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ABSTRACT
Agent-based models (ABMs) simulate complex systems by model-
ing the interactions between individual agents. Calibrating ABMs
to real-world data is critical for their practical utility, but is hindered
by the fact that granular data is often siloed across institutions due
to privacy concerns. We propose a new protocol for distributed
calibration of ABMs that allows institutions to collaborate on model
calibration without sharing raw data. The protocol splits the cali-
bration neural network (CalibNN) between the data clients and a
central server. Each client generates embeddings from their local
data and transmits them to the server, which merges the embed-
dings to calibrate the ABM. Gradients are propagated back to the
clients to update their local models. On preliminary experiments
simulating the COVID-19 pandemic, we find the distributed proto-
col achieves calibration accuracy on par with centralized calibration
using pooled data. This demonstrates the potential to leverage sen-
sitive data to improve ABMs while preserving privacy.
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1 INTRODUCTION
Agent-based models (ABM) comprise a collection of agents that act
and interact within a computation world. They enable simulation
of interventions by modeling the interplay between individual be-
haviors and environmental dynamics and hence are valuable for
addressing policy questions. ABMs have helped study amultitude of
complex systems across epidemiology [7, 21, 24], economics [5, 6],
and disaster response [18, 19]. During the COVID-19 pandemic,
ABMs helped measure the effectiveness of lockdowns [32], evaluate
immunization protocols [33] and prioritize testing schedules [25].
Their utility for practical decision making requires capturing realis-
tic environment dynamics, integrating with real-world data streams
while efficiently simulating million-size population.

Their widespread adoption has been hindered by two concerns: a)
computational resources required to simulate, calibrate and analyze
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an ABM; b) need for microdata to generate underlying popula-
tions. Recent advances in deep learning have addressed some of
the computational challenges associated with ABMs. First, vector-
ized programming has helped ABM scale to million-size popula-
tions [10, 13]; and differentiable programming has enabled using
gradient-based learning to calibrate structural parameters [11, 13],
conduct sensitivity analysis in zero-shot using autograd [31] and
compose ABMs with deep neural network to ingest heterogeneous
data sources for guiding the calibration [11]. As a result, it is now
possible to conduct simulation, calibration and analysis of country-
scale ABMs on commodity hardware. Unfortunately, improvements
in the computational efficiency of ABMs is of little value if the
quality of the underlying population microdata is poor.

Conventional ABMs rely on data generated using sparse sum-
mary statistics derived from real-world observations. Privacy con-
siderations, not data sparsity, are the cause for this limited granular-
ity as data remains siloed across diverse institutions [9]. Consider
the case of epidemic modeling, which requires leveraging multi-
modal sources to capture feedback loop between individual behav-
ior and disease dynamics. This include access to demographic data
from the US census to define population; mobility traces from Safe-
graph and Google Mobility to capture interaction patterns; response
on digital surveys (such as facebook) to understand compliance and
risk behavior; health data (from CDC) to capture individual sus-
ceptibility; insurance and employment data (from bureau of labor
statistics) to contextualize socio-economic considerations. Assimi-
lating these dynamic data streams into the ABM calibration process
has become essential for address observational gaps and generate
real-time insights.

However, such information is usually sensitive and personally
identifiable, and hence securely siloed under regulatory oversight.
Previous attempts to release such demographic, mobility and health
data for scientific research have resulted in leaks that exposed
agents’ personal information [1, 14, 23]. Hence, the data is shared in
form of sparse summary statistics generated using privacy methods
to protect individual information on an aggregate level, as used
for US census [8] and Google mobility data [3]. In practice, these
privacy consideration come at utility loss which inhibits real-world
utility of the released data. As ABMs continue to scale towards
one-to-one representations of real-world systems, there remains a
fundamental limitation in their modeling potential as long as data
access is constrained. Alleviating this challenge is the focus of our
research.

In this paper, we introduce a mechanism for distribution sim-
ulation that can allow the institutions to collaborate but without
sharing their individual data. We leverage the composability of dif-
ferentiable ABMs to calibrate simulation parameters while keeping
the data decentralized.We build upon existing work in collaborative
machine learning. The simulation model, initialized using synthetic
population, is key on a centralized server. For each of the datasets,
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Figure 1: Background - Centralized Calibration of ABM (source [11]). The protocol consists of four steps: i) heterogeneousmacro-
level population data (CDC, census, behavioral, survey) is input to a calibration model (CalibNN) to predict epidemiological
parameters (𝜃𝑇 , 𝜃𝑃 ). ii): (𝜃𝑇 , 𝜃𝑃 ) are used run 𝐾 forward steps of the fully-differentiable epidemiological model (GradABM) which
simulates micro-level infection transmission (Transmit) and disease progression (Progress) over individual contact networks.
Disease statistics are aggregated (Aggregate) at end of 𝐾 steps to obtain the macro-level simulation output (𝑦). iii) Error between
predicted 𝑦 and real-world case statistics (𝑦) is used to define a loss (𝐿(𝑦;𝑦)). iv) Gradient of this loss is computed by automatic
differentiation through the micro-level GradABM to update weights of macro-level CalibNN using gradient descent. In practice,
the contextual data may be siloed due privacy and logistical concerns. This work proposes a technique to execute calibration
while keeping the contextual data decentralized.

client embeddings are generated with siloed data and communi-
cated on the server. The server aggregates the client embeddings
to generate simulation parameters and execute simulation. The
simulated gradients are propagated back to the clients to update
CalibNN. Periodically, the CalibNN across clients are synchronized
via federated averaging. This method helps achieve effective cal-
ibration, without compromising sensitivity of data. Second, we
also use this method for hierarchical calibration of multiple simu-
lations, which achieves in improved performance across different
ecosystems. While our analysis is focused on ABMs, the proposed
mechanism can be generalized to any differentiable simulation.

2 BACKGROUND
First, we review differentiable ABM and how they can be composed
with deep neural networks to ingest heterogeneous data for cali-
bration. Second, we review how this can be bridged with federated
deep learning to enable calibration on siloed data.

2.1 Differentiable Agent-based Modeling
Consider an ABM where 𝑋𝑁 = 𝐹 (𝑋0;𝜃 ) where 𝐹 is a stochastic
N-step simulator with input state 𝑋0, structural parameters 𝜃 and
output state 𝑋𝑁 . The ABM is composed of repeated simulation
steps of function 𝑔 s.t. 𝑋𝑡+1 = 𝑔(𝑋𝑡 ;𝜃 ). The ABM is differentiable if
the gradient

𝜂 = ∇𝜽 E[𝐹 (𝜽 )] (1)

exists and can be computed. In such case, for a smooth objective
function 𝑌 = 𝑐 (𝑋𝑛), the partial derivatives 𝑑𝑌/𝑑𝑋0 and 𝑑𝑌/𝑑𝜃 can
be computed using autograd. 𝑔 is typically a stochastic function (eg:
individual agent’s probability of infection) and research in differen-
tiable ABM has proposed methods to differentiate through discrete
and continuous stochasticity [4, 11, 32] and also built frameworks
built to generalize these capabilities across domains [13].

Calibration of an ABM refers to the process of estimating a set
of structural parameters 𝜽 , or a probability distribution over 𝜽 ,
such that 𝑦 = 𝑐 (𝑋𝑛) is consistent with real-world data. There is
extensive literature on how to calibrate ABMs with techniques in-
cluding approximate Bayesian computation [29], neural likelihood
and posterior estimation [15], among others. When the ABM is
differentiable, gradient-assisted calibration techniques can be used.
This enables the ABM to be composed with neural networks into
end-to-end differentiable pipelines for calibration[11] and is em-
pirically shown to improve performance. In these protocols, the
structural parameters for the ABM can be optimized by training
weights of the calibration neural network. This allows to guide
calibration with heterogeneous data sources; as well as jointly cal-
ibrate multiple simulators improving sample efficiency [11]. The
centralized protocol is visualized in figure 1. Consider, a calibration
neural network 𝐶 (CalibNN) with weights 𝜙 and contextual data 𝐷 .
Then, the structural parameters are generated by 𝜃 = 𝐶 (𝐷 ;𝜙) and
the ABM is executed at 𝐹 (𝜃 ). The calibration gradient is:

𝜂𝑐 = ∇𝝓 E[𝐹 (𝐶 (𝐷 ; 𝝓))] (2)
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Figure 2: Proposed - Distributed Calibration of Agent-based Models. We execute calibrate with contextual data distributed
across multiple clients. To achieve this, we split CalibNN between the clients and server to ensure calibration on multi-modal
data, without centralizing siloed information. Each client uses its local data to generate embeddings (in in yellow) which are
transmitted to server and used to predict structural parameters (𝜃𝑇 , 𝜃𝑃 ) to execute the simulation. We describe the protocol in
section 4. In principle, our framework can be extended to any differentiable simulation, even beyond agent-based models.

In practice, the contextual data 𝐷 can be siloed due to privacy
considerations. The goal of this work is to calibrate the ABM while
keeping the data decentralized. To achieve this, we draw upon work
in distributed machine learning which we briefly introduce below.

2.2 Distributed Machine Learning
This is a setting where many clients collaborative train a model un-
der the orchestration of a central server, while keeping the training
data decentralized. As strict regulations emerge for data capture
and storage, such as GDPR [17] and CCPA [2], distributed deep
learning is being used to enable privacy-aware learning across a
wide range of applications [16, 20, 30]. They key insight is to decen-
tralize the model training instead of centralizing the training data.
In a general distributed deep learning pipeline, there are multiple
rounds of training and synchronization steps where the model is
trained with local client data in each round and updates made by
multiple clients are synchronized by the server into a global model.
Federated learning (FL) [22, 27, 28] and split learning (SL) [12, 34]
are two paradigms which provide different designs for the training
and synchronization algorithms. Briefly, FL executes the training
entirely on local client devices and synchronizes the models by av-
eraging gradients on the server; while SL distributes model training
between client and server and synchronizes the model by constrain-
ing clients to update shared parameters on the server model. We
refer the readers to [26] for a detailed review of these paradigms. In
this paper, we generalize these protocols to execute calibration of
differentiable ABMs. Specifically, we extend split learning design to

distribute the CalibNN between client and server to enable learning
on the siloed data during calibration.

3 METHOD: DISTRIBUTED AGENT-BASED
MODELING

We consider a scenario where the contextual dataset 𝑑 is composed
of multiple components ((𝑑1, 𝑑2, 𝑑3, 𝑑4)) which are siloed across
distinct entities (called data clients). As motivated before, this is
plausible, given the heterogeneous data requirements for ABM
calibration. We consider an ABM 𝐹 with structural parameters
𝜃 and initial state 𝑋0. The protocol is visualized in figure 2 and
described below. The configuration is composed of 4 clients and 1
server. The calibration network𝐶 is split as𝐶𝑎 and𝐶𝑏 , following the
split learning design [12], which are executed at client and server
respectively. At the beginning, the server initializes a calibration
parameters 𝜙 and transmits the model weights 𝜙𝑎 to all the data
clients. Each episode executes as follows:

• First, each of the data client (𝑖 = 1𝑡𝑜4) generate embeddings
𝐸𝑖 = 𝐶𝑎 (𝑑𝑖 ;𝜙𝑎) and transmits the embeddings to the server.

• Second, the servermerges the embeddings (𝐸 = ( [𝐸1, 𝐸2, 𝐸3, 𝐸4]))
and generates the structural parameters 𝜃 = 𝐶𝑏 (𝐸;𝜙𝑏 ]).

• Third, the server uses 𝜃 to execute ABM simulation to gen-
erate aggregate predictions 𝑦 = 𝐹 (𝑋𝑂 ;𝜃 ) and apply a loss
function 𝐿 = 𝐿(𝑦,𝑦).

• Fourth, the gradients of the loss function ∇𝜙𝑎
𝐿 are used to

calibrate the structural parameters by: i) optimizing 𝜙𝑏 on
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server using ∇𝜙𝑏𝐿 and ii) transmitting gradient (∇𝜙𝑏𝐿) to
clients to update 𝜙𝑎 on each client.

• Fifth, the models (𝜙𝑎) at each client are periodically syn-
chronized by the server, using federated averaging [28], to
ensure consistent convergence and optimize over non-iid
distributions.

We execute this process for multiple episode and the final cali-
brated model can be used for simulation. We empirically validate
the effectiveness of the protocol in the next section.

4 EXPERIMENTS
To illustrate the effectiveness of our framework, we conduct ex-
periments for COVID-19 counties of the state of Massachusetts,
USA. We follow experimental protocol from [11] and consider an
epidemiological ABM and calibrate R0 (𝜃𝑇 in figure 1 and 2) to
ground-truth data on death statistics (obtained from the CDC). The
contextual data (𝑑) has 4 signals:

• Mobility Signals - This record people visiting points of inter-
est (POIs) in various regions and are obtained from Google
Community Surveys

• Symptomatic surveys - This includes statistics on COVID-
like illness obtained from voluntary surveys conducted by
Facebook

• Symptom search data - This includes records of searches
related to symptoms for multiple conditions and syndromes
across the US and different states collected by Google

• Deaths and Hospitalizations - This includes data of number
of hospitalizations and deaths obtained from the department
of Health & Human Services and the CDC

We vertically partition the training dataset with each of the 4 signal
stored in seperate clients; which is more consistent with practi-
cal considerations. In practice, the same calibration protocol can
be used when the data is horizontally partitioned. The architec-
ture of the Calibration network and the simulation design follows
from [11].

We compare calibration performance with the centralized pro-
tocol (fig 1) and the proposed distributed mechanism (fig 2). We
evaluate the performance using standard metrics like normal de-
viation(ND), root mean squared error (RMSE) and mean absolute
error(MAE). Results in Table 1 shows that we distributed mecha-
nism can preserve the performance of centralize baseline. This is
an encouraging observation since it highlights the potential to use
more granular signal for calibration, in the future, while ensuring
data privacy.

5 CONCLUSION
Granular and heterogeneous data is critical for calibrating agent-
based models to real-world dynamics. However, much of this data
is siloed across institutions due to valid privacy concerns. We have
introduced a protocol to enable distributed calibration of ABMs
without centralizing raw data. By splitting the calibration network
between data clients and a server, and communicating only embed-
dings and gradients, it allows leveraging multi-modal data while
keeping it decentralized. Our experiments on a COVID-19 ABM
demonstrate the distributed protocol can match the accuracy of
centralized calibration using pooled data. This is a promising result,

Calibration data ND RMSE MAE
No data 2.79 ±0.65 160.55 ±23.59 69.16 ±10.84

Centralized [11] 1.15 ±0.24 53.86 ±14.61 28.43 ±6.39
Distributed (Proposed) 1.23 ±0.35 54.74 ±10.61 30.21 ±8.45

Table 1: We compare the proposed distributed calibration
mechanism with two baselines: a) centralized calibration
where all contextual data for calibNN is available in one-
place, b) centralized calibration without using any contex-
tual data (use gradient-based learning with CalibNN, as equa-
tion 1). We observe that the proposed method achieves con-
sistent performance with the centralized data mechanism,
while preserving privacy. We also observe that using contex-
tual data is consistently better than not using the data. This
work is promising in ability to ingest more granular data for
calibration, while protecting privacy.

as it provides a path to improve ABMs with sensitive datasets that
would otherwise be inaccessible. While we focused on ABMS, the
core distributed learning techniques are quite general and could
be extended to other types of differentiable simulations. There are
several important directions for future work. First, conducting more
extensive experiments across a range of ABM applications. Second,
enhancing the protocol with additional privacy safeguards such as
differential privacy. Finally, exploring alternative architectures and
learning algorithms to further improve efficiency and robustness.
Enabling privacy-preserving use of sensitive data to enhance mod-
eling and simulation could have a profound impact across domains
from epidemiology to economics. We believe bridging techniques
from multi-agent systems and collaborative learning is a fruitful
direction to realize this potential. Our work provides an initial step
in this direction.
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