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ABSTRACT
Building a unified model for general low-level vision tasks has im-
portant research and practical value. However, existing methods
still face challenges when dealing with diverse low-level vision
problems. Multi-task restoration approaches can simultaneously
address various degradation-to-clean restoration tasks, while their
applicability to tasks with different target domains (e.g., image styl-
ization) remains limited. Existing methods like PromptGIP that can
handle tasks with multiple input-target domains mainly rely on
the Masked Autoencoder (MAE) training paradigm. Unfortunately,
these approaches are restricted by coupling to the ViT architecture,
resulting in suboptimal image reconstruction quality. In addition,
they tend to be sensitive to prompt content and often fail when han-
dling more tasks that involve low-frequency information process-
ing, such as color and style. In this paper, we present a Visual task
Prompt-based Image Processing (VPIP) framework to address the
above challenges. This framework employs the visual task prompt
to process tasks with different input-target domains. Besides, it
provides the flexibility to select a backbone network suitable for
various low-level vision tasks. A prompt cross-attention mechanism
is introduced to deal with the information interaction between the
input and prompt information. Based on the VPIP framework, we
train a low-level vision generalist model, namely GenLV, on 30 di-
verse tasks. Experimental results show that GenLV can successfully
address a variety of low-level tasks, and it significantly outperforms
existing methods both quantitatively and qualitatively.

CCS CONCEPTS
• Computing methodologies → Image representations; Re-
construction; Computational photography.

KEYWORDS
General Low-Level Vision, Image Restoration and Enhancement,
Multi-task Learning, Visual Prompt

1 INTRODUCTION
low-level vision comprises a multitude of tasks that manipulate
and enhance the pixel-level information of images. These tasks
include but are not limited to image restoration, image enhance-
ment, image feature extraction and image stylization. Over the
years, a flurry of methods have been proposed to address various
low-level vision tasks, many of which have achieved commend-
able performance for specific individual tasks [6, 11, 48]. However,
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the custom development of task-specific models often proves to
be time-consuming and labor-intensive. In recent years, there has
been a significant tendency in artificial intelligence technology to-
wards the development of general models. In the realm of Natural
Language Processing (NLP), Large Language Models (LLMs) such
as the GPT-series [4, 33] have exhibited remarkable performance.
Analogous research has also incrementally emerged in the field of
computer vision, exemplified by models like Segment Anything
Model (SAM) [24] and Track Anything Model (TAM) [45]. However,
these explorations have mainly focused on perceptual high-level vi-
sion tasks, while research concerning general models for low-level
vision tasks remains notably insufficient.

Designing a general model for low-level vision presents signifi-
cant challenges in several aspects. Firstly, due to the diversity of
low-level vision tasks, different types of tasks may have distinct
input and target domains (e.g., image restoration and stylization).
Therefore, unifying a wide range of low-level vision tasks within
a single model framework is challenging. Existing models that
solve multiple low-level vision tasks are often designed to deal
with a specific task category. For instance, AirNet [26] and Promp-
tIR [35] focus on simultaneously processing several restoration
tasks, i.e., restoring degraded images with several specific degra-
dation to clean ones. However, these models are not capable to
jointly process image feature extraction or stylization tasks that ac-
cept clean images as input. Secondly, for low-level vision tasks, the
pixel-level image reconstruction and generation quality is the most
important factor in evaluating the model effectiveness. However,
existing general vision models frequently emphasize perceptual
accuracy while neglecting the model’s image reconstruction capa-
bility. Consequently, when tackling low-level vision tasks, the gen-
erated results frequently suffer from unsatisfactory image quality.
For example, MAE-VQGAN [3] utilizes discrete feature represen-
tations for image reconstruction, often resulting in unacceptable
structural differences between the reconstructed results and the
input images [30]. Painter [40] and PromptGIP [30] employs ViT-
based backbone network [17]. As a result, their results often lack
fine details and occasionally exhibit blocking artifacts. Further-
more, solving a broader range of low-level vision tasks involves
processing high- and low-frequency information simultaneously,
which also poses a significant challenge to method design. Prompt-
GIP [30] performs well within a specific task range, but may fail
when the number of tasks increases, especially when more low-
frequency information processing (e.g., color and style) is involved.
The Painter [40] model trained under the same task settings exhibits
similar or even more severe issues, as shown in Figure 5. We at-
tribute these phenomena to the Masked Autoencoder (MAE)-based
training paradigm, which makes the models sensitive to the content,
especially low-frequency information, of the visual prompt.

To address the above issues of constructing a general low-level
vision model, we propose a new Visual task Prompt-based Image
Processing (VPIP) framework. This framework comprises three
key components: an end-to-end image processing main network,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Our proposed low-level vision generalist model, GenLV, can handle diverse tasks with various input/target domains.

an encoder sub-network for processing the visual prompt, and an
information interaction mechanism that introduces prompt infor-
mation into the main network to guide task-specific processing.
For the specific model design, we first employ a powerful back-
bone network, X-Restormer [9], which is designed for general im-
age restoration tasks, as the main network. Similar to PromptGIP
and Painter, we represent different low-level vision tasks as input-
target image pairs, serving as the visual task prompt. The prompt
encoder sub-network processes the task prompt into latent repre-
sentations. Inspired by text-to-image models, such as the Stable
Diffusion model [38], which incorporate the text prompt into the
denoising process, we introduce visual task prompt representations
into the main network using a cross-attention mechanism.

The advantages of our proposed VPIP framework are manifold:
1) By utilizing the visual task prompt, our framework effectively
solve the problem of varying input-target domains across differ-
ent low-level vision tasks. 2) Not restricted to the MAE training
paradigm, our approach mitigates the impact of prompt content
on the task representation, enhancing the robustness of the task
prompt. 3) Our framework allows flexibility in selecting backbone
networks suitable for low-level vision tasks, thereby improving
image reconstruction quality. 4) Instead of computing global atten-
tion for grid-like representations consisting of four image features
of PromptGIP, our approach, based on cross-attention calculation,
effectively reduces the attention computation cost.

To evaluate the effectiveness of our method, we construct 30 di-
verse tasks to train the model. The trained low-level vision general-
ist model, namely GenLV, can successfully process the various tasks
with different input and target domains, as show in Figure 1. We
also conduct comprehensive experiments to compare our method
and existing approaches in Section 4. Extensive results demonstrate
that GenLV significantly outperforms the other methods.

2 RELATEDWORK
Low-Level Vision. Over the past decade, the field of low-level vi-
sion has undergone significant advancements, largely attributable
to the integration of deep learning techniques. Classic low-level
vision tasks include but not limited four categories: image restora-
tion, image enhancement, image feature extraction and stylization.
Image restoration aims to restore the high-quality clean image
from observations degraded by a variety of factors, including low-
resolution [16], noise [50], blur [1], JPEG compression [15] and bad
weather, such rain [46] and haze [47]. Image enhancement [36] is
concerned with the alteration of specific image attributes, such as
color [19], sharpness [2], exposure [10] and brightness [8], in order
to make the image more suitable for a particular task or viewer. Im-
age feature extraction, like edge detection [7], focuses on extracting
the low-level features from the image, which can help downstream
enhancement and understanding tasks. Image stylization is to cre-
ate visually appealing images with a specific style or aesthetic [23].
Despite the advancements, current methods often rely on special-
ized datasets and customized network architectures, which limits
the practical application of these methods.

Prompt Learning. In the NLP field, the concept of prompting is
initially to supply manually selected in-context information to a pre-
trained model for implementing the target task [4]. Instead of using
manual prompt, many follow-up works propose to treat the prompt
as task-specific vectors to adapt model for various tasks [20, 25].
Prompt learning techniques have also been applied in the field of
computer vision, where they have proven effective in modeling
task-specific instructions across various applications [21, 51]. No-
tably, MAE-VQGAN [3] and Painter [40] leverage the flexibility of
prompting to unify a variety of vision tasks. These models demon-
strate impressive performance on high-level tasks, such as semantic
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Figure 2: Diverse low-level vision tasks. Different categories
of tasks differ in terms of target domains. It presents a signif-
icant challenge to build a low-level vision generalist model.

segmentation, by constructing the grid-like prompt. However, their
effectiveness in low-level vision tasks is insufficient [30]. In the
realm of low-level vision, PromptGIP [30] proposes an MAE-based
framework and use the grid-like visual prompt to handle 15 cross-
domain image processing tasks. Despite this, as the number and
complexity of tasks increases, the effectiveness of this method de-
creases significantly. Besides, the training paradigm employed by
PromptGIP is deeply intertwined with the ViT architecture, which
largely limits the image reconstruction quality of its output.
Multi-task Image Restoration.Multi-task image restoration aims
to train a single model to handle multiple restoration tasks simul-
taneously. Existing multi-task image restoration methods can be
categorized into two groups. The first group of methods aim to pro-
cess real-world images with unknown degradation, emphasizing
the modeling of complex real-world degradation. The represen-
tative approaches include BSRGAN [49] and Real-ESRGAN [41]).
In contrast, the second group of methods like DASR [39] and Air-
Net [26] are developed to handle several specific restoration tasks
with predefined degradation. These methods mainly focus on de-
signing better modules for multi-task learning to maximize network
capability of task-specific restoration performance. Some current
works such as ProRes [32] and PromptIR [35] are proposed to lever-
age a learnable prompt from the input image for better multi-task
restoration. However, all these approaches are limited to solving
the degradation-to-clean restoration problem, and lack the ability
to deal with a broad range of cross-domain low-level vision tasks.
Unlike these approaches, our method aims to construct a low-level
vision generalist model, which is not only capable of image restora-
tion, but also excels at handling a wider range of cross-domain
tasks, including enhancement, feature detection and stylization.

3 APPROACH
3.1 Representative Low-Level Vision Tasks
Low-level vision tasks encompass a range of pixel-level manipula-
tions, including image restoration, enhancement, feature extraction,
stylization, etc. Each task uniquely transforms an input image space
to a specific target domain. For example, the target domain of im-
age restoration is high-quality (HQ) image space Ω𝐻𝑄 , while the

outputs of edge detection are edges maps Ω𝐸𝑑𝑔𝑒 . Formally, given
an arbitrary input image 𝐼 , the low-level vision task can be defined
as T𝑡𝑎𝑠𝑘 : Ω𝑆 → Ω𝑇 , where Ω𝑆 and Ω𝑇 denote the source image
space and the target image space, respectively. According to the tar-
get domain, low-level vision tasks generally fall into the following
categories as:

Restoration: T𝑅𝑒𝑠 : Ω𝑆 → Ω𝐻𝑄 ,

Enhancement: T𝐸𝑛ℎ : Ω𝑆 → Ω𝐸𝑛ℎ,

Edge Detection: T𝐸𝑑𝑔 : Ω𝑆 → Ω𝐸𝑑𝑔,

stylization: T𝑆𝑡𝑦 : Ω𝑆 → Ω𝑆𝑡𝑦 .

(1)

Each category encompasses a variety of tasks, as presented in Fig-
ure 2. Our goal is to address all these tasks through a unified model.

3.2 Problem Formulation
Existing low-level vision methods are typically designed for specific
tasks, which inherently restricts their applicability to tasks with
different target domains. Taking the image restoration model as an
example, they accept low-quality images as input and predict the
high-quality output as:

𝐼𝑜𝑢𝑡 = FT𝑅𝑒𝑠 (𝐼𝑖𝑛 ;Θ) ∈ Ω𝐻𝑄 , (2)

where FT𝑅𝑒𝑠 represents the restoration model parameterized by Θ.
The restoration model can accommodate various restoration tasks
through incorporating multiple degradations into training, such as
blur, denoising and deraining, given that the output image space
of these tasks are the same, i.e., Ω𝐻𝑄 . However, this kind of model
cannot be extended to simultaneously implement tasks like edge
detection, which targets a completely different output modality.

To train a low-level vision generalist model that can process
cross-domain tasks, our approach employs a unified framework ca-
pable of handling various cross-domain tasks by utilizing additional
image pair as the prompt [𝑃Ω𝑆

, 𝑃Ω𝑇
]. It can be denoted as:

𝐼𝑜𝑢𝑡 = FT (𝐼𝑖𝑛, [𝑃Ω𝑆
, 𝑃Ω𝑇

];Θ) . (3)

This formulation allows diverse task mappings to be represented
by intuitive image pairs, which marks a significant difference from
conventional low-level vision models, offering a more holistic and
adaptable approach to broad cross-domain low-level vision tasks.

3.3 Low-Level Vision Generalist Model
In this section, we illustrate the specific design of our low-level
vision generalist model, as shown in Figure 3. The overall approach
is predicated on the Visual task Prompt-based Image Processing
(VPIP) framework. A powerful image processing network and a
prompt encoder network are used to process the input image and
the prompt images. A new prompt cross-attention mechanism is
introduced to achieve the information interaction among latent
representations of the input image and prompt images.

VPIP Framework consists of an end-to-end image processing
main network, a prompt encoder network and a prompt interaction
mechanism. Given an input image 𝐼𝑖𝑛 , it is initially processed to a
high-dimensional latent feature 𝑧𝑖𝑛 through the encoder. In parallel,
the paired prompt images [𝑃Ω𝑆

, 𝑃Ω𝑇
] are fed into the prompt en-

coder to generate two high-dimensional representations [𝑧𝑃Ω𝑆
, 𝑧𝑃Ω𝑇

],
both of which with the same spatial size as 𝑧𝑖𝑛 . Following this, the
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Figure 3: Overall approach of our low-level vision generalist model, GenLV.

Figure 4: Comparison of two attention mechanisms.

information interaction is implemented between 𝑧𝑖𝑛 and the pair
[𝑧𝑃Ω𝑆

, 𝑧𝑃Ω𝑇
] and results in the processed latent representation 𝑧𝑜𝑢𝑡 .

The final step is to reconstruct the output image from 𝑧𝑜𝑢𝑡 via the
decoder in the main network. Unlike previous approaches such as
Painter and PromptGIP, which rely on MAE-based framework and
require binding with the ViT architecture, our VPIP framework al-
lows flexible selection of backbone networks suitable for low-level
vision tasks as the image processing main network.

Image Processing Backbone plays a crucial role in the image
reconstruction quality for low-level vision tasks. Since different
low-level vision tasks often have different requirements for network
capability, the most important criterion for selecting a backbone
network is its task generality. Due to the lack of work investigating
task generality across a wide range of low-level tasks, we focusmore
on the model performance for image restoration. A recent work
conduct a detailed study on the backbone network for restoration
tasks and propose a general backbone network, X-Restormer [9],
suitable for multiple various restoration tasks. Therefore, we sim-
ply adopt similar architecture as our main network1. Specifically,
the main network employs a U-shape architecture, where down-
sampling and upsampling operations are performed three times,

1We also conduct an extensive study on the model performance of different backbone
network, and the detailed results are presented in the Supplementary Material.

and skip connections are added from the encoder to the decoder
at the same scale. The basic modules to construct the network are
Transposed Self-Attention Block (TSAB) and Spatial Self-Attention
Block (SSAB), which deal with the channel-wise global information
interaction and the spatial information interaction, respectively.
The structures of TSAB and SSAB are shown in Figure 3. The im-
plementation details of their attention mechanism can be referred
to the OCA in HAT [12] and the MDTA in Restormer [48].

Prompt Cross-attention is designed to perform information
interaction among the prompt and input representations. Prompt-
GIP [30] demonstrates that calculating global attention in the fea-
ture space can effectively incorporate task prompt information into
image processing. However, this approach is tightly coupled with
the ViT architecture and is relatively inefficient in terms of the
attention computation. Inspired by the Stable Diffusion [38] model,
which utilizes cross-attention to apply text prompt to the denoising
UNet, we adopt a similar mechanism to introduce visual prompt
information into the image processing network. As depicted in
Figure 3, the Prompt Cross-Attention Block (PCAB) is implemented
by adding a PCA module to the standard SSAB and is integrated at
the bottom of the U architecture. To calculate the PCA, the query
(Q), key (K) and value (V ) are first generated by 1 × 1 convolutions
from the input representation 𝑧𝑖𝑛 , prompt input embedding 𝑧𝑃Ω𝑆

and prompt target embedding 𝑧𝑃Ω𝑇
. Then, the standard attention is

computed to obtain the output representation 𝑧𝑜𝑢𝑡 . Compared to
calculating global self-attention on the grid-like features consisting
of four image representations across the entire network, our prompt
cross-attention calculated based on the size of one image represen-
tation in just a few blocks (i.e., PCAB) is much more efficient in
terms of attention computation, as shown in Figure 4.

Prompt Encoder is employed to encode the prompt images into
deep representations that can be used for information interaction.
We simply utilize a series of standard residual blocks spaced by
multiple downsampling operations to build the encoder network.
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4 EXPERIMENTS AND ANALYSIS
4.1 Experimental Setup
Task Settings. We train the models on 30 diverse low-level tasks,
as follows: 1) Image Restoration: Following PromptGIP [30], ten
classic degradation types are considered including Gaussian noise,
Gaussian blur, Poisson noise, salt & pepper noise, JPEG compres-
sion, ringing artifacts, R-L algorithm [37], inpainting, haze and
rain. During the training, the on-the-fly data pairs are generated on
ImageNet [14] for the first eight types. Simple mixed degradations
are also considered for training. ITS dataset [27] and Rain13K [22]
are utilized for dehazing and deraining. A simple additive rain
model is also employed for synthetic data. For testing, a mixed
dataset, Common528 [30], composed of several low-level vision
benchmark datasets is employed. 2) Image Enhancement: This
category includes eight tasks: low-light enhancement (LLE), photo
retouching, local Laplacian filtering [2] (LLF), multi-scale tone ma-
nipulation (MTM) [18], underwater image contrast enhancement
(ICE) based on histogram equalization, underwater image color
correction (ICC) based on the DIVE+ software, image SDR-to-HDR
and HDR-to-SDR [13]. The LOL dataset [42] is used for LLE, and
expert-C retouched images of the Adobe-MIT Fivek dataset [5] are
used for retouching, LLF, and MTM. The UIEB dataset [28] is uti-
lized for the two underwater image enhancement tasks. 3) Image
Edge Detection: This category includes three edge detection tasks:
Canny operator, Laplacian operator and a perceptual edge detection
(PED) [34]. 4) Image Stylization: Nine style are chosen, including
pencil drawing [31], photographic style [2], relative total varia-
tion (RTV) [44], Vermeer style, JOJO style, Raphael style, Fauvism
style, Divisionism style and Cloisonnism style. Expert-C retouched
images of Adobe-MIT Fivek dataset [5] are also used to generate
the image pairs. Data of the first three styles are implemented via
available toolkit, and the last six neural styles are generated by a
state-of-the-art style transfer method AdaAttN [29].
Implement details. For the backbone network, we adopt the simi-
lar setting as the original X-Restormer [9]. From level-1 to level-4,
the numbers of consecutive blocks (each block contains a TSAB
and an SSAB) are [2, 4, 4, 4], attention heads in TSA and SSA are
both [1, 2, 4, 8], and channel numbers are [48, 96, 192, 384]. For the
prompt encoder network, we employ four residual blocks for each
downsampling level. During the training, the input size is set to
256× 256 for the input image and prompt images. 𝐿1 loss is utilized
as the loss function. AdamW optimizer with 𝛽1 = 0.9 and 𝛽2 = 0.99
is adopted with an initial learning rate of 1𝑒−4. The batch size is
set to 64 and total training epochs are 30.

4.2 Quantitative Results
The quantitative results for various low-level vision tasks are pre-
sented in Table 1, Table 2 and Table 3. Given that not all existing
methods are capable to handle tasks across different target domains,
our primary comparative experiments are centered on restoration
tasks in Table 1. We consider three distinct experimental settings.
The first setting utilizes a pretrained model, i.e., Real-ESRGAN [41],
which is capable of handling a variety of restoration tasks. The
second setting is based on the training configuration outlined in
our paper, but it solely focuses on image restoration tasks. The third
setting involves training on the all 30 low-level vision tasks.

Ablation Study on Visual Prompt. Since the models without
using task prompt cannot process tasks with different target do-
mains, we conduct the ablation study of the visual task prompt
on restoration tasks. In Table 1, ViT★ and X-Restormer★ are two
end-to-end models only trained on image restoration tasks, while
ViT-VPIP★ and GenLV★ (the GenLV model can also be represented
as X-Restormer-VPIP) are models based on our VPIP framework,
utilizing ViT and X-Restormer as their backbone respectively. Upon
the incorporation of prompt learning, both ViT-VPIP★ and GenLV★
exhibit substantial performance gains over ViT★ and X-Restormer★
in most restoration tasks. This demonstrates the effectiveness of
the visual prompt in facilitating the backbone network to better
handle various tasks. It is noteworthy that X-Restormer★, without
using visual prompt, struggles with the dehazing task, achieving
only 16.73dB. A similar phenomenon also occurs for the multi-task
restoration method PromptIR [35]. In contrast, GenLV★ tackles it
considerably better, reaching 25.63dB. All these results show the
effectiveness of our proposed VPIP framework.
Influence of Backbone Network. In Table 1, when trained on the
same setting, the performance of models using X-Restormer as the
backbone network (i.e., X-Restormer★, GenLV★ and GenLV†) sig-
nificantly surpasses that of models using ViT (i.e., ViT★, ViT-VPIP★
and ViT-VPIP★). This observation suggests that an appropriate
backbone network is important for low-level vision tasks generalist
models, and ViT architecture may limit the model performance.
Comparison with other methods. In Table 1, GenLV★ outper-
forms the state-of-the-art blind SR method Real-ESRGAN [41] and
multi-task restoration method PromptIR [35], when only consid-
ering image restoration tasks. Note that we retrain the PromptIR
model on the same setting for fair comparison (the original Promp-
tIR is trained only on 4 tasks). By employing the ViT network,
PromptGIP★ trained on restoration tasks performs better than ViT-
VPIP★, due to more attention computation. However, as more tasks
are involved, ViT-VPIP† outperforms PromptGIP† and Painter† in-
stead, showing the superiority of our framework for solving more
diverse tasks. In Table 2 and Table 3, we further show the quantita-
tive results on broader low-level vision tasks. Only methods capable
of solving tasks across different target domains are considered in
the comparison. The models employed VPIP framework outperform
Painter and PromptGIP on a variety of low-level vision tasks.

4.3 Visual Results
In Figure 5, we present the visual comparison of our GenLV with
Painter and PromptGIP across various low-level vision tasks. From
a holistic perspective, GenLV produces results that are more consis-
tent with the ground truth, especially in aspects such as color and
brightness. In contrast, the results produced by Painter and Prompt-
GIP are easily affected by errors in low-frequency information,
manifesting as color anomalies or even incorrect task execution.
Rather that our method where prompt information can accurately
serve as task instruction, Painter and PromptGIP appear to be sig-
nificantly affected by the content of the prompt image. In terms of
image reconstruction quality, the images generated by GenLV have
clear textures and details. Conversely, Painter and PromptGIP may
suffer from blurring or blocking artifacts, particularly for image
restoration tasks. Overall, the above results show the superiority
of GenLV in visual quality for dealing with various low-level tasks.
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Table 1: Quantitative results on image restoration tasks. #: public released model. ★: trained with only restoration tasks. †:
trained with all 30 low-level vision tasks. GN: Gaussian noise. PN: Poisson noise. ViT-VPIP: ViT backbone adopted in the VPIP
framework. Our GenLV can also be represented as X-Restormer-VPIP. PSNR↑ (dB) is calculated as the quantitative metric.

GN PN S&P Noise GB JPEG Ringing R-L Inpainting SimpleRain ComplexRain Haze

Real-ESRGAN# 25.38 26.57 21.50 21.49 25.21 24.64 21.71 14.06 16.10 21.01 11.86
PromptIR★ 28.86 31.48 36.45 24.56 26.77 27.85 31.31 28.11 30.76 24.08 16.85
PromptGIP★ 26.48 27.76 28.08 22.88 25.86 25.69 27.05 25.28 25.79 24.33 24.55

ViT★ 24.67 25.39 23.71 22.17 24.76 23.89 24.09 23.11 23.21 23.04 24.91
ViT-VPIP★ 26.14 27.20 25.43 24.13 26.19 25.98 26.98 25.03 25.51 24.79 24.06

X-Restormer★ 28.70 31.36 35.33 24.13 26.68 26.88 30.01 27.68 29.65 24.39 16.73
GenLV★ (ours) 28.99 31.69 36.63 24.58 26.91 27.74 31.50 28.11 31.10 24.71 28.91

Painter† 24.28 24.41 24.93 21.55 22.30 23.58 24.36 22.52 22.42 23.14 20.20
PromptGIP† 23.63 23.98 25.05 20.84 22.21 23.86 24.94 22.11 23.16 21.79 21.90
ViT-VPIP† 25.30 26.15 24.41 22.74 25.35 24.62 25.24 23.73 24.00 23.70 24.04

GenLV† (ours) 28.28 30.80 33.47 23.14 26.06 25.50 27.51 26.66 27.68 25.13 28.65

Table 2: Quantitative results on image enhancement and stylization tasks. PSNR↑ (dB) is calculated as the quantitative metric.

LowLight LLF Retouching ICC ICE MTM SDR2HDR HDR2SDR PencilDraw Photographic RTV

Painter† 20.19 23.98 18.29 21.62 15.89 21.51 25.63 20.56 16.79 22.68 26.69
PromptGIP† 18.60 25.40 20.44 24.29 16.16 20.84 26.40 18.87 17.74 21.68 30.29
ViT-VPIP† 22.16 23.78 22.01 27.70 16.86 26.10 27.89 23.91 19.56 22.30 31.89

GenLV† (ours) 22.79 27.49 23.51 35.18 17.39 31.70 36.20 36.24 20.03 23.68 32.85

Table 3: Quantitative results on edge detection tasks. Mean
absolute error↓ is calculated as the quantitative metric.

Canny Laplacian PED

Painter† 31.36 7.06 9.55
PromptGIP† 19.48 4.06 9.36
ViT-VPIP† 27.68 5.49 8.44

GenLV† (ours) 8.30 1.28 7.23

4.4 Exploration of Task Prompt
The above results have demonstrated the advantages of our prompt
mechanism compared to existing methods from quantitative and
qualitative perspectives. In this section, we conduct more experi-
ments to further illustrate the effectiveness and explore the limita-
tion of the task prompt in our method.
Influence of Different Prompts. To explore the influence on
the quantitative performance for different prompt images, we ran-
domly select 20 prompt image pairs for each task and calculate
the performance on the corresponding test sets. Then, we compute
the standard deviation of the 20 performance results for each task,
as shown in Table 4. We can see that except for PencilDraw, the
standard deviations are around or lower than 0.1dB. This shows
that our method is stable in performance for different prompts.
Task Prompt on Complex Situations.We conduct further exper-
iments to investigate the effectiveness of task prompt on complex
situations. In Figure 6(a), we exhibit the outputs for images sub-
jected to mixed degradation. The results show that the task prompt

Table 4: Standard deviation of the performance computed
based on 20 different prompt images. PSNR (dB) is calculated
as the quantitative metrics.

GN GB LowLight ICC PencilDraw RTV

Painter† 2.3930 1.8845 1.8865 1.9573 1.1820 2.6163
PromptGIP† 3.1035 2.2893 0.6766 0.6311 1.4200 1.3130
GenLV† 0.1033 0.0208 0.0399 0.0512 0.5518 0.0195

successfully guide themapping under this situation, and ourmethod
has the capability to deal with tasks with mixed degradation. In
Figure 6(b), we present the results for cross-domain prompt. Utiliz-
ing Canny edge detection and LLE prompts, we instruct the model
to process the noisy images. We can see that our model accurately
execute the target task according to the visual prompts other than
perform denoising. In Figure 6(c), we show the results on process-
ing mixed degraded images using single-task prompts. The first
row present the application of a denoising prompt to a low-light,
noisy image. In the second row, we show that a deraining prompt
is applied to a blurry image rain streaks. It can be see that the task-
specific prompts effectively guide the model to perform the target
task. All these results demonstrate the effectiveness of the visual
task prompt in our method across a variety of complex situations.
Mismatch Test. We conduct mismatch test to illustrate the im-
pact of the prompt on the model under special scenarios, as shown
in Figure 7. The first row demonstrates providing the deblurring
prompt to a clean image. In the second and third rows, we provide
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(a) Results for mixed degraded images.

(b) Results for images based on cross-domain prompts.

(c) Results for mixed degraded images on single-task prompts.

Figure 6: Results for task prompts on complex situations.

deJPEG and denoising prompts for low-light and blurry images,
respectively. Ideally, we hope that the model do not execute the
wrong prompt (this is reasonable from the perspective of the prompt
cross-attention mechanism). It is observed that the model ideally
preserves the original input images instead of performing degra-
dation removal in these three instances. However, the mismatch
test does not consistently yield ideal outcomes. In the fourth row,
the model conducts deraining when provided with an inpainting
prompt. From this perspective, this indicates that the model still
inevitably overfit some data or mappings during training.

Figure 7: Results of the mismatch test.

5 LIMITATIONS AND PROSPECTS
Our GenLV model demonstrates commendable performance in
solving a broad range of low-level vision tasks, leveraging the
visual prompt-based image processing framework and a powerful
backbone network. Nonetheless, there are certain limitations and
potential areas for further exploration that warrant attention. The
working mechanism of this method is still to divide the task space
via visual prompt, to achievemulti-task low-level vision. Despite the
considerable improvement in performance compared to existing
methods, we have to claim that the model currently still lacks
the ability to generate satisfactory results for out-of-distribution
unseen tasks. Recent study about large language models (LLMs)
underscore that the effectiveness of LLMs largely depends on the
quality, diversity, and quantity of the training data [43]. However,
the task variety, model size (~30M), data scale (~140W) are not
sufficient for GenLV. We hope that future studies involving larger
models, broader tasks and data will yield more surprising results.

6 CONCLUSION
In this paper, we introduce a low-level vision generalist model,
GenLV, which is capable of addressing various low-level vision
tasks. Our approach involves the design of an image processing
framework based on visual task prompt, VPIP, which enables the
model to accommodate multiple tasks with different target domains.
In addition, this framework allows the flexibility to incorporate a
powerful backbone network that is suitable for low-level vision
tasks, resulting in superior image reconstruction quality. Experi-
mental results demonstrate that our GenLV can effectively manage
30 diverse low-level vision tasks and significantly outperform ex-
isting methods quantitatively and qualitatively.
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