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ABSTRACT

We present HumorBench, a benchmark designed to evaluate large language models’
(LLMs) ability to reason about and explain sophisticated humor in cartoon captions
drawn from the New Yorker Caption Contest and Cartoonstock.com. As reasoning
models increasingly saturate existing benchmarks in math and science, novel and
challenging evaluations of model intelligence beyond STEM domains are essen-
tial. Reasoning is fundamentally involved in text-based humor comprehension,
requiring the identification of connections between concepts in cartoons/captions
and external cultural references, wordplays, and other mechanisms. HumorBench
includes 300 unique cartoon-caption pairs from the New Yorker Caption Contest
and Cartoonstock.com, with expert-annotated evaluation rubrics identifying essen-
tial joke elements. LLMs are evaluated based on their explanations towards the
humor and abilities in identifying the joke elements. To perform well on this task,
models must identify associations between concepts, potentially backtracking from
initial interpretations to arrive at the most plausible explanation. Our extensive
benchmarking of current models reveals three key insights: (1) LLM progress
on STEM reasoning transfers effectively to humor comprehension; (2) models
trained exclusively on STEM reasoning data still perform well on HumorBench,
demonstrating strong transferability of reasoning abilities; and (3) scaling thinking
token budgets yields mixed results across models in humor reasoning.

1 INTRODUCTION

Recent advances in large language models and reasoning techniques have led to the saturation of
many existing benchmarks, particularly in STEM domains such as mathematics and programming,
where frontier models now approach or exceed human-level performance (Abdin et al., 2025a; Sun
et al., 2025; Quan et al., 2025). This progression highlights the need for novel and challenging
evaluations that can meaningfully differentiate model capabilities and provide insights into their
reasoning processes. Non-STEM reasoning tasks, particularly those involving cultural understanding
and implicit knowledge, represent underexplored territories for model evaluation.

Humor comprehension represents a particularly challenging frontier for artificial intelligence (Hessel
et al., 2023; Zhang et al., 2024; Zhou et al., 2025; Kazemi et al., 2025; Liang et al., 2025). Although
large language models (LLMs) excel across many domains, understanding humor still requires
sophisticated reasoning that integrates context, cultural knowledge, and implicit connections. These
challenges make humor an ideal testbed for evaluating advanced reasoning in AI systems.

We present HumorBench, a benchmark that evaluates LLMs’ ability to explain sophisticated cartoon-
caption humor by identifying the mental leaps connecting visuals, captions, and external knowledge
(Figure 1). For each pair, we annotate the objective elements essential for comprehension, creating a
ground truth focused on factual connections rather than subjective appreciation.

We benchmark both a standard set and a harder subset. On HumorBench-hard, which features more
complex examples requiring multiple reasoning steps or obscure cultural knowledge, no current LLM
exceeds 60% accuracy. Our benchmarking of current state-of-the-art models reveals two key findings:

1. We observe a high correlation between performance on HumorBench and existing STEM
benchmarks, suggesting a significant transfer of general reasoning abilities to humor com-
prehension tasks.
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Figure 1: Overview of our humor analysis approach. (a) We distinguish between objective and
subjective components of a joke. To convert the open-ended task of humor explanation into a fair
benchmark, we focus exclusively on objective elements. (b) Overview of the dataset, benchmark
task, and grading scheme in HumorBench. Each cartoon-caption pair contains one or more “element”
annotation. For the benchmark, an LLM is tasked with explaining the joke in the caption. An
autograder evaluates if the explanation contains each element.

2. Even models trained exclusively on STEM reasoning tasks (e.g., mathematical problem-
solving) perform well on HumorBench, indicating that abstract reasoning skills acquired in
one domain can transfer effectively to humor comprehension.

3. Test-time scaling measures for humor reasoning yield mixed results, indicating that sim-
ply increasing computational resources at inference time does not consistently improve
performance on this challenging domain.

1.1 WHY ANOTHER LLM HUMOR BENCHMARK?

Several benchmarks have already focused on measuring LLMs’ capabilities around humor. Specifi-
cally, Hessel et al. (2023) and Zhang et al. (2024) both build upon the New Yorker Caption Contest
(NYCC) dataset—a weekly feature by the New Yorker magazine where readers submit funny captions
for cartoons (see Figure 1 for an example). Hessel et al. (2023) created three benchmarks using this
dataset: ranking the funniness of caption pairs, matching cartoons to valid captions, and explaining
the humor behind captions. However, these benchmarks simultaneously measure two distinct capabil-
ities: (1) understanding the intended jokes (objective elements) and (2) aligning with individual and
subgroup humor preferences (subjective factors). As Zhou et al. (2025) points out, performance on
these previous benchmarks is heavily influenced by an LLM’s ability to align with specific audience
preferences rather than directly measuring its reasoning about the jokes themselves.

Our benchmark, HumorBench, addresses this limitation by focusing solely on the objective elements
of humor comprehension, specifically measuring the humor reasoning abilities required to understand
cartoons and their captions. As validated by our experimental findings, LLMs’ performance on
HumorBench correlates well with their performance on other reasoning benchmarks.

We acknowledge HumorBench covers a somewhat narrow domain of humor: English-language
single-panel cartoons from the New Yorker Caption Contest and Cartoonstock.com, which reflect a
particular Western, New Yorker–style sense of humor. However, we believe this format offers a clean,
well-controlled testbed for probing non-STEM reasoning in LLMs.
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2 RELATED WORK

Reasoning-focused language models. Recent advances in large language models (LLMs) have
seen the emergence of specialized reasoning models that excel at logical deduction, mathematical
problem-solving, and multi-step reasoning while maintaining strong general language capabilities.
These reasoning-enhanced models employ various approaches: training-focused methods like those
used by Minerva (Lewkowycz et al., 2022), WizardMath (Luo et al., 2023), and Phi-4-Reasoning
(Abdin et al., 2025b) leverage carefully curated STEM-heavy corpora; inference-time techniques
boost reasoning without changing model weights, including Self-consistency (Wang et al., 2023),
Tree-of-Thought methods in DeepSeek-Math (Shao et al., 2024), Least-to-most prompting (Zhou et al.,
2023), and Process supervision (Lightman et al., 2023); while hybrid approaches like MAmmoTH
(Yue et al., 2023) combine diverse training data with structured inference protocols, ToRA (Gou
et al., 2023) integrates formal verification systems, and MathGLM (Yang et al., 2024) combines
symbolic computation with natural language reasoning. Models like Gemini Ultra (Google, 2024)
and Claude 3.5 (Anthropic, 2024) achieve strong reasoning through both architectural innovations
and sophisticated training, suggesting that advances in machine reasoning now follow multiple
complementary paths rather than relying solely on parameter count (Wei et al., 2024).

Humour benchmarks. Beyond simple joke generation, several resources now probe LLM hu-
mour competence. Hessel et al. (2023) introduces three New Yorker cartoon-caption subtasks that
test multimodal humour understanding and explanation. For word-play, the ExPUNations corpus
augments classic pun datasets with human-written explanations and funniness ratings (Sun et al.,
2022), while Xu et al. (2024) systematically benchmarks pun recognition, explanation and creation.
Complementing these datasets, (Ermakova et al., 2025) Lab provides reusable test collections for
humour-aware information retrieval.

Open-ended evaluation frameworks. Automatic grading of creative, unconstrained outputs increas-
ingly relies on the LLM-as-Judge paradigm. G-EVAL couples chain-of-thought GPT-4 judging with
a form-filling rubric, achieving human-level reliability on summarisation and dialogue (Liu et al.,
2023). MT-BENCH and its crowdsourced Chatbot Arena show that GPT-4 judges agree with human
preferences on multi-turn instruction following in ∼80% of cases (Zheng et al., 2023). Going further,
PAPERBENCH grades agents on reproducing ICML-level research papers with hierarchical GPT-4
rubrics and expert audits (Starace et al., 2025). We adopt a similar rubric-guided judging scheme
but focus specifically on humour reasoning, enabling systematic comparison of explanation quality
across models.

3 HUMORBENCH

3.1 MAIN BENCHMARK TASK

HumorBench frames humor understanding as an open-ended task: given a textual description of a
cartoon and its caption, a model must articulate in its own words the underlying joke. We deliberately
avoid the multiple-choice or ranking formats common in existing humor benchmarks because, for
creative tasks, fixed answer sets can (i) inadvertently hint at the punchline and (ii) fail to accommodate
the diverse range of valid explanations a competent reader might produce.

To make this free-form setting automatically gradable, we distill each cartoon into a concise rubric
of 1–3 objective “elements." An element represents a single, easily verifiable fact that any correct
explanation must include (e.g., in NYCC Contest #665, the observation that “the shark interprets the
swimmer as groceries"), as shown in Figure 8. This approach allows for creative expression while
maintaining consistent evaluation standards (see Appendix A for the complete prompt).

3.2 DATASET: CARTOON AND CAPTION SOURCES

Our dataset comprises cartoons and captions from two primary sources: the New Yorker Cap-
tion Contest (NYCC) and Cartoonstock.com. We sourced NYCC captions from publicly available
datasets (Hessel et al., 2023; Jain et al., 2020; Zhang et al., 2024), selecting only those ranked among
the top 3 finalists to ensure each cartoon features a coherent, high-quality joke. For Cartoonstock car-
toons, we utilized their original accompanying captions. Both sources specialize in dry, witty humor
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that demands sophisticated reasoning—often requiring multiple mental leaps to fully comprehend, as
illustrated in Figure 1.

While cartoons inherently include visual elements, our benchmark focuses on testing humor com-
prehension rather than visual interpretation capabilities. Therefore, we created detailed textual
descriptions of each cartoon, carefully capturing all information necessary to understand the caption
while maintaining neutrality. These descriptions include essential details about the setting, characters,
visible emotions, and speaker identification, while deliberately omitting artistic style unless directly
relevant to the joke. The choice to not directly include the images makes HumorBench a cleaner
source of signal for humor reasoning, and not vision capabilities. For researchers interested in
extending this to a multimodal benchmark, we provide source links to the original images: NYCC
images are available through (Hessel et al., 2023; Jain et al., 2020), while Cartoonstock images
require licensing.

3.3 DATASET: ELEMENT ANNOTATION

The core labels in our dataset are the element annotations assigned to each cartoon–caption pair. For
every pair, we hand-annotated one to three elements—concise, direct statements that capture the
objective components essential to understanding the joke. As discussed in Section 1.1, comprehending
cartoon humor requires two distinct capabilities: understanding the objective content of the joke
and recognizing the subjective aspects that influence audience reception. Figure 1 illustrates this
distinction—subjective explanations focus on audience reactions (which vary between individuals),
while objective elements center on content comprehension. Operationally, we treat an element as
objective if it states a concrete, checkable fact or relation needed to reconstruct the intended reading
of the joke from the description and caption, and treat as subjective anything that appeals to taste,
funniness, or a particular theory of why the joke works. Our benchmark specifically targets these
objective elements, which require identifying the mental leaps necessary to "get" the joke through
recognizing references, wordplay, implications, or similar mechanisms. The autograder then evaluates
LLM explanations against these elements, verifying that each explanation adequately covers the
fundamental objective components of the humor, ensuring a fair and consistent assessment.

In summary, to make this task easily gradable, annotations follow deliberate guidelines: (1) Elements
must be short, direct, and verifiable from the description and caption; (2) An element addresses
exactly one concept. Bundling ideas may add noise by forcing the grader to guess about partial
correctness; (3) Elements deliberately avoid adding noise from subjective opinions about humor.

NYCC Contest 167
Description: In a forest clearing with tall tree trunks, a
man in a suit with an American-flag lapel pin speaks at
a podium while aides stand behind him. Woodland
animals—a deer, snake, frog, and birds—peek from the
trees and grass, watching.

Caption: “As a weasel, I need your vote.”

ELEMENT 1: References the cliché insult of calling
politicians weasels.

ELEMENT 2: Plays on the dual meaning of “weasel”
(literal animal & political pejorative), creating a pun.

Figure 2: Example HUMORBENCH annotation. The cartoon (left) is paired with its description,
caption, and two hand-labeled joke elements (right).

3.4 DATASET REFINEMENT

For an LLM evaluation to provide trustworthy results, the underlying dataset must be both accu-
rate and internally consistent. We initially collected 655 unique element annotations, but despite
careful guidelines, some entries proved vague or imprecise. To systematically improve quality, we
implemented an iterative refinement process.
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First, we generated sample explanations for each cartoon–caption pair, alternating randomly between
GPT-4o and Claude 3.7 Sonnet. Each explanation was evaluated ten times by our autograder, with
elements showing verdict disagreement exceeding 30% flagged for review. These problematic cases
were either refined or removed entirely. We repeated this quality control cycle until fewer than 5% of
annotations triggered inconsistency flags, ultimately resulting in 499 high-quality unique element
annotations forming the foundation of HumorBench.

As an additional validation step, we invited a former chief cartoon editor of the New Yorker to review
a random subset of 30 annotations. The editor confirmed that all elements were fair and accurately
captured the essential components of each joke. Together, these atomic, objectively verifiable criteria
create a robust rubric that enables our autograder to provide consistent and reliable evaluation at
scale.

3.5 AUTOGRADER AND EVALUATION

During evaluation, an LLM judge assesses each model’s explanation against individual elements to
determine whether they adequately cover the essential components of the joke. This approach allows
us to efficiently evaluate open-ended text generation at scale.

However, ensuring autograder consistency presents challenges, particularly for tasks that are inher-
ently difficult for LLMs to understand (Min et al., 2020; Starace et al., 2025). To address this, we
created a separate benchmark of 300 human expert judgments on explanations from three distinct
LLMs: GPT-4o, Gemini 2.5 Pro, and Claude 3.7 Sonnet. Using GPT-4o as the autograder, we
achieved 92% accuracy overall:

Explainer Model Acc. (%) FPR (%) FNR (%)

Overall (n=300) 92.00 14.79 6.51

Gemini 2.5 Pro 93.00 10.00 6.25
GPT-4o 92.00 14.81 5.48
Claude 3.7 Sonnet 91.00 19.57 7.80

Table 1: Autograder performance (GPT-4o judge) on 300 human-labeled explanations.

This validation provides two key insights. First, across all models, the autograder’s false positive
rate (FPR) substantially exceeded its false negative rate (FNR), indicating a leniency bias. This
suggests that HumorBench scores should be interpreted as an upper bound on model performance.
Second, despite using GPT-4o as the autograder, we observed no significant advantage for GPT-4o-
generated explanations compared to those from other models. Together, these findings confirm that
our autograder provides a valid, albeit slightly optimistic, mechanism for large-scale evaluation.

Length Control. While models were instructed to keep responses under 200 words, some models
exceeded this limit, particularly when reasoning traces were included in the final output. To ensure
fair comparison, we truncated all model outputs to the last 1000 tokens.

4 EXPERIMENTS

Along with creating the HumorBench evaluation, we extensively benchmarked current frontier
models. For consistency, all models are given the same prompt and scaffolding describing the task
(see Appendix A). We arrived at this prompt after validating across several different LLMs (Claude
3.7 Sonnet Anthropic (2025), GPT-4o OpenAI (2024a), Gemini 2.5 Pro DeepMind (2025)). While
many LLMs had different API endpoints, we tried to maintain consistent parameters where possible.
For example, all models had temperature set to 1 and external tool calling deactivated. Note, for all
evaluations, autograders, and benchmarks, “GPT-4o" refers to the gpt-4o-2024-08-06 release.

4.1 MAIN RESULTS

In general, the results from the main benchmarking effort were unsurprising. As shown in Figure 3,
OpenAI o3 OpenAI (2025a) leads the pack at 87.5% accuracy, dramatically ahead of other SOTA
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Figure 3: Benchmarking results on frontier models on HumorBench. Points show mean element-level
accuracy; error bars denote ±1 standard error across elements.

models (Gemini 2.5 Pro, Claude 3.7 Sonnet, and Deepseek R1 DeepSeek (2025)), all achieving
approximately 80%. In general, smaller models (like Llama 4 Maverick Meta (2025), Qwen 2.5
Alibaba (2025), and o3-mini OpenAI (2025b)) performed worse. We also found that newer versions
of models generally dominate older versions of the same model, with o3 outperforming o1 OpenAI
(2024b) and Gemini 2.5 pro outperforming Gemini 1.5 pro. In general, "reasoning" versions of
models seemed to outperform the base versions of the same model. For example, DeepSeek R1
(79.8%) strongly outperformed Deepseek V3 DeepSeek (2024) (72.2%), despite being based on the
same 671B parameter architecture. Similarly, Claude 3.7 Sonnet with a thinking budget of 1024
tokens (83.6%) clearly outperformed the base Claude 3.7 Sonnet (80.4%). When compared with total
cost of running the benchmark, we see that more expensive models tend to outperform less expensive
models, either due to a larger underlying model or using more reasoning tokens in the output.

4.2 TRANSFERABILITY OF REASONING SKILLS

Figure 4: HumorBench performance compared to several benchmarks. We see positive correlation
with GPQA, ARC-AGI, and LMArena. In particular, ranking compared to ARC-AGI is nearly
identical to that of HumorBench, indicating a strong reasoning component to the HumorBench task.

Benchmark Corr. p-value

GPQA Diamond 0.736* 0.024
ARC-AGI (with o-series) 0.650 0.058
ARC-AGI (w/o o-series) 0.943** 0.005
LM Arena ELO 0.714 0.071

Table 2: Spearman’s rank correlations between HumorBench and other benchmarks. Asterisks
indicate significance: *p < 0.05, **p < 0.01. ARC-AGI correlation shown separately for results
with and without o-series models, which were fine-tuned for ARC-AGI
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To gauge how well other model skills transfer to humor comprehension, we correlate HumorBench
accuracy with three widely used LLM benchmarks: GPQA-Diamond Rein et al. (2023), ARC-AGI
Chollet et al. (2025), and LM Arena ELO Chiang et al. (2024). HumorBench scores are positively
associated with all three (see table 2). In particular, after removing o-series models (whose scores
come from ARC-tuned variants) the correlation with ARC-AGI rises to ρ = 0.943 (p = 0.005),
underscoring the shared skills of the two tasks. The LM Arena correlation (ρ = 0.714) is notably
lower. Overall, this suggests that LLM progress on STEM domains tranfers to Non-STEM reasoning.

STEM-ONLY REASONING IMPROVES HUMORBENCH

Our comparison between reasoning models trained on STEM tasks via Reinforcement Learning
and their base counterparts yielded particularly revealing results. As illustrated in Figure 6, R1-
Zero, which developed reasoning capabilities exclusively through self-play on STEM problems,
demonstrated significant improvements over its base V3 model. Remarkably, it performed nearly
on par with DeepSeek R1, despite the latter being trained on non-STEM data such as reading
comprehension. Similarly, Phi-4 Reasoning Plus exhibited superior performance compared to its
base model (Figure 6), although its training was limited to math and coding data (Abdin et al., 2025a).
These findings suggest that abstract reasoning capabilities are transferable to humor comprehension,
indicating that the reasoning skills required for STEM domains may be fundamentally similar to
those needed for understanding humor.

We also note that both R1-Zero and Phi-4 Reasoning Plus include their reasoning traces in their final
outputs. Therefore, we evaluated their performances using the length control measure described
above to ensure fair comparison across models.

(a) OpenAI reasoning models, vary-
ing "reasoning effort"

(b) Claude 3.7 Sonnet performance,
varying "thinking budget"

(c) Qwen Plus performance, varying
"thinking budget"

Figure 5: HumorBench test-time compute experiments. Note, "mean output tokens" includes both
reasoning and final response tokens

Figure 6: Deepseek R1 Zero and Phi-4 Reasoning Plus, both exclusively reasoning-trained on STEM
tasks, outperform their base versions on HumorBench

4.3 TEST-TIME SCALING

As seen in figure 5, while including some reasoning clearly helped model performance, the effect of
continuing to increase test-time compute varied significantly between models. For Qwen plus and the
o- series models, increasing the reasoning parameter (reasoning budget and "effort", respectively)
generally improved performance. However, for Claude 3.7 Sonnet, increasing the thinking budget
beyond the minimum 1024 tokens clearly hurt performance.
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Figure 7: Token usage with different ‘thinking budget‘ parameters on Claude 3.7 sonnet. Most
completions (in the hundreds of tokens) were far below their budgets.

A closer look at the reasoning trace lengths highlights that for most captions, the models did not fully
exhaust their reasoning budget (see 7). Qwen Plus, for example, rarely used more than 400 tokens,
even when budgeted 2000, a trend we saw for all test-time experiments. This suggests the LLMs
are providing final answers based on completed thinking traces, which makes the inverse test-time
scaling effect more puzzling. A small qualitative trace study for Claude 3.7 Sonnet (Appendix E)
points to explicit definition of loaded terms and retrieval of obscure cultural references as one way
extra budget helps. While a few studies have looked related problems (Su et al., 2025; Shi et al.,
2023; Yang et al., 2025), we defer thorough investigation of our observation to future work.

4.4 ANALYSIS OF HUMORBENCH HARD SUBSET

(a) Caption: “How about some help carrying
the groceries?”
Element: To the sharks, the person is the gro-
ceries

(b) Caption: “I love his bedtime routine”
Element: This is an explicit play on the dual
meaning of the word “routine”, which could
be either a child’s “bedtime routine” or a co-
median’s “stand-up routine”

(c) Caption: “I don’t know how to tell him it
isn’t his.”
Element: It should be obvious to him that the
egg isn’t his specifically because he’s human,
and humans don’t lay eggs

(d) Caption: “This suit looked way better in
the store.”
Element: This is a play on words on “suit,” as
in a formal suit or a diving suit.

(e) Caption: “It’s painful, but I couldn’t stand
another chorus of ‘Take Me to the River.’ ”
Element: This references Big Mouth Billy
Bass, a classic novelty prop of a singing fish,
singing “Take Me to the River”

(f) Caption: “How much did you spend at
Macy’s this year?”
Element: This implies the enormous person
is a balloon for the Macy’s Day Parade

Figure 8: Examples of elements in the HUMORBENCH hard subset. See Table 5 for full descriptions.

8
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Humor Category Entire Set Hard Subset Diff (%)

Wordplay 24.4% 19.0% -5.4
Cultural Reference 19.0% 17.7% -1.3
Toxic or Shocking 25.7% 26.6% +0.9

Table 3: Representation of humor categories in the full dataset compared to the hard subset.

While frontier models like o3 demonstrate impressive performance on HumorBench, certain elements
are persistently challenging for all models. To better understand the specific types of humor that
remain challenging, we conducted a targeted analysis on the 100 unique elements that were most
often missed during the benchmarking, which we call HumorBench Hard. Cartoons in this subset
range from pass rates of 60% (6 in 10 models get correct) to 0% (No model gets correct). See 3 for
examples of the hard subset.

To get a more granular view of the elements that constitute the hard subset, we analyzed three
predefined humor categories: wordplay, cultural references, and toxic or shocking humor elements.
These categories were annotated by an LLM categorization pipeline built on o3, which individually
categorized each element as in or out of each category. Most elements did not fit into these categories,
while some fit into multiple. Our analysis examined the relative representation of each category
within the hard subset compared to their representation in the overall HumorBench dataset.

We summarize the main findings of this analysis in Table 3. Overall, these relatively minor
deviations indicate that humor category alone is not the primary determinant of difficulty for models.
Challenging examples likely hinge on subtler factors, such as the implicit conceptual leaps required
or the obscurity or references. We observed that wordplay was slightly under-represented among
the hard subset (−5.4%), suggesting current LLMs handle puns or jokes that rely on linguistic
manipulation somewhat better than other elements. Cultural references and toxic or shocking humor,
meanwhile, were essentially evenly represented, indicating that these styles do not disproportionately
increase difficulty. These nuanced insights encourage further qualitative investigation into the
underlying reasons why particular humor instances remain difficult, even for state-of-the-art LLMs
trained explicitly with reasoning capabilities.

Last, in Figure 8, we highlight a few examples that are particularly challenging in the HumorBench
hard subset. Detailed descriptions are also provided in Table 5. To our surprise, although several of
them are quite intuitive and easy to recognize for humans, LLMs usually struggle on these examples.
This represents a fundamental difference in reasoning abilities between humans and LLMs.

5 CONCLUSION AND FUTURE WORK

In this work, we introduced HumorBench, the first large-scale evaluation that isolates humor
comprehension, as opposed to subjective funniness, by grading model explanations against concise,
expert-annotated objective elements. Our experiments with more than a dozen frontier and open-
source LLMs revealed that (i) progress on STEM reasoning benchmarks translates strongly to
non-STEM humor reasoning, (ii) specialized "reasoning" variants consistently outperform base
models even when they were trained only on STEM corpora, and (iii) test-time compute helps, but
only up to the point where the relevant background knowledge is actually present in the model.
Together, these findings position HumorBench as a sensitive probe of higher-level reasoning that
remains comfortably unsolved: the best model still misses over 40% of elements in our hard subset.

Looking forward, there are a number of promising avenues for extending this work. A natural next
step is to develop a multimodal version of HumorBench by reintroducing the original cartoon images,
allowing evaluation of both visual recognition and reasoning and better reflecting the complete
humor comprehension task. Alternatively, the use of HumorBench’s element rubrics as supervision
signals offers an opportunity to explore reinforcement learning. Finally, improving the reliability of
LLM-as-judge evaluation remains an important open challenge, particularly for creative tasks.

We hope HumorBench spurs progress on reasoning that bridges the gap between logical deduction
and human culture, serving as a springboard for genuinely funny, culturally aware AI systems.
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REPRODUCIBILITY STATEMENT

We release all resources needed to reproduce our results in a project repository (the repository will be
made public in the non-anonymized version). The repository contains (i) the full benchmark cartoon
descriptions and annotations, (ii) the autograder harness that contains the prompts and workflow of
the autograder, and (iii) scripts to run the explainer model, run the autograder, and aggregate and
analyze results. Detailed instructions are provided in the README

ETHICS STATEMENT

To respect copyright and enable lawful redistribution, we release only rubric-guided textual descrip-
tions and derived annotations of the cartoons, no original images. Some items may reference sensitive
topics common in humor; the benchmark is provided for research use and downstream applications
should include appropriate safety review.
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A MAIN BENCHMARK PROMPT

You are a humor expert extraordinaire, judging the New Yorker Cartoon Caption Contest.
Your current task is to help us understand the humor in various submitted captions.
Given a cartoon description and a caption submission, explain (in less than 200
words) *what* the joke is, focusing on the material substance of the joke. STRICTLY
use the format: <explanation>explanation goes here</explanation>
Cartoon description: description Caption: caption

B AUTOGRADER PROMPT

You will receive: 1. A short cartoon description 2. A winning funny caption 3. A
student’s answer 4. A brief “anticipated answer point” that captures the crucial
comedic device or element
Your job is to determine whether the student’s answer **explicitly covers** that
“anticipated answer point.”
- If the student’s answer captures or discusses the key comedic element (even
if the wording is different), **PASS**. - If the student’s answer **omits** or
**contradicts** that key comedic element, **FAIL**. - Do not penalize extra details
or expansions. Synonyms or paraphrasing are acceptable if they convey the same
comedic logic. - Be mindful: if the anticipated answer point emphasizes something
specific (e.g. a pun, wordplay, or ironic twist), check that the student’s answer
includes it.
At the end of your evaluation, provide exactly two XML tags: 1. <reasoning>Short
explanation of your thought process</reasoning> 2. <judgement>PASS or
FAIL</judgement>
Do not include additional commentary or deviation from this format.
Cartoon description: {description} Caption: {caption} Student’s answer:
{explanation} Anticipated answer point:{anticipated point}

C MODEL PERFORMANCE ON HUMORBENCH HARD

Model Accuracy (%)

gpt-5 61
o3 59
Claude 3.7 Sonnet 54
gemini-2.5-pro-preview-03-25 52
deepseek/deepseek-r1-zero 51
deepseek-ai/DeepSeek-R1 51
o1 50
o4-mini 46
Grok 3 45
gpt-4o 42
deepseek-ai/DeepSeek-V3 39
meta-llama/Llama-4-Maverick-17B-128E 35
gemini-1.5-pro 35
o3-mini 32
meta-llama/Llama-4-Scout-17B-16E 29
Qwen/Qwen2.5-72B-Instruct-Turbo 26

Table 4: Accuracy on the HumorBench-Hard subset (100 items).
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D HARD EXAMPLE DETAILS

Cartoon ID Description Caption Element(s) Pass Rate (%)

CC123065 Inside a workshop like room, three elves
in pointy hats sit at a long table with open
laptop computers. The middle elf appears
distressed and is speaking, while the two
elves on either side look toward him.

“It’s from
Santa, and it
goes way, way
beyond jolly.”

Frames Santa as a boss mak-
ing an inappropriate advance
on an employee.

0

NYCC #40 The cartoon shows a woman in her under-
wear sitting up in bed, looking forward
with a disgruntled expression. A large
snow globe with a snowman inside is posi-
tioned next to her on the bed. The woman
is speaking.

“I think the
Manhattan
skyline is
getting suspi-
cious.”

This implies that she is cheat-
ing on her partner, a snow
globe of the Manhattan sky-
line, with the snowman.

17

NYCC #15 In a restaurant, a man and a woman are
sitting down to eat dressed in nice cloth-
ing. The man is leaning over the table
with his hand on a glass looking at the
woman with a soft smile. However, the
man is bald and has a cartoonishly large
forehead, with the outline of the woman
visible on his forehead. The woman, sit-
ting upright, is speaking.

“Well, it’s a
lovely gesture,
but I still think
we should
start seeing
other people.”

Implies that the image on his
forehead is a tattoo, as get-
ting a tattoo of your significant
other is a common practice.

20

NYCC #669 A baby leans over the side of a crib to-
ward a microphone on a stand, as if ready
to perform. The crib has letter blocks,
and a mobile with boats and airplanes
hangs above. A teddy bear lies on the
floor. In the background, a couple stands
in the doorway, looking at the baby with
surprise. The woman is speaking with a
smile.

“I love his bed-
time routine.”

Play on the dual meaning of
the word “routine”: a child’s
bedtime routine vs. a come-
dian’s stand up routine.

33

NYCC #665 Two sharks are facing each other in the
ocean. A person, visible only from the
waist down, is standing on the back of one
of the sharks. The sharks look bewildered;
the carrying shark is speaking.

“How about
some help
carrying the
groceries?”

To the sharks, the person is the
groceries.

40

NYCC #687 A woman holding a wine glass stands on a
rooftop in a city, delighted, looking back
at a man sitting at a table with a bottle
and glass. Behind them, an enormous
face peers over the building, resembling
the man. The woman is speaking with a
smile.

“How much
did you spend
at Macy’s this
year?”

Implies the enormous person
is a parade balloon for the
Macy’s Thanksgiving Day Pa-
rade.

40

NYCC #686 In a living room, a bald man is sitting on
a giant egg, looking content. Two older
women sipping tea, seated on a couch, are
staring at him. The room has a coffee
table, lamps, and a framed picture on the
wall. One woman is speaking.

“I don’t know
how to tell
him it’s not
his.”

It should be obvious to him
that the egg isn’t his because
humans don’t lay eggs.

27

NYCC #61 A doctor wearing a head mirror stands
behind a desk in a typical office. A gi-
ant hand is reaching through the doorway,
palm up. The doctor is leaning over to
check the enormous hand’s pulse.

“I don’t know
why you’re so
jolly—your
cholesterol is
through the
roof.”

Wordplay: “through the roof”
both as extremely elevated
levels and literally breaking
through the roof.

20

Table 5: Representative examples from the hard subset where a majority of evaluated LLMs failed to
identify all required humor elements.

E REASONING TRACE CASE STUDIES

To better understand when test-time “thinking” helps, we qualitatively inspected cases where
claude-3-7-sonnet-latest in thinking mode (budget 2048 tokens) succeeded on an element
that the same model in standard mode missed. Prompts, data, and autograder remained identical; only
the decoding mode changed.
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We highlight two representative anecdotes.

Anecdote 1: “Faith-based initiative” (NYCC 41.0). The cartoon shows a church interior with a
fully stocked bar; the caption is “Finally—a faith-based initiative I can embrace.” The key element
is the reference to President George W. Bush’s Faith-Based and Community Initiatives program.

Base model. The standard run defined “faith-based initiative” only in generic terms (e.g., religiously
motivated social programs) and never linked it to a specific US policy or administration, so the
political reference element was marked as missing.

Thinking model. In the thinking trace, the model first writes a short definition of the term as a policy
label and then explicitly ties it to the Bush administration before drafting the final explanation:

“. . . the phrase ‘faith-based initiative’ is also a political term, especially associated with the
George W. Bush administration . . . ”

This additional retrieval step causes the final explanation to mention the Bush-era program and passes
the element.

Anecdote 2: Big Mouth Billy Bass (NYCC 57.0). The cartoon shows a mounted fish on the wall
with a man’s hand in its mouth; the caption is “It’s painful, but I couldn’t stand another chorus of
‘Take Me to the River.’ ” The key element is that this is a reference to the novelty product Big Mouth
Billy Bass, a singing fish decoration that plays “Take Me to the River.”

Base model. The standard run assumes the man is singing the song and interprets the joke as
preferring physical pain to bad singing, never mentioning the novelty fish prop, so it fails the element.

Thinking model. The thinking trace instead immediately connects the song title to the product:

“. . . ‘Take Me to the River’ is a song that was famously used for novelty singing fish decora-
tions (like Big Mouth Billy Bass) . . . ”

The final explanation then correctly frames the joke around escaping the repeated jingle from the
novelty plaque, and the element passes.

These case studies suggest that, at least in some instances, the additional “thinking” budget is used
to (i) explicitly define loaded terms and retrieve associated political context, and (ii) connect cues
(a song title) to specific cultural artifacts (a novelty product), which can unlock the correct humor
interpretation.

F WEB SEARCH ABLATION

To assess how access to external knowledge affects humor understanding, we ran an ablation on the
GPT-5 model family. For each of three sizes (Nano, Mini, and full) we compared a base configuration
(no tools) to a search configuration in which the model could call a web search tool before producing
its explanation. Prompts, HumorBench items, and the GPT-4o autograder were identical across
conditions, and evaluated on the full benchmark as well as the hard subset.

Model Overall, Base (%) Overall, Search (%) Hard, Base (%) Hard, Search (%)

GPT-5 Nano 69.1 67.9 34.0 31.0
GPT-5 Mini 77.8 80.2 41.0 47.0
GPT-5 87.2 89.4 56.0 63.0

Table 6: HumorBench element-level accuracy (%) for GPT-5 models with and without web search,
on the full benchmark (Overall) and the 100 hardest items (Hard-100).

Overall, web search slightly hurts GPT-5 Nano, but consistently improves GPT-5 Mini and GPT-5.
This pattern suggests that external tools are most useful when the base model is already strong enough
to recognize when and how to use retrieved information.
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