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ABSTRACT

Reasoning is a fundamental problem for computers and deeply studied in Arti-
ficial Intelligence. In this paper, we specifically focus on answering multi-hop
logical queries on Knowledge Graphs (KGs). This is a complicated task because,
in real-world scenarios, the graphs tend to be large and incomplete. Most previ-
ous works have been unable to create models that accept full First-Order Logical
(FOL) queries, which include negative queries, and have only been able to process
a limited set of query structures. Additionally, most methods present logic opera-
tors that can only perform the logical operation they are made for. We introduce
a set of models that use Neural Networks to create one-point vector embeddings
to answer the queries. The versatility of neural networks allows the framework
to handle FOL queries with Conjunction (∧), Disjunction (∨) and Negation (¬)
operators. We demonstrate experimentally the performance of our model through
extensive experimentation on well-known benchmarking datasets. Besides having
more versatile operators, the models achieve a 10% relative increase over the best
performing state of the art and more than 30% over the original method based on
single-point vector embeddings.

1 INTRODUCTION

Knowledge graphs (KGs) are a type of data structure that can capture many kinds of relationships

between entities (e.g.: Moscow
cityIn−−−→ Russia) and have been popularized since the creation of the

semantic web or its introduction into Google’s search engine. They can contain many kinds of
different information, and they can be widely used in question-answering systems, search engines,
and recommender systems (Palumbo et al., 2017; Xiong et al., 2017a).
Reasoning is a fundamental skill of human brains. For example, we can infer new knowledge based
on known facts and logic rules, and discern patterns/relationships to make sense of seemingly unre-
lated information. It is a multidisciplinary topic and is being studied in psychology, neuroscience,
and artificial intelligence (Fagin et al., 2003). The ability to reason about the relations between
objects is central to generally intelligent behavior. We can define reasoning as the process of infer-
ring new knowledge based on known facts and logic rules. Knowledge graphs are a structure used
for storing many kinds of information, therefore the ability to answer complex queries and extract
answers that are not directly encoded in the graph are of high interest to the AI community.
To answer complex queries, the model receives a query divided in logical statements. A full First-
Order Logic (FOL) is necessary to process a wider range of queries, which includes negative queries.
FOL includes the following logical operators: Existential (∃), Conjunction (∧), Disjunction (∨), and
Negation (¬). The power of representation of our logical framework is the key to process complex
queries. However, most frameworks have only been able to process Existential Positive First-Order
Logic (EPFO), which means that negative queries cannot be processed.
For example, One could ask a knowledge graph containing drugs and side effects the following ques-
tion: “What drug can be used to treat pneumonia and does not cause drowsiness?”. The first step
to answer such a query is to translate it into logical statements: q = V? · ∃V : Treat(Pneumonia, V?)

Source code available on: https://github.com/amayuelas/NNKGReasoning
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Figure 1: MLP Framework for KG Reasoning. Representation of a sample query: ”List the teams
where Brazilian football players who were awarded a Ballon d’Or played”. (A) Query represented
by its logical statements and dependency graph. (B) 2D Representation of the answer entities in a
one-point vector space used by the reasoning framework.

∧ ¬ Cause(Drowsiness,V?). Once the query is divided into logical statements, we obtain the com-
putation graph, a directed acyclic graph (DAG) which defines the order of operations. Afterwards,
we can start traversing the graph. However, many real-world graphs are incomplete and therefore
traversing them becomes very hard and even computationally impossible. There are many possible
answer entities, and it requires modeling sets of entities. As such, embedding methods become a
good solution to answer these queries. Previous works (Hamilton et al., 2018; Ren et al., 2020; Ren
& Leskovec, 2020) have created methods for embedding the query and the graph into a vector space.
The idea of graph embeddings reduces the problem to simply using nearest-neighbor search to find
the answers, without paying attention to the intermediate results.
The embedding approach solves many of the problems of query-answering in knowledge graphs.
In theory, we could answer the queries just by traversing the graph. In practice, graphs are large
and incomplete, and answering arbitrary logical queries becomes a complicated task. The graph
incompleteness means that traversing its edges would not provide the correct answers.
This work aims to create some models that allow complex queries and extract the correct answers
from large incomplete knowledge graphs. To this end, we present a set of models based on Neural
Networks that embed the query and the entities into a one-point vector space. Then, it computes the
distance between the query and the entities to rank the answers according to the likelihood to answer
the query. We use the versatility of Neural Networks to create the operators needed to process FOL
queries.
We conduct experiments using well-known datasets for KG Reasoning: FB15k, FB15-237, and
NELL. The experiments show that our models can effectively answer FOL and provide a noticeable
improvement when compared with the state-of-the-art baselines. Our models provide a relative
improvement of 5% to 10% to the latest state-of-art method and about 30% to 40% when compared
with the method that uses the same idea of one-point vector space embeddings (Hamilton et al.,
2018).
The main contributions of this work are summarized as: (1). New embedding-based methods
for logical reasoning over knowledge graphs: two new models, plus variants, for KG Reasoning.
These methods embed the query and the entities in the same vector space with single-point vectors.
Implementing the logical operators with neural networks provides versatility to create any operator
with virtually the same architecture. (2). Improved performance over the current state of the
art. Experimental results show that the models presented in this paper outperform the selected
baselines: Graph Query Embeddings (GQE) (Hamilton et al., 2018), Query2Box (Q2B) (Ren et al.,
2020), and BetaE (Ren & Leskovec, 2020). (3). Handling of negative queries. Modelling queries
with negation has been an open question in KG Reasoning until recently. BetaE (Ren & Leskovec,
2020) introduced the first method able to do so. This work takes advantages of the good relationship
inference capabilities of Neural Networks and uses them to create the negation operator.
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2 RELATED WORK

Traditional tasks on graphs include Link Prediction (Liben-Nowell & Kleinberg, 2007), Knowledge
Base Completion (Wang et al., 2015), or basic Query-Answering (one-hop). They are all different
versions of the same problem: Is link (h,r,t) in the KG? or Is t an answer to query (h,r,)?, where
only a variable is missing. However, we face a more complicated problem, known as Knowledge
Graph Reasoning, that may involve several unobserved edges or nodes over massive and incomplete
KGs. In this case, queries can be path queries, conjunctive queries, disjunctive queries or or a
combination of them. A formal definition of KG Reasoning can be found in Chen et al. (2020), as
stated in Definition 2.1.

Definition 2.1 (Reasoning over knowledge graphs). Defining a knowledge graph as: G = 〈E ,R, T 〉,
where E , T represent the set of entities,R the set of relations, and the edges inR link two nodes to
form a triple as (h, r, t) ∈ T . Then, reasoning over a KG is defined as creating a triplet that does
not exist in the original KG, G′ = {(h, r, t)|h ∈ E , r ∈ R, t ∈ T , (h, r, t) 6∈ G}

Most related to our work are embedding approaches for multi-hop queries over KGs: (Hamilton
et al., 2018), (Ren et al., 2020), (Ren & Leskovec, 2020) and (Das et al., 2016), as well as models
for question answering (Yasunaga et al., 2021), (Feng et al., 2020). The main differences with these
methods rely on the ability to handle full First-Order Logical Queries and using Neural Networks
to define all logical operators, including the projection. We also deliver a more extensive range of
network implementations.
On a broader outlook, we identify a series of works that aim to solve Knowledge Graph Reasoning
with several different techniques, such as Attention Mechanisms (Wang et al., 2018), Reinforcement
Learning like DeepPath (Xiong et al., 2017b) or DIVA (Chen et al., 2018), or Neural Logic Networks
(Shi et al., 2020), (Qu & Tang, 2019).

3 MODELS

Both models presented here follow the idea behind Graph Query Embedding – GQE (Hamilton et al.,
2018): Learning to embed the queries into a low dimensional space. Our models differ from it in the
point that logical query operations are represented by geometric operators. In our case, we do not
follow the direct geometric sense and these operators are all represented by Neural Networks, instead
of just the Intersection operator in GQE. Similarly, however, the operators are jointly optimized with
the node embeddings to find the optimal representation.
In order to answer a query, the system receives a query q, represented as a DAG, where the nodes are
the entities and the edges the relationships. Starting with the embeddings ev1 , ..., evn of its anchor
nodes and apply the logical operations represented by the edges to finally obtain an embedding q of
the query (Guu et al., 2015).

3.1 FORMAL PROBLEM DEFINITION

A Knowledge Graph (G) is a heterogeneous graph with a set of entities – nodes – (V) and a set of
relations – edges – (R). In heterogeneous graphs, there can be different kinds of relations, which are
defined as binary functions r : V × V → {True, False} that connect two entities with a directed
edge. The goal is to answer First-Order Logical (FOL) Queries. We can define them as follows:

Definition 3.1 (First-Order Logical Queries). A first-order logical query q is formed by an anchor
entity set Va ⊆ V , an unknown target variable V? and a series of existentially quantified variables
V1, ..., Vk. In its disjunctive normal form (DNF), it is written as a disjunction of conjunctions:

q[V?] = V? · ∃V1, ...Vk : c1 ∨ c2 ∨ ... ∨ cn (1)

where ci represents a conjunctive query of one or several literals: ci = ei1 ∧ ei2 ∧ ...∧ eim. And the
literals represent a relation or its negation: eij = r(vi, vj) or ¬v(vi, vj) where vi, vj are entities and
r ∈ R.

The entity embeddings are initialized to zero and later learned as part of the training process, along
with the operators’ weights.
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(a) Representation of MLP for 2 input operators: Pro-
jection, Intersection.

(b) Representation of MLP for 1 input operator:
Negation.

Figure 2: Multi-Later Perceptron Model (MLP) - Network Architecture.

Computation Graph. The Computation Graph can be defined as the Direct Acyclic Graph (DAG)
where the nodes correspond to embeddings and the edges represent the logical operations. The
computation graph can be derived from a query by representing the relations as projections, inter-
sections as merges and negation as complement. This graph shows the order of operations to answer
the queries. Each branch can be computed independently and then merged until the sink node is
reached. Each node represents a point in the embedding space and each edge represents a logical
operation, computed via a Neural Network in our case. The representation of a FOL as a compu-
tation graph can be seen as a heterogeneous tree where each leaf node corresponds to the anchor
entities and the root is the final target variable, which is a set of entities. The logical operations
corresponding to the edges are defined below:

• Projection. Given an entity vi ∈ V and a relation type r ∈ R. It aims to return the set of
adjacent entities with that relation. Being Pri(vi, r) the set of adjacent entities through r,
we define the projection as: Pri(vi, r) = {v′ ∈ V : (v, v′) = True}.

• Intersection. The intersection can be defined as: I(vi) = ∩ni=1vi.

• Negation. It calculates the complement of a set of entities T ⊆ V: N(T ) = T = V \ T ,
where the set can either be the embedding corresponding to an entity or another embedding
in between which represents a set of them.

A Union operation is unnecessary, as it will be later discussed in Sections 3.5. Query2Box (Ren
et al., 2020) shows that a union operator becomes intractable in distance-based metrics.

3.2 MULTI-LAYER PERCEPTRON MODEL (MLP)

Based on the good results of Neural Tensor Networks (NTN) (Socher et al., 2013) for knowledge
base completion, we have extended a similar approach to multi-hop reasoning.
We introduce three logical operators to compute the queries. Each of them is represented by a simple
neural network: a multilayer perceptron. Each perceptron contains a feed-forward network: a linear
layer plus a ReLu rectifier. The number of layers remains as a hyper-parameter. Figures 2a and 2b
show what the model looks like.
Neural operators. We define the operators with a multi-layer perceptron. The model will take as an
input the embedding representation of the input entities and will return an approximate embedding
of the answer. Defining the operators with a Neural Network has the advantage of generalization.
Thus, we distinguish between 2-input operators, Projection and Intersection and 1-input operator,
Negation.
- 2-input operator (Figure 2a): Projection P , and Intersection I . The operator is composed by a
multi-layer perceptron that takes 2 inputs and returns 1 as embedding as the output. The training
process will make the networks learn the weights to represent each operation. Equation 2 expresses
it formally:
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Figure 3: MLP-Mixer. At the top, we show the block diagram of the MLP-Mixer Architecture. It
is formed by a per-patch fully connected module, N Mixer Modules, an average pooling and a last
fully connected module. The bottom figure shows the Mixer Module, which contains one channel-
mixing MLP, each consisting of 2 fully-connected layers and a ReLu nonlinearity. It also includes
skip-connections, dropout and layer norm on the channels.

P (si, rj) = NNk(si, rj),∀si ∈ S,∀sj ∈ R
I(si, sj) = NNk(si, sj),∀si, sj ∈ S

(2)

where si ∈ S is an embedding in the vector space S, rj ∈ R is a relation and NNk is a multi-layer
perceptron with k layers.
The intersection can take more than two entities as an input, for instance the 3i query structure. In
this case we do a recursive operation, we use the result of the previous intersection to compute the
next one.
- 1-input operator (Figure 2b): Negation N . The goal of this operator is to represent the negation of
a set of entities. Following the same neural network approach, we can represent it as in the equation
below (Equation 3).

N(si) = NNk(si),∀si ∈ S (3)

where si ∈ S is a vector in the embedding space, it can be an entity or the result of a previous
operation. NNk is a multi-layer perceptron with k layers and the same number of inputs as outputs.

3.3 MULTI-LAYER PERCEPTRON MIXER MODEL (MLP-MIXER)

The MLP-Mixer (Tolstikhin et al., 2021) is a Neural Architecture originally built for computer vision
applications, which achieves competitive results when compared to Convolutional Neural Networks
(CNNs) and Attention-based networks.
The MLP-Mixer is a model based exclusively on multilayer perceptrons (MLPs). It contains two
types of layers: (1) one with MLPs applied independently to patches and (2) another one with MLPs
applied across patches. Figure 3 presents a diagram of the architecture.
Mixer operators. We use the same procedure as in the MLP model. We use a full MLP-Mixer
block to train each of the 2 operators with 2 inputs: projection and intersection. Since negation only
has 1 input, the architecture cannot be accommodated for this use so far.
- 2-input operator (Figure 2a). Represents Projection P or Intersection I with MLP-Mixer architec-
ture.

P (si, rj) = MLPmix(si, rj),∀si ∈ S,∀sj ∈ R
I(si, sj) = MLPmix(si, sj),∀si, sj ∈ S

(4)

where MLPmix represent the mixer architecture, si an embedding in the entity vector space S; and
rj ∈ R a relation.
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3.4 TRAINING OBJECTIVE, DISTANCE AND INFERENCE

Training Objective. The goal is to jointly train the logical operators and the node embeddings,
which are learning parameters that are initialized randomly. Our training objective is to minimize
the distance between the query and the query vector, while maximizing the distance from the query
to incorrect random entities, which can be done via negative samples. Equation 5 expresses this
training objective in mathematical terms.

L = − log σ(γ − Dist(v; q))−
k∑

j=1

1

k
log σ( Dist(v′j ; q)− γ)) (5)

where q is the query, v ∈ [q] is an answer of query (the positive sample); v′j 6∈ [q] represents a
random negative sample and γ refers to the margin. Both, the margin γ and the number of negative
samples k remain as hyperparameters of the model.
Distance measure. When defining the training objective, we still need to specify the distance mea-
sure to compare the entity vectors. Unlike in previous works, we do not need a measure that com-
pares between boxes or distributions. The Euclidean distance is enough for this purpose, as it calcu-
lates the distance between two points in a Euclidean space: Dist(v, q) = |v − q|.
Inference. Each operator provides an embedding. Following the query’s computation graph, we
obtain the final answer embedding (or query representation). Then, all entities are ranked according
to the distance value of this embedding to all entity embeddings via near-neighbor search in constant
time using Locality Sensitivity Hashing (Indyk & Motwani, 1998).

3.5 DISCUSSION ON ANSWERING FOL QUERIES

The aim of this work is to answer a wide set of logical queries, specifically, be able to answer
first-order logical queries (FOL), which includes: conjunctive ∧, disjunctive ∨, existential ∃ and
¬ negation operations. Notice that we will not consider universal quantification (∀) as it does not
apply to real-world knowledge graphs since no entity will ever be connected to all other entities in
the graph.
Theorem 1 in Query2Box shows that any embedding-based method that retrieves entities using a
distance-based method is not able to handle arbitrary disjunctive queries. To overcome this problem,
they transformed the queries into its Disjunctive Normal Form (DNF). By doing so, the disjunction
is placed at the end of the computational graph and can be easily aggregated. The transformed
computational graphs are equivalent to answering N conjunctive queries. N is meant to be small
in practice, and all the N computations can be parallelized. As expressed in (Davey & Priestley,
2002), all First-Order Logical Queries can be transformed into its DNF form. We refer readers to
(Ren et al., 2020) to understand the transformation process.

4 EXPERIMENTS AND RESULTS

4.1 DATASETS

We perform experiments on three standard datasets in KG benchmarks. These are the same datasets
used in Query2Box (Ren et al., 2020) and BetaE (Ren & Leskovec, 2020): FB15k (Bordes et al.,
2013), FB15k-237 (Toutanova et al., 2015) and NELL995 (Xiong et al., 2017b).
In the experiments, we use the standard evaluation scheme for Knowledge Graphs, where edges are
split into training, test and validation sets. After augmenting the KG to also include inverse relations
and double the number of edges in the graph, we effectively create 3 graphs: G train for training;
G valid, which contains G train plus the validation edges; and G test which contains G valid and the test
edges. Some statistics about the datasets can be found in Appendix A.

4.2 QUERY/ANSWER GENERATION

To obtain the queries from the datasets and its ground truth answers, we consider the 9 query basic
structures from Query2box (Ren et al., 2020), shown in Figure 4. The training, validation, and test
graphs were created as: G train ⊆ G val ⊆ G test, therefore the generated queries are also: JqK train ⊆
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Figure 4: Training and evaluation queries represented with their graphical structures and abbrevia-
tion of their computation graphs. We consistently use the following nomenclature: p projection, i
intersection, n negation, and u union.

Figure 5: Queries with negation used in the experiment used for both, training and testing. On the
right side, we show the transformation process from the original queries to its negative structure.

JqK val ⊆ JqK test. Thus, we evaluate and tune hyperparameters on JqK val \ JqK train and report the
results on JqK test \ JqK val. We always evaluate on queries and entities that were not part of the
already seen dataset used before.
For the experiments, we have used the train/valid/test set of queries-answers used for training and
evaluating BetaE (Ren & Leskovec, 2020). This query-generation system differs from the original
in the fact that it limits the number of possible answers to a specific threshold since some queries in
Query2box had above 5000 answers, which is unrealistic. More information about how queries are
created in BetaE can be found in Appendix A.
To include FOL queries, BetaE (Ren & Leskovec, 2020) created some transformations to include 5
additional query structures with negation, shown in the right panel of Figure 5.

4.3 EVALUATION

Given the rank of answer entities vi ∈ V to a non-trivial test query q, we compute the evaluation
metrics defined according to Equation 6 below. Then, we average all queries with the same query
format.

Metric(q) =
1

|JqKtest \ JqKval|
∑
vi∈V

fmetric(rank(vi)) (6)

where vi is the set of answers V ⊂ JqKtest \ JqKval, fmetric the specific metric function and rank(vi)
the rank of answer entities returned by the model.
Mean Reciprocal Rank (MRR): It is a statistic measure used in Information Retrieval to evaluate
the systems that returns a list of possible responses ranked by their probability to be correct. Given
an answer, this measure is defined as the inverse of the rank for the first correct answer, averaged
over the sample of queries Q. Equation 7 express this measure formally.

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(7)

where ranki refers to the rank position of the first correct/relevant answer for the i-th query.
Hits rate at K (H@K): This measure considers how many correct answers are ranked above K. It
directly provides an idea of how the system is performing. Equation 8 defines this metric mathemat-
ically.
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H@K = 1vi≤K (8)

4.4 BASELINES AND MODEL VARIANTS

To compare our results, we have selected the state-of-the-art baselines from some previous papers on
KG Logical Reasoning: Graph Query Embeddings (Hamilton et al., 2018), Query2Box (Ren et al.,
2020) and BetaE (Ren & Leskovec, 2020). Only the last method, BetaE, accepts negative queries.
We have modified the simpler model, MLP, to potentially improve the initial results. Below, we
describe the 3 modifications:
Heterogeneous Hyper-Graph Embeddings (Sun et al., 2021). The Heterogeneous Hypergraph
Embeddings creates graph embeddings by projecting the graph into a series of snapshots and taking
the Wavelet basis to perform localized convolutions. In essence, it is an embedding transformation
that aims to capture the information of related nodes. We have added this transformation to our
MLP model right before computing the distance, and then we calculate the distance measure defined
specifically for this new hyper space.
Attention mechanism (Vaswani et al., 2017). The goal of attention layers is to enhance the “impor-
tant” parts of the input data and fade out the rest. This allows the modelling of dependence without
regard to the length of the input. This method has proven a performance increase in many Deep
Learning Applications. We have implemented an attention mechanism for the intersection operator
in the MLP model.
2-Vector Average Approach. In our models, we create an embedding of the query and the graph
entities to a point in a hyperdimensional space. Since we are using Neural Networks to create these
embeddings, the resulting embeddings will depend on the training process and the optimization
of the weights. We have no assurance the embedding is correct. To add more robustness to the
computation, we have decided to calculate the embedding twice with two separate networks and
average the results between the two networks.

5 RESULTS

Table 1 shows the results of MRR for our models – MLP and MLP-Mixer – when compared to the
baselines – GQE, Q2B, BetaE –. As listed in the table, our methods yield promising results that
improve those from the state of the art across all query forms and datasets. Additionally, Table 2
shows the results for the model variants previously described in Section 4.4. We observe the Hyper
Embedding space does not provide an improvement when compared to the basic version of the
model. On the other side, the other two variants do show a significance improvement. Nonetheless, it
is worth noting the 2-vector approach may improve the result at the cost of more computer power, as
it mainly computes each embedding twice. Finally, in Table 3 we also show results for experiments
on full FOL queries, which include negation. Additional results for H@1 can be found in Appendix
C.

5.1 ANALYSIS OF RESULTS

In general terms, we observe an increased performance over the selected baselines. In this section
we discuss some of the implications:
- Implementation of Logical Operators. One of the main differences with other approaches such as
GQE (Hamilton et al., 2018) or Q2B (Ren et al., 2020) is the use of Neural Networks to represent
all logical operations: Projection, Intersection and Negation. In comparison to GQE that only uses
it on the Intersection, or Q2B that creates a set of geometrical operations to represent the logical
operations. In light of these results, it seems that the geometrical implications of the operations can
be restraining some of the possible solutions.
- Correctly learning the logical operations. It is hard to clearly find out if the operators are learning
the logical operations correctly. At least, we can assure the Neural Networks do a better job at
learning the approximate solution. Neural Networks that implement directly a logical operation are
already currently under research (Shi et al., 2019). A too constrained implementation of a Neural
Logic Network can be found in Appendix D.
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- Performance of model variants. We observe that both Attention Mechanism and the 2-Vector
Approach manage to improve the results from the original MLP model. This indicates that Hyper-
Graph Embeddings are not correctly transforming the embedding space in our case. Additionally,
the improvement original from the 2-vector approach seems to indicate the optimal solution was not
yet reached and there is still room for improvement on learning the correct logical operations.

Table 1: MRR Results (%) of baselines (GQE, Q2B, BetaE) and our models (MLP, MLP-Mixer) on
EPFO (∃,∧,∨) queries.

Dataset Model 1p 2p 3p 2i 3i ip pi 2u up avg

FB15k

MLPMix 69.7 27.7 23.9 58.7 69.9 30.8 46.7 38.2 24.8 43.4
MLP 67.1 31.2 27.2 57.1 66.9 33.9 45.7 38.0 28.0 43.9
BetaE 65.1 25.7 24.7 55.8 66.5 28.1 43.9 40.1 25.2 41.6
Q2B 68.0 21.0 14.2 55.1 66.5 26.1 39.4 35.1 16.7 38.0
GQE 54.6 15.3 10.8 39.7 51.4 19.1 27.6 22.1 11.6 28.0

FB15k-237

MLPMix 42.4 11.5 9.9 33.5 46.8 14.0 25.4 14.0 9.2 22.9
MLP 42.7 12.4 10.6 31.7 43.9 14.9 24.2 13.7 9.7 22.6
BetaE 39.0 10.9 10.0 28.8 42.5 12.6 22.4 12.4 9.7 20.9
Q2B 40.6 9.4 6.8 29.5 42.3 12.6 21.2 11.3 7.6 20.1
GQE 35.0 7.2 5.3 23.3 34.6 10.7 16.5 8.2 5.7 16.3

NELL995

MLPMix 55.4 16.5 13.9 39.5 51.0 18.3 25.7 14.7 11.2 27.4
MLP 55.2 16.8 14.9 36.4 48.0 18.2 22.7 14.7 11.3 26.5
BetaE 53.0 13.0 11.4 37.6 47.5 14.3 24.1 12.2 8.5 24.6
Q2B 42.2 14.0 11.2 33.3 44.5 16.8 22.4 11.3 10.3 22.9
GQE 32.8 11.9 9.6 27.5 35.2 14.4 18.4 8.5 8.8 18.6

Table 2: MRR Results (%) of the model variants of MLP on EPFO (∃,∧,∨) queries: Hyper Embed-
ding space, Attention mechanism and 2-vector approach.

Dataset Model 1p 2p 3p 2i 3i ip pi 2u up avg

FB15k
2-vector 71.9 32.1 27.1 59.9 70.5 33.7 48.4 40.4 28.4 45.8

Attention 70.0 29.5 25.4 58.6 70.0 29.8 47.2 36.8 26.5 43.8
HyperE 64.2 23.2 20.1 50.7 63.4 19.6 39.2 29.6 20.6 36.8

FB15k-237
2-vector 43.4 12.6 10.4 33.6 47.0 14.9 25.7 14.2 10.2 23.6

Attention 42.7 11.9 10.2 33.3 46.7 14.2 25.2 14.1 9.7 23.1
HyperE 41.1 10.6 9.1 28.5 41.6 11.0 21.8 13.1 8.8 20.6

NELL995
2-vector 55.6 16.3 14.9 38.5 49.5 17.1 23.7 14.6 11.0 26.8

Attention 55.6 16.2 14.4 38.0 49.0 17.9 22.3 14.7 11.0 26.6
HyperE 54.6 14.5 12.1 34.6 45.8 13.9 21.7 12.3 9.1 24.3

Table 3: MRR Results (%) of MLP model on full FOL queries (∃, ∨, ∧, ¬), including negative
queries. We only use show results for negative query structures.

Dataset Model 2in 3in inp pin pni avg

FB15K MLP 17.2 17.8 13.5 9.1 15.2 14.5
BetaE 14.3 14.7 11.5 6.5 12.4 11.8

FB15-237 MLP 6.6 10.7 8.1 4.7 4.4 6.9
BetaE 5.1 7.9 7.4 3.6 3.4 5.4

NELL995 MLP 5.1 8.0 10.0 3.6 3.6 6.1
BetaE 5.1 7.8 10.0 3.1 3.5 5.9

6 CONCLUSIONS

In this work, we have introduced a competitive embedding framework for Logical Reasoning over
Knowledge Graphs. It presents a flexible approach to build logical operators through Neural Net-
works. This method accepts queries in its First-Order Logical form, and it is one of the first models
to accept negative queries. Extensive experimental results show a significance performance im-
provement when compared to other state-of-the-art methods built for this purpose.
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A QUERY GENERATION AND STATISTICS

Statistics about the datasets can be found in Table 4 However, it is useful to understand how they
have been created. Given the 3 datasets, 3 graphs are created: G train,G val,G test for training, testing
and validation, respectively. As explained in Section 4.2, G train contains the training edges, while
G val contains edges from training + valid and G test from valid + test. Then they apply pre-order
traversal to the target nodes until all anchor entities are instantiated, and use post-order traversal to
find the answers. The difference with the query generation process used in Query2Box is a limit on
the number of queries, since the original dataset had queries with over 5000 answers, nearly 1/3 of
some datasets. The average number of queries and answers are shown in Tables 5 and 6.

Table 4: Datasets statistics.

Dataset Entities Relations Training Edges Val Edges Test Edges Total Edges
FB15k 14,951 1,345 483,142 50,000 59,071 592,213

FB15k-237 14,505 237 272,115 17,526 20,438 310,079
NELL995 63,361 200 114,213 14,324 14,267 142,804

Table 5: Number of queries divided by training, validation and test sets, and query structure.

Queries Training Validation Test
Dataset 1p/2p/3p/2i/3i 2in/3in/inp/pin/pni 1p Rest 1p Rest
FB15k 273,710 27,371 59,097 8,000 67,016 8,000

FB15k-237 149,689 23,714,968 20,101 5,000 22,812 5,000
NELL995 107,982 10,798 16,927 4,000 17,034 4,000

Table 6: Average number of answers divided by query structure.

Dataset 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni
FB15k 1.7 19.6 24.4 8.0 5.2 18.3 12.5 18.9 23.8 15.9 14.6 19.8 21.6 16.9

FB15k-237 1.7 17.3 24.3 6.9 4.5 17.7 10.4 19.6 24.3 16.3 13.4 19.5 21.7 18.2
NELL995 1.6 14.9 17.5 5.7 6.0 17.4 11.9 14.9 19.0 12.9 11.1 12.9 16.0 13.0

B EXPERIMENTAL DETAILS

Our code is implemented using PyTorch. For the baselines, we have used the implementation of
the baselines and the testing framework from BetaE (Ren & Leskovec, 2020), this also includes the
code for Query2Box (Ren et al., 2020) and GQE (Hamilton et al., 2018). For a fair comparison with
the models in the paper, we have selected the same hyperparameters listed in the paper. This also
includes the consideration of the single-point vector methods – GQE, MLP, MLPMixer – having
embedding dimensions 2n. Since Query2Box needs to model the offset and the center of the box
and BetaE has 2 parameters per distribution: α and β, and the embedding dimensions is set to n.
All our models and GQE use the following parameters: Embed dim = 800, learning rate = 0.0001,
negative sample size = 128, batch size = 512, margin = 24, num. iterations = 300,000/450,000. Q2B
and BetaE differ from the previous configuration in Embed. dim = 400 and margin = 30/60.
All experiments have been computed on independent processes on NVIDIA GPUs, either the
GeForce GTX Titan X Pascal (12 GB) or the Tesla T4 (16 GB).
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C ADDITIONAL RESULTS

Hits at K (H@K) is another metric of evaluation that captures the sense of precision of our model
to retrieve the correct entities. It is described in the Section 4.3. In Table 7 we show the results of
H@1 for all models (MLP-Mixer, MLP) and baselines (BetaE, Q2B, GQE). In Table 8 we show the
H@1 results for our model variants: HyperE, Attention Layers and 2-vector average. Finally, Table
9 shows the results of BetaE and MLP on negative queries.

Table 7: H@1 Results (%) of baselines (GQE, Q2B, BetaE) and our models (MLP, MLP-Mixer) on
EPFO (∃,∧,∨) queries.

Dataset Model 1p 2p 3p 2i 3i ip pi 2u up avg

FB15k

MLPMix 59.0 18.6 16.2 47.5 59.8 21.3 35.8 26.8 16.3 33.5
MLP 56.0 22.0 19.2 46.3 56.4 24.0 35.1 26.9 19.1 33.9
BetaE 52.0 17.0 16.9 43.5 55.3 19.3 32.3 28.1 16.9 31.3
Q2B 52.0 12.7 7.8 40.5 53.4 16.7 26.7 22.0 9.4 26.8
GQE 34.2 8.3 5.0 23.8 34.9 11.2 15.5 11.5 5.6 16.6

FB15k-237

MLPMix 31.9 6.0 4.7 22.7 36.5 8.2 16.7 7.7 4.3 15.4
MLP 32.5 6.4 5.3 21.4 33.4 8.9 16.0 7.5 4.3 15.1
BetaE 28.9 5.5 4.9 18.3 31.7 6.7 14.0 6.3 4.6 13.4
Q2B 28.3 4.1 3.0 17.5 29.5 7.1 12.3 5.2 3.3 12.3
GQE 22.4 2.8 2.1 11.7 20.9 5.7 8.4 3.3 2.1 8.8

NELL995

MLPMix 45.3 10.8 9.1 28.5 40.0 12.1 18.2 8.4 6.3 19.8
MLP 45.6 11.2 10.0 25.3 36.7 12.4 15.4 8.6 6.5 19.0
BetaE 43.5 8.1 7.0 27.1 36.5 9.3 17.4 6.9 4.7 17.8
Q2B 23.8 8.7 6.9 20.3 31.5 10.7 14.2 5.0 6.0 14.1
GQE 15.4 6.7 5.0 14.3 20.4 9.0 10.6 2.9 5.0 9.9

Table 8: H@1 Results (%) of model variants: HyperEmbedddings, Attention Mechanism and 2-
vector average.

Dataset Model 1p 2p 3p 2i 3i ip pi 2u up avg

FB15k
2-vector 71.9 32.1 27.1 59.9 70.5 33.7 48.4 40.4 28.4 45.8

Attention 70.0 29.5 25.4 58.6 70.0 29.8 47.2 36.8 26.5 43.8
HyperE 64.2 23.2 20.1 50.7 63.4 19.6 39.2 29.6 20.6 36.8

FB15k-237
2-vector 43.4 12.6 10.4 33.6 47.0 14.9 25.7 14.2 10.2 23.6
Attetion 42.7 11.9 10.2 33.3 46.7 14.2 25.2 14.1 9.7 23.1
HyperE 41.1 10.6 9.1 28.5 41.6 11.0 21.8 13.1 8.8 20.6

NELL995
2-vector 55.6 16.3 14.9 38.5 49.5 17.1 23.7 14.6 11.0 26.8

Attention 55.6 16.2 14.4 38.0 49.0 17.9 22.3 14.7 11.0 26.6
HyperE 54.6 14.5 12.1 34.6 45.8 13.9 21.7 12.3 9.1 24.3

Table 9: H@1 Results (%) of baselines – BetaE – and our model – MLP – on negative queries.

Dataset Model 2in 3in inp pin pni avg

FB15K MLP 8.3 8.6 6.9 3.6 7.4 6.9
BetaE 6.4 6.6 5.5 2.2 5.2 5.2

FB15-237 MLP 2.2 4.2 3.4 1.4 1.2 2.5
BetaE 1.5 2.8 2.8 0.7 0.9 1.7

NELL995 MLP 1.4 2.6 4.2 0.9 1.1 2.0
BetaE 1.6 2.6 4.4 0.9 1.1 2.1
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D APPENDIX: ADDITIONAL MODELS

Table 10: MRR Results (%) of additional models: CNN, NLN on EPFO (∃,∧,∨) queries.

Dataset Model 1p 2p 3p 2i 3i ip pi 2u up avg

FB15k-237 CNN 41.1 11.1 9.6 29.6 41.4 11.9 21.4 13.0 9.3 20.9
NLN 9.6 2.4 2.6 5.5 7.8 1.0 4.4 0.8 1.9 0.4

During this research, we have additionally explored other models, like Convolutional Neural Net-
works and Neural Logic Networks. We show the preliminary results of these models in the appendix
for informative reasons, available in Table 10. They have been tested on FB15k-237.
Convolutional Neural Networks (CNNs) CNNs manage to capture the intrinsic dependencies that
happen between close items. This is the reason why they are well suited for images, where closed
pixels tend to have similar colors. This is not the case we find in Knowledge Graph embeddings,
and we can intuitively its poor performance.
We have adapted a simple model of a CNN to compute the logic operators in our method. As
previously, we have created two different CNNs, one with 2 inputs (Intersection and Projection) and
another one with 1 input (Negation).
- 1-input operator. Represented by CNN with 2 convolutional layers (1st: in channels = 1,
out channels = 10, kernel size = 6, 2nd: in channels = 10, out channels = 10, kernel size = 6)
+ maxPool (kernel size = 6), followed by 3 fully connected layers + ReLu, except for the last one
which does not have ReLu. Input and output sizes are the same.
- 2-input operator. It uses the same architecture as the 1-input operator, but applies the layers
Conv+MaxPool to the 2 input entities separately and concatenates their outputs to feed the 3 fully
connected layers.
Neural Logic Networks (NLN) Neural Logic Networks (Shi et al., 2019) are a kind of network
architecture created to conduct logical inference. They use vectors to represent the variables, and
each logic operation is learned as a neural model with some predefined logic regularizers. The logic
regularizers constraint the neural module to complete the tasks they are conceived for. They have
defined the required regularizers for the most common operations, like NOT, AND, and OR.
In this model, we have implemented the Intersection operator and used the same Projection operator
from GQE (Hamilton et al., 2018): P (q, r) = Rrq, where Rd×d

r is a trainable parameter for edge
type r and q an entity.
- Intersection operator The intersection operator is implemented as the AND logical operation.
Below, we show the formal definition of the AND (Equation 9) operation – a basic multilayer per-
ceptron – and its corresponding regularizer in Table 11.

I(vi, vj) = AND(vi, vj) = Ha2f(Ha1(vi|vj) + ba) (9)

where Ha1 ∈ Rd×2d, Ha2 ∈ Rd×d and ba ∈ Rd are the parameters of the Neural Network.

Table 11: Logical regularizer for the AND operation. Sim(·) is a measure of the similarity between
two items, Euclidean distance in our case.

Operation Logic Rule Equation Logic Regularizer

AND

Identity w ∧ T = w r1 =
∑

w∈W 1− Sim(AND(w, T), w)
Annihilator w ∧ F = F r2 =

∑
w∈W 1− Sim(AND(w, F), F)

Idempotence w ∧ w = w r3 =
∑

w∈W 1− Sim(AND(w, w), w)
Complementation w ∧ ¬w = F r4 =

∑
w∈W 1− Sim(AND(w, NOT(w)), F)

Comment. Neural Logic Networks could be a good solution for Reasoning in KGs, especially after
they have already been proven to be useful in other reasoning tasks (Shi et al., 2020). There are
many reasons why it might have not worked in this case: a wrong implementation, a unit mismatch
between our loss and the regularizer values, or the regularizer being too constraining for the task.
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