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Abstract

Natural language explanations (NLEs) are001
commonly used to provide plausible free-text002
explanations of a model’s reasoning about003
its predictions. However, recent work has004
questioned their faithfulness, as they may005
not accurately reflect the model’s internal006
reasoning process regarding its predicted an-007
swer. In contrast, highlight explanations–input008
fragments critical for the model’s predicted009
answers–exhibit measurable faithfulness.010
Building on this foundation, we propose011
G-Tex, a Graph-Guided Textual Explanation012
Generation framework designed to enhance the013
faithfulness of NLEs. Specifically, highlight014
explanations are first extracted as faithful cues015
reflecting the model’s reasoning logic toward016
answer prediction. They are subsequently017
encoded through a graph neural network layer018
to guide the NLE generation, which aligns the019
generated explanations with the model’s under-020
lying reasoning toward the predicted answer.021
Experiments on T5 and BART using three rea-022
soning datasets show that G-Tex improves NLE023
faithfulness by up to 12.18% compared to base-024
line methods. Additionally, G-Tex generates025
NLEs with greater semantic and lexical similar-026
ity to human-written ones. Human evaluations027
show that G-Tex can decrease redundant con-028
tent and enhance the overall quality of NLEs.029
Our work presents a novel method for explicitly030
guiding NLE generation to enhance faithful-031
ness, serving as a foundation for addressing032
broader criteria in NLE and generated text.033

1 Introduction034

Natural Language Explanations (NLEs) produce035

human-understandable texts to explain the model’s036

prediction process (Wiegreffe et al., 2021). Self-037

rationalization, where the prediction and the corre-038

sponding NLE are generated simultaneously, is a039

commonly used method for NLE generation, which040

leads to improved agreement between the generated041

NLE and the produced prediction (Alvarez Melis042

Figure 1: Faithfulness comparison between a self-
rationalization model without (top) and with (bottom)
the proposed G-Tex. Highlight explanations reveal the
model’s reasoning behind the predicted label with high
faithfulness. Without G-Tex, these important tokens are
omitted in the NLE while G-Tex guides the model to
incorporate them in the generated NLE.

and Jaakkola, 2018; Marasovic et al., 2022). How- 043

ever, existing work (Kumar and Talukdar, 2020; 044

Wiegreffe et al., 2021) has found that these NLEs 045

are often unfaithful, as they may present mislead- 046

ing reasons unrelated to the model’s true decision- 047

making process as illustrated in Figure 1 (top). This 048

lack of faithfulness undermines the reliability of 049

NLEs in applications where transparency and trust 050

are paramount (Atanasova et al., 2023; Lyu et al., 051

2024; Parcalabescu and Frank, 2024). 052

Unlike NLEs, highlight explanations reflect the 053

model’s reasoning process by identifying tokens or 054

phrases of the input that are crucial to the model’s 055

prediction. They can be of three types: highlight 056

token explanations, token interactive explanations 057

and span interactive explanations (Sun et al., 2024) 058

(see §3.2 for details). Though not as plausible as 059

NLEs (Jie et al., 2024), the faithfulness of highlight 060

explanations is easy to measure and has been sub- 061

stantially improved in existing works (Sun et al., 062

2024; Atanasova et al., 2020a). In this work, we hy- 063
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Figure 2: Illustration of our framework G-Tex, which consists of four key steps: (1) We train a base model such as
T5 using the task-specific dataset for label prediction (§3.2). (2) We extract three types of highlight explanations
from the trained model (§3.2). (3) We construct the graph structure based on the highlight explanations (§3.3) (4)
We integrate the graph structure into the model with a GNN layer (§3.4, §3.5) and fine-tune the overall model for
label prediction and NLE generation (§3.1).

pothesize that highlight explanations can be used064

to improve the faithfulness of NLEs by using them065

as explicit cues regarding the important parts of066

the input that should be present in the generated067

NLEs. We further hypothesize that as highlight068

explanations contain concise information about the069

most important parts of the input, they can further070

decrease the redundancy of NLEs and improve the071

overall NLE quality.072

Recent efforts to improve the faithfulness of073

NLEs either rely on external knowledge, crafting074

prompts or designing the training loss for improv-075

ing the faithfulness of NLEs directly (Majumder076

et al., 2021; Marasovic et al., 2022; Chuang et al.,077

2024). These methods, however, are not targeted078

at aligning NLEs with a model’s inner reasoning079

but improve their faithfulness only from a model’s080

extrinsic perspective. To address this, and inspired081

by Yuan et al. (2024) who leverage a Graph Neural082

Network (GNN) layer to guide the information flow083

from the input to the generation process, we pro-084

pose a novel Graph-Guided Textual Explanation085

Generation framework (G-Tex) to enhance the086

faithfulness of NLEs that allows for explicitly guid-087

ing the model’s reasoning with cues derived from088

the highly faithful highlight explanations. The089

graph structure is encoded by a GNN layer, which090

seamlessly incorporates the highlight explanations091

into the NLE generation process. This also allows092

the model to leverage implicit anchors from the093

input, improving the generation of explanations.094

As shown in Figure 2, we first apply a post-hoc095

attribution method to extract highlight explanations096

on a fine-tuned model based on its label prediction097

(§3.2). Then, we construct a graph with the most098

important highlight explanations for each instance099

(§3.3). A GNN layer is then incorporated to encode 100

the graph within the original self-rationalization 101

model (§3.4), which is fine-tuned to generate both 102

the final answer prediction and the corresponding 103

NLE simultaneously (§3.1,§3.5). 104

Our findings demonstrate that G-Tex substan- 105

tially improves the faithfulness of NLEs by up to 106

12.18% compared to baselines, as evaluated on 107

T5 (Raffel et al., 2020) and BART (Lewis et al., 108

2020)(see §4.2) using e-SNLI (Camburu et al., 109

2018), ComVE (Wang et al., 2020) and ECQA 110

(Aggarwal et al., 2021) datasets (see §5.1). Ad- 111

ditionally, G-Tex generates NLEs with enhanced 112

semantic and lexical similarity, as evaluated with 113

SacreBLEU (Post, 2018) and BERTScore (Zhang 114

et al., 2020) respectively (see §5.2). Human eval- 115

uations further reveal improvements in decreasing 116

redundancy and enhancing the overall quality of 117

the generated NLEs (see details in §M). Across the 118

different types of highlight explanations, token and 119

span interactive explanations are more effective 120

when the input text involves interaction between 121

different parts. However, when the input consis- 122

tently includes the same instruction, highlight token 123

explanations prove to be more beneficial. Overall, 124

our work introduces a novel method for explicitly 125

guiding the NLE generation to improve faithful- 126

ness, serving as a stepping stone for addressing 127

additional criteria for NLE and generated text. 128

2 Related Work 129

Faithfulness of Natural Language Explanations 130

NLEs are coherent free-text explanations about 131

the reasons behind a model’s prediction. Most 132

commonly, NLEs are produced with a self- 133

rationalization set-up where the model generates 134
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both a target task prediction and its NLE (Narang135

et al., 2020; Tang et al., 2021; Atanasova et al.,136

2020b; Liu et al., 2024a, 2023b,a,c, 2024b). As137

automatically generated NLEs suffer from faithful-138

ness issues (Kumar and Talukdar, 2020; Wiegreffe139

et al., 2021; Atanasova et al., 2023; Lyu et al.,140

2024), existing work has explored different ways141

to improve that. Majumder et al. (2021) propose142

to first select the important parts of the input, then143

leverage an external commonsense knowledge144

generative model to get commonsense knowledge145

snippets about these highlights, and finally, use the146

soft representations of the latter for the NLE gener-147

ation. Another line of work focuses on constructing148

suitable prompts for NLE generation (Marasovic149

et al., 2022). Furthermore, Wang et al. propose to150

prompt the model to generate the NLE and then151

fine-tune the LM with a counterfactual regular-152

ization loss to make the final prediction based on153

the generated NLE. Chuang et al. (2024) employ154

an estimator to provide faithfulness scores for155

generated NLEs. These scores and the NLEs are156

appended to the input and iteratively refined until157

the faithfulness scores converge. However, neither158

of these works uses direct cues from the more faith-159

ful highlight explanation for the model’s prediction160

to guide the NLE generation, which is the novel161

contribution of this paper. Overall, existing work162

improves NLE faithfulness by resorting to external163

knowledge, crafting prompts or altering the gener-164

ation loss. We claim that these constitute extrinsic165

signals, which do not directly address the NLEs’166

desiderata to faithfully reflect a model’s inner167

reasoning. Our proposed method G-Tex directly168

targets this objective by guiding the generation with169

cues about the most important parts of the input.170

Existing work has also proposed Chain-of-171

Thought (CoT) explanations, which reveal the172

model’s intermediate reasoning steps before giving173

its final answer (Zhang et al., 2022b). These ex-174

planations can be unfaithful as well (Turpin et al.,175

2024; Jie et al., 2024; Lanham et al., 2023). To176

address this, researchers have leveraged CoT dis-177

tillation techniques to train a more faithful small178

LM using CoT from the teacher LLM (Wang et al.,179

2023b; Zhang et al., 2024a; Paul et al., 2024), or180

have guided the original LLM to generate multi-181

ple reasoning chains and choose the most faithful182

one (Li et al., 2024; Jie et al., 2024). Notably, we183

do not focus on the CoT method for generating184

NLEs, as it requires specialized training data, such185

as reasoning chains or step-by-step intermediate186

explanations leading to the final answer. More- 187

over, CoT views faithfulness as alignment between 188

the generated explanation and the predicted label, 189

which differs from our focus on faithfulness to the 190

model’s internal reasoning process. 191

Highlight Explanations for Model Steering 192

Prior works have found that the model’s reasoning 193

capability can be enhanced by human-annotated 194

highlight explanations alongside the original in- 195

put (Wei et al., 2022; Lampinen et al., 2022). Kr- 196

ishna et al. (2023) automate the process of filling 197

the extracted highlights into few-shot templates, 198

which enhances model accuracy across tasks such 199

as CommonsenseQA (Talmor et al., 2019). Zhang 200

et al. (2024b) propose iterative prompting, where 201

the model first generates a sentence summarizing 202

the input. This sentence is then matched with the 203

most similar sentence from the input, with similar- 204

ity calculated by an encoder, to refine the prompt 205

and steer the model to produce an answer more 206

accurately. Bhan et al. (2024) convert highlight ex- 207

planations into NLEs using a predefined template, 208

which is then employed to prompt the model for 209

more accurate answers. Though they regard the 210

NLE generation as the intermediate step, the faith- 211

fulness of these NLEs is not even evaluated. In 212

contrast, our approach focuses on enhancing the 213

faithfulness of the generated NLEs by integrating 214

highlight explanations directly into the model ar- 215

chitecture to guide NLE generation. 216

Graph Neural Networks for Natural Language 217

Processing Graph neural networks (GNNs) are 218

primarily used for graph-related tasks such as drug 219

discovery (Han et al., 2021; Hu et al., 2021). An in- 220

creasing number of researchers are exploring their 221

potential applications in NLP tasks (Yasunaga et al., 222

2021; Fei et al., 2021; Lin et al., 2021). GNNs have 223

been utilized in tasks like graph-to-text generation 224

(Gardent et al., 2017; Yuan and Faerber, 2023) 225

and graph-enhanced question answering (Zhang 226

et al., 2022a), typically encoding complex graph 227

and node representations (Koncel-Kedziorski et al., 228

2019). Yuan and Färber (2024) leverage GNNs to 229

encode token-level structural information by mod- 230

ifying the self-attention mechanism in language 231

models. Additionally, Yuan et al. (2024) propose 232

a GNN-based method for information aggregation 233

paired with a parameter-efficient fine-tuning ap- 234

proach. Inspired by previous work, we use GNNs 235

to encode the highlight explanations with high 236

faithfulness to the generation process of NLEs. 237
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3 Methodology238

In this section, we provide a detailed overview239

of G-Tex, as illustrated in Figure 2. We begin240

by introducing the self-rationalization model in241

§3.1. In §3.2, we describe the training of the242

base model for label prediction and extracting243

post-hoc highlight explanations as Steps 1 and 2.244

In Step 3 and §3.3, we outline the construction of245

graph structures. Finally, in Step 4, we present the246

GNN layer (§3.4) and explain its integration with247

language models (§3.5).248

3.1 Overview: Self-Rationalization Model249

Self-rationalization models jointly generate the task250

labels and NLEs to explain their reasoning for251

the predicted answer (Wiegreffe et al., 2021). We252

frame this as a text-to-text generation task. Note253

that we are working with tasks containing two sepa-254

rate parts in the input, e.g., a premise and a hypothe-255

sis on the e-SNLI dataset (see more details in §4.1).256

Given a sequence of tokens x = (x1, . . . , xm+n)257

as input, where the first part of the input contains m258

tokens and the second part n tokens, the model M259

generates a label y0 and a sequence of tokens for260

the NLE y = y0 ⊕ (y1, . . . , yl), where ⊕ denotes261

the concatenation of one label token and l NLE262

tokens.1 The text generation task, encompassing263

both label generation and explanation generation,264

is implemented by a pre-trained LM with a lan-265

guage modeling head on top. Building on this, we266

insert a graph structure G into the standard self-267

rationalization model (LM) to encode the informa-268

tion from the highlight explanations, particularly269

for interactions between tokens and spans, resulting270

in our model MG−TEX (see below). We fine-tune271

this model by minimizing the cross-entropy loss272

for the target sequence y following the same pro-273

cess of the standard encoder-decoder transformer274

model. (see Section 3.5 for details on the encoding275

process after integrating the GNN layer into the276

self-rationalization model):277

L = −
|y|∑
i=1

logPϕ(yi|y1:i−1, x,G), (1)278

where Pϕ is the LM’s generative probability.279

3.2 Post Hoc Highlight Explanation and280

Predicted Label281

As illustrated in Figure 2, we begin by training a282

base model, Mbase, designed solely to predict the283

1See App. C input and output example for e-SNLI.

label of the input text. From this model, we extract 284

three types of highlight explanations from the in- 285

put following Sun et al. (2024); Ray Choudhury 286

et al. (2023). These highlights serve as cues reveal- 287

ing the model’s reasoning process behind its label 288

predictions. 289

Given an input instance x = (x1, . . . , xm+n), 290

each highlight token explanation contains one 291

token xi and its assigned importance score ai; 292

each token interactive explanation (xi, xj) con- 293

sists of two interactive tokens from two separate 294

parts of the input respectively, as well as an im- 295

portance score aij ; each span interactive expla- 296

nation is formed of two spans (spani, spanj), 297

where spani = (xp, . . . , xp+l1) and spanj = 298

(xq, . . . , xq+l2) are from two separate parts of 299

the input respectively, also with an assigned im- 300

portance score aspani,spanj , where p, p + l1 ∈ 301

[1,m], q, q + l2 ∈ [m+ 1,m+ n]. 302

Highlight Token Explanation Generation. In- 303

teractions between features in LMs are primarily 304

captured through attention mechanisms (Vaswani, 305

2017). Previous work shows that highlight expla- 306

nations extracted by attention-based methods show 307

higher faithfulness than other explainability tech- 308

niques (Sun et al., 2024). Building on this, we use 309

attention weights as the basis for deriving impor- 310

tance scores for all types of highlight explanations. 311

To retain the unique contributions of individual at- 312

tention heads – each designed to focus on specific 313

aspects of the data (Rogers et al., 2020) – we fol- 314

low the approach of Ray Choudhury et al. (2023) 315

to identify the most important attention head for a 316

specific label prediction. We use the final attention 317

layer of the model’s decoder, which generates the 318

final token representations used in generation. (see 319

App. A for details). Subsequently, we calculate the 320

importance score ai for a target token xi by aver- 321

aging the self-attention scores assigned to xi from 322

all other tokens within the input text, following 323

Jain and Wallace (2019); Sun et al. (2024). The ex- 324

tracted highlight token explanation set for instance 325

x is noted as HT = {(xi, ai)|i ∈ [1,m+ n]}. 326

Token Interactive Explanation Generation. 327

Using the most important attention head identified 328

as described above, we calculate the importance 329

score aij for each token interactive explanation by 330

averaging the attention weights between these two 331

tokens xi and xj following Clark et al. (2019). The 332

token interactive explanation set for instance x is 333

TI = {((xi, xj), aij)|i ∈ [1,m], j ∈ [m+1, n])}. 334
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Figure 3: We generate three different types of post-
hoc highlight explanations and use them to construct
graph structures guiding the NLE generation within our
framework. For simplicity, we present only a subset of
the explanations for each type.

Span Interactive Explanation Generation.335

Since token interactive explanations may not336

convey meaningful information on their own,337

Ray Choudhury et al. (2023) suggest using span338

interactions, which consist of more coherent339

phrases and are found to be more plausible (Sun340

et al., 2024). Following their approach, we341

apply the Louvain algorithm (Blondel et al.,342

2008) to extract span interactive explanations343

by identifying communities of token interac-344

tions. Tokens are treated as nodes, with the345

importance scores of token pair interactions used346

as edge weights. The communities of token347

interactions are selected to have dense intra-span348

and sparse inter-span interactions. For each x,349

span pairs (spani, spanj) are extracted, and350

the importance score aspani,spanj for each span351

pair is computed by averaging the importance352

scores of the constituent token pairs. The set of353

generated span interactive explanations is denoted354

as SI = {(xspani,spanj , aspani,spanj )|spani =355

(xp, . . . , xp+l1), spanj = (xq, . . . , xq+l2)}. The356

number of generated span pairs depends on the357

community detection algorithm and is < m! ∗ n!358

since only neighboring tokens within the same359

community can form spans, and spans must come360

from different parts of the input to form valid pairs.361

3.3 Post Hoc Highlight Explanations as a362

Graph363

We build graph structures based on the three differ-364

ent types of highlight explanations (see Figure 3).365

Notably, we treat each token as a node in the graph366

structure and assign edges between the extracted367

tokens. Following Yuan and Färber (2024), an edge368

is also assigned to connect the subtokens if a word369

is tokenized into several subtokens. 370

Highlight Token Explanation We use the im- 371

portance scores derived in Section §3.2 to select 372

the top-k% most important highlight token expla- 373

nations, as less important tokens might introduce 374

noise. Then we assign equally weighted bidirec- 375

tional edges between these tokens to ensure infor- 376

mation flow among them (see Figure 3a). 377

Token Interactive Explanations We also select 378

the top-k% token interactive explanations with the 379

highest importance scores. Then equally weighted 380

bidirectional edges are assigned to connect the to- 381

kens within each token interaction (see Figure 3b). 382

Span Interactive Explanation As only a few 383

spans are extracted from the input text as described 384

in Section 3.2, all the interactive spans are used to 385

construct the graph structure. Within a span, all 386

subtokens are connected. Between spans, tokens 387

are connected with each other (see Figure 3c). 388

3.4 Graph Neural Network Layer 389

The GNN layer aggregates information of highlight 390

explanations to model graph and node representa- 391

tions based on the graph structures as introduced in 392

§3.3. We define a bidirectional graph G as a triple 393

(V, E ,R) with a set of nodes V = {v1, . . . , vn} 394

(one node for each token), a set of relation types 395

R2., and a set of edges E of the form (v, r, v′) with 396

v, v′ ∈ V , and r ∈ R. Each node vi is associ- 397

ated with a feature vector hi, which represents the 398

hidden states of the i-th token in the l-th layer. 399

The node representations in the GNN layer are 400

updated by aggregating information from neigh- 401

boring nodes by different aggregation algorithms 402

depending on the chosen GNN architecture. In 403

our work, we employ three most representative 404

and widely used GNN architectures following pre- 405

vious work (Yuan et al., 2024; Yuan and Färber, 406

2024): Graph Convolutional Network (GCN, Kipf 407

and Welling (2017)), Graph Attention Network 408

(GAT, Veličković et al. (2018)) and GraphSAGE 409

(Hamilton et al., 2017). While GCN aggregates in- 410

formation from neighboring nodes uniformly, GAT 411

introduces attention weights to prioritize and ag- 412

gregate incoming information.3 GraphSAGE, on 413

the other hand, incorporates information from the 414

2We consider only one type of relation: the bidirectional
edge between nodes v and v′, with all edges weighted equally
for initialization, note that the edge values will update during
fine-tuning

3Details of the learning processes for GCN and GAT are
provided in App. D.
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current node and its neighboring nodes as follows:415

hv = σ
(
W

(
h(l)
v ⊕ AGG({h(l)

v′ , ∀v′ ∈ N(v)})
))

(2)416

where hv denotes the updated node representation417

of v, h(l)v′ is the token representation of its neigh-418

bouring nodes from l-th layer, σ the activation func-419

tion, W are the trainable parameters of the GNN,420

N(v) includes all the neighbouring nodes of v. The421

concatenation function ⊕ concatenates aggregated422

information with the node’s current representation,423

and the aggregation function AGG aggregates the424

information flowing from the neighboring nodes425

using techniques such as mean, pool, and LSTM.4426

3.5 Integrating GNN in Language Models427

As illustrated in Figure 2, Step 4, we integrate a428

GNN layer into the LM by stacking it on top of the429

n-th encoder layer. Yuan et al. (2024) demonstrated430

that incorporating a GNN into LLMs is most ef-431

fective when placed in the last three-quarters of432

the layers, following the principles of information433

flow theory (Wang et al., 2023a). In line with prior434

work, we similarly position the GNN layer at the435
3/4-th encoder layer. The GNN layer takes token436

representations from the l-th encoder layer, pro-437

cesses them along with graph structures derived438

from highlight explanations, and then forwards the439

augmented representations hv to the next encoder440

layer l + 1, which can be formulated as:441

h̃(l) = LayerNorm(hv+Attention(hvW
Q, hvW

K , hvW
V ))
(3)442443

h(l+1) = LayerNorm(h̃(l) + FFN(h̃(l))) (4)444

The rest of the model architecture remains un-445

changed.446

4 Experiments447

4.1 Datasets448

We use three widely adopted reasoning datasets449

with human-annotated explanations: e-SNLI (Cam-450

buru et al., 2018), ComVE (Wang et al., 2020) and451

ECQA (Aggarwal et al., 2021). e-SNLI extends452

SNLI with human-annotated explanations for each453

premise-hypothesis pair, providing both the cor-454

rect label (entailment, contradiction, or neutral)455

and a human-annotated NLE for why the label was456

chosen. ComVE provides natural language ex-457

planations identifying which of the two provided458

statements contradicts common sense. ECQA is459

4Mean aggregation is applied to GraphSAGE in this work.

a multiple-choice question-answering dataset with 460

human-annotated explanations for each choice.5 461

4.2 Experimental Setting 462

We select two commonly used models for self- 463

rationalization (Raffel et al., 2020; Narang et al., 464

2020; Marasovic et al., 2022; Lewis et al., 2020; 465

Huang et al., 2023; Yadav et al., 2024), T5-large 466

and BART-large as our base models, both of which 467

follow an encoder-decoder architecture. For these 468

models, we insert the graph at the 3/4-th encoder 469

layer. We are not targeting the decoder-only mod- 470

els as they rely solely on the previous token rather 471

than graph embeddings of all tokens for next-token 472

prediction, which limits the guidance of the high- 473

light explanation graphs, and we encourage the 474

modification to apply to decoder-only models for 475

future work (See Limitations). Our G-Tex is fine- 476

tuned on the training set, with validation performed 477

on the validation set at each epoch. The BLEU 478

score (Papineni et al., 2002) is used to select the 479

best-performing checkpoint. Further experimental 480

details can be found in App. F. 481

4.3 Models 482

We use two baselines in our experiments to com- 483

pare against G-Tex: 484

Fine-tuningbase We fine-tune the base models 485

T5-large and BART-large on the training set of 486

e-SNLI and ECQA for self-rationalization. 487

Prompt To incorporate highlight explanations as 488

part of the input, we concatenate the template, “The 489

most important tokens are: token1, token2, token3, 490

...” to the end of the input sentence and fine-tune 491

the models accordingly. The important tokens are 492

extracted from the highlight explanations, consis- 493

tent with the top-k% tokens used in G-Tex. 494

G-Tex For our approach, we utilize the encoder- 495

decoder model T5-large and BART-large as the 496

base models and insert a GNN layer after the 3/4-th 497

encoder layer. This GNN layer injects the struc- 498

tured information from the highlight explanations. 499

We experiment with three distinct types of GNN ar- 500

chitectures, which we denote as Tex-GCN, Tex-GAT, 501

and Tex-SAGE, representing Graph Convolutional 502

5In order to explore how different highlight explanations af-
fect faithfulness, we reformulate e-SNLI, ECQA and ComVE
into different formats. While the input for e-SNLI and ECQA
consists of two distinct sentences, ComVE always includes
the same question as the first part of the input (see examples in
App. C). This distinction is to explore whether the interaction
between the two input parts is significant.
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Explanation Type Model
e-SNLI ComVE

Unfaithfulness(%↓) Automatic(↑) Unfaithfulness(%↓) Automatic(↑)
Counter Total SacreBLEU BERTScore Counter Total SacreBLEU BERTScore

T5-based

- Fine-tuningbase 47.70 ±2.31 17.68 ±1.94 15.430 0.894 92.37 ±1.21 68.96 ±2.23 7.634 0.876

Highlight Token
Prompt 43.61 ±2.86 14.71 ±1.16 15.686 0.898 93.25 ±1.19 68.90 ±2.61 7.592 0.876

Tex-SAGE (Ours) 33.83 ±1.51 11.07 ±1.14 16.426 0.908 90.53 ±1.40 57.48 ±0.58 9.016 0.884

Token Interactions
Prompt 54.36 ±3.11 20.60 ±1.81 15.478 0.898 87.39 ±1.78 77.71 ± 2.06 7.028 0.888

Tex-SAGE (Ours) 34.27 ±1.63 11.00 ±1.66 16.443 0.908 87.47 ±2.21 76.94 ± 2.33 6.956 0.888

Span Interactions
Prompt 42.86 ±2.20 13.19 ±1.95 16.031 0.899 89.90 ±0.86 79.70 ±2.15 7.226 0.889

Tex-SAGE (Ours) 33.25 ±2.18 10.08 ±2.02 16.277 0.907 89.64 ±0.91 76.39 ±3.36 7.652 0.891

BART-based

- Fine-tuningbase 57.71 ±2.39 22.52 ±1.86 15.732 0.906 91.09 ±1.81 70.50 ±1.68 10.070 0.891

Highlight Token
Prompt 57.52 ±3.84 24.45 ±0.62 15.678 0.898 90.23 ±2.10 68.82 ±2.97 10.012 0.876

Tex-SAGE (Ours) 44.72 ±4.71 14.75 ±2.13 16.318 0.909 87.91 ±2.74 58.32 ±0.81 10.552 0.884

Token Interactions
Prompt 47.73 ±3.16 19.59 ±1.72 15.478 0.898 89.80 ±4.54 69.43 ±3.14 7.215 0.888

Tex-SAGE (Ours) 46.88 ±3.34 15.68 ±1.75 16.427 0.909 88.15 ±2.47 68.08 ± 2.47 7.333 0.888

Span Interactions
Prompt 50.98 ±3.72 18.34 ±1.70 16.027 0.909 95.17 ±1.18 64.35 ± 0.94 7.953 0.889

Tex-SAGE (Ours) 45.17 ±3.52 14.64 ±1.32 16.517 0.909 94.29 ±2.57 63.76 ± 2.49 7.953 0.891

Table 1: Overall evaluation results on e-SNLI and ComVE datasets for T5-based and BART-based models, with our
G-Tex model using Tex-SAGE. Counter indicates Counter Unfaith, Total indicates Total Unfaith, with both the mean
values and standard deviations reported from 5 runs with different random seeds. The p-values (Wasserstein and
Lazar, 2016) can be found in Appendix §J, Table 6. The best performance of each evaluation metric is in bold. See
Appendix §K for results on ECQA dataset and Appendix §I, Table 5 for results of our model using Tex-GAT and
Tex-GCN.

Networks, Graph Attention Networks, and Graph-503

SAGE, respectively (see §3.4).504

5 Evaluation505

We conduct a comprehensive evaluation of the mod-506

els, using a faithfulness test, automatic metrics and507

human assessment on multiple dimensions6. As for508

the label predictions, G-Tex achieves results that509

are better or comparable to the baselines. We report510

an overview of the label prediction performance in511

Table 3, App. E.512

5.1 Faithfulness Evaluation513

To assess the faithfulness of the generated NLEs,514

we apply the counterfactual faithfulness test from515

Atanasova et al. (2023). This method involves in-516

serting random adjectives in front of nouns of the517

original input, resulting in multiple perturbed in-518

stances. If the model’s prediction changes, the519

newly generated NLE should include the inserted520

word; otherwise, the original NLE is unfaithful as521

it is potentially misaligned with the model’s rea-522

soning. Note that the unchanged label provides no523

relevant information about the faithfulness of the524

NLE. See details in App. H.525

6The results and analysis of human evaluation are pre-
sented in App. M

Following Atanasova et al. (2023), we apply this 526

test on the e-SNLI, ComVE and ECQA datasets, 527

calculating: (1) the percentage of instances where, 528

for at least one altered input, the inserted word 529

does not appear in the new NLE across instances 530

with label change(Counter Unfaith); and (2) the 531

proportion of these unfaithful instances across all 532

instances (Total Unfaith). 533

Results As shown in Tables 1, our G-Tex7 We 534

present results on e-SNLI and ComVE as represen- 535

tative datasets for NLI and commonsense QA, re- 536

spectively, and defer ECQA results to App. K. with 537

T5 as the base model leads up to 9.60% decrease 538

in Total Unfaithful on e-SNLI (20.60% vs. 11.00% 539

with token interactive explanations) and up to 540

11.48% on ComVE (68.96% vs. 57.48% with high- 541

light tokens) compared to the Fine-tuningbase 542

and Prompt. Similarly, G-Tex with BART as the 543

base model leads up to a 9.70% decrease in Total 544

Unfaithful on e-SNLI (24.45% vs. 14.75% with 545

highlight explanations) and up to 12.18% decrease 546

on ComVE (70.50% vs. 58.32% with highlight 547

explanations). While G-Tex with T5 slightly under- 548

7We select Tex-SAGE to present the results for G-Tex, as
GraphSAGE demonstrates superior performance in modeling
text-based graph structures according to previous work (Yuan
and Färber, 2024). The results of other G-Tex models and the
discussion across all GNN variants can be found in App. I.
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performs the prompt baseline on ComVE with to-549

ken interactive explanations, overall, our method550

outperforms all baselines in counterfactual un-551

faithfulness and total faithfulness.552

Across the different highlight explanation types,553

different datasets yield different results. On the554

e-SNLI dataset, span interactive explanations pro-555

duce more faithful NLEs with T5-based models556

(10.08% Total Unfaith). For the e-SNLI task, the557

input text consists of two parts, namely the premise558

and the hypothesis, and interactive explanations559

between these parts are of paramount importance560

in indicating the reasoning process of the models.561

Thus, token interactive and span interactive ex-562

planations tend to improve faithfulness more ef-563

fectively than highlight token explanations. This564

aligns with previous work showing that these high-565

light explanations offer higher faithfulness in re-566

covering a model’s prediction (Sun et al., 2024).567

However, highlight token explanations also show568

significant benefits when the task input consists of569

the same instruction/first part. As the first part of570

the input for ComVE is formulated as the same571

question, the second part of the input becomes es-572

pecially important in distinguishing the input text573

for the models. The results on ComVE indicate574

that highlight token explanations yield the lowest575

Total Unfaith for both T5- and BART-based G-Tex576

(57.48% and 58.32%, respectively). Thus, high-577

light token explanations can improve the faith-578

fulness when the interaction between parts of579

the input is less critical.580

Our findings demonstrate that while all high-581

light explanations are significantly important, their582

utility depends on the task. When the input text583

involves interaction between different parts, token584

and span interactive explanations are more useful.585

However, when the input consistently includes the586

same instruction, highlight token explanations are587

more effective. Nonetheless, regardless of the task,588

the results again verify that G-Tex effectively lever-589

ages different types of highlight explanations for590

NLE generation, leading to more faithful NLEs.591

5.2 Automatic Metrics for Similarity between592

NLEs and Golden explanations593

To assess the alignemnt of generated NLEs with594

human-written ones, we measure the similarity be-595

tween them and the golden human-annotated ex-596

planations. A similarity with human-written expla-597

nations is used in existing work to indicate how598

plausible the generated NLEs would appear to end599

users (Sun et al., 2024). We employ automatic 600

evaluation metrics SacreBLEU (Post, 2018) and 601

BERTScore (Zhang et al., 2020) to capture both 602

lexical and semantic similarity.8 603

As shown in Table 1, the automatic evaluation 604

results demonstrate that G-Tex generates NLEs of 605

higher alignment with human-written explanations 606

in terms of lexical and semantic similarity on the e- 607

SNLI dataset, outperforming the Fine-tuningbase 608

and Prompt. Across all explanation types, G-Tex 609

consistently achieves higher SacreBLEU scores, 610

such as 16.443 for G-Tex with the token interactive 611

explanation setting, and better BERTScores, such 612

as 0.909 across most BART-based methods. Re- 613

garding the ComVE dataset, G-Tex also generates 614

NLEs with higher SacreBLEU and BERTScore. 615

For BART-based G-Tex, the highest ScareBLEU is 616

10.552 achieved with G-Tex with highlight token 617

explanations. These results demonstrate that our 618

models generate explanations with improved 619

alignment with human explanations. Further- 620

more, they confirm that interactive explanations 621

are more effective for e-SNLI, while highlight to- 622

ken explanations are more beneficial for ComVE, 623

due to the distinct structure of their inputs. 624

6 Conclusion 625

In this work, we propose G-Tex, a novel framework 626

that incorporates the reasoning process of models 627

to enhance faithfulness in NLEs. G-Tex allows 628

for integrating various types of highlight explana- 629

tions through a GNN layer within language models. 630

Evaluated via faithfulness tests, automatic metrics, 631

and human evaluation on three reasoning datasets, 632

G-Tex demonstrates consistent improvements in 633

faithfulness, alignment with human-annotated ex- 634

planations, and reduced redundancy. Our results 635

show that the benefits of different highlight ex- 636

planations depend on task formulation: token and 637

span interactive explanations work best for tasks 638

requiring input interaction, while highlight token 639

explanations are more effective when interactions 640

are less critical. These findings highlight the po- 641

tential of G-Tex as an interpretable framework that 642

embeds the reasoning process of language models 643

as a graph structure to improve model faithfulness. 644

Future work could explore various graph structures 645

and explanation types to further enhance the versa- 646

tility and effectiveness of G-Tex for larger models. 647

8In addition to SacreBLEU and BERTScore, results for
other automatic metrics are provided in App. L.
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Limitations648

Our work proposes a novel graph-guided frame-649

work for natural language explanation generation,650

utilizing highlight explanations in the form of high-651

light tokens, token interactives, and span interac-652

tives. While G-Tex improves the models’ faith-653

fulness constantly, we acknowledge several limita-654

tions in our approach.655

Firstly, we applied G-Tex exclusively to encoder-656

decoder models. This choice was made not only657

because encoder-decoder models are better suited658

for text-to-text format tasks, but also because the659

encoder is able to embed the graph structure and uti-660

lize it to generate each individual token. While our661

approach is potentially applicable to decoder-only662

models, their architectural differences introduce663

notable complexities. In decoder-only models, to-664

ken generation relies solely on the hidden states665

of the preceding token. As a result, significant ad-666

justments, such as carefully integrating text embed-667

dings with graph embeddings, would be required to668

adapt our method for use with decoder-only mod-669

els to generate tokens, which is thus outside the670

scope of this work. Due to limited computational671

resources, we chose T5-large and BART-large as672

the models to fine-tune for NLE generation. Their673

established reasoning capabilities and relatively674

lightweight nature make them well-suited for our675

experimental setup. We encourage future work to676

explore how model scalability affects the quality677

of generated NLEs.678

Secondly, while G-Tex leverages the reasoning679

process of the models and offers a more transpar-680

ent and interpretable framework, the internal mech-681

anisms of the GNN layer remain unexplored in682

this study. Moreover, we use specific graph types683

to construct the highlight explanations, assigning684

equal weights to the edges between nodes. Future685

work could explore weighted edges and alternative686

graph structures to encode highlight explanations.687

Thirdly, while we choose the attention-based688

methods as the foundation to extract highlight689

explanations due to their higher faithfulness on690

ECQA and e-SNLI dataset Sun et al. (2024), it is691

important to acknowledge other important explain-692

ability techniques, such as perturbation-based at-693

tribution e.g., Shapley (Lundberg and Lee, 2017)),694

Integrated Gradients (Sundararajan et al., 2017; Ser-695

rano and Smith, 2019) and Saliency Map (Feldhus696

et al., 2022). It is worth exploring how the highlight697

explanations generated by different explainability698

techniques impact the quality of generated NLEs 699

on broader datasets. We leave this exploration for 700

future work. 701

Lastly, we evaluate the quality of NLEs gener- 702

ated by our model using three reasoning datasets, 703

e-SNLI (NLI task), ComVE and ECQA (common- 704

sense QA task). As more datasets meeting these 705

criteria become accessible in the future, we encour- 706

age further exploration of our method in additional 707

domains. 708
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A Post Hoc Explanation Generation 1152

Details 1153

For each attention head j regarding generating to- 1154

ken k, When the contribution of input token i cji 1155

is positive, the larger the weight wji, the more im- 1156

portant of input token i to k. We aggregate the 1157

importances for generating k from all input tokens 1158

in attention head j as the indication of the overall 1159

importance of attention head j. 1160

B Raw Running Time of Exacting 1161

Highlight Explanations 1162

We report the raw running time for extracting high- 1163

light explanations on the test set of e-SNLI using 1164

T5-based model in Table 2. Although the span inter- 1165

active explanation has the longest runtime, it only 1166

requires 14 ms to extract explanations for an in- 1167

stance with the longest token range. While extract- 1168

ing explanations adds some computational time, it 1169

is not prohibitive for practical use. 1170

C Example of Self-Rationalization Task 1171

One example of the e-SNLI dataset (Camburu et al., 1172

2018) will be: 1173

Input: "Premise: A woman is asleep at 1174

home. Hypothesis: A woman with a red 1175

scarf is giving a shushing sign to the 1176

camera in front of shelves of books." 1177

Output: "Contradiction. The woman 1178

cannot be giving a sign and asleep at 1179

the same time." 1180

where Contradiction is the predicted label, and 1181

the text explains the reason for the prediction. 1182

And we reformulate ComVE dataset (Wang 1183

et al., 2020) as: 1184

Input: "Which statement of the two is 1185

against common sense? 1186

1. when it is hot humidity forms 1187

2. when it rains humidity forms 1188

amaranthine" 1189

Output: "2. Water makes humidity, not 1190

temperature." 1191
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Explanation Type [5, 20) Tokens [20, 40) Tokens [40, 69] Tokens

Average Time Cost per Instance (ms)

Highlight Token Explanation 0.7382 1.2903 2.5249
Token Interactive Explanation 0.3924 0.8071 1.8725
Span Interactive Explanation 2.5501 5.8975 14.3293

Number of Instances in Each Token Range

4,546 5,068 192

Table 2: Average time cost (in milliseconds) and instance counts across different token length ranges for three types
of highlight explanation extraction using a T5-based model on the e-SNLI test set.

where 2 is the index of the prediction, and the1192

text explains the reason why it is against common1193

sense.1194

Meanwhile, one example of ECQA (Aggarwal1195

et al., 2021):1196

Input: "The student was contemplating1197

the problem, that’s when he made the1198

what that led him to the answer?1199

action, discovery, reflection, deciding,1200

thinking1201

Output: "discovery. Contemplating on1202

the problem, the student made the1203

discovery or finding that led him to the1204

answer. Contemplating and thinking1205

deeply about the problem may or may1206

not lead to action. Reflection is1207

contemplating of thinking about oneself1208

and not the problem. Deciding is1209

contemplating choice and wrong1210

decisions don’t lead to answer. Thinking1211

won’t necessarily lead to the answer."1212

where discovery is the predicted answer, and the1213

text explains the reason why it is correct and why1214

the others are wrong.1215

D Aggregation Algorithms of GCN and1216

GAT1217

The learning process of GCN is formulated as:1218

hv = σ

W
∑

v′∈N(v)

h
(l)

v′

|N(v)|

 (5)1219

where hv denotes the updated node represen-1220

tation of v, h(l)v′ is the token representation of its1221

neighbouring nodes from l-th layer, σ the activa-1222

tion function, W are the trainable parameters of the1223

GNN, N(v) includes all the neighbouring nodes of1224

v.1225

Unlike the average over all neighbouring nodes 1226

in GCN, GAT learns an attention weight α for every 1227

neighbouring node: 1228

hv = σ

 ∑
v′∈N(v)

αvv′Wh
(l)

v′

 (6) 1229

E Performance for Label Prediction 1230

We present the performance of all baselines and 1231

G-Tex for the label prediction task in Table 3. 1232

G-Tex consistently outperforms the baselines on 1233

both the e-SNLI and ECQA datasets. 1234

As shown in Table 3, we present our G-Tex mod- 1235

els’ performance in answer prediction, where the 1236

GNN layer is jointly fine-tuned with the base model 1237

alongside all baseline models. It is evident that the 1238

G-Tex model achieves better or comparable accu- 1239

racy to the baseline models, ensuring that G-Tex 1240

does not sacrifice answer accuracy while increasing 1241

NLE faithfulness. 1242

F Experimental Details 1243

The number of incorporated GNN layers is 1. Fi- 1244

nal results are reported on the test set with beam 1245

search set to 3. We set k = 30 to take the top 30% 1246

most important highlight explanations. Training 1247

is conducted on four NVIDIA A100-SXM4-40GB 1248

GPUs, utilizing AdamW (Loshchilov and Hutter, 1249

2019) as the optimizer. The learning rate is set to 1250

3e-4 for both the baselines and G-Tex after grid 1251

search. And beam search is set to 3 for the text 1252

generation. We use the original train, dev, and test 1253

splits for model fine-tuning across all the datasets. 1254

G Model Size 1255

Table 4 shows the number of trainable parameters 1256

comprising the baselines and G-Tex, as well as the 1257

training time for one epoch under the same config- 1258

uration (batch size, optimizer, learning rate, etc.). 1259
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Method Acce-SNLI AccECQA AccComVE

T5-large

Fine-tuningbase 84.50 61.56 89.92

Highlight Tokens

Prompt 86.16 60.98 88.05
Tex-GCN 89.79 59.87 90.86
Tex-GAT 89.42 60.22 91.08
Tex-SAGE 89.78 60.37 92.43

Token Interactions

Prompt 86.02 57.17 90.48
Tex-GCN 89.88 62.23 90.97
Tex-GAT 89.93 61.76 90.14
Tex-SAGE 89.94 61.25 89.76

Span Interactions

Prompt 88.92 59.14 88.14
Tex-GCN 89.76 59.62 89.06
Tex-GAT 89.10 59.02 90.36
Tex-SAGE 89.98 58.62 89.76

BART-large

Fine-tuningbase 85.29 56.91 91.57

Highlight Tokens

Prompt 81.55 42.21 91.47
Tex-GCN 91.04 41.82 92.17
Tex-GAT 90.60 50.50 92.15
Tex-SAGE 91.03 52.73 92.67

Token Interactions

Prompt 90.42 54.59 90.48
Tex-GCN 90.18 58.02 91.76
Tex-GAT 89.52 55.50 86.51
Tex-SAGE 89.44 52.46 91.77

Span Interactions

Prompt 90.35 56.38 89.13
Tex-GCN 90.91 51.53 91.77
Tex-GAT 91.03 56.94 91.06
Tex-SAGE 90.79 44.41 92.17

Table 3: Overview of model accuracy on e-SNLI, ECQA
and ComVE datasets. G-Tex achieves results that are
better or comparable to the baselines. The best perfor-
mance of each evaluation metric across all models is
highlighted in bold.

Notably, the model incorporating GNNs only has1260

approximately up to 0.28% more parameters than1261

the baseline models T5 and 0.24% more parame-1262

ters than the baseline models BART. Overall, the1263

training time for different methods varies by only a1264

few seconds.

Method ParamT5 ParamBART TimeT5
Fine-tuning 737M 406M 13:51
Prompt 737M 406M 14:23
Tex-GCN 738M 407M 13:41
Tex-GAT 738.1M 407M 13:42
Tex-SAGE 739.1M 407M 13:49

Table 4: Number of parameters and training time for
different methods using T5 and BART.

1265

H Faithfulness Evaluation Method1266

Following (Atanasova et al., 2023), we conduct1267

the counterfactual evaluation to assess the faithful-1268

ness of the generated NLEs. Specifically, given an1269

input instance x with the model’s original answer1270

y0 and its corresponding NLE tokens [y1, . . . , yl]1271

(see §3.1), we insert a word xc into x, forming a1272

new input x′. To ensure the coherence of x′, we 1273

only insert random adjectives before nouns. For 1274

each original input x, we generate candidate in- 1275

sertions at 4 random positions, with 4 candidates 1276

per position, resulting in 16 perturbed inputs x′ for 1277

each instance. If the model’s prediction changes 1278

(y′0 ̸= y0), the newly generated NLE should in- 1279

clude the inserted word, i.e., xc ∈ [y′1, . . . , y
′
p+q]; 1280

otherwise, the original NLE is unfaithful as it is 1281

potentially misaligned with the model’s reasoning. 1282

Note that the unchanged label provides no relevant 1283

information about the faithfulness of the NLE. 1284

I Overall Explanation Evaluation Results 1285

on e-SNLI and ComVE Dataset of 1286

G-Tex using Tex-GAT and Tex-GCN 1287

As shown in Table 5, we also report the results of 1288

our models G-Tex using Tex-GAT and Tex-GCN. 1289

Regarding faithfulness, almost all of our models 1290

outperform all the baseline models on both datasets, 1291

achieving improvements of up to 17.18% with the 1292

T5-based Tex-GCN on the ComVE dataset, which 1293

demonstrates our approach’s effectiveness in en- 1294

hancing the faithfulness of NLEs. 1295

Across different highlight explanation types, to- 1296

ken interactive explanations consistently achieve 1297

the best faithfulness results on the e-SNLI dataset, 1298

regardless of the base model architecture. In con- 1299

trast, on the ComVE dataset, highlight token ex- 1300

planations consistently demonstrate the highest 1301

faithfulness, highlighting the influence of dataset 1302

characteristics on the advantages of different expla- 1303

nation types in enhancing NLE faithfulness. For 1304

example, on the ComVE dataset, where the first 1305

part of the input is a general question in which 1306

the statement of the two is against comment sense, 1307

the simple interaction between the tokens/spans 1308

from the question and the statements might be less 1309

informative than simply selecting the important to- 1310

kens from the statements. This suggests that the 1311

choice of highlight explanation types to enhance 1312

NLE quality, particularly in terms of faithful- 1313

ness, should be carefully tailored to the specific 1314

characteristics of the dataset. 1315

Regarding the similarity between the generated 1316

NLEs and the golden ones, as measured by au- 1317

tomatic metrics, all the NLEs generated by our 1318

method on both datasets achieve equal or higher 1319

performance than the baselines. Among the dif- 1320

ferent highlight explanation types, NLEs guided 1321

by highlight token explanations most frequently 1322
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achieve the highest similarity with the golden ones,1323

both lexically and semantically.1324

Among the different GNN variants of our G-Tex1325

method, Tex-GAT, Tex-GCN, and Tex-SAGE, there1326

is no consistent trend indicating that any particular1327

GNN layer consistently outperforms the others in1328

improving the faithfulness or the similarity of the1329

NLEs to the golden explanations.1330

J Statistical Uncertainty Measurement1331

for Faithfulness Evaluation on e-SNLI1332

and ComVE Datasets using Tex-SAGE1333

and Fine-tuningbase with T5-large1334

and BART-large models1335

To demonstrate the significant improvement of1336

our G-Tex in terms of faithfulness, we compute1337

the p-values (Wasserstein and Lazar, 2016) for1338

Counter Unfaith and Total Unfaith (see Section1339

§5.1) when comparing the Fine-tuningbase and1340

our Tex-SAGE model on the e-SNLI and ComVE1341

datasets, using T5-large and BART-large with 51342

random seeds.1343

As shown in Table 6, all p-values are less than1344

0.05, indicating that the natural language expla-1345

nations generated by our G-Tex exhibit signifi-1346

cantly lower unfaithfulness compared to the base-1347

line method.1348

K Overall Explanation Evaluation1349

Results on ECQA dataset for G-Tex1350

based on T5-large and BART-large1351

K.1 Overall Explanation Evaluation Results1352

on ECQA dataset for G-Tex based on1353

T5-large1354

The faithfulness and automatic evaluation results of1355

T5-based models on the ECQA dataset are shown1356

in Table 7.1357

Regarding the faithfulness of NLEs, almost all1358

of our methods outperform the baseline methods,1359

highlighting the effectiveness of our framework.1360

Among the different highlight explanation types,1361

token interactive explanations demonstrate the1362

best performance in generating faithful NLEs when1363

using Tex-GCN, achieving 21.18% total unfaith-1364

fulness. Other variants, such as Tex-GAT and1365

Tex-SAGE, also achieve comparable performance,1366

with 21.44% and 21.74% total unfaithfulness, re-1367

spectively. On the ECQA dataset, token interac-1368

tive explanations show a clear advantage over1369

other highlight explanation types in improving1370

the faithfulness of NLEs.1371

Regarding the similarity between the generated 1372

NLEs and the gold ones, G-Tex outperforms the 1373

fine-tuning baseline in most settings. Although the 1374

prompt baseline achieves the highest SacreBLEU 1375

and BERTScore, G-Tex lags behind by only 1.537 1376

in SacreBLEU and 0.004 in BERTScore. Among 1377

all types of highlight explanations, span interac- 1378

tive explanations achieve the highest scores with 1379

G-Tex. 1380

K.2 Automatic Evaluation Results on ECQA 1381

dataset for G-Tex based on BART-large 1382

As shown in Table 8, we also conduct auto- 1383

matic evaluation on BART-based G-Tex on ECQA 1384

datasets regarding Lexical and Semantical Similar- 1385

ity with golden explanations. 1386

Compared to all the baseline methods, on ECQA 1387

dataset, with the highest scores always belong to 1388

our token interactive explanation guided Tex-GCN 1389

method, and other variants are with comparable 1390

performance to the baselines, our model also shows 1391

advantage in both lexical and semantic similarity. 1392

Among the different explanation types, token 1393

interactive explanations demonstrate superior per- 1394

formance in both lexical and semantic metrics. No- 1395

tably, token interactive explanations show a slight 1396

advantage over the other two explanation types 1397

in generating NLEs with more plausible mean- 1398

ings to humans. 1399

K.3 Faithfulness Evaluation Results on ECQA 1400

dataset for G-Tex based on BART-large 1401

We also evaluated the faithfulness of G-Tex based 1402

on BART-large on the ECQA dataset and observed 1403

that the faithfulness scores for all methods (includ- 1404

ing the baselines) were uniformly 100%. This 1405

result indicates that the BART-based models are 1406

prone to counterfactual attacks and none of these 1407

explanations were faithful. We attribute this out- 1408

come to the inherent complexity of the ECQA 1409

dataset and the potential vulnerability of the BART 1410

model to counterfactual attacks. 1411

L Supplementary Automatic Explanation 1412

Evaluation Results for G-Tex based on 1413

T5-large and BART-large 1414

To evaluate the similarity between the generated 1415

NLE and the golden ones as an approximation of 1416

plausibility to humans, we also leverage the fol- 1417

lowing four metrics to evaluate their lexical and 1418

semantic similarity: 1419

16



Explanation Type Model
e-SNLI ComVE

Unfaithfulness(%↓) Automatic(↑) Unfaithfulness(%↓) Automatic(↑)
Counter Total SacreBLEU BERTScore Counter Total SacreBLEU BERTScore

T5-based

- Fine-tuningbase 47.08 16.89 15.430 0.894 87.17 73.73 7.634 0.876

Highlight Token
Prompt 42.04 14.11 15.686 0.898 87.04 74.18 7.592 0.876

Tex-GAT (Ours) 35.92 11.28 16.106 0.899 91.75 57.51 8.990 0.883
Tex-GCN (Ours) 35.47 10.88 16.111 0.899 92.13 57.00 8.672 0.881

Token Interactions
Prompt 51.56 19.2 15.478 0.898 87.49 76.43 7.028 0.888

Tex-GAT (Ours) 34.28 10.67 16.106 0.899 92.04 74.60 7.692 0.891
Tex-GCN (Ours) 32.59 10.03 16.121 0.899 92.75 77.03 7.831 0.891

Span Interactions
Prompt 42.47 13.65 16.031 0.899 89.34 79.44 7.226 0.815

Tex-GAT (Ours) 38.05 12.05 16.119 0.899 92.73 68.15 7.256 0.815
Tex-GCN (Ours) 34.31 10.82 16.160 0.898 91.99 71.77 7.771 0.891

BART-based

- Fine-tuningbase 57.98 19.64 15.732 0.906 82.72 72.82 10.070 0.891

Highlight Token
Prompt 56.65 24.20 15.678 0.898 84.74 61.97 10.012 0.891

Tex-GAT (Ours) 43.85 13.78 16.503 0.909 91.97 58.11 10.092 0.891
Tex-GCN (Ours) 44.68 14.32 16.364 0.909 90.95 59.13 10.489 0.893

Token Interactions
Prompt 51.56 19.20 15.478 0.898 95.85 69.86 7.868 0.890

Tex-GAT (Ours) 48.38 16.07 16.24 0.908 95.21 72.52 7.405 0.888
Tex-GCN (Ours) 41.57 12.89 16.364 0.909 94.11 72.03 7.700 0.889

Span Interactions
Prompt 51.10 17.41 16.046 0.888 94.89 65.52 7.333 0.888

Tex-GAT (Ours) 42.90 12.92 16.449 0.909 93.98 61.39 7.795 0.890
Tex-GCN (Ours) 45.48 14.10 16.447 0.909 71.07 96.44 7.518 0.887

Table 5: Overall evaluation results on e-SNLI and ComVE datasets for T5-based and BART-based models, with our
G-Tex model using Tex-GAT and Tex-GCN. Counter indicates Counter Unfaith, Total indicates Total Unfaith. The
best performance of each evaluation metric is in bold. See Table 1 for results of our model using Tex-SAGE.

Explanation Type Model e-SNLI (P-Value) ComVE (P-Value)

Counter Total Counter Total
Unfaith Unfaith Unfaith Unfaith

T5-based

Highlight Token Tex-SAGE 0.0007 0.0054 0.0136 0.0002
Token Interactions Tex-SAGE 0.0002 0.0001 0.0164 0.0047
Span Interactions Tex-SAGE 0.0010 0.0032 0.0001 0.0307

BART-based

Highlight Token Tex-SAGE 0.0067 0.0064 0.0455 0.0001
Token Interactions Tex-SAGE 0.0122 0.0007 0.0168 0.0169
Span Interactions Tex-SAGE 0.0033 0.0006 0.0403 0.0116

Table 6: P-values of our Tex-SAGE model compared to
Fine-tuningbase on the e-SNLI and ComVE datasets,
using T5-large and BART-large, regarding Counter
Unfaith and Total Unfaith on 5 random seeds.

Rouge1 (Lin, 2004) calculates the overlap of un-1420

igrams between the generated explanation and the1421

golden ones, providing insight into lexical similar-1422

ity at the word level.1423

RougeL (Lin, 2004) measures the longest com-1424

mon subsequence between the generated explana-1425

tion and the golden explanations.1426

MoverScore (Zhao et al., 2019) calculates se-1427

mantic similarity by computing word embeddings1428

and their movement cost, capturing meaning while1429

accounting for variations in word order and struc-1430

ture. 1431

BARTScore (Yuan et al., 2021) leverages 1432

BART’s language model to assess the likelihood of 1433

the reference text being generated given the gener- 1434

ated explanation as input, providing a fluency and 1435

relevance measure. 1436

L.1 Supplementary Automatic Explanation 1437

Evaluation Results for G-Tex based on 1438

T5-large 1439

As shown in Table 9, Table 10 and Table 11, we 1440

conduct a supplementary automatic evaluation on 1441

T5-based G-Tex regarding Lexical Similarity and 1442

Semantic Similarity with the golden explanations 1443

on e-SNLI, ECQA and ComVE datasets respec- 1444

tively. 1445

Compared to all the baseline methods on the e- 1446

SNLI dataset, all variants of our G-Tex achieve 1447

higher lexical and semantic similarity with gold 1448

explanations, indicating that our approach can gen- 1449

erate more plausible NLEs. For instance, we ob- 1450

serve up to a 2.1% improvement in ROUGE-1 and 1451

a notable absolute increase of 0.224 in BARTScore. 1452

On the ECQA dataset, our G-Tex achieves bet- 1453

ter similarity performance than Fine-tuningbase 1454
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Evaluation
Metrics

UnFaithfulness(% ↓) Automatic Evaluation (↑)

Counter
Unfaith

Total
Unfaith

SacreBLEU
(0-100)

BERTScore
(0-1)

Fine-tuningbase 49.34 24.80 14.057 0.883

Highlight Tokens

Prompt 46.56 25.27 15.303 0.887
Tex-GAT 44.76 21.99 14.048 0.883
Tex-GCN 49.61 25.21 13.855 0.882
Tex-SAGE 45.42 22.44 13.968 0.882

Token Interactions

Prompt 51.29 33.30 15.311 0.887
Tex-GAT 43.49 21.44 13.910 0.882
Tex-GCN 43.42 21.18 14.079 0.883
Tex-SAGE 44.20 21.74 13.978 0.882

Span Interactions

Prompt 50.20 28.22 16.046 0.888
Tex-GAT 49.22 23.85 14.339 0.883
Tex-GCN 50.46 24.91 14.477 0.883
Tex-SAGE 46.87 22.50 14.509 0.884

Table 7: Overall Evaluation Results on ECQA of T5-based G-Tex. The best performance of each evaluation metric
across all NLE generation models is in bold.

Automatic Evaluation Metrics
Lexical Similarity (↑) Semantic Similarity (↑)

ROUGE-1 (0-1) ROUGE-L (0-1) SacreBLEU (1-100) MoverScore (0-1) BARTScore (-0-1) BERTScore (0-1)

Fine-tuningbase 0.180 0.130 12.484 0.840 -4.433 0.836

Highlight Tokens

Prompt 0.112 0.077 10.733 0.767 -4.557 0.754
Tex-GAT (Ours) 0.172 0.125 12.186 0.837 -4.453 0.835
Tex-GCN (Ours) 0.198 0.146 13.091 0.840 -4.379 0.839
Tex-SAGE (Ours) 0.181 0.133 12.659 0.839 -4.434 0.836

Token Interactions

Prompt 0.185 0.134 12.724 0.838 -4.435 0.837
Tex-GAT (Ours) 0.208 0.151 13.519 0.841 -4.399 0.841
Tex-GCN (Ours) 0.321 0.226 17.860 0.848 -4.079 0.858
Tex-SAGE (Ours) 0.243 0.174 14.773 0.843 -4.269 0.847

pan Interactions

Prompt 0.175 0.126 12.288 0.839 -4.454 0.835
Tex-GAT (Ours) 0.176 0.128 12.295 0.838 -4.456 0.835
Tex-GCN (Ours) 0.175 0.128 12.364 0.838 -4.455 0.835
Tex-SAGE (Ours) 0.186 0.135 12.802 0.839 -4.415 0.837

Table 8: Automatic Evaluation Results on ECQA of BART-based G-Tex. The best performance of each evaluation
metric across different NLE generation models is in bold.

(which does not utilize explanation information)1455

and is comparable to the prompt-based baseline.1456

On the ComVE dataset, all NLEs generated by1457

our method incorporating highlight token expla-1458

nations surpass the baselines in both lexical and1459

semantic similarity, while the variants based on to-1460

ken interactive explanations and span interactive1461

explanations sometimes fail to do so. This is likely1462

due to the format of the ComVE dataset, which1463

presents a simple question followed by two similar1464

statements. In this scenario, token interactive ex-1465

planations and span interactive explanations may1466

struggle to capture sufficient information from the1467

limited interaction between the question and the1468

options.1469

Among the different highlight explanation types1470

on the e-SNLI dataset, token interactive expla-1471

nations, particularly those using the Tex-SAGE1472

variant of our G-Tex, achieve the highest lexical1473

and semantic similarity. Meanwhile, highlight to- 1474

ken explanations and span interactive explana- 1475

tions also perform strongly, excelling at ROUGE-L 1476

and ROUGE-1 scores respectively. On the ECQA 1477

dataset, span interactive explanations have a slight 1478

edge over other explanation types, although the dif- 1479

ference is marginal. On the ComVE dataset, high- 1480

light token explanations show a clear advantage 1481

across all metrics. This is likely due to the in- 1482

put format of the ComVE dataset, which makes it 1483

challenging for token interactive explanations and 1484

span interactive explanations to capture sufficient 1485

information, as discussed earlier. 1486

In summary, these findings highlight that the 1487

advantages of different explanation types in im- 1488

proving NLE quality vary with dataset charac- 1489

teristics. 1490
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Automatic Evaluation Metrics
Lexical Similarity(↑) Semantic Similarity(↑)

ROUGE-1 (0-1) ROUGE-L (0-1) MoverScore (0-1) BARTScore (-0-1)

Fine-tuningbase 0.448 0.384 0.838 -3.646

Highlight Tokens

Prompt 0.455 0.397 0.840 -3.492
Tex-GAT (Ours) 0.467 0.402 0.842 -3.437
Tex-GCN (Ours) 0.468 0.403 0.842 -3.425
Tex-SAGE (Ours) 0.468 0.404 0.841 -3.422

Token Interactions

Prompt 0.459 0.394 0.842 -3.503
Tex-GAT (Ours) 0.467 0.402 0.842 -3.437
Tex-GCN (Ours) 0.467 0.403 0.842 -3.435
Tex-SAGE (Ours) 0.469 0.404 0.843 -3.431

Span Interactions

Prompt 0.466 0.402 0.841 -3.467
Tex-GAT (Ours) 0.466 0.403 0.841 -3.442
Tex-GCN (Ours) 0.469 0.403 0.843 -3.433
Tex-SAGE (Ours) 0.467 0.402 0.842 -3.428

Table 9: Automatic Evaluation Results on e-SNLI of T5-based G-Tex (excluding SacreBLEU and BERTScore,
which are presented in Table 1). The best performance of each evaluation metric across different NLE generation
models is in bold.

L.2 Supplementary Automatic Explanation1491

Evaluation Results for G-Tex based on1492

BART-large1493

As shown in Table 12, Table 8 and Table 13, we1494

conduct a supplementary automatic evaluation on1495

BART-based G-Tex regarding Lexical Similarity1496

and Semantic Similarity with the golden explana-1497

tions on e-SNLI, ECQA and ComVE datasets re-1498

spectively.1499

M Human Evaluation1500

In line with prior work (Atanasova et al., 2020b;1501

Jolly et al., 2022), our human evaluation assesses1502

the generated explanations across four key dimen-1503

sions:1504

Coverage: The explanation includes all impor-1505

tant and salient information, ensuring no significant1506

points that contribute to label prediction are omit-1507

ted.1508

Non-redundancy: The explanation should1509

avoid redundant, repeated, or irrelevant information1510

and should not include content that is unreasonable1511

or inconsistent with common sense.1512

Non-contradiction: The explanation should not1513

contradict the predicted label or the input text,1514

maintaining consistency throughout.1515

Overall Quality: The explanations are rated1516

based on overall quality, considering factors such1517

as grammar, readability, and clarity.1518

We engaged three PhD students with back-1519

grounds in computer science to evaluate the expla-1520

nations using a 1–7 Likert scale following previous1521

work (Castro Ferreira et al., 2019; Ribeiro et al., 1522

2021; Yuan and Färber, 2024). We compare the 1523

text generated by the Fine-tuningbase with that 1524

generated by Tex-GAT when guided by highlight 1525

token, token interactive explanations, and span in- 1526

teractive explanations, respectively. The annotator 1527

agreement is reported in Table 17. Note that we ran- 1528

domly sample 100 NLEs generated by each model. 1529

M.1 Human Evaluation Results 1530

e-SNLI In Table 14, across all highlight expla- 1531

nation types, the NLEs generated by the token in- 1532

teractive explanations achieve the highest scores 1533

across most dimensions, particularly excelling in 1534

Non-redundancy (5.95) and Overall Quality (6.37), 1535

indicating its effectiveness in producing concise 1536

and high-quality explanations. The NLEs gener- 1537

ated with the guidance of span interactive expla- 1538

nations method also show strong performance, es- 1539

pecially in Non-contradiction (6.72), suggesting 1540

that modeling span-level interactions is beneficial 1541

for maintaining consistency of the NLE with the 1542

generated label. The highlighted token explana- 1543

tions performs slightly lower, indicating that while 1544

it captures key tokens effectively, it may miss out 1545

on broader contextual relationships crucial for non- 1546

redundancy and overall quality. 1547

ECQA Table 15 shows the evaluation results 1548

for the ECQA dataset, where the NLEs generated 1549

by token interactive explanations again lead in 1550

Non-redundancy (4.82) and achieves a high Non- 1551

contradiction score (5.08), confirming its robust- 1552
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Automatic Evaluation Metrics
Lexical Similarity(↑) Semantic Similarity(↑)

ROUGE-1 (0-1) ROUGE-L (0-1) MoverScore (0-1) BARTScore (-0-1)

Fine-tuningbase 0.469 0.346 0.850 -3.584

Highlight Tokens

Prompt 0.490 0.355 0.857 -3.528
Tex-GAT (Ours) 0.469 0.346 0.851 -3.576
Tex-GCN (Ours) 0.468 0.347 0.850 -3.575
Tex-SAGE (Ours) 0.468 0.347 0.850 -3.569

Token Interactions

Prompt 0.489 0.354 0.855 -3.549
Tex-GAT (Ours) 0.468 0.345 0.849 -3.598
Tex-GCN (Ours) 0.469 0.346 0.850 -3.593
Tex-SAGE (Ours) 0.468 0.346 0.851 -3.593

Span Interactions

Prompt 0.496 0.360 0.857 -3.520
Tex-GAT (Ours) 0.472 0.350 0.850 -3.569
Tex-GCN (Ours) 0.470 0.349 0.849 -3.568
Tex-SAGE (Ours) 0.474 0.350 0.851 -3.560

Table 10: Automatic Evaluation Results on ECQA of T5-based G-Tex (excluding SacreBLEU and BERTScore,
which are presented in Table 7). The best performance of each evaluation metric across different NLE generation
model is in bold.

ness across different datasets. The span interactive1553

explanations perform similarly well, attaining the1554

highest Overall Quality score (5.63), emphasizing1555

its adaptability in varied datasets.1556

Overall, while the highlight token explanations1557

shows slightly lower performance across all high-1558

light explanation types, leveraging span interactive1559

explanations and token interactive explanations1560

that are encoded in G-Tex notably improves the1561

quality and consistency of the generated explana-1562

tions.1563

M.2 Human Evaluation Instruction1564

The annotators are asked to rate the generated texts1565

following the instructions in Table 16.1566

M.3 Pairwise agreement for human1567

annotations1568

Table 17 shows Pairwise agreement for human an-1569

notations for NLE generated by T5-based G-Tex1570

on e-SNLI and ECQA dataset.1571
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Automatic Evaluation Metrics
Lexical Similarity(↑) Semantic Similarity(↑)

ROUGE-1 (0-1) ROUGE-L (0-1) MoverScore (0-1) BARTScore (-0-1)

Fine-tuningbase 0.355 0.319 0.828 -4.030

Highlight Tokens

Prompt 0.354 0.317 0.825 -4.051
Tex-GAT (Ours) 0.394 0.332 0.832 -3.884
Tex-GCN (Ours) 0.384 0.333 0.830 -3.934
Tex-SAGE (Ours) 0.393 0.330 0.833 -3.881

Token Interactions

Prompt 0.312 0.269 0.817 -4.083
Tex-GAT (Ours) 0.326 0.283 0.816 -3.976
Tex-GCN (Ours) 0.332 0.288 0.817 -3.970
Tex-SAGE (Ours) 0.310 0.266 0.817 -4.070

Span Interactions

Prompt 0.317 0.275 0.815 -4.059
Tex-GAT (Ours) 0.324 0.280 0.815 -3.998
Tex-GCN (Ours) 0.328 0.286 0.815 -3.975
Tex-SAGE (Ours) 0.328 0.283 0.818 -3.980

Table 11: Automatic Evaluation Results on ComVE of T5-based G-Tex (excluding SacreBLEU and BERTScore,
which are presented in Table 1). The best performance of each evaluation metric across different NLE generation
models is in bold.

Automatic Evaluation Metrics
Lexical Similarity(↑) Semantic Similarity(↑)

ROUGE-1 (0-1) ROUGE-L (0-1) MoverScore (0-1) BARTScore (-0-1)

Fine-tuningbase 0.457 0.391 0.838 -3.491

Highlight Tokens

Prompt 0.468 0.398 0.843 -3.458
Tex-GAT (Ours) 0.476 0.405 0.843 -3.403
Tex-GCN (Ours) 0.474 0.402 0.841 -3.415
Tex-SAGE (Ours) 0.474 0.402 0.840 -3.416

Token Interactions

Prompt 0.459 0.394 0.843 -3.503
Tex-GAT (Ours) 0.472 0.401 0.841 -3.449
Tex-GCN (Ours) 0.473 0.402 0.842 -3.418
Tex-SAGE (Ours) 0.472 0.403 0.841 -3.431

Span Interactions

Prompt 0.475 0.403 0.841 -3.419
Tex-GAT (Ours) 0.477 0.403 0.842 -3.427
Tex-GCN (Ours) 0.476 0.403 0.842 -3.423
Tex-SAGE (Ours) 0.477 0.404 0.842 -3.423

Table 12: Automatic Evaluation Results on e-SNLI of BART-based G-Tex (SacreBLEU and BERTScore are
excluded and are presented in Table 1). The best performance of each evaluation metric across different NLE
generation models is in bold.
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Automatic Evaluation Metrics
Lexical Similarity(↑) Semantic Similarity(↑)

ROUGE-1 (0-1) ROUGE-L (0-1) MoverScore (0-1) BARTScore (-0-1)

Fine-tuningbase 0.421 0.325 0.840 -3.802

Highlight Tokens

Prompt 0.419 0.322 0.834 -3.796
Tex-GAT (Ours) 0.427 0.325 0.837 -3.765
Tex-GCN (Ours) 0.435 0.332 0.838 -3.761
Tex-SAGE (Ours) 0.434 0.330 0.837 -3.748

Token Interactions

Prompt 0.334 0.284 0.818 -4.036
Tex-GAT (Ours) 0.322 0.277 0.818 -4.047
Tex-GCN (Ours) 0.334 0.285 0.817 -3.985
Tex-SAGE (Ours) 0.316 0.269 0.814 -4.129

Span Interactions

Prompt 0.323 0.274 0.818 -4.029
Tex-GAT (Ours) 0.334 0.288 0.818 -4.011
Tex-GCN (Ours) 0.327 0.278 0.818 -4.045
Tex-SAGE (Ours) 0.333 0.287 0.820 -4.017

Table 13: Automatic Evaluation Results on ComVE of BART-based G-Tex. The best performance of each evaluation
metric across different NLE generation models is in bold.

Method Coverage Non Redund. Non Contrad. Overall

Fine-tuningbase 6.72 5.86 6.67 6.28
Highlight Tokens 6.74 5.80 6.67 6.06
Token Interactions 6.75 5.95 6.64 6.37
Span Interactions 6.67 5.92 6.72 6.26

Table 14: Human Evaluation Results on e-SNLI dataset of our G-Tex using Tex-GAT based on T5.

Method Coverage Non Redund. Non Contrad. Overall

Fine-tuningbase 5.66 4.41 4.91 5.53
Highlight Tokens 5.08 4.27 4.51 5.20
Token Interactions 5.60 4.82 5.08 5.61
Span Interactions 5.65 4.67 4.90 5.63

Table 15: Human Evaluation Results on ECQA dataset of our G-Tex using Tex-GAT based on T5.
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Criterion and Explanation 1 - 3 (Very Bad) 3 - 5 (OK, but not
good enough)

5 - 7 (Good to Very
Good)

Coverage: The explanation con-
tains important, salient informa-
tion and does not miss any impor-
tant points that contribute to the
label prediction.

The explanation misses
the most critical points
in the input text.

The explanation pro-
vides a reason for the
prediction, but not the
main reason.

The explanation cov-
ers the most important
points/reasons for the
prediction.

Non-redundancy: The expla-
nation does not contain any in-
formation that is redundant, re-
peated, or irrelevant to the claim
and predicted label. It should
also be reasonable according to
common sense.

The explanation con-
tains irrelevant infor-
mation, unnecessary
repetition, or elements
that do not appear in
the input text; violates
common sense.

The explanation is ac-
ceptable but contains
some redundancy or
repetition.

Slightly to no redun-
dancy, repetition, or
hallucination.

Non-contradiction: The expla-
nation does not contain any
pieces of information that are
contradictory to the predicted la-
bel and the input text.

The explanation contra-
dicts the predicted la-
bel or input text; they
address different top-
ics.

The explanation
matches the predicted
label but is not fully
logical.

The explanation and
predicted label are
fully consistent and
logical.

Overall Quality: Rank the ex-
planations by their overall qual-
ity. Consider grammar, readabil-
ity, and clarity.

Many grammatical er-
rors, difficult to under-
stand.

No major grammar
mistakes, but not easy
to understand.

Perfect grammar and
language clarity.

Table 16: Rating Criteria for Generated Natural Language Explanations
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- Coverage Non-redundancy Non-contradiction Overall

Annotator_id 2 3 2 3 2 3 2 3

e-SNLI

1 0.51 0.25 0.53 0.43 0.36 0.19 0.33 0.16
2 - 0.40 - 0.53 - 0.43 - 0.37

Mean 0.39 0.49 0.33 0.29

ECQA

1 0.35 0.20 0.33 0.15 0.58 0.40 0.27 -0.02
2 - 0.10 - 0.29 - 0.35 - 0.30

Mean 0.22 0.26 0.44 0.18

Table 17: Pairwise agreement for human annotations on
e-SNLI and ECQA. We report separately the agreement
between annotator pairs 1-2, 2-3, and 1-3. Mean repre-
sents the average over three pairwise agreements.
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