
Coder Reviewer Reranking for Code Generation

Tianyi Zhang∗ 1 Tao Yu 2 Tatsunori B. Hashimoto 1 Mike Lewis 3 Wen-tau Yih 3 Daniel Fried 4

Sida I. Wang 3

Abstract
Sampling diverse programs from a code language
model and reranking with model likelihood is a
popular method for code generation but it is prone
to preferring degenerate solutions. Inspired by
collaborative programming, we propose Coder-
Reviewer reranking. We augment Coder language
models from past work, which generate programs
given language instructions, with Reviewer mod-
els, which evaluate the likelihood of the instruc-
tion given the generated programs. We perform
an extensive study across six datasets with eight
models from three model families. Experimental
results show that Coder-Reviewer reranking leads
to consistent and significant improvement (up to
17% absolute accuracy gain) over reranking with
the Coder model only. When combined with ex-
ecutability filtering, Coder-Reviewer reranking
can often outperform the minimum Bayes risk
method. Coder-Reviewer reranking is easy to im-
plement by prompting, can generalize to different
programming languages, and works well with off-
the-shelf hyperparameters.

1. Introduction
Recent pretrained language models (PLMs) have demon-
strated an impressive ability to generate code given natural
language instructions (Chen et al., 2021; Fried et al., 2022;
Chowdhery et al., 2022; Nijkamp et al., 2022). One popular
technique is to use a generative language model trained on
code, which we call the Coder model, to sample multiple
code solutions for a single instruction and rerank the so-
lutions based on the likelihood the Coder model assigns
to each (Chen et al., 2021). Despite its wide-spread use,
reranking with the Coder model often mistakenly prefers
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# above function


""" return the decimal part 

  of the input number 
  """


Coder-Reviewer Reranking: sample programs and sort by p(y|x)p(x|y)

Figure 1. Given a language instruction x, a Coder model samples
programs y, and a Reviewer model checks the generated programs
against the instruction by measuring p(x|y). Coder-Reviewer
reranking solicits a consensus between Coder and Reviewer by
ranking with their product p(x|y)p(y|x).

degenerate solutions, e.g., extremely short code or repet-
itive solutions. As a result, reranking performance of-
ten decreases when the number of candidate program in-
creases (Figure 2c). These biases are known to arise in
language models when using mode-seeking inference meth-
ods such as greedy decoding (Holtzman et al., 2020) or
beam search (Li et al., 2016; Stahlberg & Byrne, 2019).

In this work, we take inspiration from collaborative soft-
ware development. For example, in the standard practice of
code review, programmers submit implementations given
specifications and have the submitted code cross validated
by other code reviewers. We instantiate this idea by using
prompting to obtain a Reviewer model, which checks the
generated programs against the language instruction. Con-
cretely, we first sample programs y given the instruction
x via the Coder model p(y|x) and cross-check via the Re-
viewer model p(x|y). The Reviewer model reinforces the
language instruction by evaluating the likelihood of every
word in the instruction.

To obtain a consensus between the Coder and the Reviewer,
we propose Coder-Reviewer reranking which selects the
solutions by the product of the reviewer model and the coder
model, p(x|y)p(y|x). We show that Coder-Reviewer is a
specific instantiation of the Maximum Mutual Information
(MMI) objective (Li et al., 2016), which favors solutions that
have high mutual information with the instruction and down
weights generic solutions (where p(y) is high). MMI has
also been shown to be effective against degenerate solutions
in many other natural language processing tasks (Yin &
Neubig, 2019; Lewis & Fan, 2019; Fried et al., 2018).
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To implement the Reviewer model p(x|y), we propose a
simple prompting method. After a program y is generated
by the Coder model p(y|x), we invert the order in which
the instruction x and the solution y appear in the prompt,
and query the pretrained language model again to estimate
p(x|y). Our prompting approach avoids any additional train-
ing and is easy to generalize to different programming lan-
guages. Figure 1 shows an example prompt: the Coder
model generates programs given the function header and the
docstring; we then extract the generated program and place
it before the docstring when prompting the Reviewer model.

We carry out an extensive empirical study on six datasets
with three different programming languages and experiment
with seven models from three model families. Compared
to past works’ approach of ranking with the Coder model
p(y|x) alone, Coder-Reviewer reranking demonstrates con-
sistent and effective performance gains (up to 17% absolute
accuracy gain). When combined with executability filtering,
Coder-Reviewer reranking can often outperform the mini-
mum Bayes risk decoding method (Shi et al., 2022), which
involves more complex aggregation of the executed outputs.
The code will be made available after anonymous period.

2. Related Work
Code Generation. Many prior works explored code gen-
eration with neural networks (Allamanis et al., 2015; Ling
et al., 2016; Iyer et al., 2018; Yin & Neubig, 2017; Yasunaga
& Liang, 2020) and many benchmarks have been proposed
to evaluate code model performance (Hendrycks et al., 2021;
Yu et al., 2018; Lin et al., 2018). Recently, large language
models pretrained on code have shown unprecedented zero-
/few-shot ability, and can even perform well in code competi-
tions that are challenging to programmers (Chowdhery et al.,
2022; Chen et al., 2021; Austin et al., 2021; Li et al., 2022).
Our work builds on the impressive ability of pretrained code
models and achieves additional gains by leveraging a Re-
viewer model that evaluates the probability of the language
instruction given generated programs.

Maximum Mutual Information (MMI) and its variants
have been shown to be effective in many natural lan-
guage processing tasks, including text classification (Min
et al., 2021), speech processing (Bahl et al., 1986), dia-
logue (Li et al., 2016), instruction following (Fried et al.,
2018), question answering (Lewis & Fan, 2019), passage
retrieval (Sachan et al., 2022), and semantic parsing (Yin &
Neubig, 2019). In contrast to Maximum Likelihood which
optimizes log p(x|y), MMI optimizes the pointwise mutual
information log p(x,y)

p(x)p(y) . In practice, it is popular to opti-
mize a weighted version of the MMI objective (Li et al.,
2016). We show in Section 4 that Coder-Reviewer rerank-
ing is a specific instantiation of the weighted MMI objec-
tive. However, Coder-Reviewer reranking differs from this

work by leveraging prompting to obtain the Reviewer model
p(x|y), rather than training a separate model, and by show-
ing that the objective produces substantial benefits for the
task of code generation. Concurrently, Ye et al. (2022) ex-
plore a MMI-like prompting approach for reasoning tasks.

Reranking Methods for Code Generation. Chen et al.
(2021) point out that the diverse samples from large lan-
guage models often contain correct programs and they pro-
pose to rank program samples by the Coder model p(y|x).
Since then, many methods have been proposed to leverage
sample consistency (Shi et al., 2022) or training supervised
rerankers (Inala et al., 2022) In particular, Shi et al. (2022)
and Li et al. (2022) propose to cluster program surface forms
using the executed outputs of the generated programs. Chen
et al. (2022) propose to generate unit tests for Python func-
tion completion problems and design selection programs
that validate generated programs and unit tests against each
other. On the one hand, Coder-Reviewer reranking does
not require execution, which enables it to be applied in
more diverse scenarios, and Coder-Reviewer reranking is
not specific to any programming languages or packages.
On the other hand, Coder-Reviewer reranking is orthogonal
and complementary to methods that incorporate execution
semantics: in Section 7.1, we show empirical results on
the benefits of combining Coder-Reviewer reranking with
execution-based ranking methods.

3. Background
Zero-/Few-shot Code Generation. We are interested in
using pretrained code language models to generate code y
conditioned on natural language instructions x. In addition,
we assume access to a context c that provides useful code
context such as package imports or data dependencies. In
the example shown in Figure 1, x is the instruction “return
decimal part of the input number”, y is the generated func-
tion body, and c includes importing the math package. For
few-shot code generation, we also have n demonstration
examples (x̂1, ŷ1, ĉ1) to (x̂n, ŷn, ĉn).

To solve this problem, our key leverage is a Coder model
— a conditional language model pθ(y|c, x), which can gen-
erate programs given the instruction and context. In this
case of few-shot generation, the Coder model also con-
ditions on the demonstration examples, i.e., we consider
pθ(y|ĉ1, x̂1, ŷ1, . . . , ĉn, x̂n, ŷn, c, x). Throughout this work,
we implement these conditional models using prompting:
placing the relevant objects such as c and x into the input
context of the language model.

Collecting Program Samples. To obtain programs from
the Coder model pθ, we sample autoregressively using a
temperature-scaled pθ. If the temperature is low, temper-
ature scaling increases the probability of sampling well-
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Figure 2. 2a and 2b show that the Coder model p(y|x) has a strong dependence on the length of generated code and length normalization
can introduce additional biases. 2c shows that in practice, Coder-only reranking (Coder) and normalized Coder-only reranking (N. Coder)
have worse performance when the number of samples becomes large, which can be caused by selecting degenerate solutions.

formed programs.

Coder-Only Reranking. Once we have collected 25-100
samples, we rerank and select a single program as our out-
put program. A popular technique in prior work (Chen
et al., 2021) is to pick the program y that has the highest
Coder model likelihood log p(y|x, c). However, the Coder
model likelihood log p(y|x, c) is biased toward shorter pro-
grams (Stahlberg & Byrne, 2019). To counter this shortcom-
ing, Chen et al. (2021) propose to apply length normaliza-
tion and instead rerank using the average token-level log
likelihood, 1

|y| log p(y|c, x).

Failures of Coder-Only Reranking. Figure 2a and Fig-
ure 2b plot the Coder log p(y|x) and Normalized Coder
1
|y| log p(y|c, x) values against the lengths of generated pro-
grams |y|. From these figures we can observe that Coder-
only reranking prefers short solutions; applying length nor-
malization overcorrects and prefers long solutions. This is a
known issue of reranking/searching using the likelihood of
neural language models (Holtzman et al., 2020; Stahlberg &
Byrne, 2019). In practice, many of these short programs are
trivial (e.g. containing only a return or pass statement)
and many of these long programs contain repetitive code.
Figure 2c plots the accuracy of ranking with Coder model
or the length normalized Coder model (N. Coder) versus
the number of program samples. We observe that accuracy
degrades as the number of program samples increases, since
degenerate but high-scoring solutions have an increasing
chance of appearing as more programs are sampled. This
demonstrates that both types of Coder likelihood are insuffi-
cient as reranking objectives for code generation. We further
analyze this behavior in Section 5.

4. Coder-Reviewer Reranking
Reviewer Model p(y|x). In real-world professional
software development, it is common to have program-
mers review each other’s work. Motivated by this,
and the previously-demonstrated shortcomings of Coder-
only reranking, we introduce a Reviewer model. Note
that we use the same underlying model pθ for both
the Coder and the Reviewer model but prompt differ-

3 -shot task-agnostic prompting
Coder Prompt

<text> </text>


<text>

Print info of "bash"
echo $(ls -l /bin/bash)

... 2 more demonstration examples

Change the owner of "dir"  

to "nginx"

<code> </code> 

<code>
</text>


Reviewer Prompt
<code> </code>


<code> </code>


echo $(ls -l /bin/bash)
Print info of "bash"

... 2 more demonstration examples 
chown nginx:nginx dir
Change the owner of "dir"  

to "nginx"

<text> </text> 

<text>
</text>

Figure 3. Example task-agnostic prompt on the NL2Bash dataset.
We invert the order in which language instruction and the generated
program appear to estimate the Reviewer model p(x|y).

ently. In the case of few-shot code generation, we will
have pϕ(x|c, y, ĉ1, ŷ1, x̂1, . . . , ĉn, ŷn, x̂n). Compared to the
Coder model, the Reviewer model is tasked with evaluating
the likelihood of the instruction x. Degenerate programs
cannot account for the instruction well and therefore will
often have a low Reviewer model likelihood.

Prompting for the Reviewer Model. We adopt a
prompting-based approach to implement the Reviewer
model. In short, once the program samples y are generated,
we invert the order in which instruction x and program y
appear in the input context and query the language model pθ
again to obtain their likelihood. Recall that in Figure 1, we
demonstrate a task-specific prompt we designed for Python
function completion datasets. In this prompt, we first dupli-
cate the function header and place the generated program y
before the instruction docstring x. Additionally, we insert
a natural language task specification “write the docstring
for the above function” into the prompt to further specify
the task to the pretrained language model. In Figure 3, we
give another example of a 3-shot task-agnostic prompt on
the NL2Bash dataset. Shi et al. (2022) propose this task-
agnostic Coder model prompt that marks the location of
instruction and generated programs with html-like tags. For
prompting the Reviewer model, we swap the language in-
struction and the generated program, along with their tags.
Importantly, we apply this inversion to both the demonstra-
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tion examples and the last test example.

Combining Coder and Reviewer. To leverage the infor-
mation provided by both the Coder and the Reviewer model,
we propose Coder-Reviewer reranking, which reranks pro-
grams using the product of the Coder and the Reviewer,

log p(x|y)p(y|x) = log p(x|y) + log p(y|x)
(Coder-Reviewer Reranking).

Similarly, we can apply Coder-Reviewer reranking when
using the length normalized Coder score,

log p(x|y)
|x|

+
log p(y|x)

|y|
(Normalized Coder-Reviewer Reranking).

Here, we normalize the reviewer model score p(x|y) to
match the scale of the normalized Coder model score.

Because Coder-Reviewer Reranking combines two models
by taking their product, Coder-Reviewer Reranking is sen-
sitive to low probability under either model. As a result,
Coder-Reviewer reranking seeks out program samples that
obtain a consensus from both the Coder and the Reviewer.
In the next section, we illustrate that by seeking a consensus,
Coder-Reviewer can successfully alleviate the biases from
each individual component.

Understanding the Relation between Coder-Reviewer
Reranking and Maximum Mutual Information. We now
show that Coder-Reviewer reranking is a special instanti-
ation of the Maximum Mutual Information objective (Li
et al., 2016). To avoid notation clutter, we abstract away the
problem structure specific to code generation and denote
task input x and output y. The usual Maximum Likelihood
objective optimizes p(y|x), which is the same as reranking
with the Coder model. However, Maximum Likelihood has
the risk of preferring generic or degenerate answers (Holtz-
man et al., 2020) and Li et al. (2016) propose to optimize
Mutual Information p(x,y)

p(x)p(y) . Moreover, Li et al. (2016)
propose to optimize for a weighted version of the Mutual
Information objective, using a weighting parameter α:

argmaxy log
p(y, x)

p(x)p(y)α
(1)

= argmaxy (1− α) log p(y|x) + α log p(x|y) (2)

= argmaxy (1− α) log p(y|x) + α log
p(y, x)

p(x)p(y)
(3)

From (2), we see that Coder-Reviewer reranking is a special
case of this objective where α is set to 0.5 (we include a
derivation in Appendix A). From (3), we see that both can be
viewed as interpolating likelihood with a mutual information
criterion, with strength α. In other words, Coder-Reviwer
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Figure 4. Mean Reciprocal Rank of ranking three typical degen-
erate cases. Coder Reviewer variants alleviate the biases in its
individual components.

reranking favors program samples that have high mutual
information with the language instruction and therefore can
filter out low quality solutions that cannot explain the in-
struction well. This perspective also motivates exploring
using hyperparameter α to control the mixing ratio between
the Coder and the Reviewer. In section Appendix C.3, we
show that the off-the-shelf hyperparameter α = 0.5 usually
works well already, and tuning α can give a small additional
gain. Next, we conduct an quantitative analysis to show that
Coder-Reviewer model can filter low quality programs.

5. Analysis of Degenerate Cases
In this section, we experiment with ranking artificially cre-
ated degenerate programs to analyze the preference of dif-
ferent ranking methods. We experiment with the Codex002
model (Chen et al., 2021) on the 0-shot sanitized MBPP
dataset (MBPP-S Austin et al., 2021), which is a Python
function completion dataset with example prompt struc-
ture shown in Figure 1. We defer experimental details and
dataset details to Section 6.

For each MBPP problem, we sampled 25 programs via the
Coder model p(y|x). Then, we construct three cases that
reflect common degeneracies and inject them among the
125 samples. We construct these cases: A. ReturnOnly
where the function body only contains a return statement
B. Repetitive where the function body contains print
statements printing from 1 to 50, with each line containing
exactly one print statement. C. CopyPrompt where the
function body only contains a comment that repeats the
language instruction.

With these programs, we now compare the reranking
behavior of Coder p(y|x), normalized Coder (N.Coder)
1
|y| log p(y|x), and Reviewer p(x|y). We also included
Coder-Reviewer reranking and the normalized version
N.Coder-Reviewer into the comparison. Figure 4 plots the
mean reciprocal rank (MRR) of the three degenerate cases
ranked by different methods, where high MRR suggests
a bias toward the degenerate case. Figure 4 shows that
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both Coder and Reviewer methods fail on different degen-
erate programs: Coder favors programs that are effectively
empty, even though those clearly do not follow the lan-
guage instructions; Normalized Coder favors programs full
of repetitions; and Reviewer can be biased toward spurious
surface form overlap between generated programs and the
language instruction. In contrast, Coder-Reviewer reranking
can alleviate the biases in its individual components.

Degenerate Solutions Rejection. Based on this analy-
sis, we prescribe three easy-to-implement procedures to
reject degenerate solutions before reranking takes place. By
strengthening the Coder and Reviewer baselines, we know
that any performance gain brought by Coder-Reviewer can-
not be easily attributed to simple fixes.

• We filter empty programs. For Python function com-
pletion datasets, we also filter trivial solutions that only
contain return or pass.

• We filter repetitive programs whose zlib compressed
representation is more than four times shorter than the
original program.1

• For all Python code generation problems, we use an
off-the-shelf canonicalization software pyminifier
to remove comments, docstrings, and replace all print
and assertion messages to empty strings. This proce-
dure helps reduce the spurious surface form overlap
with the language instruction. For function completion
problems, we also standardize the function names.

We analyze the effects of the above procedure in Section 7.3.
Overall, we find that these procedures help improve both the
baseline Coder methods and our proposed Coder-Reviewer
methods. Next, we present our extensive empirical study to
demonstrate that Coder-Reviewer is an effective and consis-
tent method.

6. Experimental Setup
We present an extensive empirical study that spans six
datasets and three model families. Our evaluation data con-
sists of both zero-shot and few-shot settings and investigates
both task-specific and task-agnostic prompt design, and we
study eight models whose parameter counts range across
two orders of magnitude.

6.1. Datasets

We provide a brief description of our experimental datasets
and present a detailed description in Appendix B.1. We first
consider three zero-shot datasets, which all involve gener-
ating Python code. HumanEval and MBPP-Sanitized are

1This threshold corresponds to Repetitive, which prints
from 1 to 50.

two popular Python function completion datasets. On these
datasets, we generally follow the prompt design in Chen
et al. (2022) and use the Reviewer prompt presented in Fig-
ure 1. Plotting is a subset of DS-1000 (Lai et al., 2022) and
contains 155 realistic questions adapted from StackOver-
flow about matplotlib. The rest of DS-1000 cannot be
easily handled by left-to-right autoregressive because it of-
ten introduces additional contexts that are better addressed
by infilling models. We leave applying Coder-Reviewer
reranking to infilling models for future work.

Next, we consider three three-shot datasets, MBPP, Spider,
and NL2Bash, which include programming languages other
than Python. Our task-agnostic prompts and other experi-
mental design on these three datasets are all taken from Shi
et al. (2022) and are similar to the one presented in Figure 3.

6.2. Models

Codex (Chen et al., 2021) models are descendants of
GPT-3 (Brown et al., 2020). We consider three variants of
the codex model: Codex002 (codex-davinci-002),
Codex001 (codex-davinci-001), and Codex-
Cushman (codex-cushman). While the exact modeling
details are not made public, we assume based on their
codenames that Codex002 and Codex001 are 175B models
and Codex-Cushman is a 12B model.

InCoder (Fried et al., 2022) models are trained with the
causal mask language modeling objective and are capable
of both infilling and left-to-right generation. In this work,
we only leverage their autoregressive ability to keep the
comparison consistent with other model families and leave
the investigation of its infilling ability for future work. We
experiment with 6B and 1B models from this family.

CodeGen (Nijkamp et al., 2022) is a family of autoregres-
sive language models pretrained on code data. We experi-
ment with the 16B, 6B, and 2B CodeGen models.

6.3. Implementation Details

Due to the lack of validation split on the benchmarks we ex-
perimented with, we restrain ourselves from hyperparameter
search and rely on a single set of decoding hyperparame-
ters. On all datasets, we sample with temperature 0.4 and
set the max tokens to be 300. For our main results in Ta-
ble 1, we sample 125 different programs for each problem
and then bootstrap 50 times to report the mean accuracy
of reranking 25 samples. Given the small size of these
datasets, we find bootstrapping to be helpful in reducing
variance. In Section 7.2, we analyze the impact of decoding
hyperparameters on the validation accuracy. We apply the
proposed degenerate solution rejection to all baseline and
proposed methods and study its effect in Section 7.3. Addi-
tionally, we apply executability filtering to all baseline and
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Plotting HumanEval MBPP-S MBPP NL2BASH Spider
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Figure 5. Absolute accuracy difference between the best Coder-Reviewer variants (with or without length normalization) and the best
Coder variants (with or without length normalization). We observe performance gain from applying Coder-Reviewer on 43 out of 48
dataset cross model pairs.

proposed methods to better compare with state-of-the-art
methods that rely on execution more heavily. Executability
filtering (Shi et al., 2022) removes programs that produce
runtime errors before applying any other ranking methods.
We present the ranking results without executability filtering
in Appendix C.1.

6.4. Reranking Methods

Baselines. We first compare to baseline selection meth-
ods that are popular in existing work. Random reports the
percentage of correct programs after degenerate solution
rejection. Coder selects the program that has the highest
p(y|x) and N. Coder applies length normalization to the
Coder likelihood.

Proposed Methods. We then compare the methods
proposed in this work. Reviewer selects programs that
has the highest p(x|y). Coder-Reviewer ranks via the
product of the Coder and the Reviewer model scores and
N. Coder-Reviewer applies length normalization to the com-
ponent model scores before taking the product.

State-of-the-art Methods. We compare to the competi-
tive Minimum Bayes Risk method (MBR-EXEC; Shi et al.,
2022), which compares the executed outputs of the gener-
ated programs on test inputs and selects programs whose
outputs are most typical. While for Python function com-
pletion problems it is straightforward to compare execution
outputs, this is less obvious when execution results involve
more complex objects. On the plotting dataset, due to the
complexity and the multimodal nature of matplotlib2,
we compare the output figures directly pixel-by-pixel. On
HumanEval, we extract the first test case appearing in the
docstring and use the executed output for MBR-EXEC. For

2plots with different styles such as colors, fonts, etc. might all
be correct but it is difficult to aggregate them.

other datasets, we follow the practices recommended in Shi
et al. (2022). We compare to MBR-EXEC using the same
setting with baseline and proposed methods in Table 1.

We also compare to CodeT (Chen et al., 2022), which gen-
erates assertions for Python function completion problems
and proposes a novel graph-based aggregation process for
selecting programs based on program-test agreement. While
CodeT is a competitive method, it relies on the ability to gen-
erate good assertions and cannot be easily used on other pro-
gramming languages/tasks. For example, models typically
cannot generate unit tests used in the Plotting dataset be-
cause good tests involve complicated assertions on the figure
object and do not naturally appear in public data. Another
example is the spider dataset, where generating additional
unit tests involves creating different input database (Zhong
et al., 2022), a challenging problem on its own. Therefore,
we separate CodeT from the rest of the comparison and
compare to its reported numbers in Table 2.

7. Experimental Results
In Section 7.1, we show that Coder-Reviewer reranking is
either the best performing method or competitive with the
best performing method across all settings. In Section 7.2
and Section 7.3, we perform ablation studies for the different
decisions made in developing Coder-Reviewer reranking
and show that Coder Reviewer can work well with default
hyperparameters and is more stable than Coder reranking.

7.1. Primary Results

First, we observe that Coder-Reviewer variants consistently
improves over Coder variants. Figure 5 plots the absolute
accuracy difference between the best Coder-Reviewer vari-
ant (with and without length normalization) and the best
Coder variant. Overall, we observe that Coder Reviewer
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Plotting HumanEval MBPP-S

Codex002 InCoder6B CodeGen16B Codex002 InCoder6B CodeGen16B Codex002 InCoder6B CodeGen16B

Random 57.6 21.9 36.7 49.2 16.0 32.2 58.8 25.4 45.7
Reviewer 65.2 35.5 46.5 61.2 17.6 37.3 59.5 28.8 43.6

Coder 57.7 15.5 38.6 45.1 20.1 33.5 59.8 28.1 50.3
Coder-Reviewer 58.3 16.4 41.7 56.7 23.5 40.0 64.4 33.7 47.4

N.Coder 59.4 22.6 37.4 60.2 19.2 38.5 60.5 27.1 48.6
N.Coder-Reviewer 68.0 32.8 45.9 62.5 22.0 39.6 61.6 31.1 45.8

MBR-EXEC 60.9 21.0 37.0 50.5 20.7 35.8 63.9 30.9 53.5

MBPP NL2BASH Spider

Codex002 InCoder6B CodeGen16B Codex002 InCoder6B CodeGen16B Codex002 InCoder6B CodeGen16B

Random 58.1 19.6 39.3 60.0 49.8 35.7 65.2 29.4 25.6
Reviewer 66.9 24.4 44.1 63.3 55.3 28.1 67.5 38.4 28.8

Coder 60.2 23.4 41.5 57.4 48.8 31.7 74.1 38.9 33.7
Coder-Reviewer 66.4 26.1 46.2 61.9 55.0 37.0 74.5 41.5 31.7

N.Coder 60.7 20.2 41.9 61.3 41.5 37.8 69.9 38.2 31.1
N.Coder-Reviewer 66.2 24.1 45.4 63.7 55.9 29.5 71.0 40.3 29.9

MBR-EXEC 63.0 26.7 47.3 57.4 48.8 32.4 75.2 38.2 30.6

Table 1. Bootstrapped reranking results with 25 samples. Bolded numbers indicate the best results on each column and Underlined
numbers indicate the second best results. In each subsection, we compare including or not including Reviewer reranking (Random vs.
Reviewer, Coder vs. Coder-Reviewer, etc.). Coder-Reviewer variants mostly outperform Coder variants, and often outperforms the
competitive MBR-EXEC method. Across all columns except one, a Coder-Reviewer variant is either the best or the second best method.

leads to a consistent and significant improvement with very
few exceptions. In certain settings, e.g. for InCoder mod-
els on the plotting dataset, Coder-Reviewer leads to more
than 10% improvement. The only 5 exceptions out of 48
model cross dataset pair where Coder-Reviewer is worse
than Coder all involve CodeGen models. We suspect that
difference in pretraining can cause a difference in the ca-
pability to estimate the Reviewer model p(x|y) using the
prompt we employ in this work.

Second, in Table 1, we present the ranking results on the
largest models from each model family along with com-
parison to other methods. From Table 1 we find a Coder-
Reviewer variant to be the best method most of the time and
even when it is not, it is often the second best method. Ana-
lyzing across all data, we find that Coder-Reviewer variants
are the best method 62.5% of the time, Reviewer 12.5%
of the time, and MBR-EXEC 20.83% of the time. How-
ever, Reviewer and MBR-EXEC both have scenarios where
they trail behind Coder-Reviewer significantly. For example
when applied to the Codex002 model, MBR-EXEC is more
than 10% worse than normalized Coder-Reviewer on Hu-
manEval and 8% worse on Plotting. In practice, we find that
MBR-EXEC works better when the quality of the test inputs
that it executes on is high and when it is easy to aggregate
the execution outputs. Compare HumanEval and MBPP-S,
which have very simlar format, MBR-Exec performs much
better on MBPP-S than on HumanEval. We ascribe this

failure to the lower quality of the test inputs in HumanEval.

Third, Table 2 shows the performance of CodeT and Coder-
Reviewer in the same setting of reranking 100 samples on
HumanEval and MBPP-S. Here the results of CodeT are
not strictly comparable to those of Coder-Reviewer. Recall
that CodeT generates additional test cases for these Python
function completion problems so CodeT does not execute
any test cases provided in the input docstring. In contrast,
we follow the setup in Shi et al. (2022) and execute the first
test case to perform executbaility filtering. Still, Table 2
shows that Coder-Reviewer can achieve very competitive
performance while being a more general method that can be
applied to datasets where generating test cases is difficult.

In summary, our experimental results show that Coder-
Reviewer reranking consistently improves performance over
Coder-only reranking from past work across a diverse set
of model families and datasets. In the following sections,
we carry out ablation studies to understand the impact of
design decisions and sensitivity to hyperparameters.

7.2. Understanding Hyperparameters

We explore the effect of different hyperparameters, includ-
ing the number of samples and the mixing ratio α between
Coder and Reviewer. We start by plotting the ranking accu-
racy of Coder, Reviewer, and Coder-Reviewer on the 0-shot
MBPP-S dataset with Codex002 in Figure 6 (Figure 7 in

7



Coder Reviewer Reranking for Code Generation

HumanEval MBPP-S

Codex002 InCoder6B CodeGen16B Codex002 InCoder6B CodeGen16B

CodeT 65.8 20.6 36.7 67.7 34.4 49.5

Coder-Reviewer 57.9 24.3 42.6 64.7 35.8 50.3
N. Coder-Reviewer 66.9 22.9 40.5 61.0 30.2 46.1

Table 2. Bootstrapped reranking results with 100 samples. CodeT numbers are cited from Chen et al. (2022) and not strictly comparable:
Coder-Reviewer variants use the first unit test in the docstring for executability filtering whereas CodeT generated its own unit tests. That
being said, this comparison shows that Coder-Reviewer can achieve strong performance on the Python function completion datasets while
being easier to generalize to other language/packages.

1 6 11 16 21 26 31 36 41 46
# Samples

0.55
0.56
0.57
0.58
0.59
0.60
0.61
0.62
0.63
0.64
0.65

0-shot Codex 002 on MBPP Sanitized

Coder
Reviewer

Coder-Reviewer

Figure 6. Accuracy versus number of ranking samples. Coder-
Reviewer is more stable and robust to degenerate solutions than its
individual components.

Appendix C.2 includes plots on more methods and datasets).
We observe that in contrast to its components Coder and
Reviewer, Coder-Reviewer is more stable in ranking more
sample programs, suggesting that it is more robust against
potential degenerate solutions when compared to ranking
with Coder or Reviewer model only.

In addition, recall that we can introduce a hyperparameter
to control the mixing ratio α between Coder and Reviewer
and have the objective (1 − α) log p(x|y) + α log p(y|x).
In Coder-Reviewer reranking, we fix α at 0.5 for simplic-
ity although the weighted objective is also popular in prior
work (Li et al., 2016). From Figure 8 in Appendix C.3,
we observe that the improvement from tuning α is typi-
cally less than 1%, with a few exceptions with the CodeGen
models where tuning can lead to more significant improve-
ments. Finally, we explore a alternate formulation of the
Maximum Mutual Information objective and show that it
performs generally worse than Coder-reviewer reranking in
Appendix C.4.

7.3. Understanding Degenerate Solution Rejection

We start our analysis by removing the proposed degener-
ate solution rejection on Codex002’s generated programs
on HumanEval and MBPP-S. Table 3 shows the ranking
results along with the performance degradation compared
to applying the proposed rejection. We observe that degen-
erate solution rejection improves all of the baselines and
Coder-Reviewer variants, with the most significant effect

HumanEval MBPP-S

Random 48.0−1.2 58.1−0.7

Coder 38.1−7.1 55.3−4.5

N.Coder 59.7−0.5 60.0−0.5

Reviewer 57.7−3.5 55.8−3.7

Coder-Reviewer 53.2−3.5 60.5−3.9

Norm. Coder-Reviewer 61.5−1.0 60.8−0.7

Table 3. Ranking results of Codex002 without applying degenerate
solution rejection. Numbers in subscripts showing the performance
degradation compared to applying programmatic rejection. We see
that degeneration solution rejection is helpful for all methods and
unnormalized Coder benefits from the rejection most significantly.

on Coder. Importantly, we see that the improvement from
rejection is larger on Coder, Reviewer, and Coder-Reviewer
than on Random, suggesting that these ranking methods
have biases toward the degenerate solutions that we reject.
On these two datasets, the effect of rejection is less obvious
on normalized Coder and normalized Coder Reviewer but
we find the rejection to be important for these methods on
NL2Bash where it is more likely to have egregious repeti-
tions in the program samples. Finally, these ablation results
suggest that Coder-Reviewer still provides a benefit on top
of degenerate solution rejection. Overall, we recommend
the usage of our rejection methods because they are easy to
implement and can effectively remove the most egregious
degeneration programs targeting each ranking method.

8. Conclusion
We propose Coder-Reviewer reranking for code genera-
tion, which leads to a consistent and significant improve-
ment over the Coder only reranking proposed in prior
work. When combined with executability filtering, Coder-
Reviewer reranking can often outperform the MBR-EXEC
method. Coder-Reviewer is easy to implement with prompt-
ing, can generalize to different programming languages, and
works well with off-the-shelf hyperparameter.
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Kočiský, T., Wang, F., and Senior, A. Latent predictor
networks for code generation. In ACL, 2016.

Min, S., Lewis, M., Hajishirzi, H., and Zettlemoyer, L.
Noisy channel language model prompting for few-shot
text classification. ArXiv, abs/2108.04106, 2021.

9



Coder Reviewer Reranking for Code Generation

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou,
Y., Savarese, S., and Xiong, C. Codegen: An open large
language model for code with multi-turn program synthe-
sis. 2022.

Sachan, D. S., Lewis, M., Joshi, M., Aghajanyan, A., Yih,
W.-t., Pineau, J., and Zettlemoyer, L. Improving passage
retrieval with zero-shot question generation. 2022. URL
https://arxiv.org/abs/2204.07496.

Shi, F., Fried, D., Ghazvininejad, M., Zettlemoyer, L., and
Wang, S. I. Natural language to code translation with
execution. In EMNLP, 2022.

Stahlberg, F. and Byrne, B. On nmt search errors and
model errors: Cat got your tongue? arXiv preprint
arXiv:1908.10090, 2019.

Yasunaga, M. and Liang, P. Graph-based, self-supervised
program repair from diagnostic feedback. In ICML, 2020.

Ye, S., Kim, D., Jang, J., Shin, J., and Seo, M. Guess
the instruction! flipped learning makes language models
stronger zero-shot learners. ArXiv, abs/2210.02969, 2022.

Yin, P. and Neubig, G. A syntactic neural model for general-
purpose code generation. In ACL, 2017.

Yin, P. and Neubig, G. Reranking for neural semantic
parsing. In ACL, 2019.

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li,
Z., Ma, J., Li, I., Yao, Q., Roman, S., Zhang, Z., and
Radev, D. Spider: A large-scale human-labeled dataset
for complex and cross-domain semantic parsing and text-
to-SQL task. In EMNLP, 2018.

Zhong, R., Snell, C., Klein, D., and Eisner, J. Active
programming by example with a natural language prior.
ArXiv, 2022.

A. Understanding the Relation between
Coder-Reviewer Reranking and Maximum
Mutual Information.

We include the derivation from Li et al. (2016) to show that
Coder-Reviewer reranking is a special instantiation of the
Maximum Mutual Information objective. We can show

argmaxy log
p(y, x)

p(x)p(y)α

= argmaxy (1− α) log p(y|x)− α log p(x) + α log p(x|y)
= argmaxy (1− α) log p(y|x) + α log p(x|y)

= argmaxy (1− α) log p(y|x) + α log
p(y, x)

p(x)p(y)
,

by using the fact that p(x) is a constant and removing/adding
it does not change the optimziation objective.

Alternatively, Li et al. (2016) propose another way to instan-
tiate this objective,

argmaxy log
p(y, x)

p(x)p(y)α

= argmaxy log p(y|x)− α log p(y).

We show in Appendix C.4 that this alternate formulation
leads to worse performance, which is a similar conclusion
to the original finding in Li et al. (2016).

B. Additional Experimental details
B.1. Detailed Dataset Descriptions

HumanEval (Chen et al., 2021) contains 164 hand-written
Python programming questions Chen et al. (2021). We use
the prompts released by Chen et al. (2022), which removes
the input-output cases present in the original prompts. This
dataset evaluates the generated function by multiple asser-
tions on the input-output relations.

MBPP-Sanitized (Austin et al., 2021) contains 427 crowd-
sourced Python programming questions. Chen et al. (2022)
adapts each problem into having a function header and re-
locate the natural language instructions into function doc-
strings, similar to the format of HumanEval. We use this
prompt format for our experiment.

MBPP (Austin et al., 2021) original version consists of
974 python questions, with 500 of them used for testing and
the rest for few-shot prompting. The prompt taken from Shi
et al. (2022) uses one input-output assertion as additional
context to help make the language instruction more specific.
Unlike the 0-shot sanitized version of MBPP, this 3-shot
setting requires the models to define the desired function
name on its own.

Spider (Yu et al., 2018) is a benchmark of natural language
to SQL query generation. There are 7000 examples for
training/demonstration and 1034 questions for testing. The
prompt taken from Shi et al. (2022) prepends the database
schema as the program context. The generated SQL com-
mands are evaluated with execution accuracy, comparing the
database return values to the ones queried by ground-truth
SQL commands.

NL2Bash (Lin et al., 2018) is a benchmark of translating
natural language to bash commands. Because it is difficult
to obtain executable enviroments for bash commands, this
dataset evaluates character-level BLEU-4 score.
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Figure 7. Accuracy versus number of ranking samples. Coder-Reviewer is more stable and robust to degenerate solutions than its individual
components.
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Figure 8. Accuracy improvement from grid searching ensemble mixing ratio α. Setting α = 0.5 (i.e., Coder-Reviewer) usually performs
well already and further grid searching mostly only lead to a 1-2% improvement. In few settings (CodeGen-16B on NL2Bash and
Incoder-6B on Plotting), tuning α leads to a significant improvement.

C. Additional Results
C.1. Results from All Models

Table 5 to Table 10 plot ranking results on all eight models
we experimented with and it also shows the results of not ap-
plying executability filtering. Analyzing across all data, we
find that a Coder-Reviewer variant is the best method 62.5%
of the time, Reviewer 12.5% of the time, and MBR-EXEC
20.83% of the time. Notably, a Coder-Reviewer variant is
almost always the best method for Codex models with only
two exceptions (Codex002 on Spider and MBPP). Even
when none of Coder-Reviewer variants is the best method,
a Coder-Reviewer variant is mostly the second best method.
Overall, executability filtering improves most methods and
does not change the comparison between different ranking
methods.

C.2. Analyzing the Effect of Number of Program
Samples

Figure 7 plots the performance of Coder-Reviewer variants,
Coder variants, and Reviewer on all three 0-shot datasets
we experimented with. Similar to Figure 6, Figure 7 shows

that compared to Coder variants, Coder-Reviewer variants
perform more consistently across the number of program
samples being reranked. Here we plot the performance after
applying degeneration solutions rejection. Still, on all three
datasets, the performance of Coder starts to degrade after
five or ten samples. Normalized Coder is more stable on
HumanEval and MBPP-S but also does worse with more
program samples on Plotting.

C.3. Analyzing the Effect of Tuning Mixing Ratio α

In addition, recall that we can introduce a hyperparameter
to control the mixing ratio, α between Coder and Reviewer
and have the objective (1 − α) log p(x|y) + α log p(y|x).
Coder-Reviewer reranking is equivalent to fixing α at 0.5
although the weighted objective is also popular in prior
work (Li et al., 2016). To explore the benefits of tuning
this additional hyperparameter of α, we grid search be-
tween {0.1, 0.2, . . . , 0.9} across all experimental settings.
From Figure 8 in Appendix C.3, we observe that the im-
provement from tuning α is typically less than 1%, with a
few exceptions (Incoder-6B on Plotting and CodeGen-16B
on NL2Bash) where tuning can lead to more significant
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HumanEval MBPP-S

Coder-Reviewer 56.7 64.4
N. Coder-Reviewer 62.5 61.6

Alternate 55.30 63.0
N. Alternate 50.73 62.4

Table 4. Ranking results of the alternate formulation of Maximum
Mutual Information (Appendix C.4), which we observe underper-
forms Coder-Reviewer.

improvements. Given the lack of validation split in most
benchmarks we experimented with, we do not include the
result of tuning α as our main results. However, for practi-
tioners who have access to validation data, we recommend
that they can grid search over α in case tuning leads to
additional gain.

C.4. Alternate Formulation

In Section 4, we show that Coder-Reviewer is related to
pointwise mutual information regularization, when the regu-
larization strength α is set to 0.5. There is another formula-
tion of this objective that is also common in literature. With
derivation shown in Appendix A, we can observe that

argmaxy (1− α) log p(y|x) + α log p(x|y)
= argmaxy log p(y|x)− α log p(y).

Here we compare to this alternate formulation (Alternate)
on the 0-shot Python function completion datasets. We use
prompting to estimate p(y) by removing the docstring be-
neath the function header and record the probability of the
function body. To apply this formulation with length normal-
ization, we modify the regularization term as 1

|y| log p(y).
From Table 4 we observe that the alternate formulation
generally underperforms Coder-Reviewer.
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Exec. Filter Method Codex002 Codex001 Codex-Cushman InCoder6B InCoder1B CodeGen16B CodeGen6B CodeGen2B

No

Random 53.7 34.7 38.8 19.9 11.6 28.1 20.4 20.8
Reviewer 60.7 53.0 47.5 35.5 22.3 40.2 31.0 25.7

Coder 55.4 47.8 43.2 14.4 8.8 31.0 21.9 23.2
Coder-Reviewer 63.0 54.2 50.3 33.7 21.6 40.3 25.9 25.9

N.Coder 57.1 44.8 39.4 20.8 9.6 28.9 21.8 23.6
N.Coder-Reviewer 64.9 53.4 49.6 32.8 21.5 41.0 27.7 24.5

Yes

Random 57.6 46.8 41.0 21.9 13.4 36.7 25.8 28.9
Reviewer 65.2 57.1 50.9 35.5 30.3 46.5 32.6 32.9

Coder 57.7 51.1 45.8 15.5 8.9 38.6 25.6 30.1
Coder-Reviewer 58.3 51.9 46.0 16.4 10.7 41.7 25.4 30.1

N.Coder 59.4 47.8 41.8 22.6 11.0 37.4 26.3 28.8
N.Coder-Reviewer 68.0 57.1 52.0 32.8 27.9 45.9 30.4 30.7

MBR-EXEC 60.9 46.6 46.4 21.0 8.1 37.0 25.3 30.0

Table 5. Ranking results on the Plotting dataset. We observe that N.Coder-Reviewer and Reviewer alternate to be the best performing
method. Executability filtering improves most methods and does not change the comparison between methods.

Exec. Filter Method Codex002 Codex001 Codex-Cushman InCoder6B InCoder1B CodeGen16B CodeGen6B CodeGen2B

No

Random 44.0 34.6 32.5 14.1 8.2 30.2 25.1 22.6
Reviewer 53.4 42.9 36.0 14.7 8.4 35.6 29.9 23.3

Coder 38.7 29.0 30.4 18.5 10.5 31.6 27.5 25.1
Coder-Reviewer 50.6 41.6 33.9 21.1 10.6 37.3 31.0 27.2

N.Coder 56.5 44.2 39.7 17.6 9.2 36.1 29.8 26.0
N.Coder-Reviewer 57.8 49.5 39.7 20.1 10.5 37.8 31.3 26.1

Yes

Random 49.2 38.1 35.1 16.0 9.5 32.2 26.4 24.2
Reviewer 61.2 47.0 41.3 17.6 9.5 37.3 31.3 25.2

Coder 45.1 32.7 33.0 20.1 10.8 33.5 28.3 26.3
Coder-Reviewer 56.7 46.2 39.1 23.5 12.0 40.0 32.5 28.5

N.Coder 60.2 47.2 42.1 19.2 10.2 38.5 30.9 26.6
N.Coder-Reviewer 62.5 52.1 43.8 22.0 11.5 39.6 32.2 27.4

MBR-EXEC 50.5 36.5 35.6 20.7 10.9 35.8 30.6 27.2

Table 6. Ranking results on the HumanEval dataset. We observe that N.Coder-Reviewer works the best on Codex model families and
Coder-Reviewer works the best on CodeGen and Incoder models. Executability filtering improves most methods and does not change the
comparison between methods.
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Exec. Filter Method Codex002 Codex001 Codex-Cushman InCoder6B InCoder1B CodeGen16B CodeGen6B CodeGen2B

No

Random 55.6 50.0 44.0 22.6 16.7 43.5 40.1 34.1
Reviewer 56.3 51.0 45.4 25.6 17.7 42.0 41.3 38.3

Coder 55.9 52.3 44.7 26.0 20.8 49.2 45.1 36.9
Coder-Reviewer 61.5 56.9 51.0 31.7 23.4 46.1 44.9 41.5

N.Coder 58.3 53.6 48.7 24.8 21.0 47.5 44.0 38.2
N.Coder-Reviewer 59.6 55.6 51.6 28.8 20.0 44.4 43.2 40.1

Yes

Random 58.8 53.3 46.7 25.4 19.3 45.7 42.7 36.5
Reviewer 59.5 54.7 48.2 28.8 21.0 43.6 43.5 40.3

Coder 59.8 55.9 47.5 28.1 23.4 50.3 47.3 39.3
Coder-Reviewer 64.4 60.3 53.9 33.7 25.8 47.4 47.1 43.3

N.Coder 60.5 55.5 49.8 27.1 22.6 48.6 45.3 40.3
N.Coder-Reviewer 61.6 57.7 53.1 31.1 22.6 45.8 44.7 41.9

MBR-EXEC 63.9 59.4 50.7 30.9 26.2 53.5 48.3 43.7

Table 7. Ranking results on the MBPP-S dataset. We observe that Coder-Reviewer works the best on Codex model families and MBR-
EXEC is usually the best on CodeGen and Incoder models. Executability filtering improves most methods and usually does not change the
comparison between methods.

Exec. Filter Method Codex002 Codex001 Codex-Cushman InCoder6B InCoder1B CodeGen16B CodeGen6B CodeGen2B

No

Random 53.6 46.9 35.1 14.8 9.1 33.5 28.5 24.1
Reviewer 63.3 53.1 41.5 20.8 13.2 40.5 32.7 28.4

Coder 55.4 49.8 38.8 19.7 12.3 36.1 32.7 28.9
Coder-Reviewer 62.6 55.2 45.0 23.3 14.8 42.2 34.6 30.5

N.Coder 55.5 50.6 35.1 15.9 9.3 36.9 32.4 27.9
N.Coder-Reviewer 62.5 54.5 42.2 20.9 13.2 41.4 33.4 29.3

Yes

Random 58.1 51.6 40.8 19.6 13.1 39.3 34.2 28.2
Reviewer 66.9 57.4 46.7 24.4 15.7 44.1 39.4 31.7

Coder 60.2 55.1 44.7 23.4 16.0 41.5 37.9 31.9
Coder-Reviewer 66.4 59.4 48.9 26.1 17.1 46.2 40.3 33.2

N.Coder 60.7 54.8 40.8 20.2 13.3 41.9 37.5 31.0
N.Coder-Reviewer 66.2 58.4 46.3 24.1 15.8 45.4 39.8 32.3

MBR-EXEC 63.0 58.6 48.3 26.7 18.3 47.3 41.1 35.5

Table 8. Ranking results on the MBPP dataset. We observe that Coder-Reviewer usually works the best on Codex model families;
MBR-EXEC is usually the best on CodeGen and Incoder models and Coder-Reviewer is usually the second best performing method.
Executability filtering improves most methods and usually does not change the comparison between methods.
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Coder Reviewer Reranking for Code Generation

Exec. Filter Method Codex002 Codex001 Codex-Cushman InCoder6B InCoder1B CodeGen16B CodeGen6B CodeGen2B

No

Random 60.0 55.2 55.2 49.7 41.0 35.6 33.2 25.4
Reviewer 63.3 58.4 59.9 55.4 43.3 28.3 29.4 19.5

Coder 57.4 48.0 50.8 48.7 42.6 31.3 25.2 25.6
Coder-Reviewer 61.9 57.7 58.4 55.0 50.8 37.3 40.3 37.0

N.Coder 61.0 49.9 48.2 40.8 37.5 36.8 32.9 25.4
N.Coder-Reviewer 63.7 59.9 60.0 56.0 42.8 29.1 31.0 20.8

Yes

Random 60.0 55.2 55.3 49.8 41.1 35.7 33.2 25.7
Reviewer 63.3 58.5 60.2 55.3 43.3 28.1 29.2 19.9

Coder 57.4 48.1 50.9 48.8 42.6 31.7 25.4 25.9
Coder-Reviewer 61.9 57.8 58.5 55.0 50.9 37.0 39.8 36.7

N.Coder 61.3 49.9 48.8 41.5 38.0 37.8 33.1 25.6
N.Coder-Reviewer 63.7 59.9 60.4 55.9 43.1 29.5 30.8 21.1

MBR-EXEC 57.4 48.3 51.0 48.8 42.6 32.4 25.8 26.3

Table 9. Ranking results on the NL2Bash dataset. We observe that Coder-Reviewer works the best on Codex model families and
MBR-EXEC is usually the best on CodeGen and Incoder models. Executability filtering is implemented with simulated execution via
parsing the generated bash code and does not lead to a consistent improvement.

Exec. Filter Method Codex002 Codex001 Codex-Cushman InCoder6B InCoder1B CodeGen16B CodeGen6B CodeGen2B

No

Random 62.8 46.0 40.2 19.0 11.7 13.6 21.1 11.9
Reviewer 62.9 50.0 44.2 27.3 16.8 16.0 22.4 13.1

Coder 71.5 56.8 51.8 32.4 21.4 27.6 30.4 21.5
Coder-Reviewer 71.6 56.5 52.8 32.8 22.1 23.8 28.6 17.4

N.Coder 67.4 56.5 44.0 29.5 17.2 22.4 26.9 17.0
N.Coder-Reviewer 68.0 54.7 48.3 30.7 20.6 18.9 24.8 14.9

Yes

Random 65.2 57.1 50.8 29.4 18.8 25.6 32.7 22.4
Reviewer 67.5 60.0 54.7 38.4 26.8 28.8 36.8 23.1

Coder 74.1 64.3 58.8 38.9 26.9 33.7 37.3 27.5
Coder-Reviewer 74.5 65.3 60.4 41.5 29.8 31.7 38.8 24.8

N.Coder 69.9 63.2 54.1 38.2 26.8 31.1 36.8 25.7
N.Coder-Reviewer 71.0 62.6 57.6 40.3 29.0 29.9 37.3 23.6

MBR-EXEC 75.2 63.2 59.0 38.2 27.3 30.6 37.0 26.1

Table 10. Ranking results on the Spider dataset. We observe that Coder-Reviewer usually works the best. Executability filtering improves
most methods and usually does not change the comparison between methods.
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