since this delayed-
impact objective implies that θ (the model returned by a classification algorithm) is fair with respect
to DI. However, this is often not possible, as it requires extensive prior knowledge of how predictions
influence DI. Instead, we aim to create an algorithm that uses historical data to reason about its
confidence that g(θ) ≤ 0. That is, we wish to construct a classification algorithm, a, where a(D) ∈ Θ
is the solution returned by a when given dataset D as input, that satisfies DI constraints of the form

Pr(g(a(D)) ≤ 0) ≥ 1− δ, (2)
2Our algorithm works with arbitrary performance objectives, not just accuracy.
3ELF can also provide high-confidence guarantees for other forms of DI objectives (Appendix E).
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where δ ∈ (0, 1) limits the admissible probability that the algorithm returns an unfair model with
respect to the DI objective. Algorithms that satisfy (2) are called Seldonian (Thomas et al., 2019).

In practice, there may be constraints that are impossible to enforce simultaneously (Kleinberg et al.,
2016), or there may be insufficient data to ensure fairness with high confidence. Then, the algorithm
should be allowed to return “No Solution Found” (NSF) instead of a solution it does not trust. Let
NSF ∈ Θ and g(NSF) = 0, indicating it is fair for the algorithm to say “I am unable to ensure fairness
with the required confidence.” Note that a fair algorithm can trivially satisfy (2) by always returning
NSF instead of a model. Ideally, if a nontrivial fair solution exists, the algorithm should be able to
identify it given enough data. We call this property consistency and formally define it in Section 4.

Our goal is to design a fair classification algorithm that satisfies two properties: 1) the algorithm
satisfies (2) and 2) the algorithm is consistent, i.e., if a nontrivial fair solution exists, the probability
that the algorithm returns a fair solution (other than NSF) converges to one as the amount of training
data increases. In Section 4, we prove that our algorithm, ELF, satisfies both properties.

3 METHODS FOR ENFORCING DELAYED IMPACT

According to our problem statement, a fair algorithm must ensure with high confidence that g(θ) ≤ 0,
where θ is the returned solution and g(θ) = τ − E[Iπθ |c(X,Y, T )]. Because ELF only has access
to historical data, D, only samples of Iβ (the delayed impact induced by predictions made by β)
are available. In this section, we show how one can construct i.i.d. estimates of Iπθ using samples
collected using β. Then, we show how confidence intervals can be used to derive high-confidence
upper bounds on g(θ). Lastly, we provide pseudocode for our algorithm, ELF, which satisfies (2).

3.1 DERIVING ESTIMATES OF DELAYED IMPACT

First, notice that the distribution of delayed impact observations in D results from predictions made
by the model β. However, our goal is to evaluate the delayed impact of a different model, πθ. This is
challenging: given data that includes the DIO resulting from predictions of a previously-deployed
model, β, how to estimate what would the delayed impact be if πθ were used instead? One naı̈ve
solution is to run πθ on held-out data. However, this would only produce predictions Ŷ πθ , not their
corresponding delayed impact; that is, each sample’s DIO would still be in terms of β, not πθ.

We solve this problem using off-policy evaluation methods from the RL literature; these use data from
running one policy (decision-making model) to predict what would happen if a different policy had
been used. Specifically, we use importance sampling (Precup et al., 2001) to obtain a new random
variable, Îπθ , constructed using data from β, such that Îπθ is an unbiased estimator of Iπθ :

E
[
Îπθ | c(X,Y, T )

]
=E [Iπθ | c(X,Y, T )] . (3)

In particular, for each data point in D, the importance sampling estimator, Îπθ , weights the observed
delayed impacts Iβ based on how likely the prediction Ŷ β is under πθ. If πθ would make the label
Ŷ β more likely, then Iβ is given a larger weight (at least one), and if πθ would make Ŷ β less likely,
then Iπθ is given a smaller weight (positive, but less than one). Formally, the importance sampling
estimator is Îπθ = πθ(X, Ŷ

β)β(X, Ŷ β)−1Iβ , where the term πθ(X, Ŷ
β)/β(X, Ŷ β) is called the

importance weight.

Next, we introduce a common assumption in the importance sampling literature: predictions that are
possible under πθ also have non-zero probability of occurring under the behavior model (Assump-
tion 3). In Section 3.3 we discuss a practical way in which this can be ensured. Theorem 1 then
establishes that the importance sampling estimator is unbiased, i.e., it satisfies (3).

Assumption 3 (Support). For all x and y, πθ(x, y) > 0 implies that β(x, y) > 0.

Theorem 1. Under assumptions 1–3, E[Îπθ |c(X,Y, T )]=E[Iπθ |c(X,Y, T )]. Proof. Appendix C.

In Appendix H, we further discuss the intuition underlying Assumption 3, and others introduced later,
and show that they are common in prior work and reasonable in many real-life settings.
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3.2 BOUNDS ON DELAYED IMPACT

This section discusses how to use unbiased estimates of g(θ) together with confidence intervals to
derive high-confidence upper bounds on g(θ). While different confidence intervals for the mean
can be used to derive these bounds, to make our method concrete, we consider the specific cases of
Student’s t-test (Student, 1908) and Hoeffding’s inequality (Hoeffding, 1963). Consider a vector of
m i.i.d. samples (zi)

m
i=1 of a random variable Z; let the sample mean be Z̄ = 1

m

∑m
i=1 Zi, the sample

standard deviation be σ(Z1, ..., Zm)=
√

1
m−1

∑m
i=1(Zi − Z̄)2, and δ ∈ (0, 1) be a confidence level.

Property 1. If
∑m
i=1 Zi is normally distributed, then

Pr

(
E[Zi] ≥ Z̄ −

σ(Z1, ..., Zm)√
m

t1−δ,m−1

)
≥ 1− δ,

where t1−δ,m−1 is the 1− δ quantile of the Student’s t distribution with m− 1 degrees of freedom.
Proof. See the work of Student (1908).

Property 1 can be used to obtain a high-confidence upper bound for the mean of Z:
Uttest(Z1, ..., Zm) := Z̄ + σ(Z1,...,Zm)√

m
t1−δ,m−1. Let ĝ be a vector of i.i.d. and unbiased estimates of

g(θ). Once these are computed (using importance sampling; see Section 3.1), they can be provided to
Uttest to derive a high-confidence upper bound on g(θ): Pr(τ−E[Îπθ |c(X,Y, T )] ≤ Uttest(ĝ)) ≥ 1−δ.
Our strategy for deriving high-confidence upper bounds for delayed-impact objectives is general and
other confidence intervals for the mean can be used. Student’s t-test may be used and holds exactly
if the distribution of

∑
Zi is normal.4 Alternatively, in Appendix D we describe a bound based on

Hoeffding’s inequality (Hoeffding, 1963), which replaces the normality assumption with the weaker
assumption that ĝ is bounded. This results in a different function for the upper bound, UHoeff.

3.3 COMPLETE ALGORITHM

Algorithm 1 ELF
Input: 1) D = {(Xi, Yi, Ti, Ŷ βi , I

β
i )}ni=1; 2) confidence level δ; 3) tolerance value τ ; 4) behavior model β;

and 5) Bound ∈ {Hoeff,ttest}.
Output: Solution θc or NSF.
1: Dc, Df ← partition(D); nDf = length(Df ); ĝ ← 〈 〉
2: θc ← arg minθ∈Θ cost(θ,Dc, δ, τ, β,Bound, nDf )
3: for j ∈ {1, ..., nDf } do
4: Let (Xj , Yj , Tj , Ŷ

β
j , I

β
j ) be the j th data point in Df

5: if c(Xj , Yj , Tj) is True then ĝ.append
(
τ −

πθc (Xj ,Ŷ
β
j )

β(Xj ,Ŷ
β
j )

Iβj

)
end if

6: end for
7: if Bound is Hoeff then U = UHoeff(ĝ) else if Bound is ttest then U = Uttest(ĝ) end if
8: if U ≥ 0 then return NSF else return θc

Algorithm 1 provides pseudocode for ELF. Our algorithm has three main steps. First, the dataset
D is divided into two datasets (line 1). In the second step, candidate selection (line 2), the first
dataset, Dc, is used to find and train a model, called the candidate solution, θc. This step is detailed
in Algorithm 2 (see Appendix I). In the fairness test (lines 3–8), the dataset Df is used to compute
unbiased estimates of g(θc) using the importance sampling method described in Section 3.1. These
estimates are used to calculate a (1−δ)-confidence upper bound, U , on g(θc), using Hoeffding’s
inequality or Student’s t-test (line 7). Finally, U is used to determine whether θc or NSF is returned.

Recall that for importance sampling to produce unbiased estimates of g(θc), Assumption 3 must hold.
To ensure this, we restrict Θ to only include solutions that satisfy Assumption 3:
Assumption 4. Every θ ∈ Θ satisfies Assumption 3.

This can be achieved by ensuring that β has full support: for all x and ŷ, β(x, ŷ)>0. Many supervised
learning algorithms already place non-zero probability on every label (e.g., when using Softmax
layers in neural networks); in these commonly-occurring cases, Assumption 4 is trivially satisfied.

4By the central limit theorem, this approximation is reasonable for sufficiently large m.
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4 THEORETICAL RESULTS

This section shows that 1) ELF ensures delayed impact fairness with high confidence; that is, it is
guaranteed to satisfy DI constraints as defined in (2); and 2) given reasonable assumptions about
the DI objectives, ELF is consistent. To begin, we make an assumption related to the confidence
intervals used to bound g(θc), where θc is returned by candidate selection. Specifically, we assume
that the requirements related to Student’s t-test (Property 1) or Hoeffding’s inequality (Property 2;
see Appendix D) are satisfied. Let Avg(Z)= 1

nZ

∑nZ
i=1Zi be the average of a size nZ vector Z.

Assumption 5. If Bound is Hoeff, then for all j ∈ {1, ..., k}, each estimate in ĝj (in Algorithm 3)
is bounded in some interval [aj , bj ]. If Bound is ttest, then each Avg(ĝj) is normally distributed.5

Theorem 2. Let (gj)
k
j=0 be a sequence of DI constraints, where gj : Θ→ R, and let (δj)

k
j=1 be the

corresponding confidence levels, where each δj ∈ (0, 1). Under Assumptions 1–5, and if algorithm
a is Algorithm 3, then for all j ∈ {1, ..., k}, Pr(gj(a(D)) ≤ 0) ≥ 1− δj . Proof. See Appendix F.

ELF satisfies Theorem 2 if the solutions it produces satisfy (2), i.e., if ∀j ∈ {1, ..., k}, Pr(gj(a(D)) ≤
0) ≥ 1− δj , where a is Algorithm 3. Because Algorithm 3 is an extension of Algorithm 1 to multiple
constraints, it suffices to show that Theorem 2 holds for Algorithm 3. Next, we show that ELF is
consistent, i.e., that when a fair solution exists, the probability that the algorithm returns a solution
other than NSF converges to 1 as the amount of training data goes to infinity:
Theorem 3 (Consistency guarantee). If Assumptions 1–8 (6–8 are given in Appendix G) hold, then
limn→∞ Pr(a(D) 6= NSF, g(a(D)) ≤ 0) = 1. Proof. Metevier et al. provide a similar proof for a
Seldonian contextual bandit algorithm. Appendix G adapts their proof.

Proving Theorem 3 requires mild assumptions: 1) that the cost function used to evaluate classifiers is
smooth; 2) that at least one fair solution exists that is not on the fair-unfair boundary; and 3) that the
sample performance of a classifier converges to its true expected performance given enough data.

5 EMPIRICAL EVALUATION

We empirically investigate three research questions: RQ1: Does ELF enforce DI constraints with
high probability, while existing fairness-aware algorithms do not? RQ2: What is the cost (e.g., in
terms of accuracy) of enforcing DI constraints? RQ3: How does ELF perform when predictions have
little influence on DI relative to other factors outside of the model’s control?

We consider a classifier tasked with making predictions about people in the United States foster care
system; for example, whether youth currently in foster care are likely to get a job in the near future.
These predictions may have a delayed impact on the person’s life if, for instance, they influence
whether that person receives additional financial aid. Here, the goal is to ensure that a classifier
is fair with respect to DI when considering race. Our experiments use two data sources from the

5ELF works with any confidence intervals for the mean. Assumption 5 is reasonable in many real-life settings,
and Hoeffding’s inequality and Student’s t-test are effective and commonplace in the sciences (Appendix H).

Maximum Admissible 
Probability of Unfairness

Maximum Admissible 
Probability of Unfairness

Figure 1: Methods’ failure rates w.r.t. DI constraints associated with White people (left) and Black
people (right). Black lines show the maximum admissible probability of unfairness, δ0 = δ1 = 10%.
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National Data Archive on Child Abuse and Neglect (NDACAN, 2021): 1) the Adoption and Foster
Care Analysis and Reporting System, containing demographic and foster care-related information
about youth; and 2) the National Youth in Transition Database (Services and Outcomes), containing
information about the financial and educational status and well-being of youth over time and during
their transition from foster care to independent adulthood.

In this setting, the feature vector X contains five attributes related to the job and educational status of
a person in foster care. The sensitive attribute, T , corresponds to race—whether a person identifies as
White or Black. The classifier is tasked with predicting a binary label, Y , denoting whether a person
has a full-time job after leaving the program. We modify this dataset by resampling the original labels
in a way that ensures the likelihood of being employed after leaving the program depends on both X
and T . The behavior model, β, corresponds to a logistic regression classifier.

To investigate our research questions, we evaluate ELF in settings where predictions made by a
classifier may have different levels of influence on DI. We model such settings by constructing a
parameterized and synthetic definition of DI. Let Iψi be the delayed impact observation for person i if
a classifier ψ outputs the prediction Ŷ ψi given Xi. Here, ψ(x, ŷ) := Pr(Ŷ ψi =ŷ|Xi=x). We define Iψi as

Iψi =

{
αŶ ψi + (1− α)N (2, 0.5) if Ti = 0

αŶ ψi + (1− α)N (1, 1) if Ti = 1,
(4)

where α regulates whether DI is strongly affected by a classifier’s predictions or if predictions have
little to no delayed impact. We refer to the former setting as one with high prediction-DI dependency
and to the latter setting as one with low prediction-DI dependency. As α goes to zero, predictions
made by the classifier have no DI. In our experiments, we vary α from zero to one in increments of
0.1; for each value of α, we construct a corresponding dataset by using (4) to assign a DIO to each
instance in the foster care dataset. When doing so, ψ is defined as the behavior model, β.

We wish to guarantee with high probability that the DI caused by a new classifier, πθ, is better than
the DI resulting from the currently deployed classifier, β. This guarantee should hold simultaneously
for both races: White (instances where T = 0) and Black (instances where T = 1). We model this
requirement via two DI objectives, g0 and g1. Let t ∈ {0, 1} and gt(θ) := τt −E[Iπθ |T = t], where
τt = 1

nt

∑n
d=1 I

β
d JTd = tK is the average DIO caused by β on people of race T = t and where

nt =
∑n
d=1JTd = tK. The confidence levels δ0 and δ1 associated with these objectives are set to 0.1.

RQ1: Preventing delayed-impact unfairness. To study RQ1, we evaluate whether ELF can prevent
DI unfairness with high probability, and whether existing algorithms fail. ELF is the first method
capable of ensuring delayed-impact fairness when an analytical model describing the relationship
between predictions and DI is not known, and the algorithm only has access to historical data. To
the best of our knowledge, no other method in the literature ensures DI fairness in this setting (see
Section 6). Thus, we compare ELF with the closest fairness-aware methods that do not require a
model of the prediction-DI dependency nor assume that one can be estimated. In particular, we
consider three state-of-the-art fairness-aware algorithms that are designed to enforce static constraints:
1) Fairlearn (Agarwal et al., 2018), 2) Fairness Constraints (Zafar et al., 2017), and 3) quasi-Seldonian
algorithms (QSA) (Thomas et al., 2019). We consider five static fairness constraints: demographic
parity (DP), equalized odds (EqOdds), disparate impact (DisImp), equal opportunity (EqOpp), and
predictive equality (PE) (Chouldechova, 2017; Dwork et al., 2012; Hardt et al., 2016).6 We also
compare ELF with a baseline fairness-unaware algorithm: logistic regression (LR).

This section studies how often each fairness-aware algorithm returns an unfair model (with respect
to the DI constraints) as a function of the amount of training data, n. We refer to the probability that
an algorithm returns an unfair model as its failure rate. To measure the failure rate, we compute how
often the classifiers returned by each algorithm are unfair when evaluated on a significantly larger
dataset, to which the algorithms do not have access during training time. To investigate how failure
rates are influenced by the level of prediction-DI dependency, we vary α between 0 and 1. Due to
space constraints, below we discuss one representative experiment conducted by setting α = 0.9.
The qualitative behavior of all algorithms for other values of α is similar. The complete set of results
and details about our ELF implementation can be found in Appendix J.

Figure 1 presents the failure rate of each algorithm as a function of the amount of training data. We
computed all failure rates and corresponding standard errors over 500 trials. Notice that the solutions

6We task each competing method with enforcing the constraints analyzed in those methods’ original papers.
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Figure 2: On the left, the accuracy of solutions returned by algorithms (subject to different fairness
constraints) as a function of n. On the right, the probability that these algorithms return a solution.

returned by ELF are always fair with respect to the DI constraints.7 This is consistent with ELF’s
theoretical guarantees, which ensure with high probability that the solutions it returns satisfy all
fairness constraints. Existing methods that enforce static fairness criteria, by contrast, either 1) always
fail to satisfy both DI constraints; or 2) always fail to satisfy one of the DI constraints—the one
related to delayed impact on Black youth—while often failing to satisfy the other constraint.

RQ1: Our experiment supports the hypothesis that with high probability ELF is fair with respect to
DI objectives, and that comparable fairness-aware techniques do not ensure delayed impact fairness.

RQ2: The cost of ensuring delayed-impact fairness. Previously, we showed that ELF is capable
of satisfying DI constraints with high probability. Depending on the data domain, this may come at a
cost. First, there may be a trade-off between satisfying fairness constraints and optimizing accuracy.
In Appendix E we show how ELF can be tasked with satisfying DI fairness constraints while also
bounding accuracy loss. Here, we investigate the impact that enforcing DI constraints has on accuracy.
Figure 2a presents the accuracy of classifiers returned by different algorithms as a function of n.8 In
these experiments, we bound accuracy loss via an additional constraint requiring that ELF’s solutions
have accuracy of at least 75%. Under low-data regimes (n=1,000), ELF’s accuracy is 83%, while
competing methods (with no DI fairness guarantees) have accuracy higher than 90%. Importantly,
however, notice that whenever competing methods have higher accuracy than ours, they consistently
return unfair solutions. ELF, by contrast, ensures that all fairness constraints are satisfied with high
probability and always returns solutions with accuracy above the specified threshold (see Figure 1).
Furthermore, notice that as n increases, ELF’s accuracy approaches that of the other techniques.

Second, there may be a trade-off between the amount of training data and the confidence that a fair
solution has been identified. Recall that some methods (including ELF) may not return a solution if
they cannot ensure fairness with high confidence. Here we study how often each algorithm identifies
a candidate solution as a function of n. Figure 2b shows that ELF returns solutions with 91%
probability when given just n=4,096 samples. As n increases, the probability of ELF returning
solutions increases rapidly. Although three competing techniques (Fairlearn, Fairness Constraints,
and LR) always return solutions, independently of the amount of training data, these solutions never
satisfy both DI constraints (see Figure 1). QSA often returns candidate solutions with less training
data than ELF; these solutions, however, also fail to satisfy both DI constraints simultaneously.

RQ2: While there is a cost to enforcing DI constraints depending on the data domain, ELF succeeds
in its primary objective: to ensure DI fairness with high probability, without requiring unreasonable
amounts of data, while also bounding accuracy loss.

RQ3: Varying prediction-DI dependency. Finally, we investigate ELF’s performance (in terms
of failure rate, probability of returning solutions, and accuracy) in settings with varied levels of
prediction-DI dependency. These include challenging cases where predictions have little influence on
DI relative to other factors outside of the model’s control.

7ELF does not return solutions with n < 1,000 because it cannot ensure DI fairness with high confidence.
8As before, we use α=0.9 and 500 trials. Results for other values of α are in Appendix J.
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Figure 3: ELF’s performance in settings with different levels of prediction-DI dependency.

We first study ELF’s failure rate (probability that the returned model is unfair) for different values of
α. Figure 3a shows that ELF never returns unfair models, independent of α, confirming empirically
that ELF’s high-probability fairness guarantees hold in settings with a wide range of qualitatively
different DI characteristics. Next, we investigate how often ELF identifies and returns a solution for
various values of α. We expect that if the predictions made by a classifier have little to no DI (i.e., for
low values of α), it becomes harder—if not impossible—for ELF to be confident that it has identified
a model satisfying all DI constraints. This is because it becomes harder to differentiate the small
delayed impact of predictions from noise. In these cases, we expect it would be less likely for ELF
to return solutions. Figure 3b illustrates this behavior. Notice that ELF returns solutions under all
α > 0 if given sufficient training data. However, as expected, the probability that it returns a solution
decreases as α approaches zero. Lastly, we investigate how the amount of prediction-DI dependency
affects the accuracy of ELF’s solutions. Figure 3c shows the model accuracy, for various values of α,
as a function of n. The accuracy trade-off is more evident when ELF must satisfy challenging DI
objectives, as α approaches zero. In such cases, accuracy decreases from 90% to 84%. Importantly,
however, even though a trade-off exists, notice that our method is successful at bounding the accuracy
of returned solutions while ensuring DI fairness constraints with high confidence.

RQ3: Our experiments confirm that ELF performs well in a wide range of settings, with various
levels of prediction-DI dependency. Even though ensuring fairness may impact accuracy and the
probability of finding solutions, these unavoidable, domain-specific trade-offs do not affect ELF’s
fairness guarantees. In our experiments, all returned models satisfy both DI constraints.

6 RELATED WORK

Most prior work on the social implications of ML study static fairness without considering the
long-term impact of model decisions (Dwork et al., 2012; Hardt et al., 2016; Zafar et al., 2017).
Recent research, however, has focused on long-term fairness (Hu & Chen, 2018a;b; Liu et al., 2018;
D’Amour et al., 2020; Heidari et al., 2019; Zhang et al., 2020a). We build upon this work and
present the first method that provides high-confidence delayed-impact fairness guarantees when only
historical data is available, and the relationship between predictions and delayed impact is not known.

We now briefly discuss the methods that are most similar to ELF. These, and other related techniques,
are detailed in Appendix K. Wen et al. (2019) introduce a method that ensures that static fairness
constraints (e.g., demographic parity) hold for all time during a sequence of decisions. We study the
orthogonal problem of ensuring fairness with respect to user-defined delayed impact measures. The
method proposed by Tang et al. (2020) considers the online multi-armed bandit setting; this algorithm
does not differentiate individuals within a group while making decisions. We, by contrast, tackle the
problem of high-confidence fairness in the classification setting. Zhang et al. (2020b) investigate the
long-term effects of repeatedly deploying myopic policies that optimize static fairness constraints.
Importantly, they assume knowledge of analytical models characterizing whether an individual will
be qualified (e.g., likely to repay a loan) at a given time. Ge et al. (2021) and Hu & Zhang (2022)
train classifiers that satisfy static fairness constraints in non-stationary settings (e.g., recommendation
systems where a person’s interests may change over time). Importantly, however, both Ge et al.
(2021) and Hu & Zhang (2022) require knowledge of analytic models of the environment. ELF, by
contrast, does not require a model or simulator of the environment, nor prior knowledge about the
relationship between a classifier’s predictions and the resulting delayed impact.
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A OTHER MOTIVATING EXAMPLES FOR ELF

In our paper we discussed two important real-life examples where our method could be applied. First,
we introduced a motivating problem where a bank wishes to take into account the delayed impact of
lending decisions on a disadvantaged group. Secondly, in our empirical evaluation we considered the
delayed impact of providing financial aid to youth in foster care. Here, we discuss three additional
examples of possible applications of ELF in real-life settings:

• Consider a university that has a 1-on-1 tutoring program. However, the university has
limited resources and cannot offer tutoring for all students. To select which students should
participate in the program, the university’s decision is based on GPA predictions. Receiving
tutoring (or not) can influence the chances of a student graduating from college. In this case,
the delayed impact observation could be whether a student graduated or not. The university
has access to this DIO both for students that received tutoring and for those who did not.

• Consider a police department deciding which crime prevention strategy to use in each district
of a city, based on predictions about crime recidivism. DI could be the average incarceration
rate in each district two years after this decision; it could indicate, e.g., that people of a
particular race are unfairly affected by the strategies deployed by the policy department.

• Assume that medical decisions are influenced by predictions of whether a person qualifies
for high-risk care management. These predictions may have a DI on a person’s health; e.g.,
the severity of chronic illnesses two years in the future. Different demographic groups may
be affected differently in the long term.

B LIMITATIONS

ELF requires access to representative historical data—i.e., a dataset with observations of the delayed
impact resulting from different predictions. For example, consider a college whose admissions
decisions are informed by a classifier predicting students’ academic performance. These predictions
may have a delayed impact, e.g., on whether the student will be employed after graduation. However,
the college would only have access to this information about admitted students; in this case, ELF
would not be applicable. Nonetheless, in many important real-life settings it is possible to observe
the delayed impact of different decisions (see Appendix A). For instance, in the lending example
described in the paper, the bank can observe the delayed impact of lending decisions both for clients
who received a loan and those who did not.9

Furthermore, ELF’s high probability fairness guarantees only hold if the world has not changed
between the time training data was collected and the time the trained classifier is deployed. While
this (stationarity) assumption is common in ML, it may be challenging in our setting since gathering
data that includes measures of long-term impact requires that a correspondingly long duration of time

9Even though ELF may be affected by this limitation, we argue that the assumption that our algorithm has
access to a representative dataset is significantly less strict than the requirements and assumptions made by
all existing techniques. Current state-of-the-art methods require access to complete and accurate models of
the environment. Ensuring access to complete models, in practical applications, is qualitatively harder than
ensuring access to representative datasets. Constructing models of this type could involve, e.g., designing
analytic expressions describing how economic and social factors (both observed and latent) might affect a given
person’s financial well-being in the future.
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has passed. While providing guarantees when nonstationarity occurs is important future work, in this
paper we focus on the important first step of providing the first classification algorithm that provides
delayed-impact fairness guarantees in the stationary setting.

C PROOF OF THEOREM 1

Proof. At a high level, we start with E[Îπθ |c(X,Y, T )] and, through a series of transformations
involving substitution, laws of probability, and Assumptions 1–3, obtain E[Iπθ |c(X,Y, T )]. To
simplify notation, throughout this proof we let C = c(X,Y, T ). Also, for any random variable Z, let
supp(Z) denote the support of Z (e.g., if Z is discrete, then supp(Z) = {z : Pr(Z = z) > 0}). To
begin, we substitute the definition of Îπθ and expand this expression using the definition of expected
value:

E[Îπθ |C] =E

[
πθ(X, Ŷ

β)

β(X, Ŷ β)
Iβ

∣∣∣∣∣C
]

=
∑

(x,y,t,ŷ,i)∈supp(X,Y,T,Ŷ β ,Iβ)

Pr(X=x, Y=y, T=t, Ŷ β=ŷ, Iβ=i|C)
πθ(x, ŷ)

β(x, ŷ)
i. (5)

Using the chain rule repeatedly, we can rewrite the joint probability in (5) as follows:

Pr(X=x, Y=y, T=t, Ŷ β=ŷ, Iβ=i|C)

= Pr(Iβ=i|X=x, Y=y, T=t, Ŷ β=ŷ, C) Pr(X=x, Y=y, T=t, Ŷ β=ŷ|C)

= Pr(Iβ=i|X=x, Y=y, T=t, Ŷ β=ŷ, C) Pr(Ŷ β=ŷ|X=x, Y=y, T=t, C) Pr(X=x, Y=y, T=t|C).

Under Assumption 1, Pr(Ŷ β=ŷ|X=x, T=t, Y=y, C) = Pr(Ŷ β=ŷ|X=x), which is the definition
of β(x, ŷ). We perform this substitution and simplify by cancelling out the β terms:

E[Îπθ |C] =
∑

(x,y,t,ŷ,i)∈supp(X,Y,T,Ŷ β ,Iβ)

Pr
(
Iβ=i|X=x, Y=y, T=t, Ŷ β=ŷ, C

)
β(x, ŷ) Pr (X=x, Y=y, T=t|C)

πθ(x, ŷ)

β(x, ŷ)
i

=
∑

(x,y,t,ŷ,i)∈supp(X,Y,T,Ŷ β ,Iβ)

Pr
(
Iβ=i|X=x, Y=y, T=t, Ŷ β=ŷ, C

)
Pr (X=x, Y=y, T=t|C)πθ(x, ŷ)i. (6)

Note that under Assumption 1, πθ(x, ŷ) can be rewritten as Pr(Ŷ πθ=ŷ|X=x, Y=y, T=t, C). Using
the multiplication rule of probability, we can combine this term with the Pr(X=x, Y=y, T=t|C)

term in (6) to obtain the joint probability Pr(X=x, Y=y, T=t, Ŷ πθ=ŷ|C). By Assumption 2, we
can substitute Pr(Iβ=i|X=x, Y=y, T=t, Ŷ β=ŷ, C) for Pr(Iπθ=i|X=x, Y=y, T=t, Ŷ πθ=ŷ, C).
We substitute these terms into (6) and apply the multiplication rule of probability once more:

E[Îπθ |C] =
∑

(x,y,t,ŷ,i)∈supp(X,Y,T,Ŷ β ,Iβ)

Pr(Iπθ=i|X=x, Y=y, T=t, Ŷ πθ=ŷ, C) Pr(X=x, Y=y, T=t, Ŷ πθ = ŷ|C)i

=
∑

(x,y,t,ŷ,i)∈supp(X,Y,T,Ŷ β ,Iβ)

Pr(X=x, Y=y, T=t, Ŷ β=ŷ, Îπθ=i|C)i. (7)

Finally, notice that by Assumption 3, supp(Ŷ πθ ) ⊆ supp(Ŷ β), and so supp(Iπθ ) ⊆ supp(Iβ). So,
we can rewrite (7) as ∑

(x,y,t,ŷ,i)∈supp(X,Y,T,Ŷ πθ ,Iπθ )

Pr(X=x, Y=y, T=t, Ŷ πθ=ŷ, Îπθ=i|C)i.

By the definition of expectation, this is equivalent to E [Iπθ |C] . Therefore, we have shown that
E[Îπθ |C]=E[Iπθ |C].
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D BOUNDS ON DELAYED IMPACT USING HOEFFDING’S INEQUALITY

This section focuses on how one can use the unbiased estimates of g(θ) together with Hoeffding’s
inequality (Hoeffding, 1963) to derive high-confidence upper bounds on g(θ). Given a vector of
m i.i.d. samples (Zi)

m
i=1 of a random variable Z, let Z̄ = 1

m

∑m
i=1 Zi be the sample mean, and let

δ ∈ (0, 1) be a confidence level.
Property 2 (Hoeffding’s Inequality). If Pr(Z ∈ [a, b]) = 1, then

Pr

(
E[Zi] ≥ Z̄ − (b− a)

√
ln(1/δ)

2m

)
≥ 1− δ.

Proof. See the work of Hoeffding (1963).

Property 2 can be used to obtain a high-confidence upper bound for the mean of Z:

UHoeff(Z1, Z2, ..., Zm) := Z̄ + (b−a)

√
log(1/δ)

(2m)
.

Let ĝ be a vector of i.i.d. and unbiased estimates of g(θ). Once these are procured (using importance
sampling as described in Section 3.1), they can be provided to UHoeff to derive a high-confidence
upper bound on g(θ):

Pr
(
τ −E

[
Îπθ
∣∣∣c(X,Y, T )

]
≤ UHoeff(ĝ)

)
≥ 1− δ.

Notice that using Hoeffding’s inequality to obtain the upper bound requires the assumption that ĝ is
bounded.

E EXTENSIONS OF ELF

In this section we discuss how ELF can be extended to provide similar high-confidence guarantees for
the regression setting, for the classification setting with static fairness constraints, and for definitions
of delayed impact objectives beyond the form assumed in (1).

E.1 DELAYED-IMPACT FAIRNESS GUARANTEES IN THE REGRESSION SETTING

In our problem setting, we study fairness with respect to delayed impact in the classification setting, in
which the labels Y produced by a model are discrete. However, our method can also be applied in the
regression setting, where a (stochastic) regression model produces continuous predictions Y , instead
of discrete labels. To use ELF in this setting, one may adapt Algorithm 2 so that it uses a loss function
suitable for regression; e.g., sample mean squared error. Furthermore, notice that the importance
sampling technique described in Section 3.1 is still applicable in the regression setting, requiring
only minor changes so that it can be used in such a continuous setting. In particular, the importance
sampling technique we described can be adapted by replacing summations with integrals, probability
mass functions with probability density functions, and probabilities with probability densities. By
doing so, all results presented in our work (e.g., regarding the unbiasedness of the importance
sampling estimator) carry to the continuous case. Notice, finally, that in order to apply ELF in the
regression setting, the behavior model, β, and the new candidate model, πθ, must be stochastic
regression models—this is similar to the assumption we made when addressing the classification
setting (see the discussion in Section 2).

E.2 ENFORCING STATIC FAIRNESS CONSTRAINTS OR CONSTRAINTS ON MODEL
PERFORMANCE

In Section 3, we showed how users can construct and enforce delayed-impact fairness constraints.
However, users might also be interested in simultaneously enforcing additional behavior—for instance,
enforcing static fairness constraints or constraints on the primary objective (i.e., on the classification
or regression performance). Assume, for example, that the bank from our running example has
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constructed a delayed-impact fairness constraint of the form in (1), and that it is also interested in
specifying an additional constraint that lower-bounds the model’s performance in terms of accuracy.
This could be represented by the following objective:

gPERF(θ) = τPERF −E[ACCθ],

where τPERF ∈ (0, 1) represents the minimum required accuracy, and ACCθ is a random variable
representing the accuracy of the model θ, i.e., the fraction of predictions that are correct given a
random dataset D.

Continuing the example, assume that the bank would also like to enforce a static fairness constraint:
false positive error rate balance (FPRB) (Chouldechova, 2017), also known as predictive equal-
ity (Corbett-Davies et al., 2017). Recall that a classifier satisfies an approximate version of FPRB if
the absolute difference between the false positive rates of two demographic groups of loan applicants,
A and B, is below some user-specified threshold. The bank could specify this static fairness objective
as:

gFPRB =
∣∣∣E [Ŷ πθ = 1

∣∣∣Y = 0, T = A
]
−E

[
Ŷ πθ = 1

∣∣∣Y = 0, T = B
]∣∣∣− εFPRB,

where εFPRB ∈ (0, 1) is the threshold of interest.

Notice that—unlike delayed-impact objectives—gPERF and gFPRB can be directly computed using
only labels Y , predictions Ŷ πθ , and the sensitive attribute T ; that is, information already available in
the dataset or directly obtained from the model. In other words, the importance sampling method
introduced in Section 3 would not be needed to obtain high-confidence bounds for these metrics.
Metevier et al. (2019) and Thomas et al. (2019) present methods to compute high-confidence upper
bounds on static fairness constraints and constraints on performance. Notice that gPERF and gFPRB
are just examples of this type of constraints; the techniques introduced by Metevier et al. (2019) and
Thomas et al. (2019) are applicable to more general objectives and constraints. We refer the reader to
their work for more details.

To conclude our discussion of this example, notice that—once computed—high-confidence upper
bounds on gPERF and gFPRB may be used to determine whether a candidate solution should be returned.
Similar to line 11 of Algorithm 3, if all computed upper bounds (with respect to the accuracy objective,
the predictive equality objective, and the delayed-impact objectives) are less than or equal to zero,
then the candidate solution should be returned. Otherwise, NSF should be returned.

E.3 ALTERNATIVE DEFINITIONS OF DELAYED-IMPACT OBJECTIVES

Until now, we have assumed that the delayed-impact objective takes the form of (1). Below, we
discuss how users of ELF may construct other definitions of delayed-impact objectives, and how our
formulation of delayed-impact objective (shown in (1)) is related to the definitions introduced in the
work of Liu et al. (2018).

Connections to the work of Liu et al. (2018). Our DI objective (1) has the form g(θ) := τ −
E [Iπθ |c(X,Y, T )]. This is similar to long-term improvement, one of the notions of delayed impact
introduced by Liu et al. (2018). Specifically, Liu et al. (2018) define long-term improvement as
∆µj > 0, where for group j, ∆µj is the difference between the DI induced by a previously-deployed
model and a new model. In their work, Liu et al. (2018) consider DI to be credit score. To enforce this
type of long-term improvement in our framework, we can set τ to be group j’s average credit score
under the current model (i.e., under the behavior model, β) and E [Iπθ |T = j] to be the expected
credit score of group j under the new model, πθ. Then, ∆µj = E [Iπθ |T = j]− τ . In our framework,
a model is fair if g(θ) ≤ 0. Setting g(θ) = τ − E [Iπθ |T = j] implies that the model is fair (i.e.,
g(θ) ≤ 0) if and only if θ leads to long-term improvement (i.e., iff ∆µj > 0).

We can also use ELF to enforce constraints similar to the remaining definitions of delayed-impact
objective introduced by Liu et al. (2018); e.g., long-term decline (∆µj < 0) and long-term stagnation
(∆µj = 0). Notice that long-term decline has a form similar to long-term improvement: ∆µj <
0 =⇒ g(θ) = E [Iπθ |T = j] − τ . Alternatively, to enforce long-term stagnation users can set
g(θ) =

∣∣τ −E [Iπθ |T = j]
∣∣. Moreover, to enforce approximate long-term stagnation, i.e., |∆µ| < ε,

for some non-negative threshold ε, users may set g(θ) =
∣∣τ −E [Iπθ |T = j]

∣∣− ε.
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Finally, notice that the definitions of long-term decline and stagnation do not have the same form
as (1); nonetheless, these definitions can be enforced using the methods introduced in our work—we
discuss how to achieve this in the next section.

Enforcing general definitions of delayed-impact objectives To enforce constraints beyond (1),
one can combine the importance sampling technique introduced in Section 3 with techniques presented
in the work of Metevier et al. (2019). Assume, for example, that the bank in our running example
is interested in enforcing that the resulting expected delayed impact of a classifier’s predictions is
approximately equal for loan applicants of group A and group B. This can be represented by the DI
objective gDI(θ) =

∣∣E [Iπθ |T = A]−E [Iπθ |T = B]
∣∣− ε. To enforce the DI constraint considered

in this paper (i.e., the one shown in (2)) on the more general types of DI objectives discussed in
this appendix (such as gDI), one may combine the techniques we introduced in this paper and the
bound-propagation methods introduced by Metevier et al. (2019). At a high-level, ELF would, in this
case, first compute (as before) unbiased estimates of E [Iπθ |T = A] and E [Iπθ |T = B] using the
importance sampling technique described in Section 3.1. Then, it would use the bound-propagation
methods introduced by Metevier et al. (2019) to obtain high-confidence upper bounds on gDI(θ).
Notice that the discussion above corresponds to just one example of how to deal with alternative
delayed-impact objective definitions; in this particular example, gDI. The same general idea and
techniques can, however, also be used to deal with alternative definitions of DI objectives that users
of ELF may be interested in.10 All other parts of the algorithm would remain the same—e.g., the
algorithm would still split the dataset into two, identify a candidate solution, and check whether it
passes the fairness test.

Beyond conditional expectation. In Section 2, we assume that g is defined in terms of the condi-
tional expected value of the delayed-impact measure. However, other forms of fairness metrics might
be more appropriate for different applications. For example, conditional value at risk (Keramati et al.,
2020) might be appropriate for risk-sensitive applications, and the median might be relevant for appli-
cations with noisy data (Altschuler et al., 2019). Chandak et al. (2021) introduce off-policy evaluation
methods that produce estimates and high-confidence bounds for different distributional parameters of
interest, including value at risk, conditional value at risk, variance, median, and interquantile range.
These techniques can also be combined with ours to obtain high-confidence upper bounds for metrics
other than the conditional expected value of Iπθ .

F PROOF OF THEOREM 2: FAIRNESS GUARANTEE

This section proves Theorem 2, which is restated below, along with the relevant assumptions.

Assumption 1: A model’s prediction Ŷ πθ is conditionally independent of Y and T given X .
That is, for all x, t, y, and ŷ,

Pr(Ŷ πθ=ŷ|X=x, Y=y, T=t) = Pr(Ŷ πθ=ŷ|X=x).

Assumption 2: For all x, y, t, ŷ, i,

Pr(Iβ=i|X=x, Y=y, T=t, Ŷ β=ŷ) = Pr(Iπθ = i|X=x, Y=y, T=t, Ŷ πθ=ŷ).

Assumption 3 (Support): For all x and y, πθ(x, y) > 0 implies that β(x, y) > 0.
Assumption 4: Every θ ∈ Θ satisfies Assumption 3.
Assumption 5: If Bound is Hoeff, then for all j ∈ {1, ..., k}, each estimate in ĝj is
bounded in some interval [aj , bj ]. If Bound is ttest, then each Avg(ĝj) is normally
distributed.

10This statement holds assuming that the DI objective of interest satisfies the requirements for the bound-
propagation technique to be applicable; for example, that the DI objective can be expressed using elementary
arithmetic operations (e.g., addition and subtraction) over base variables for which we know unbiased estima-
tors (Metevier et al., 2019). In the case of the DI objectives discussed in this paper, for instance, we can obtain
unbiased estimates of the relevant quantities using importance sampling, as discussed in Section 3.1.
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Theorem 2: Let (gj)
k
j=1 be a sequence of DI constraints, where gj : Θ→ R, and let (δj)

k
j=1

be a corresponding sequence of confidence levels, where each δj ∈ (0, 1). If Assumptions 1,
2, 4, and 5 hold, then for all j ∈ {1, ..., k},

Pr(gj(a(D)) ≤ 0) ≥ 1− δj .

We first provide three lemmas that will be used when proving Theorem 2.

Lemma 1. Let ĝj be the estimates of g constructed in Algorithm 3, and let Dfc be a subdataset of
Df such that a data point (X,Y, T, Ŷ β , Iβ) is only in Dfc if c(X,Y, T ) is true. Then, for all θ ∈ Θ,
the elements in ĝj are i.i.d. samples from the conditional distribution of ĝj given c(X,Y, T ).

Proof. To obtain ĝj , each data point in Dfc is transformed into an estimate of g(θ) using the

importance sampling estimate τ − πθ(X,Ŷ β)

β(X,Ŷ β)
Iβ (Algorithm 3, lines 5–8). Since each element of ĝj

is computed from a single data point in Dfc , and the points in Dfc are conditionally independent
given c(X,Y, T ), it follows that each element of ĝj is conditionally independent given c(X,Y, T ).
So, each element of ĝj can be viewed as an i.i.d. sample from the conditional distribution of ĝj given
c(X,Y, T ).

Lemma 2. Let ĝj be the estimates of g constructed in Algorithm 3. If Assumptions 1, 2, and 4 hold,
then for all θ ∈ Θ, each element in ĝj is an unbiased estimate of gj(θ).

Proof. We begin by considering the expected value of any element in ĝj :

E

[
τ − πθ(X, Ŷ

β)

β(X, Ŷ β)
Iβ

∣∣∣∣∣c(X,Y, T )

]
=τ −E

[
πθ(X, Ŷ

β)

β(X, Ŷ β)
Iβ

∣∣∣∣∣c(X,Y, T )

]
=τ −E

[
Îπθ
∣∣∣c(X,Y, T )

]
=τ −E [Iπθ |c(X,Y, T )] (8)
=gj(θ).

Expression (8) follows from Theorem 1, which relies on Assumptions 1, 2, and 4. Therefore, for all
θ ∈ Θ, the elements of ĝj are unbiased estimates of gj(θ).

Let θc be the model returned by candidate selection in Algorithm 3 (line 2), and let Uj be the value
of U at iteration j of the for loop (lines 4–10).

Lemma 3. If Assumptions 1, 2, 4, and 5 hold, then the upper bounds Uj calculated in Algorithm 3
satisfy ∀j ∈ {1, ..., k}, Pr(gj(θc) > Uj) ≤ δj .

Proof. We begin by noting that by Lemma 1, the data points used to construct each (1−δj)-probability
bound, i.e., the data points in each ĝj , are (conditionally) i.i.d. Because θc ∈ Θ, by Lemma 2 (which
uses Assumptions 1, 2, and 4), we know that each element in ĝj is an unbiased estimate of gj(θc).
Therefore, Hoeffding’s inequality or Student’s t-test can be applied to random variables that are
(conditionally) i.i.d.11 and unbiased estimates of gj(θc). Moreover, under Assumption 5, when
Bound is Hoeff, the requirements of Hoeffding’s inequality are satisfied (Property 2), and when
Bound is ttest, the requirements of Student’s t-test are satisfied (Property 1). Therefore, the upper
bounds calculated in Algorithm 3 satisfy Pr(gj(θc) > Uj) ≤ δj .

Proof of Theorem 2

11Samples that are conditionally i.i.d. given some event E can be viewed as i.i.d. samples from the conditional
distribution. Applying the confidence intervals to these samples therefore provides high-confidence bounds on
the conditional expected value given the event E, which is precisely what we aim to bound.
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Proof. To show Theorem 2, we prove the contrapositive, i.e., ∀j ∈ {1, ..., k},Pr(gj(a(D)) > 0) ≤
δj .

Consider the event ∀j ∈ {1, ..., k}, gj(a(D)) > 0. When this event occurs, it is always the case
that a(D) 6= NSF (by definition, g(NSF) = 0). That is, a nontrivial solution was returned by the
algorithm, and for all j, Uj ≤ 0 (line 11 of Algorithm 3). Therefore, (9) (shown below) holds.

Pr(gj(a(D) > 0) = Pr(gj(a(D)) > 0, Uj ≤ 0) (9)
≤Pr(gj(a(D)) > Uj) (10)
= Pr(gj(θc) > Uj) (11)
≤δj . (12)

Expression (10) is a result of the fact that the joint event in (9) implies the event (gj(a(D)) > Uj).
We substitute θc for a(D) in (11) because the event ∀j ∈ {1, ..., k}, gj(a(D)) > 0 implies that a
nontrivial solution, or a solution that is not NSF, was returned: a(D) = θc. Lastly, (12) follows from
Lemma 3. This implies that Pr(gj(a(D) > 0) ≤ δj ∀j ∈ {1, ..., k}, completing the proof.

G PROOF OF THEOREM 3

This section proves Theorem 3, restated below. Metevier et al. (2019) provide a similar proof for
a Seldonian contextual bandit algorithm, which we adapt to our Seldonian classification algorithm.
Extending their proof to our setting involves the following minor changes:

1. Changes related to the output of the function used to calculate the utility of a solution:
Metevier et al. (2019) consider a utility function that returns the sample reward of a policy.
Instead, our utility function (Algorithm 2) outputs the sample loss of a model.

2. Changes due to the form of the fairness constraints: The form of our delayed-impact con-
straint differs from the more general form of the fairness constraints considered by Metevier
et al. (2019). This results in a simplified argument that our algorithm is consistent.

Rather than reword their proof with these minor changes, below we provide their proof with these
minor changes incorporated.

Theorem 3: If Assumptions 1–8 hold, then limn→∞ Pr(a(D) 6= NSF, g(a(D)) ≤ 0
)

= 1.

We begin by providing definitions and assumptions necessary for presenting our main result. To
simplify notation, we assume that there exists only a single delayed-impact constraint and note that
the extension of this proof to multiple delayed-impact constraints is straightforward.

Recall that the logged data, D, is a random variable. To further formalize this notion, let (Ω,Σ, p) be
a probability space on which all relevant random variables are defined, and let Dn : Ω → D be a
random variable, where D is the set of all possible datasets and Dn = Dc ∪Df . We will discuss
convergence as n → ∞. Dn(ω) is a particular sample of the entire set of logged data with n data
points, where ω ∈ Ω.
Definition 1 (Piecewise Lipschitz continuous). We say that a function f : M → R on a metric space
(M,d) is piecewise Lipschitz continuous with Lipschitz constant K and with respect to a countable
partition, {M1,M2, ...}, of M if f is Lipschitz continuous with Lipschitz constant K on all metric
spaces in {(Mi, d)}∞i=1.

Definition 2 (δ-covering). If (M,d) is a metric space, a set X ⊆M is a δ-covering of (M,d) if and
only if max

y∈M
min
x∈X

d(x, y) ≤ δ.

Let ĉ(θ,Dc) denote the output of a call to Algorithm 2, and let c(θ) := `max + g(θ). The next
assumption ensures that c and ĉ are piecewise Lipschitz continuous. Notice that the δ-covering
requirement is straightforwardly satisfied if Θ is countable or Θ ⊆ Rm for any positive natural
number m.
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Assumption 6. The feasible set of policies, Θ, is equipped with a metric, dΘ, such that for all Dc(ω)
there exist countable partitions of Θ, Θc = {Θc

1,Θ
c
2, ...}, and Θĉ = {Θĉ

1,Θ
ĉ
2, ...}, where c(·) and

ĉ(·, Dc(ω)) are piecewise Lipschitz continuous with respect to Θc and Θĉ respectively with Lipschitz
constants K and K̂. Furthermore, for all i ∈ N>0 and all δ > 0 there exist countable δ-covers of Θc

i

and Θĉ
i .

Intuitively, Assumption 6 states that (1) the cost function used to evaluate classifiers is smooth:
similar classifiers have similar costs/performances; and (2) each classifier can be described by a set
of real-valued parameters, as is the case with all parametric supervised learning algorithms.

Next, we assume that a fair solution, θ?, exists such that g(θ?) is not precisely on the boundary of
fair and unfair. This can be satisfied by solutions that are arbitrarily close to the fair-unfair boundary.
Assumption 7. There exists an ε > ξ and a θ? ∈ Θ such that g(θ?) ≤ −ε.

Intuitively, Assumption 7 states that the space of classifiers is not degenerate: at least one fair solution
exists such that if we perturb its parameters infinitesimally, it would not become arbitrarily unfair.
Next, we assume that the sample loss, ˆ̀, converges almost surely to `, the actual expected loss.

Assumption 8. ∀θ ∈ Θ, ˆ̀(θ,Dc)
a.s.−→ `(θ).

Intuitively, Assumption 8 states that the sample performance of a classifier converges to its true
expected performance given enough data. This is similar to the usual assumption, e.g., in the
regression setting, that a model’s sample Mean Squared Error (MSE) converges to its true MSE given
sufficient examples.

We prove Theorem 3 by building up properties that culminate with the desired result, starting with a
variant of the strong law of large numbers:
Property 3 (Khintchine Strong Law of Large Numbers). Let {Xι}∞i=1 be independent and identi-
cally distributed random variables. Then ( 1

n

∑n
i=1Xι)

∞
n=1 is a sequence of random variables that

converges almost surely to E[X1], if E[X1] exists, i.e., 1
n

∑n
i=1Xι

a.s.−→ E[X1].

Proof. See Theorem 2.3.13 of Sen & Singer (1993).

Next, we show that the average of the estimates of g(θ) converge almost surely to g(θ):

Property 4. If Assumptions 1, 2, and 4 hold, then ∀θ ∈ Θ,Avg(ĝ)
a.s.−−→ g(θ).

Proof. Recall that given Assumptions 1, 2, and 4, Lemmas 1 and 2 hold, i.e., estimates in ĝ are
i.i.d., and each estimate in ĝ is an unbiased estimate of g(θ). Also, recall that if nĝ is the number of
elements in ĝ, Avg(ĝ) := 1

nĝ

∑nĝ
i=1 ĝi. Then, by Property 3 we have that Avg(ĝ)

a.s.−−→ g(θ).

In this proof, we consider the set Θ̄ ⊆ Θ, which contains all solutions that are not fair, and some that
are fair but fall beneath a certain threshold: Θ̄ := {θ ∈ Θ : g(θ) > −ξ/2}. At a high level, we will
show that the probability that the candidate solution, θc, viewed as a random variable that depends on
the candidate data set Dc, satisfies θc 6∈ Θ̄ converges to one as n→∞, and then that the probability
that θc is returned also converges to one as n→∞.

First, we will show that the upper bounds U+ (constructed in candidate selection, i.e., Algorithm 2)
and U (constructed in the fairness test, i.e., Algorithm 1) converge to g(θ) for all θ ∈ Θ. To clarify
notation, we write U+(θ,Dc) and U(θ,Df ) to emphasize that each depends on θ and the datasets
Dc and Df , respectively.

Property 5. If Assumptions 1, 2, 4, and 5 hold, then for all θ ∈ Θ, U+(θ,Dc)
a.s.−−→ g(θ) and

U(θ,Df )
a.s.−−→ g(θ).

Proof. Given Assumption 5, Hoeffding’s inequality and Student’s t-test construct high-confidence
upper bounds on the mean by starting with the sample mean of the unbiased estimates (in our case,
Avg(ĝ)) and then adding an additional term (a constant in the case of Hoeffding’s inequality). Thus,
U(θ,Df ) can be written as Avg(ĝ)+Zn, where Zn is a sequence of random variables that converges
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(surely for Hoeffding’s inequality, almost surely for Student’s t-test) to zero. So, Zn
a.s.−→ 0, and we

need only show that Avg(ĝ)
a.s.−→ g(θ), which follows from Assumptions 1, 2, and Property 4. We

therefore have that U a.s.−→ g(θ).

The same argument can be used when substituting U+(θ,Dc) for U(θ,Df ). Notice that the only
difference between the method used to construct confidence intervals in the fairness test (that is, U+)
and in Algorithm 2 (that is, U ) is the multiplication of Zn by a constant λ. This still results in a
sequence of random variables that converges (almost surely for Student’s t-test) to zero.

Recall that we define ĉ(θ,Dc) to be the output of Algorithm 2. Below, we show that given a fair
solution θ? and data Dc, ĉ(θ?, Dc) converges almost surely to `(θ?), the expected loss of θ?.

Property 6. If Assumptions 1, 2, 4, 5, 7, and 8 hold, ĉ(θ?, Dc)
a.s.−→ `(θ?).

Proof. By Property 5 (which holds given Assumptions 1, 2, 4, and 5), we have that U+(θ?)
a.s.−→

g(θ?). By Assumption 7, we have that g(θ?) ≤ −ε. Now, let

A = {ω ∈ Ω : lim
n→∞

U+(θ?, Dc(ω)) = g(θ?)}.

Recall that U+(θ?, Dc)
a.s.−→ g(θ?) means that Pr(limn→∞ U+(θ?, Dc) = g(θ?)) = 1. So, ω is in

A almost surely, i.e., Pr(ω ∈ A) = 1. Consider any ω ∈ A. From the definition of a limit and
the previously established property that g(θ?) ≤ −ε, we have that there exists an n0 such that for
all n ≥ n0, Algorithm 2 will return ˆ̀(θ?, Dc) (this avoids the discontinuity of the if statement in
Algorithm 2 for values smaller than n0).

Furthermore, we have from Assumption 8 that ˆ̀(θ?, Dc)
a.s.−→ `(θ?). Let

B = {ω ∈ Ω : lim
n→∞

ˆ̀(θ?, Dc(ω)) = `(θ?)}.

From Assumption 8, we have that ω is in B almost surely, i.e., Pr(ω ∈ B) = 1, and thus by the
countable additivity of probability measures, Pr(ω ∈ (A ∩B)) = 1.

Consider now any ω ∈ (A∩B). We have that for sufficiently large n, Algorithm 2 will return ˆ̀(θ?, Dc)

(since ω ∈ A), and further that ˆ̀(θ?, Dc) → `(θ?) (since ω ∈ B). Thus, for all ω ∈ (A ∩ B), the
output of Algorithm 2 converges to `(θ?), i.e., ĉ(θ?, Dc(ω))→ `(θ?). Since Pr(ω ∈ (A ∩B)) = 1,
we conclude that ĉ(θ?, Dc(ω))

a.s.−→`(θ?).

We have now established that the output of Algorithm 2 converges almost surely to `(θ?) for the θ?
assumed to exist in Assumption 7. We now establish a similar result for all θ ∈ Θ̄—that the output of
Algorithm 2 converges almost surely to c(θ) (recall that c(θ) is defined as `max + g(θ)).

Property 7. If Assumptions 1, 2, 4, and 5 hold, then for all θ ∈ Θ̄, ĉ(θ,Dc)
a.s.−→ c(θ).

Proof. By Property 5 (which holds given Assumptions 1, 2, 4, and 5), we have that U+(θ,Dc)
a.s.−→

g(θ). If θ ∈ Θ̄, then we have that g(θ) > −ξ/2. We now change the definition of the set A from its
definition in the previous property to a similar definition suited to this property. That is, let:

A = {ω ∈ Ω : lim
n→∞

U+(θ,Dc(ω)) = g(θ)}.

Recall that U+(θ,Dc)
a.s.−→ g(θ) means that Pr(limn→∞ U+(θ,Dc) = g(θ)) = 1. So, ω is in

A almost surely, i.e., Pr(ω ∈ A) = 1. Consider any ω ∈ A. From the definition of a limit
and the previously established property that g(θ) > −ξ/2, we have that there exists an n0 such
that for all n ≥ n0 Algorithm 2 will return `max + U+(θ,Dc(ω)). By Property 5 (which holds
given Assumptions 1, 2, 4, and 5), U+(θ,Dc(ω))

a.s.−→ g(θ). So, for all ω ∈ A, the output of
Algorithm 2 converges almost surely to `max + g(θ); that is, ĉ(θ,Dc(ω))

a.s.−→ `max + g(θ), and since
c(θ) = `max + g(θ), we therefore conclude that ĉ(θ,Dc(ω))

a.s.−→ c(θ).

20



Under review as a conference paper at ICLR 2023

By Property 7 and one of the common definitions of almost sure convergence,

∀θ ∈ Θ̄,∀ε > 0,Pr
(

lim
n→∞

inf{ω ∈ Ω : |ĉ(θ,Dn(ω))− c(θ)| < ε}
)

= 1.

Because Θ is not countable, it is not immediately clear that all θ ∈ Θ̄ converge simultaneously to
their respective c(θ). We show next that this is the case due to our smoothness assumptions.
Property 8. If Assumptions 1, 2, 4, 5, and 6 hold, then ∀ε′ > 0,

Pr
(

lim
n→∞

inf{ω ∈ Ω : ∀θ ∈ Θ̄, |ĉ(θ,Dc(ω))− c(θ)| < ε′}
)

= 1.

Proof. Let C(δ) denote the union of all the points in the δ-covers of the countable partitions of Θ
assumed to exist by Assumption 6. Since the partitions are countable and the δ-covers for each
region are assumed to be countable, we have that C(δ) is countable for all δ. Then by Property 7
(which holds given Assumptions 1, 2, 4, and 5), for all δ, we have convergence for all θ ∈ C(δ)
simultaneously:

∀δ > 0,∀ε > 0,Pr
(

lim
n→∞

inf{ω ∈ Ω : ∀θ ∈ C(δ), |ĉ(θ,Dc(ω))− c(θ)| < ε}
)

= 1. (13)

Now, consider a θ 6∈ C(δ). By Definition 2 and Assumption 6, ∃ θ′ ∈ Θ̄c
i , d(θ, θ′) ≤ δ. Moreover,

because c and ĉ are Lipschitz continuous on Θ̄c
i and Θ̄ĉ

i (by Assumption 6) respectively, we have
that |c(θ) − c(θ′)| ≤ Kδ and |ĉ(θ,Dc(ω)) − ĉ(θ′, Dc(ω))| ≤ K̂δ. So, |ĉ(θ,Dc(ω)) − c(θ)| ≤
|ĉ(θ,Dc(ω))− c(θ′)|+Kδ ≤ |ĉ(θ′, Dc(ω))− c(θ′)|+ δ(K + K̂). This means that for all δ > 0:(
∀θ ∈ C(δ), |ĉ(θ,Dc(ω))− c(θ)| < ε

)
=⇒

(
∀θ ∈ Θ̄, |ĉ(θ,Dc(ω))− c(θ)| < ε+ δ(K + K̂)

)
.

Substituting this into (13), we get:

∀δ > 0,∀ε > 0,Pr
(

lim
n→∞

inf{ω ∈ Ω : ∀θ ∈ Θ̄, |ĉ(θ,Dc(ω))− c(θ)| < ε+ δ(K + K̂)}
)

= 1.

Now, let δ := ε/(K + K̂) and ε′ = 2ε. Thus, we have the following:

∀ε′ > 0,Pr
(

lim
n→∞

inf{ω ∈ Ω : ∀θ ∈ Θ̄, |ĉ(θ,Dc(ω))− c(θ)| < ε′}
)

= 1.

So, given the appropriate assumptions, for all θ ∈ Θ̄, we have that ĉ(θ,Dc(ω))
a.s.−→ c(θ) and that

ĉ(θ?, Dc(ω))
a.s.−→ `(θ?). Due to the countable additivity property of probability measures and

Property 8, we have the following:

Pr
([
∀θ ∈ Θ̄, lim

n→∞
ĉ(θ,Dc(ω)) = c(θ)

]
,
[

lim
n→∞

ĉ(θ?, Dc(ω)) = `(θ?)
])

= 1, (14)

where Pr(A,B) denotes the joint probability of A and B.

LetH denote the set of ω ∈ Ω such that (14) is satisfied. Note that `max is defined as the value always
greater than `(θ) for all θ ∈ Θ, and g(θ) ≥ −ξ for all θ ∈ Θ̄. So, for all ω ∈ H , for sufficiently large
n, candidate selection will not define θc to be in Θ̄. Since ω is in H almost surely (Pr(ω ∈ H) = 1),
we therefore have that limn→∞ Pr(θc 6∈ Θ̄) = 1.

The remaining challenge is to establish that, given θc 6∈ Θ̄, the probability that the fairness test returns
θc rather than NSF converges to one as n→∞. By Property 5, we have that U(θc, Df )

a.s.−→ g(θc).
Furthermore, by the definition of Θ̄, when θc 6∈ Θ̄ we have that g(θc) < −ξ/2. So, U(θc, Df )
converges almost surely to a value less than−ξ/2. Since the fairness test returns θc rather than NSF if
U(θc, Df ) ≤ −ξ/4 and U(θc, Df ) converges almost surely to a value less than −ξ/2, it follows that
the probability that U(θc, Df ) ≤ −ξ/4 converges to one. Hence, given that θc 6∈ Θ̄, the probability
that θc is returned rather than NSF converges to one.

We therefore have that 1) the probability that θc 6∈ Θ̄ converges to one as n→∞ and 2) given that
θc 6∈ Θ̄, the probability that θc is returned rather than NSF converges to one. Since θc 6∈ Θ̄ implies
that θc is fair, these two properties imply that the probability that a fair solution is returned converges
to one as n→∞.
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H A DISCUSSION ON THE INTUITION AND IMPLICATIONS OF OUR
ASSUMPTIONS

The theoretical results in this paper, which ensure ELF’s convergence and high-confidence fairness
guarantees, are based on Assumptions 1–8. In this section, we provide an intuitive, high-level
discussion on the meaning and implications of these assumptions. Our goal is to show that they are
standard in the machine learning literature and reasonable in many real-life settings.

Assumption 1. This assumes the commonly-occurring setting in which a classifier’s prediction
depends only on an input feature vector, X . It is a formal characterization of the classic supervised
learning setting; that is, that machine learning models should predict the target variable of interest, Y ,
based only on an input feature vector, X . In other words, we are dealing with a standard classification
problem.

Assumption 2. While the delayed impact observation, I , depends on the prediction, Ŷ , it does not
depend on how the prediction was made. For example, it makes no difference whether a neural
network or a support vector machine made a loan-repayment prediction.

Assumptions 3 and 4. These assumptions can be trivially satisfied when our algorithm uses standard
modern stochastic classifiers that place non-zero probability on all outputs; for instance, when using
Softmax layers in a neural network. This assumption is common in the offline RL literature—for
example, in methods that evaluate new policies given information from previously-deployed policies.

Assumption 5. Our algorithm uses standard statistical tools, common in the machine learning
literature, to compute confidence bounds: Hoeffding’s inequality and Student’s t-test. Hoeffding’s
inequality can be applied under mild assumptions. In our running example, lending decisions made by
a bank may have a delayed impact, e.g., on an applicant’s future savings rate. Hoeffding’s inequality
holds if the bank knows the minimum and maximum savings rate possible (i.e., the DI is bounded
in some interval [a, b]). Bounds produced by Student’s t-test hold exactly if the sample mean is
normally distributed, and in the limit (as the number of samples increases) if the sample mean follows
a different distribution. With few samples, bounds based on Student’s t-test may hold approximately.
Despite this, their use remains effective and commonplace in the sciences, including, e.g., in high-risk
medical research (Thomas et al., 2019).

Assumption 6. The cost function used to evaluate classifiers is smooth: similar classifiers have
similar costs/performances. Smoothness assumptions of this type are common the machine learning
literature. Also, each classifier can be described by a set of real-valued parameters (θ ∈ Rm), as is
the case with all parametric supervised learning algorithms.

Assumption 7. The space of classifiers is not degenerate: at least one fair solution exists such that if
we perturb its parameters infinitesimally, it would not become arbitrarily unfair.

Assumption 8. The sample performance of a classifier converges to its true expected performance
given enough data. This is similar to the usual assumption, e.g., in the regression setting, that a
model’s sample Mean Squared Error (MSE) converges to its true MSE given sufficient examples.

I FULL ALGORITHM

Algorithm 2 presents the cost function used in candidate selection (line 3 of Algorithm 1), where
a strategy like the one used in the fairness test is used to calculate the cost, or utility, of a potential
solution θ. Again, unbiased estimates of g(θ) are calculated, this time using dataset Dc (lines 2–4).
Instead of calculating a high-confidence upper bound on g(θ) using UHoeff or Uttest, we calculate an
inflated upper bound U+. Specifically, we inflate the width of the confidence interval used to compute
the upper bound (lines 5–10). This is to mitigate the fact that multiple comparisons are performed on
the same dataset (Dc) during the search for a candidate solution (see line 3 of Algorithm 1), which
often leads candidate selection to overestimate its confidence that the solution it picks will pass the
fairness test. Our choice to inflate the confidence interval in this way, i.e., considering the size of the
dataset Df used in the fairness test and the use of scaling constant λ, is empirically driven and was
first proposed for other Seldonian algorithms (Thomas et al., 2019).
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Algorithm 2 cost
Input: 1) the vector θ that parameterizes model π; 2) Dc = {(Xi, Yi, Ti, Ŷ

β
i , I

β
i )}mi=1; 3) confidence

level δ; 4) tolerance value τ ; 5) the behavior model β; 6) Bound ∈ {Hoeff,ttest}; and 7) the
number of data points in Df , denoted nDf .
Output: The cost of π.

1: ĝ ← 〈 〉
2: for i ∈ {1, ...,m} do
3: if c(Xi, Yi, Ti) is True then ĝ.append

(
τ − πθ(Xi,Ŷ

β
i )

β(Xi,Ŷ
β
i )
Iβi

)
end if

4: end for
5: Let λ = 2; nĝ = length(ĝ)
6: if Bound is Hoeff then
7: a, b← upper and lower bounds of g

8: U+ = 1
nĝ

(∑nĝ
ι=1 ĝι

)
+ λ(b−a)

√
log(1/δ)
(2nDf )

9: else if Bound is ttest then U+ = 1
nĝ

(∑nĝ
ι=1 ĝι

)
+ λ σ(ĝ)√

nDf
t1−δ,nDf−1

10: end if
11: `max = maxθ′∈Θ

ˆ̀(θ′, Dc)

12: if U+≤− ξ4 return ˆ̀(θ,Dc) else return (`max + U+)

Algorithm 3 ELF with Multiple Constraints

Input: 1) dataset D = {(Xi, Yi, Ti, Ŷ
β
i , I

β
i )}ni=1; 2) the number of delayed-impact constraints

we wish to satisfy, k; 3) a sequence of Boolean conditionals (cj)
k
j=1 such that for j ∈ {1, ..., k},

cj(Xi, Yi, Ti) indicates whether the event associated with the data point (Xi, Yi, Ti, Ŷ
β
i , I

β
i ) occurs;

4) confidence levels δ = (δj)
k
j=1, where each δj ∈ (0, 1) corresponds to delayed-impact constraint

gj ; 5) tolerance values τ = (τj)
k
j=1, where each τj is the tolerance associated with delayed-impact

constraint gj ; 6) the behavior model β; and 7) an argument Bound ∈ {Hoeff,ttest} indicating
which method for calculating upper bounds to use.
Output: Solution θc or NSF.

1: Dc, Df ← partition(D)
2: θc ← arg minθ∈Θ cost(θ,Dc, k, δ, τ, β,Bound,length(Df ))
3: U ← 〈 〉
4: for j ∈ {1, ..., k} do
5: ĝj ← 〈 〉
6: for i ∈ {1, ..., n} do
7: if cj(Xi, Yi, Ti) is True then ĝj .append

(
τj −

πθc (Xi,Ŷ
β
i )

β(Xi,Ŷ
β
i )

Iβi

)
end if

8: end for
9: if Bound is Hoeff then U.append(UHoeff(ĝj)) else U.append(Uttest(ĝj)) end

10: end for
11: if ∀j ∈ {1, ..., k}, Uj ≤ 0 then return θc else return NSF

If U+ ≤ −ξ/4, a small negative constant, the cost associated with the loss of θ is returned. Otherwise,
the cost of θ is defined as the sum of U+ and the maximum loss that can be obtained on dataset
Dc (lines 11–12). This discourages candidate selection from returning models unlikely to pass the
fairness test. We consider −ξ/4, instead of 0 as the fairness threshold in ELF to ensure consistency.
This is discussed in more detail in Appendix G.

Algorithm 3 shows ELF with multiple constraints. The changes relative to Algorithm 1 are relatively
small: instead of considering only a single constraint, the fairness test loops over all k constraints and
only returns the candidate solution if all k high-confidence upper bounds are at most zero. Similarly,
the cost function, Algorithm 4, changes relative to Algorithm 2 in that when predicting the outcome
of the fairness test it includes this same loop over all k delayed-impact constraints.
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Algorithm 4 cost with Multiple Constraints
Input: 1) the vector θ that parameterizes a classification model π; 2) candidate dataset Dc =

{(Xi, Yi, Ti, Ŷ
β
i , I

β
i )}mi=1; 3) the number of delayed-impact constraints we wish to satisfy, k; 4)

a sequence of Boolean conditionals (cj)
k
j=1 such that for j ∈ {1, ..., k}, cj(Xi, Yi, Ti) indicates

whether the event associated with the data point (Xi, Yi, Ti, Ŷ
β
i , I

β
i ) occurs; 5) confidence levels

δ = {δj}kj=1, where each δj ∈ (0, 1) corresponds with constraint gj ; 6) tolerance values τ = {τj}kj=1,
where each τj is the tolerance associated with delayed-impact constraint gj ; 7) the behavior model β;
8) an argument Bound ∈ {Hoeff,ttest} indicating which method for calculating upper bounds
to use; and 9) the number of data points in dataset Df , denoted nDf .
Output: The cost associated with classification model πθ.

1: for j ∈ {1, ..., k} do
2: ĝj ← 〈 〉
3: for i ∈ {1, ...,m} do
4: if cj(Xi, Yi, Ti) is True then ĝj .append

(
τj −

πθ(Xi,Ŷ
β
i )

β(Xi,Ŷ
β
i )
Iβi

)
end if

5: end for
6: Let λ = 2; nĝj = length(ĝj)
7: if Bound is Hoeff then
8: Let a, b be the lower and upper bounds of gj

9: U+
j = 1

nĝj

(∑nĝj
ι=1(ĝj)ι

)
+ λ(b−a)

√
log(1/δj)
(2nDf )

10: else if Bound is ttest then
11: U+

j = 1
nĝj

(∑nĝj
ι=1(ĝj)ι

)
+ λ

σ(ĝj)√
nDf

t1−δj ,nDf−1

12: end if
13: end for
14: `max = maxθ′∈Θ

ˆ̀(θ′, Dc)

15: if ∀j ∈ {1, ..., k}, U+
j ≤ −ξ/4 then return ˆ̀(θ,Dc) else return

(
`max +

∑k
j=1 U

inflated
j

)

J OTHER EXPERIMENTS

In our experiments, we consider a classifier that predicts whether youth in foster care will have a
job after leaving the program. (4) indicates that if they are predicted to get a job, they are more
likely to receive financial aid, which may lead to a positive (higher) delayed impact observation—Iψi
increases when Ŷ ψi = 1. Whether DI is strongly affected by a classifier’s predictions is regulated
by α. DI is also affected by Gaussian noise representing stochasticity in the environment. Different
means and variances indicate that the DI on youth of different races may (due to social biases) differ.
Changing the noise distribution would affect how youth of different races are affected by predictions,
thus modeling a different type of society.

In all experiments, our implementation of ELF used CMA-ES (Hansen & Ostermeier, 2001) to search
over the space of candidate solutions and the ttest concentration inequality. We partitioned the
dataset D into Dc and Df using a stratified sampling approach where Dc contains 60% of the data
and Df contains 40% of the data.

In this section, we present the complete set of results for RQ1 and RQ2: does ELF enforce DI
constraints, with high probability, when existing fairness-aware algorithms often fail; and what is the
cost of enforcing DI constraints. In particular, we show the performance of the five algorithms being
compared, in terms of failure rate, probability of returning a solution, and accuracy, for different
values of α and as a function of n. Notice that Figures 4 and 5 present results consistent with the
observations made in Section 5: the qualitative behavior of all considered algorithms remains the
same for all values of α.
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Figure 4: Algorithms’ performances in terms of failure rate (leftmost two columns), probability of
returning a solution (second from the right column), and accuracy (right column), as a function of n
and for different values of α. The black horizontal lines indicate the maximum admissible probability
of unfairness, δ0 = δ1 = 10%. All plots use the following legend: ELF LR QSA
with DP QSA with EqOdds QSA with EqOpp QSA with PE QSA with
DisImp Fairlearn with DP Fairlearn with EqOdds Fairness Constraints.
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Figure 5: Algorithms’ performance in terms of failure rate (leftmost two columns), probability of
returning a solution (second from the right column), and accuracy (right column), as a function of n
and for different values of α. The black horizontal lines indicate the maximum admissible probability
of unfairness, δ0 = δ1 = 10%. All plots use the following legend: ELF LR QSA
with DP QSA with EqOdds QSA with EqOpp QSA with PE QSA with
DisImp Fairlearn with DP Fairlearn with EqOdds Fairness Constraints.
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K RELATED WORK

Most prior work on the social implications of ML study static fairness without considering the
long-term impact of model decisions (Calders et al., 2009; Zafar et al., 2017; Hardt et al., 2016;
Dwork et al., 2012). However, there exists a growing body of work that examines the long-term
impact of fairness in ML (D’Amour et al., 2020; Hu & Chen, 2018a;b; Liu et al., 2018; Heidari
et al., 2019; Zhang et al., 2020a; Mouzannar et al., 2019). In this paper, we build upon this prior
work and present the first method that uses historical data to train a classifier with high-confidence
delayed-impact fairness guarantees when the analytic model of the relationship between classifiers’
predictions and delayed impact is not known a priori.

Wen et al. (2019) and Tang et al. (2020) present work similar to ours. Wen et al. (2019) propose
modeling delayed impact using a Markov decision process (MDP) with two different reward functions:
one for the decision-maker, e.g., a bank, and another for each individual, e.g., loan applicant. Wen et al.
(2019) introduce algorithms that are able to estimate near-optimal policies (in terms of cumulative
reward of the decision-maker) while enforcing static fairness constraints (e.g., demographic parity
and equal opportunity). Importantly, Wen et al. (2019) introduce a method that ensures that static
fairness constraints hold for all time during a sequence of decisions. We, by contrast, study the
orthogonal problem of ensuring fairness with respect to user-defined delayed-impact measures. The
method proposed by Tang et al. (2020), unlike ELF, considers the online multi-armed bandit learning
setting in which there are no features—the algorithm does not differentiate individuals within a
group while making decisions. We, by contrast, tackle the problem of high-confidence fairness in the
classification setting.

Work by Ge et al. (2021) and Hu & Zhang (2022) study similar but orthogonal problem settings.
Ge et al. (2021) and Hu & Zhang (2022) train classifiers that satisfy static fairness constraints in
non-stationary settings (e.g., a recommendation system where a person’s interests may change over
time). Importantly, both Ge et al. (2021) and Hu & Zhang (2022) require prior knowledge of analytic,
accurate models of the environment—for example, in the form of probabilistic graphical models. Our
method, by contrast, does not require a model or simulator of the environment, nor prior knowledge
about the relationship between a classifier’s predictions and the resulting delayed impact.

Zhang et al. (2020b) investigate the long-term effects of repeatedly deploying myopic policies
that optimize static fairness constraints. They rely on knowledge of analytical models of “user
qualification”—models characterizing whether an individual will be qualified (e.g., likely to repay
a loan) at a given time. ELF, by contrast, ensures long-term fairness with high confidence without
requiring access to any models. Chi et al. (2022) introduce a new fairness definition in multi-step
problems where different demographic groups are represented as different Markov decision processes.
The goal of the proposed method is to identify policies that satisfy an alternative type of constraint;
in particular, their method’s objective is to identify policies that result in return parity between
groups. This technique assumes an agent that can repeatedly interact with its environment until
fair policies are identified. We, by contrast, investigate an orthogonal setting: ELF addresses the
classification setting where a fixed dataset of historical observations is available (based on which
a fair solution should be identified with high confidence), but in which the agent/algorithm cannot
further interact with its environment to collect more data. Furthermore, ELF was not designed to
tackle any one particular type of constraint; it is compatible with a wide range of (user-specified)
constraints. D’Amour et al. (2020)’s goal is not to propose a new method; instead, they evaluate the
DI resulting from a given classifier’s predictions, under the assumption that an accurate simulator
of the environment is available. By contrast, we propose a new method for training classifiers that
ensure that DI fairness constraints are satisfied, without requiring accurate simulators.

In another line of work, researchers have shown that the fairness of ML algorithms can be improved
by manipulating the training data, rather than the learning algorithm. This goal can be achieved,
for example, by removing data that violates fairness properties (Verma et al., 2021) or by inserting
data inferred using fairness properties (Salimi et al., 2019). Again, while these methods can improve
the fairness of learned models, they were designed to enforce static fairness constraints and do not
enforce fairness with respect to the delayed impact resulting from deploying such learned models.

Lastly, this paper introduces a method that extends the existing body of work on Seldonian algo-
rithms (Thomas et al., 2019). Seldonian algorithms provide fairness guarantees with high probability
and have been shown to perform well in real-world applications given reasonable amounts of training
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data (Thomas et al., 2019; Metevier et al., 2019). They also—by construction—provide a straight-
forward way for users to define multiple notions of fairness that can be simultaneously enforced
(Thomas et al., 2019). The technique introduced in this paper (ELF) is the first supervised-learning
Seldonian algorithm capable of providing high-probability fairness guarantees in terms of delayed
impact.
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