

000
001
002
003

LIST REPLICABLE REINFORCEMENT LEARNING

004
005
006
007008 **Anonymous authors**
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027028 Paper under double-blind review
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052

ABSTRACT

Replicability is a fundamental challenge in reinforcement learning (RL), as RL algorithms are empirically observed to be unstable and sensitive to variations in training conditions. To formally address this issue, we study *list replicability* in the Probably Approximately Correct (PAC) RL framework, where an algorithm must return a near-optimal policy that lies in a *small list* of policies across different runs, with high probability. The size of this list defines the *list complexity*. We introduce both weak and strong forms of list replicability: the weak form ensures that the final learned policy belongs to a small list, while the strong form further requires that the entire sequence of executed policies remains constrained. These objectives are challenging, as existing RL algorithms exhibit exponential list complexity due to their instability. Our main theoretical contribution is a provably efficient tabular RL algorithm that guarantees list replicability by ensuring the list complexity remains polynomial in the number of states, actions, and the horizon length. We further extend our techniques to achieve strong list replicability, bounding the number of possible policy execution traces polynomially with high probability. Our theoretical result is made possible by key innovations including (i) a novel planning strategy that selects actions based on lexicographic order among near-optimal choices within a randomly chosen tolerance threshold, and (ii) a mechanism for testing state reachability in stochastic environments while preserving replicability. Finally, we demonstrate that our theoretical investigation sheds light on resolving the *instability* issue of RL algorithms used in practice. In particular, we show that empirically, our new planning strategy can be incorporated into practical RL frameworks to enhance their stability.

1 INTRODUCTION

The issue of replicability (or lack thereof) has been a major concern in many scientific areas (Begley and Ellis, 2012; Ioannidis, 2005; Baker, 2016; of Sciences et al., 2019). In machine learning, a common strategy to ensure replicability and reproducibility is to publicly share datasets and code. Indeed, several prominent machine learning conferences have hosted reproducibility challenges to promote best practices (Sinha et al., 2023). However, this approach may not be sufficient, as machine learning algorithms rely on sampling from data distributions and often incorporate randomness. This inherent stochasticity leads to non-replicability. A more effective solution is to design replicable algorithms ideally algorithms that consistently produce the same output across multiple runs, even when each run processes a different sample from the data distribution. This approach has recently spurred theoretical investigations, resulting in formal definitions of replicability and the development of various replicability frameworks (Impagliazzo et al., 2022; Dixon et al., 2023). In this paper, we focus on the notion of *list replicability* (Dixon et al., 2023). Informally, a learning algorithm is k -list replicable if there is a list L of cardinality k of good hypotheses so that the algorithm always outputs a hypothesis in L with high probability. k is called the list complexity of the algorithm. List replicability generalizes perfect replicability, which corresponds to the special case where $k = 1$. However, as noted in Dixon et al. (2023), perfect replicability is unattainable even for simple problems. List replicability provides a natural relaxation, allowing meaningful guarantees while still ensuring controlled variability in algorithm outputs.

We investigate list replicability in the context of reinforcement learning (RL), or more specifically, probably approximately correct (PAC) RL in the tabular setting. In RL, an agent interacts with an unknown environment modeled as a Markov decision process (MDP) in which there is a set of states S with bounded size that describes all possible status of the environment. At a state $s \in S$, the agent interacts with the environment by taking an action a from an action space A , receives an immediate reward and transits to the next state. The agent interacts with the environment episodically, where each episode consists of H steps. The goal of the agent is to interact with the environment by executing a series of policies, so that after a certain number of interactions, sufficient information

053 is collected so that the agent could find a policy that performs nearly optimally. Replicability is a well-known
 054 challenge in RL, as RL algorithms are empirically observed to be unstable and sensitive to variations in training
 055 conditions. Our work aims to address this issue by introducing and analyzing list replicability in the PAC-RL
 056 framework. Moreover, by studying the replicability of RL from a theoretical point of view, we could build a
 057 clearer understanding of the instability issue of RL algorithms, and finally make progress towards enhancing the
 058 stability of empirical RL algorithms.

059 Theoretically, there are multiple ways to define the notion of list replicability in the context of RL. We may say
 060 an RL algorithm is k -list replicable, if there is a list L of policies with cardinality k , so that the near-optimal
 061 policy found by the agent always lies in L with high probability, where the list L depends only on the unknown
 062 MDP instance. Under this definition of list replicability, it is only guaranteed that the returned policy lies in a list
 063 with small size: there is no limit on the sequence of policies executed by the agent (the trace). We call such RL
 064 algorithms to be *weakly k -list replicable*.

065 In certain applications, the above weak notion of list replicability may not suffice, and a more desirable notion
 066 of list replicability is to require both the returned policy and the trace (i.e., sequence of policies executed by the
 067 agent) lies in a list of small-size. This stronger notion of list replicability has been studied in multi-armed bandit
 068 (MAB) (Chen et al., 2025), and similar definition of replicability has been studied by Esfandiari et al. (2023) in
 069 MAB under ρ -replicability (Impagliazzo et al., 2022). In these works, it has been argued that limiting the number
 070 of possible traces (in terms of actions) of an MAB algorithm is more desirable in scenarios including clinical trials
 071 and social experiments. Therefore, the stronger notion of list replicability for RL mentioned above is a natural
 072 generalization of existing replicability definitions in MAB, and in this work, we say an RL algorithm to be *strongly*
 073 *k -list replicable* if such stronger notion (in terms of traces of policies) of list replicability holds.

074 The central theoretical question studied in this work is whether we can design list replicable PAC RL algorithms in
 075 the tabular setting. We give an affirmative answer to this question. We note that existing algorithms can potentially
 076 generate an exponentially large number of policies (and their execution traces) for the same problem instance, and
 077 hence, new techniques are needed to achieve our goal.

078 Interestingly, our theoretical investigation offers insights into addressing the instability commonly observed in
 079 practical RL algorithms. In particular, the new technical tools developed through our analysis can be integrated
 080 into existing RL frameworks to enhance their stability.

081 Below we give a more detailed description of our theoretical and empirical contributions.

082 **Theoretical Contributions.** Our first theoretical result is a black-box reduction which converts any PAC RL
 083 algorithm in the tabular setting to one that is weakly k -list replicable with $k = O(|S|^2|A|H^2)$. Here, $|S|$ is the
 084 number of states, $|A|$ is the number of actions and H is the horizon length. Due to space limitation, the description
 085 of the reduction and its analysis is deferred to Appendix F.

086 **Theorem 1.1** (Informal version of Theorem F.1). *Given a RL algorithm $\mathbb{A}(\epsilon_0, \delta_0)$ that interacts with an unknown
 087 MDP and returns an ϵ_0 -optimal policy with probability at least $1 - \delta_0$. There is a weakly k -list replicable algorithm
 088 (Algorithm 3) with $k = O(|S|^2|A|H^2)$ that makes $|S|H$ calls to \mathbb{A} with $\epsilon_0 = \frac{\epsilon\delta}{\text{poly}(|S|, |A|, H)}$ and $\delta_0 = \delta/(8|S||H|)$.
 089 For any unknown MDP instance M , with probability at least $1 - \delta$, the algorithm returns an ϵ -optimal policy
 090 $\pi \in \Pi(M)$, where $\Pi(M)$ is a list of policies that depends only on the underlying MDP M with size $|\Pi(M)| = k$.*

091 Using PAC RL algorithms in the tabular setting (e.g. the algorithm by Kearns and Singh (1998a)) with sample
 092 complexity polynomial in $|S|$, $|A|$, H , $1/\epsilon_0$ and $\log(1/\delta_0)$) as \mathbb{A} , the final sample complexity of our weakly k -list
 093 replicable algorithm in Theorem 1.1 would be polynomial in $|S|$, $|A|$, H , $1/\epsilon$ and $1/\delta$. Compared to existing
 094 algorithms in the tabular setting, the sample complexity of our algorithm has much worse dependence on $1/\delta$
 095 (polynomial dependence instead of logarithm dependence), which is common for algorithms with list replicability
 096 guarantees (Dixon et al., 2023). On the other hand, the list complexity k of our algorithm has no dependence on
 097 δ .

098 Our second result is a new RL algorithm that is strongly k -list replicable with $k = O(|S|^3|A|H^3)$.

099 **Theorem 1.2** (Informal version of Theorem 6.1). *There is a strongly k -list replicable algorithm (Algorithm 2) with
 100 $k = O(|S|^3|A|H^3)$, such that for any unknown MDP instance M , with probability at least $1 - \delta$, the algorithm
 101 returns an ϵ -optimal policy, and the sequence of policies executed by the algorithm and the returned policy lies in
 102 a list with size k that depends only on M . Moreover, the sample complexity of the algorithm is polynomial in $|S|$,
 103 $|A|$, H , $1/\epsilon$, $1/\delta$.*

106 Our second result shows that, perhaps surprisingly, even under the more stringent definition of list replicability,
 107 designing RL algorithm in the tabular setting with polynomial sample complexity and polynomial list complexity
 108 is still possible. The description of Algorithm 2 is given in Section 6.

109 Finally, we prove a hardness result on the list complexity of weakly replicable RL algorithm in the tabular setting,
 110 completing our new algorithms.

111 **Theorem 1.3** (Informal version of Theorem H.3). *For any weakly k -list replicable RL algorithm that returns an
 112 ϵ -optimal policy with probability at least $1 - \delta$, we have $k \geq \frac{|S||A|(H - \lceil \log_{|A|} |S| \rceil - 3)}{3}$ as long as $\epsilon \leq \frac{1}{2|S||A|H}$ and
 113 $\delta \leq \frac{1}{|S||A|H+1}$.*

116 Theorem 1.3 shows that the list complexity of any weakly k -list replicable algorithm is $\Omega(SAH)$, provided that
 117 its suboptimality and failure probability are both at most $O(1/(SAH))$. Theorem 1.3 is proved by a reduction
 118 from RL to the MAB and known list complexity lower bound for MAB (Chen et al., 2025). Its formal proof can
 119 be found in Appendix H.

120 **Empirical Contributions.** We further show that our robust planner (presented in Section 5), one of our new
 121 technical tools for establishing Theorem 1.1 and Theorem 1.2, can be incorporated into practical RL frameworks
 122 to enhance their stability. The empirical findings are presented in Section 7.

124 2 RELATED WORK

126 There is a long line of research dedicated to understanding the complexity of reinforcement learning by studying
 127 learning in a Markov Decision Process (MDP). One well-established setting is the *generative model*, which ab-
 128 stracts away exploration challenges by assuming access to a simulator that allows sampling from any state-action
 129 pair. A number of works (Kearns and Singh, 1998a; Pananjady and Wainwright, 2020; Kakade, 2003; Azar et al.,
 130 2013; Agarwal et al., 2020; Wainwright, 2019b;a; Sidford et al., 2018a;b; Li et al., 2024b;a; 2022; Even-Dar and
 131 Mansour, 2003; Shi et al., 2023; Beck and Srikant, 2012; Cui and Yang, 2021; Sidford et al., 2018b; Wainwright,
 132 2019b; Azar et al., 2013; Agarwal et al., 2020) have established near-optimal sample complexity bounds for learn-
 133 ing a policy in this regime. Specifically, to learn an ϵ -optimal policy with high probability, the statistically optimal
 134 sample complexity is of the order $\text{poly}(|S|, |A|, H, 1/\epsilon)$, where H denotes the horizon or the effective horizon of
 135 the environment. These algorithms generally fall into two categories: those that estimate the probability transition
 136 model and those that directly estimate the optimal Q -function. However, due to the inherent randomness in sam-
 137 pling, these approaches do not guarantee *list-replicable* policies each independent execution of the algorithm may
 138 return a different policy, potentially leading to an exponentially large set of output policies.

139 In contrast, the online RL setting where there is no access to a generative model has seen significant progress
 140 over the past decades in optimizing sample complexity. Notable contributions include (Kearns and Singh, 1998b;
 141 Brafman and Tennenholtz, 2002; Kakade, 2003; Strehl et al., 2009; Auer, 2002; Strehl et al., 2006; Strehl and
 142 Littman, 2008; Kolter and Ng, 2009; Bartlett and Tewari, 2009; Jaksch et al., 2010; Szita and Szepesvari, 2010;
 143 Lattimore and Hutter, 2012; Osband et al., 2013; Dann and Brunskill, 2015; Agrawal and Jia, 2017; Dann et al.,
 144 2017; Jin et al., 2018; Efroni et al., 2019; Fruhwirth et al., 2018; Zanette and Brunskill, 2019; Cai et al., 2019; Dong
 145 et al., 2019; Russo, 2019; Neu and Pike-Burke, 2020; Zhang et al., 2020; 2021; Tarbouriech et al., 2021; Xiong
 146 et al., 2022; Menard et al., 2021; Wang et al., 2020; Li et al., 2021b;a; Domingues et al., 2021; Zhang et al., 2022).
 147 These works typically evaluate algorithmic performance within the regret framework, comparing the accumulated
 148 reward of an algorithm against that of an optimal policy. When adapted to the Probably Approximately Correct
 149 (PAC) RL framework, these results imply a sample complexity of $\text{poly}(|S|, |A|, H, 1/\epsilon)$ to learn an ϵ -optimal
 150 policy with high probability. To achieve a balance between exploration and exploitation, the aforementioned
 151 algorithms generally follow a common iterative framework maintaining a policy and refining it as new data is
 152 collected. For example, UCB-type algorithms (e.g., Jin et al. (2018)) maintain an approximate Q -function and
 153 leverage an upper-confidence bound to guide data collection. However, due to the iterative updates of these
 154 algorithms, they inherently fail to achieve polynomial complexity in either the strong or the weak notion of list
 155 replicability, as policies are likely to change at each iteration, and small stochastic error could have significant
 156 impact on the policies executed by the algorithm.

157 Recent studies have begun exploring *replicable reinforcement learning*. (Karbasi et al., 2024; Eaton et al., 2023)
 158 examined ρ -replicability, as defined in (Impagliazzo et al., 2022). Intuitively, ρ -replicability ensures that two ex-
 159 ecutions of the same algorithm, when initialized with the same random seed, yield the same policy with probability
 160 at least $1 - \rho$. Meanwhile, (k, δ) -weak list replicability requires that an algorithm consistently outputs a policy

159 from a fixed list of at most k policies with probability at least $1 - \delta$. However, a ρ -replicable algorithm may still
 160 generate an exponentially large number of distinct policies, as each seed may correspond to a different output
 161 policy. Thus, such algorithms may still suffer from exponential weak (or strong) list complexity. (Esfandiari et al.,
 162 2023) further studied the Multi-Armed Bandit (MAB) problem under ρ -replicability, where two independent ex-
 163 ecutions of a ρ -replicable MAB algorithm, sharing the same random string, must follow the same sequence of
 164 actions with probability at least $1 - \rho$.

165 Beyond the above frameworks, there is a growing body of work studying replicability and closely related stability
 166 notions in classical learning theory. Chase et al. (2023) introduce global stability, a seed-independent variant of
 167 replicability, and clarify its relationship to classical notions of algorithmic stability. Bun et al. (2023) further show
 168 that several such stability notions are essentially equivalent and develop general “stability booster” constructions
 169 that yield replicable algorithms from non-replicable ones, revealing tight connections to differential privacy and
 170 adaptive data analysis. More recently, Kalavasis et al. (2024) investigate the computational landscape of replicable
 171 learning, identifying settings where efficient replicable algorithms provably do not exist, while Blondal et al.
 172 (2025) study stability and list replicability in the agnostic PAC setting and prove sharp trade-offs between excess
 173 risk, stability, and list size. Our results are complementary to this line of work: we focus on control problems
 174 rather than supervised learning, and we explicitly track the list complexity of both output policies and execution
 175 traces in tabular RL, showing that nontrivial list-replicability guarantees are achievable with polynomial sample
 176 complexity.

177 In the online learning setting, the only known work addressing list replicability is by Chen et al. (2025), who
 178 studied the concept in the context of Multi-Armed Bandits (MAB). The authors define an MAB algorithm as
 179 (k, δ) -list replicable if, for any MAB instance, there exists a list of at most k action traces such that the algorithm
 180 selects one of these traces with probability at least $1 - \delta$. Our definition of *strong list replicability* for RL naturally
 181 extends this notion to RL. However, due to the long-horizon nature of RL, achieving list replicability in RL
 182 presents significantly greater challenges.

183 Concurrent to our work, Hopkins et al. (2025) study sample-efficient replicable RL in the tabular setting. Their
 184 algorithms also stably identify a set of ignorable states and then perform backward induction using data collected
 185 from the remaining states, which is conceptually similar to our use of robust planning on non-ignorable states.
 186 However, they focus on fully replicable algorithms (a single policy that reappears with high probability), with-
 187 out explicitly analyzing the induced list size, whereas we design algorithms with explicit (k, δ) -list-replicability
 188 guarantees while retaining near-optimal sample complexity.

190 3 PRELIMINARIES

192 **Notations.** For a positive integer N , we use $[N]$ to denote $\{0, 1, \dots, N - 1\}$. For a condition \mathcal{E} , we use $\mathbb{1}[\mathcal{E}]$ to
 193 denote the indicator function, i.e., $\mathbb{1}[\mathcal{E}] = 1$ if \mathcal{E} holds and $\mathbb{1}[\mathcal{E}] = 0$ otherwise. For a real number x and $\epsilon \geq 0$,
 194 we use $\text{Ball}(x, \epsilon)$ to denote $[x - \epsilon, x + \epsilon]$. For two real numbers $a < b$, we use $\text{Unif}(a, b)$ to denote the uniform
 195 distribution over (a, b) .

196 **Markov Decision Process.** Let $M = (S, A, P, R, H, s_0)$ be a Markov Decision Process (MDP). Here, S is the
 197 state space, and $A = \{1, 2, \dots, |A|\}$ is the action space. $P = (P_h)_{h \in [H]}$, where for each $h \in [H]$, $P_h : S \times A \rightarrow$
 198 $\Delta(S)$ is the transition model at level h which maps a state-action pair to a distribution over states. $R = (R_h)_{h \in [H]}$,
 199 where for each $h \in [H]$, $R_h : S \times A \rightarrow [0, 1]$ is the deterministic reward function at level h . $H \in \mathbb{Z}^+$ is the
 200 horizon length, and $s_0 \in S$ is the initial state. We further assume that the reward functions $R = (R_h)_{h \in [H]}$ are
 201 known.¹

202 A (non-stationary) policy π chooses an action $a \in A$ based on the current state $s \in S$ and the time step $h \in [H]$.
 203 Formally, $\pi = \{\pi_h\}_{h=0}^{H-1}$ where for each $h \in [H]$, $\pi_h : S \rightarrow A$ maps a given state to an action. The policy π
 204 induces a (random) trajectory $s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{H-1}, a_{H-1}, r_{H-1}$, where for each $h \in [H]$, $a_h = \pi_h(s_h)$,
 205 $r_h = R_h(s_h, a_h)$ and $s_{h+1} \sim P_h(s_h, a_h)$ when $h < H - 1$.

206 **Interacting with the MDP.** In RL, an agent interacts with an unknown MDP. In the online setting, in each episode,
 207 the agent decides a policy π , observes the induced trajectory, and proceeds to the next episode. In the generative

210 211 ¹For simplicity, we assume deterministic rewards and the initial state, and known reward function. Our algorithms can be
 212 easily extended to handle stochastic rewards and initial state, and unknown rewards distributions.

212 model setting, in each round, the agent is allowed to choose a state-action pair $(s, a) \in S \times A$ and a level $h \in [H]$,
 213 and receives a sample drawn from $P_h(s, a)$ as feedback.

214 **Value Functions and Q -Functions.** For an MDP M , given a policy π , a level $h \in [H]$ and $(s, a) \in S \times A$, the
 215 Q -function is defined as $Q_{h,M}^\pi(s, a) = \mathbb{E} \left[\sum_{h'=h}^{H-1} r_{h'} \mid s_h = s, a_h = a, M, \pi \right]$, and the value function is defined
 216 as $V_{h,M}^\pi(s) = \mathbb{E} \left[\sum_{h'=h}^{H-1} r_{h'} \mid s_h = s, M, \pi \right]$. We denote $Q_{h,M}^*(s, a) = Q_{h,M}^{\pi^*}(s, a)$ and $V_{h,M}^*(s) = V_{h,M}^{\pi^*}(s)$
 217 where π^* is the optimal policy. We also write $V_M^* = V_{0,M}^*(s_0)$ and $V_M^\pi = V_{0,M}^\pi(s_0)$ for a policy π . We may omit
 218 M from the subscript of value functions and Q -functions when M is clear from the context (e.g., when M is the
 219 underlying MDP that the agent interacts with). We say a policy π to be ϵ -optimal if $V^\pi \geq V^* - \epsilon$.

220 The goal of the agent is to return a near-optimal policy π after interacting with the unknown MDP M by executing
 221 a sequence of policies (or by querying the transition model in the generative model).

222 **Further Notations.** For an MDP M , define the occupancy function $d_M^\pi(s, h) = \Pr[s_h = s \mid M, \pi]$ and
 223 $d_M^*(s, h) = \max_\pi \Pr[s_h = s \mid M, \pi]$. We may omit M from the subscript of $d_M^\pi(s, h)$ and $d_M^*(s, h)$ when M is
 224 clear from the context. For an MDP M , we write

$$225 \text{Gap}_M = \{V_{h,M}^*(s) - Q_{h,M}^*(s, a) \mid (s, a) \in S \times A, h \in [H]\}. \quad (1)$$

226 Two MDPs M_1 and M_2 are said to be ϵ -related if M_1 and M_2 share the same state space S , action space A , reward
 227 function and initial state, and for all $(s, a) \in S \times A$ and $h \in [H - 1]$,

$$228 \sum_{s' \in S} \left| P_h^{M_1}(s' \mid s, a) - P_h^{M_2}(s' \mid s, a) \right| \leq \epsilon \quad (2)$$

229 where $P_h^{M_1}$ is the transition model of M_1 at level h and $P_h^{M_2}$ is that of M_2 at the same level.

230 **List Replicability in RL.** We now formally define the notion of list replicability of RL algorithms in the online
 231 setting. For an RL algorithm \mathbb{A} , we say \mathbb{A} to be *weakly* (k, δ) -list replicable, if for any MDP instance M , there is
 232 a list of policies $\Pi(M)$ with cardinality at most k , so that $\Pr[\pi \in \Pi(M)] \geq 1 - \delta$, where π is the (supposedly)
 233 near-optimal policy returned by \mathbb{A} when interacting with M .

234 For an RL algorithm \mathbb{A} , we say \mathbb{A} to be *strongly* (k, δ) -list replicable, if for any MDP instance M , there is a list
 235 $\text{Trace}(M)$ with cardinality at most k , so that $\Pr[((\pi_0, \pi_1, \dots), \pi) \in \text{Trace}(M)] \geq 1 - \delta$, where (π_0, π_1, \dots) is
 236 the (random) sequence of policies executed by \mathbb{A} when interacting with M and π is the (supposedly) near-optimal
 237 policy returned by \mathbb{A} when interacting with M .

244 4 OVERVIEW OF NEW TECHNIQUES

245 In this section, we discuss the techniques for establishing Theorem 1.1 and Theorem 1.2.

246 **The Robust Planner.** To motivate our new approach, consider the following simple MDP instance for which
 247 most existing RL algorithms would fail to achieve polynomial list complexity. There is a state s_h at each level
 248 $h \in [H]$, and the action space is $\{a_1, a_2\}$. At level h , if a_i is chosen, s_h transitions to s_{h+1} with an unknown
 249 probability $p_{h,i}$, otherwise s_h transitions to an absorbing state. The agent receives a reward of 1 at the last level.
 250 For this instance, if $|p_{h,1} - p_{h,2}| = \exp(-H)$, then for all $h \in [H]$, no RL algorithm could differentiate $p_{h,1}$ and
 251 $p_{h,2}$ unless we draw an exponential number of samples. Therefore, if the RL algorithm simply returns a policy
 252 by maximizing the estimated optimal Q -values for each s_h , then we would choose either a_1 or a_2 , and hence,
 253 there could be 2^H different policies returned by the algorithm. As most existing RL algorithms choose actions by
 254 maximizing the estimated Q -values, they would all fail to achieve polynomial list complexity even for this simple
 255 instance. This also explains why existing RL algorithms tend to be unstable and sensitive to noise.

256 To better understand our new approach, let us first consider the simpler generative model setting. Standard analysis
 257 shows that by taking sufficient samples for all $(s, a) \in S \times A$ and $h \in [H]$ to build the empirical model \hat{M} , we
 258 would have $|\hat{Q}_h(s, a) - Q_{h,M}^*(s, a)| \leq \epsilon_0$ for all $(s, a) \in S \times A$ and $h \in [H]$. Here, $\hat{Q}_h(s, a) = Q_{h,\hat{M}}^*(s, a)$ is the
 259 estimated Q -value, and ϵ_0 is a statistical error that can be made arbitrarily small by drawing more samples. Now,
 260 for a given state s and level h , instead of choosing an action by maximizing $\hat{Q}_h(s, a)$, we go through all actions in a
 261 fixed order $1, 2, \dots, |A|$, and choose the lexicographically first action a so that $\hat{Q}_h(s, a) \geq \max_a \hat{Q}_h(s, a) - r_{\text{action}}$,
 262 where r_{action} is a tolerance parameter drawn from the uniform distribution.

Now we show that our new approach achieves small list complexity. The main observation is that, for a fixed tolerance parameter r_{action} , if difference between r_{action} and $\text{Gap}_h(s, a) = V_h^*(s) - Q_h^*(s, a)$ satisfies $r_{\text{action}} \notin \text{Ball}(\text{Gap}_h(s, a), 2\epsilon_0)$ for all $(s, a) \in S \times A$ and $h \in [H]$, then the returned policy will always be the same regardless of the estimation errors. To see this, for an action a , if $r_{\text{action}} \notin \text{Ball}(\text{Gap}_h(s, a), 2\epsilon_0)$, then whether $\hat{Q}_h(s, a) \geq \hat{V}_h(s) - r_{\text{action}}$ or not will always be the same regardless of the stochastic noise as long as $|\hat{Q}_h(s, a) - Q_h^*(s, a)| \leq \epsilon_0$. Since we always choose the lexicographically first action a satisfying $\hat{Q}_h(s, a) \geq \hat{V}_h(s) - r_{\text{action}}$, the action chosen for s will always be the same. Equivalently, by defining $\text{Bad}_{\text{action}} = \bigcup_{h, s, a} \text{Ball}(\text{Gap}_h(s, a), 2\epsilon_0)$, the returned policy will always be the same so long as $r_{\text{action}} \notin \text{Bad}_{\text{action}}$. By drawing r_{action} from the uniform distribution over $(0, 2HSA\epsilon_0/\delta)$, we would have $\Pr[r_{\text{action}} \notin \text{Bad}_{\text{action}}] \geq 1 - \delta$. Moreover, for two tolerance parameters $r_{\text{action}}^1, r_{\text{action}}^2 \notin \text{Bad}_{\text{action}}$, if for all $(s, a) \in S \times A$ and $h \in [H]$ we have either $r_{\text{action}}^1 < r_{\text{action}}^2 < \text{Gap}_h(s, a)$ or $\text{Gap}_h(s, a) < r_{\text{action}}^1 < r_{\text{action}}^2$, then the returned policy will also be the same no matter $r_{\text{action}} = r_{\text{action}}^1$ or $r_{\text{action}} = r_{\text{action}}^2$. Since there are at most $|S||A|H + 1$ different values for $\text{Gap}_h(s, a)$ for the underlying MDP M , there could be at most $|S||A|H + 1$ different policies returned by our algorithm as long as $r_{\text{action}} \notin \text{Bad}_{\text{action}}$. Finally, the suboptimality of the returned policy can be easily shown to be $O(H \cdot r_{\text{action}})$.

Weakly k -list Replicable Algorithm in the Online Setting. Our algorithm in the online setting with weakly k -list replicable guarantee is based on building a policy cover (Jin et al., 2020). Given a black-box RL algorithm, for each $(s, h) \in S \times [H]$, we set the reward function to be $R_{h'}^{s, h}(s', a) = \mathbb{1}[s' = s, h = h']$, invoke the black-box RL algorithm with the modified reward function, and set the returned policy to be $\hat{\pi}^{s, h}$. Since $\hat{\pi}^{s, h}$ is an ϵ -optimal policy, we have $d^{\hat{\pi}^{s, h}}(s, h) \geq d^*(s, h) - \epsilon$. At this point, one could use $\hat{\pi}^{s, h}$ to collect samples and estimate the transition model $P_h(s, a)$, and return a policy by invoking the robust planning algorithm mentioned above. The issue is that there could be some $(s, h) \in S \times [H]$ unreachable for any policy π , i.e., $d^*(s, h)$ is small. For those (s, h) , it is impossible to estimate the transition model $P_h(s, a)$ accurately. On the other hand, our robust planning algorithm requires $|\hat{Q}_h(s, a) - Q_h^*(s, a)| \leq \epsilon_0$ for all $(s, a) \in S \times A$ and $h \in [H]$.

To tackle the above issue, we use an additional truncation step to remove unreachable states. For each $(s, h) \in S \times [H]$, we first use the roll-in policy $\hat{\pi}^{s, h}$ to estimate the probability of reaching s at level h . If the estimated probability is small, it would be clear that $d^*(s, h)$ is also small as $\hat{d}^{\hat{\pi}^{s, h}}(s, h) \geq d^*(s, h) - \epsilon$, so that (s, h) can be removed from the MDP. On the other hand, implementing the above truncation step naively would significantly increase the list complexity of our algorithm as the returned policy depends on the set of $(s, h) \in S \times [H]$ being removed. Here, we use an approach similar to the robust planning algorithm mentioned earlier. We use a randomly chosen reaching probability truncation threshold r_{trunc} drawn from the uniform distribution, and for each $(s, h) \in S \times [H]$, we declare (s, h) to be unreachable iff the estimated reaching probability (using $\hat{\pi}^{s, h}$) does not exceed r_{trunc} . Similar to the analysis in the robust planning algorithm, for a reaching probability truncation threshold r_{trunc} , the set of (s, h) being removed would be the same as long as the difference r_{trunc} and $d^*(s, h)$ is large enough for all $(s, h) \in S \times [H]$. Moreover, two reaching probability truncation thresholds r_{trunc}^1 and r_{trunc}^2 will result in the same set of (s, h) being removed if for all $(s, h) \in S \times [H]$ we have either $r_{\text{trunc}}^1 < r_{\text{trunc}}^2 < d^*(s, h)$ or $d^*(s, h) < r_{\text{trunc}}^1 < r_{\text{trunc}}^2$. Therefore, the total number of different sets of (s, h) being removed is at most $O(|S|H)$.

Strongly k -list Replicable Algorithm in the Online Setting. Unlike the case of weak list replicability where we can use a black-box RL algorithm to determine the set of unreachable states independently at each level, for strongly list replicable RL, such a method would not suffice due to the potentially large list complexity of the black-box algorithm. Our algorithm with strongly k -list replicable guarantees employs a level-by-level approach: for each level h , we find a policy $\hat{\pi}^{s, h}$ to reach s at level h for each $s \in S$, build an empirical transition model for level h , and proceed to the next level $h + 1$. To ensure list replicability guarantees, for each $(s, h) \in S \times [H]$, we use the same robust planning algorithm to find $\hat{\pi}^{s, h}$. As mentioned earlier, for any level h , there could be unreachable states, and the estimated transition model for those states could be inaccurate. To handle this, for each level h , based on the estimated transition models of previous levels, we test the reachability of all states in level h by using the same mechanism as in our previous algorithm, and remove those unreachable states by transitioning them to an absorbing state s_{absorb} in the estimated model.

Although the algorithm is conceptually straightforward given existing components, the analysis is not. For the new algorithm, states removed at level h have significant impact on the reaching probabilities of later levels, which also affect the planned roll-in policies of later levels. Such dependency issue must be handled carefully to have a polynomial list complexity. To handle this, we prove several structural properties of reaching probabilities

318 in truncated MDPs in Section D. For the time being we assume that in our algorithm, for each level h , instead
 319 of using estimated reaching probabilities, the algorithm has access to the true reaching probabilities, and those
 320 reaching probabilities have taken unreachable states removed in previous levels into consideration. I.e., for a
 321 reaching probability truncation threshold r_{trunc} , we first remove all states in the first level that cannot be reached
 322 with probability higher than r_{trunc} , recalculate the reaching probability in the second level after truncating the
 323 first level, remove unreachable states in the second level (again using the same threshold r_{trunc}), and so on. We use
 324 $U_h(r_{\text{trunc}})$ to denote the set of states removed in level h during the above process, and see Definition D.1 for a
 325 formal definition. We show that for different r_{trunc} , $U_h(r_{\text{trunc}})$ could not be an arbitrary subset of the state space,
 326 and the main observation is that $U_h(r_{\text{trunc}})$ satisfies certain monotonicity property, i.e., given $r_1, r_2 \in [0, 1]$, if
 327 $r_1 < r_2$ then we have $U_h(r_1) \subseteq U_h(r_2)$. This observation can be proved by induction on h , and see Lemma D.2
 328 and its proof for more details.

329 As an implication, if we write $U(r) = (U_0(r), U_1(r), \dots, U_{H-1}(r))$, then there could be at most $|S|H + 1$
 330 different choices of $U(r)$ for all $r \in [0, 1]$ by the pigeonhole principle. Therefore, after fixing the reaching
 331 probability truncation threshold, the set of states that will be removed at each level will be fixed, and for all
 332 different reaching probability truncation thresholds, there could be at most $|S|H + 1$ different ways to remove
 333 states even if we consider all levels simultaneously.

334 The above discussion heavily relies on the true reaching probabilities. As another implication of the monotonicity
 335 property, there is a critical reaching probability threshold $\text{Crit}(s, h)$ for each (s, h) , and $s \in U_h(r)$ iff $r \leq$
 336 $\text{Crit}(s, h)$ (cf. Corollary D.5). Therefore, for a fixed reaching probability truncation threshold r_{trunc} , as long as
 337 the distance between r_{trunc} and $\text{Crit}(s, h)$ is much larger than the statistical errors, the set of states being removed
 338 will still be the same as $U(r_{\text{trunc}})$ even with statistical errors. In particular, if we draw r_{trunc} from a uniform
 339 distribution as in previous algorithms, with high probability r_{trunc} and $\text{Crit}(s, h)$ would have a large distance for
 340 all $(s, h) \in S \times [H]$, in which case the set of removed states will be one of those $|S|H + 1$ different choices of
 341 $U(r)$.

342 5 ROBUST PLANNING

343 In this section, we formally describe our robust planning algorithm (Algorithm 1). Here, it is assumed that there is
 344 an unknown underlying MDP M . Algorithm 1 receives an MDP \hat{M} and a tolerance parameter r_{action} as input, and
 345 it is assumed that M and \hat{M} are ϵ_0 -related (see (2) for the definition). In Algorithm 1, for each $(s, h) \in S \times [H]$,
 346 we go through all actions in the action space A in a fixed order $1, 2, \dots, |A|$, and choose the first action a so that
 347 $Q_{h, \hat{M}}^*(s, a) \geq V_{h, \hat{M}}^*(s) - r_{\text{action}}$.

348 Algorithm 1 Robust Planning

- 349 1: **Input:** MDP \hat{M} , tolerance parameter r_{action} .
- 350 2: **Output:** near-optimal policy $\hat{\pi}$
- 351 3: Define $\hat{\pi}_h(s) = \min\{a \in A \mid Q_{h, \hat{M}}^*(s, a) \geq V_{h, \hat{M}}^*(s) - r_{\text{action}}\}$ for each $(s, h) \in S \times [H]$
- 352 4: **return** $\hat{\pi}$

353 Our first lemma characterizes the suboptimality of the returned policy. Its formal proof is based on the performance
 354 difference lemma (Kakade and Langford, 2002) and can be found in Section C.

355 **Lemma 5.1.** Suppose M and \hat{M} are ϵ_0 -related. The policy $\hat{\pi}$ returned by Algorithm 1 satisfies $V_M^{\hat{\pi}} \geq V_M^* -$
 356 $2H^2\epsilon_0 - r_{\text{action}}H$.

357 Our second lemma shows that if r_{action} is chosen to be far from $\text{Gap}_{h, M}(s, a) = V_{h, M}^*(s) - Q_{h, M}^*(s, a)$ for all
 358 $(s, a) \in S \times A$ and $h \in [H]$, then the returned policy $\hat{\pi}$ depends only on M and r_{action} . Moreover, for two choices
 359 r_{action}^1 and r_{action}^2 of the tolerance parameter r_{action} , the returned policy will be the same if r_{action}^1 and r_{action}^2
 360 always lie on the same side of $\text{Gap}_{h, M}(s, a)$ for all $(s, a) \in S \times A$ and $h \in [H]$. Full proof of the lemma and
 361 corollary can be found in Section C.

362 **Lemma 5.2.** Suppose M and \hat{M} are ϵ_0 -related. For two tolerance parameters r_{action}^1 and r_{action}^2 , if

- 363 • $r_{\text{action}}^1, r_{\text{action}}^2 \notin \bigcup_{g \in \text{Gap}_M} \text{Ball}(g, 2H^2\epsilon_0)$ where Gap_M is as defined in (1);
- 364 • for any $g \in \text{Gap}_M$, either $g < r_{\text{action}}^1 < r_{\text{action}}^2$ or $r_{\text{action}}^1 < r_{\text{action}}^2 < g$,

371 then the returned policy $\hat{\pi}$ depends only on M and r_{action} , and for both tolerance parameters r_{action}^1 and r_{action}^2 ,
 372 the returned policy $\hat{\pi}$ would be identical for the same underlying MDP M .
 373

374 As a corollary of Lemma 5.1 and Lemma 5.2, we show how to design a list-replicable RL algorithm in the
 375 generative model setting by invoking Algorithm 1 with a randomly chosen parameter r_{action} .
 376

Corollary 5.3. *In the generative model setting, there is an algorithm with sample complexity polynomial in $|S|$,
 377 $|A|$, $1/\epsilon$ and $1/\delta$, such that with probability at least $1 - \delta$, the returned policy is ϵ -optimal and always lies
 378 in a list $\Pi(M)$ where $\Pi(M)$ is a list of policies that depend only on the unknown underlying MDP M with
 379 $|\Pi(M)| = O(|S||A|H)$.*

380 381 6 STRONGLY k -LIST REPLICABLE RL ALGORITHM

382 In this section, we present our strongly k -list replicable algorithm (Algorithm 2). As mentioned in Section 4,
 383 Algorithm 2 employs a layer-by-layer approach. In Algorithm 2, for each $h \in [H]$, \hat{U}_h is the set of states
 384 estimated to be unreachable at level h , and we initialize $\hat{U}_0 = S \setminus \{s_0\}$ where s_0 is the fixed initial state. For each
 385 iteration h , we assume that \hat{U}_h has been calculated, and for all $s \notin \hat{U}_h$, we assume that a roll-in policy $\hat{\pi}^{s,h}$ has
 386 been determined (except for $h = 0$, since any policy would suffice for reaching the initial state). Now we describe
 387 how to proceed to the next iteration $h + 1$.
 388

389 For each $s \notin \hat{U}_h$ and $a \in A$, we build a policy $\hat{\pi}^{s,h,a}$ based on $\hat{\pi}^{s,h}$, and execute $\hat{\pi}^{s,h,a}$ to collect samples
 390 and calculate $\hat{P}_h(s, a)$ as our estimate of $P_h(s, a)$. Based on $\{\hat{P}_h(s, a)\}_{h' \leq h}$ and $\{\hat{U}_{h'}\}_{h' \leq h}$, we build an MDP
 391 \tilde{M}^{h+1} (cf. (3)). For each $h' \leq h$ and $s \in S$, if $s \notin \hat{U}_{h'}$ the transition model of s in \tilde{M}^{h+1} at level h' would be
 392 the same as $\hat{P}_{h'}(s, \cdot)$. If $s \in \hat{U}_{h'}$, we always transit s to an absorbing state s_{absorb} in \tilde{M}^{h+1} at level h' . Given
 393 \tilde{M}^{h+1} , for each $s \in S$, we calculate $d_{\tilde{M}^{h+1}}^*(s, h + 1)$ as our estimate of $d^*(s, h + 1)$, and we include s in \hat{U}_{h+1}
 394 if $d_{\tilde{M}^{h+1}}^*(s, h + 1) \leq r_{\text{trunc}}$. Here, r_{trunc} is a reaching probability truncation threshold drawn from the uniform
 395 distribution. For each $s \notin \hat{U}_{h+1}$, we further find a roll-in policy $\hat{\pi}^{s,h+1}$ by invoking Algorithm 1 on \tilde{M}^{h+1} with a
 396 modified reward function $R_{h'}^{s,h+1}(s', a) = \mathbb{1}[h' = h + 1, s' = s]$ and tolerance parameter r_{action} , where r_{action} is
 397 also drawn from the uniform distribution. After finishing all these steps, we proceed to the next iteration.
 398

399 Finally, after finishing all iterations, we invoke Algorithm 1 again with MDP \tilde{M}^{H-1} and the same tolerance
 400 parameter r_{action} , and return the output of Algorithm 1 as the final output. The formal guarantee of Algorithm 2
 401 is stated in the following theorem. Its proof can be found in Section E.
 402

Theorem 6.1. *For any unknown MDP instance M , there is a list $\text{Trace}(M)$ with size at most $k = O(|S|^3|A|H^3)$
 403 that depends only on M , and with probability at least $1 - \delta$, the policy π returned by Algorithm 2 is ϵ -optimal,
 404 and $((\pi_0, \pi_1, \dots), \pi) \in \text{Trace}(M)$, where (π_0, π_1, \dots) is the sequence of policies executed by Algorithm 2 when
 405 interacting with M .*

406 407 7 EXPERIMENTS

408 In this section, we show that our new planning strategy can be incorporated into empirical RL frameworks to
 409 enhance their stability. In our experiments, we use three different environments in Gymnasium (Towers et al.,
 410 2024): Cartpole-v1, Acrobot-v1 and MountainCar-v0. For each environment, we use a different empirical RL
 411 algorithms: DQN (Mnih et al., 2015), Double DQN (Van Hasselt et al., 2016) and tabular Q-learning based on
 412 discretization. We combine our robust planner in Section 5 with the above empirical RL algorithm by replacing
 413 the planning algorithm with Algorithm 1. Unlike our theoretical analysis, we treat the tolerance parameter r_{action}
 414 as a hyperparameter and experiment with different choices of r_{action} . Note that when $r_{\text{action}} = 0$, Algorithm 1
 415 is equivalent to picking actions that maximize the estimated Q -value as in the original empirical RL algorithms
 416 (DQN, Double DQN and tabular Q-learning). The results are presented in Figure 1. Here we repeat each exper-
 417 iment by 25 times. The x -axis is the number of training episodes, the y -axis is the average award of the trained
 418 policy, \pm standard deviation across 25 runs. More details can be found in Appendix I.
 419

420 Our experiments show that by choosing a larger tolerance parameter r_{action} , the performance of the algorithm
 421 becomes more stable at the cost of worse accuracy. Therefore, by choosing a suitable hyperparameter r_{action} , we
 422 could achieve a balance between stability and accuracy.
 423

We further use our new planning strategy in more challenging Atari environments, such as NameThisGame. Using
 the BTR algorithm ((Clark et al., 2024)) as the baseline, we find that simply augmenting it with the robust planner

424
425
426
427
428
429
430
431
432
433
434

Algorithm 2 Strongly k -list Replicable RL Algorithm

435
436
437 1: **Input:** error tolerance ϵ , failure probability δ
438 2: **Output:** near-optimal policy π
439 3: Initialize $C_1 = \frac{8AS^2H^2}{\delta}$, $\epsilon_0 = \frac{\epsilon\delta}{1440S^3H^7A}$, $\epsilon_1 = 5C_1H^2\epsilon_0$, $\eta_0 = 3\epsilon_1H$, $W = \frac{S^2\log(8HS^2A/\delta)}{\epsilon_0^2\eta_0}$
440 4: Generate random numbers $r_{\text{action}} \sim \text{Unif}(\epsilon_1, 2\epsilon_1)$, $r_{\text{trunc}} \sim \text{Unif}(3\eta_0, 6\eta_0)$
441 5: Initialize $\hat{U}_0 = S \setminus \{s_0\}$
442 6: **for** $h \in [H-1]$ **do**
443 7: **for** $(s, a) \in (S \setminus \hat{U}_h) \times A$ **do**
444 8: Define policy $\hat{\pi}^{s,h,a}$, where for each $h' \in [H]$, $\hat{\pi}^{s,h,a}_{h'}(s') = \begin{cases} a & h' \geq h \\ \hat{\pi}^{s,h}_{h'}(s') & h' < h \end{cases}$
445 9: Collect W trajectories $\{(s_0^{(w)}, a_0^{(w)}, \dots, s_{H-1}^{(w)}, a_{H-1}^{(w)})\}_{w=1}^W$ by executing $\hat{\pi}^{s,h,a}$ for W times
446 10: For each $s' \in S$, set $\hat{P}_h(s' | s, a) = \frac{\sum_{w=1}^W \mathbb{1}[(s_h^{(w)}, a_h^{(w)}, s_{h+1}^{(w)}) = (s, a, s')]}{\sum_{w=1}^W \mathbb{1}[(s_h^{(w)}, a_h^{(w)}) = (s, a)]}$
447 11: **end for**
448 12: Define MDP $\tilde{M}^{h+1} = (S \cup \{s_{\text{absorb}}\}, A, \tilde{P}^{h+1}, R, H, s_0)$, where for each $h' \in [H]$,
449
450
$$\tilde{P}_{h'}^{h+1}(s' | s, a) = \begin{cases} \hat{P}_{h'}(s' | s, a) & h' \leq h, s \notin \hat{U}_{h'} \cup \{s_{\text{absorb}}\} \text{ and } s' \neq s_{\text{absorb}} \\ 0 & h' \leq h, s \notin \hat{U}_{h'} \cup \{s_{\text{absorb}}\} \text{ and } s' = s_{\text{absorb}} \\ \mathbb{1}[s' = s_{\text{absorb}}] & h' > h \text{ or } s \in \hat{U}_{h'} \cup \{s_{\text{absorb}}\} \end{cases}. \quad (3)$$

451
452 13: Set $\hat{U}_{h+1} = \{s \in S \mid d_{\tilde{M}^{h+1}}^*(s, h+1) \leq r_{\text{trunc}}\}$
453 14: **for** $s \in S \setminus \hat{U}_{h+1}$ **do**
454 15: Define MDP $\tilde{M}^{s,h+1} = (S \cup \{s_{\text{absorb}}\}, A, \tilde{P}^{h+1}, R^{s,h+1}, H, s_0)$, where \tilde{P}^{h+1} is as defined in (3) and
455 $R_{h'}^{s,h+1}(s', a) = \mathbb{1}[h' = h+1, s' = s]$
456 16: Invoke Algorithm 1 with input $\tilde{M}^{s,h+1}$ and r_{action} , and set $\hat{\pi}^{s,h+1}$ to be the returned policy
457 17: **end for**
458 18: **end for**
459 19: Invoke Algorithm 1 with input \tilde{M}^{H-1} and r_{action} , and set π to be the returned policy
460 20: **return** π

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

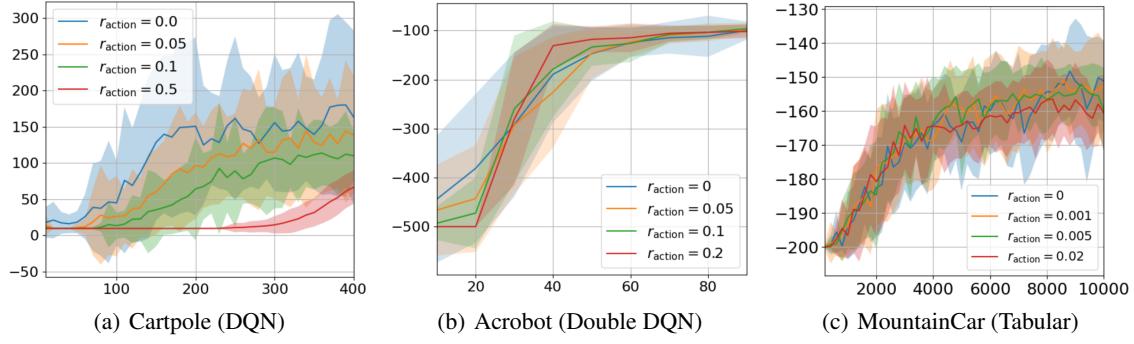


Figure 1: Different threshold

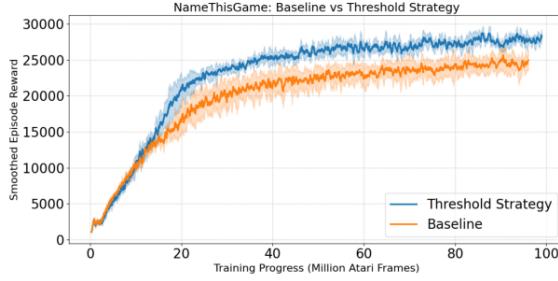


Figure 2: Namethisgame (BTR)

leads to a substantial improvement. In particular, the performance on NameThisGame increases by more than 10%, demonstrating that even this lightweight modification can yield significant gains in practice. The results are presented in Figure 9.

8 CONCLUSION

We conclude the paper by several interesting directions for future work. Theoretically, our results show that even under a seemingly stringent definition of replicability (strong list replicability), efficient RL is still possible in the tabular setting. An interesting future direction is to develop replicable RL algorithms under more practical definitions of replicability and/or with function approximation schemes using our new techniques. Empirically, it would be interesting to incorporate our robust planner with other practical RL algorithms to see whether their stability could be improved. Currently, our robust planner can only work with discrete action spaces, and it remains to develop new techniques to overcome this limitation.

530 REFERENCES

532 Alekh Agarwal, Sham Kakade, and Lin F Yang. Model-based reinforcement learning with a generative model is
533 minimax optimal. In *Conference on Learning Theory*, pages 67–83, 2020.

534 Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-case regret
535 bounds. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
536 editors, *Advances in Neural Information Processing Systems 30*, pages 1184–1194. Curran Associates, Inc.,
537 2017.

538 P Auer. Finite-time analysis of the multiarmed bandit problem, 2002.

539 Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax PAC bounds on the sample complex-
540 ity of reinforcement learning with a generative model. *Machine learning*, 91(3):325–349, 2013.

541 Monya Baker. 1,500 scientists lift the lid on reproducibility. *Nature*, 533(7604), 2016.

542 Peter L Bartlett and Ambuj Tewari. Regal: a regularization based algorithm for reinforcement learning in weakly
543 communicating mdps. In *Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI
544 2009)*, 2009.

545 Carolyn L Beck and Rayadurgam Srikant. Error bounds for constant step-size Q-learning. *Systems & control
546 letters*, 61(12):1203–1208, 2012.

547 C Glenn Begley and Lee M Ellis. Raise standards for preclinical cancer research. *Nature*, 483(7391):531–533,
548 2012.

549 Ari Blondal, Shan Gao, Hamed Hatami, and Pooya Hatami. Stability and list-replicability for agnostic learners.
550 *arXiv preprint arXiv:2501.05333*, 2025.

551 Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-optimal rein-
552 force learning. *Journal of Machine Learning Research*, 3(Oct):213–231, 2002.

553 Mark Bun, Marco Gaboardi, Max Hopkins, Russell Impagliazzo, Rex Lei, Toniann Pitassi, Satchit Sivakumar,
554 and Jessica Sorrell. Stability is stable: Connections between replicability, privacy, and adaptive general-
555 ization. In *Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC 2023)*, 2023.
556 *arXiv:2303.12921*.

557 Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimization. *arXiv
558 preprint arXiv:1912.05830*, 2019.

559 Zachary Chase, Shay Moran, and Amir Yehudayoff. Replicability and stability in learning. *arXiv preprint
560 arXiv:2304.03757*, 2023.

561 Michael Chen, A. Pavan, N. V. Vinodchandran, Ruosong Wang, and Lin Yang. Regret-optimal list replicable
562 bandit learning: Matching upper and lower bounds. In *International Conference on Learning Representations
563 (ICLR)*, 2025. URL <https://openreview.net/forum?id=0T49QbSOho>.

564 Tyler Clark, Mark Towers, Christine Evers, and Jonathon Hare. Beyond the rainbow: High performance deep
565 reinforcement learning on a desktop pc. *arXiv preprint arXiv:2411.03820*, 2024.

566 Qiwen Cui and Lin F Yang. Minimax sample complexity for turn-based stochastic game. In *Uncertainty in
567 Artificial Intelligence*, pages 1496–1504, 2021.

568 Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon reinforcement learning. In
569 *Advances in Neural Information Processing Systems*, pages 2818–2826, 2015.

570 Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying PAC and regret: Uniform PAC bounds for episodic
571 reinforcement learning. *Advances in Neural Information Processing Systems*, 30, 2017.

583 Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran. List and certificate complexities
 584 in replicable learning. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors,
 585 *Advances in Neural Information Processing Systems*, volume 36, pages 30784–30806. Curran As-
 586 sociates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/61d0a96d4a73b626367310b3ad32579d-Paper-Conference.pdf.

588 Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal Valko. Episodic reinforcement learn-
 589 ing in finite mdps: Minimax lower bounds revisited. In *Algorithmic Learning Theory*, pages 578–598, 2021.

591 Kefan Dong, Yuanhao Wang, Xiaoyu Chen, and Liwei Wang. Q-learning with UCB exploration is sample efficient
 592 for infinite-horizon MDP. *arXiv preprint arXiv:1901.09311*, 2019.

593 Eric Eaton, Marcel Hussing, Michael Kearns, and Jessica Sorrell. Replicable reinforcement learning. In Alice
 594 Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, *Advances
 595 in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems
 596 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023.

598 Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, and Shie Mannor. Tight regret bounds for model-
 599 based reinforcement learning with greedy policies. *Advances in Neural Information Processing Systems*, 32,
 600 2019.

601 Hossein Esfandiari, Alkis Kalavasis, Amin Karbasi, Andreas Krause, Vahab Mirrokni, and Grigoris Velekas.
 602 Replicable bandits. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 603 <https://openreview.net/forum?id=gcD2UtCGMc2>.

605 Eyal Even-Dar and Yishay Mansour. Learning rates for Q-learning. *Journal of Machine Learning Research*, 5
 606 (Dec):1–25, 2003.

607 Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Ronald Ortner. Efficient bias-span-constrained exploration-
 608 exploitation in reinforcement learning. In *ICML 2018-The 35th International Conference on Machine Learning*,
 609 volume 80, pages 1578–1586, 2018.

610 Max Hopkins, Sihan Liu, Christopher Ye, and Yuichi Yoshida. From generative to episodic: Sample-efficient
 611 replicable reinforcement learning. *arXiv preprint arXiv:2507.11926*, 2025.

613 Russell Impagliazzo, Rex Lei, Toniann Pitassi, and Jessica Sorrell. Reproducibility in learning. In *Proceedings of
 614 the 54th Annual ACM SIGACT Symposium on Theory of Computing*, pages 818–831, 2022.

615 John PA Ioannidis. Why most published research findings are false. *PLoS medicine*, 2(8):e124, 2005.

617 Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. *Journal
 618 of Machine Learning Research*, 11(Apr):1563–1600, 2010.

620 Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, and Michael I Jordan. Is Q-learning provably efficient? In
 621 *Advances in Neural Information Processing Systems*, pages 4863–4873, 2018.

622 Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for reinforcement
 623 learning. *International Conference on Machine Learning*, 2020.

624 Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In *International
 625 Conference on Machine Learning*, pages 267–274, 2002.

627 Sham M Kakade. *On the sample complexity of reinforcement learning*. PhD thesis, University of London London,
 628 England, 2003.

629 Alkis Kalavasis, Amin Karbasi, Grigoris Velekas, and Felix Zhou. On the computational landscape of replicable
 630 learning. In *Advances in Neural Information Processing Systems 37 (NeurIPS 2024)*, 2024. arXiv:2405.15599.

632 Amin Karbasi, Grigoris Velekas, Lin Yang, and Felix Zhou. Replicability in reinforcement learning. *Advances
 633 in Neural Information Processing Systems*, 36, 2024.

634 Michael Kearns and Satinder Singh. Finite-sample convergence rates for Q-learning and indirect algorithms.
 635 *Advances in neural information processing systems*, 11, 1998a.

636 Michael J Kearns and Satinder P Singh. Near-optimal reinforcement learning in polynomial time. In *Proceedings*
 637 *of the Fifteenth International Conference on Machine Learning*, pages 260–268, 1998b.
 638

639 J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In *Proceedings of the 26th annual*
 640 *international conference on machine learning*, pages 513–520, 2009.

641 Tor Lattimore and Marcus Hutter. PAC bounds for discounted MDPs. In *International Conference on Algorithmic*
 642 *Learning Theory*, pages 320–334. Springer, 2012.

643

644 Gen Li, Laixi Shi, Yuxin Chen, Yuantao Gu, and Yuejie Chi. Breaking the sample complexity barrier to regret-
 645 optimal model-free reinforcement learning. *Advances in Neural Information Processing Systems*, 34, 2021a.

646 Gen Li, Yuejie Chi, Yuting Wei, and Yuxin Chen. Minimax-optimal multi-agent RL in Markov games with a
 647 generative model. *Advances in Neural Information Processing Systems*, 35:15353–15367, 2022.

648 Gen Li, Changxiao Cai, Yuxin Chen, Yuting Wei, and Yuejie Chi. Is Q-learning minimax optimal? a tight sample
 649 complexity analysis. *Operations Research*, 72(1):222–236, 2024a.

650 Gen Li, Yuting Wei, Yuejie Chi, and Yuxin Chen. Breaking the sample size barrier in model-based reinforcement
 651 learning with a generative model. *Operations Research*, 72(1):203–221, 2024b.

652

653 Yuanzhi Li, Ruosong Wang, and Lin F Yang. Settling the horizon-dependence of sample complexity in reinforce-
 654 ment learning. In *IEEE Symposium on Foundations of Computer Science*, 2021b.

655

656 Pierre Ménard, Omar Darwiche Domingues, Xuedong Shang, and Michal Valko. UCB momentum Q-learning:
 657 Correcting the bias without forgetting. In *International Conference on Machine Learning*, pages 7609–7618,
 658 2021.

659

660 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
 661 Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep
 662 reinforcement learning. *nature*, 518(7540):529–533, 2015.

663 Gergely Neu and Ciara Pike-Burke. A unifying view of optimism in episodic reinforcement learning. *arXiv*
 664 *preprint arXiv:2007.01891*, 2020.

665

666 National Academies of Sciences, Policy, Global Affairs, Board on Research Data, Information, Division on En-
 667 gineering, Physical Sciences, Committee on Applied, Theoretical Statistics, Board on Mathematical Sciences,
 668 et al. *Reproducibility and replicability in science*. National Academies Press, 2019.

669 Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via posterior sampling.
 670 In *Advances in Neural Information Processing Systems*, pages 3003–3011, 2013.

671 Ashwin Pananjady and Martin J Wainwright. Instance-dependent ℓ_∞ -bounds for policy evaluation in tabular
 672 reinforcement learning. *IEEE Transactions on Information Theory*, 67(1):566–585, 2020.

673

674 Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. In *Advances in Neural*
 675 *Information Processing Systems*, pages 14433–14443, 2019.

676 Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, Matthieu Geist, and Yuejie Chi. The curious price of distributional
 677 robustness in reinforcement learning with a generative model. *Advances in Neural Information Processing*
 678 *Systems*, 2023.

679

680 Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye. Near-optimal time and sample complexities
 681 for solving Markov decision processes with a generative model. In *Advances in Neural Information Processing*
 682 *Systems*, pages 5186–5196, 2018a.

683 Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance reduced value iteration and faster algorithms
 684 for solving Markov decision processes. In *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on*
 685 *Discrete Algorithms*, pages 770–787. Society for Industrial and Applied Mathematics, 2018b.

686 Koustuv Sinha, Jessica Zosa Forde, Mandana Samiei, Arna Ghosh, Lintang Sutawika, and Siba Smarak Pani-
 687 grahi. Machine learning reproducibility challenge 2023 <https://reproml.org/>, 2023. URL <https://reproml.org/>.

688

689 Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for markov decision
 690 processes. *Journal of Computer and System Sciences*, 74(8):1309–1331, 2008.
 691

692 Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. PAC model-free rein-
 693 forcement learning. In *Proceedings of the 23rd international conference on Machine learning*, pages 881–888.
 694 ACM, 2006.

695 Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement learning in finite mdps: Pac analysis.
 696 *Journal of Machine Learning Research*, 10(11), 2009.
 697

698 István Szita and Csaba Szepesvári. Model-based reinforcement learning with nearly tight exploration complexity
 699 bounds. In *ICML*, 2010.

700 Jean Tarbouriech, Runlong Zhou, Simon S Du, Matteo Pirotta, Michal Valko, and Alessandro Lazaric. Stochas-
 701 tic shortest path: Minimax, parameter-free and towards horizon-free regret. *Advances in Neural Information
 702 Processing Systems*, 34, 2021.

703 Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu, Manuel Goulão,
 704 Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard interface for reinforcement
 705 learning environments. *arXiv preprint arXiv:2407.17032*, 2024.

706 Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In
 707 *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.

708 Martin J Wainwright. Stochastic approximation with cone-contractive operators: Sharp ℓ_∞ -bounds for Q-learning.
 709 *arXiv preprint arXiv:1905.06265*, 2019a.

710 Martin J Wainwright. Variance-reduced Q-learning is minimax optimal. *arXiv preprint arXiv:1906.04697*, 2019b.

711 Ruosong Wang, Simon S Du, Lin F Yang, and Sham M Kakade. Is long horizon reinforcement learning more
 712 difficult than short horizon reinforcement learning? In *Advances in Neural Information Processing Systems*,
 713 2020.

714 Zhihan Xiong, Ruoqi Shen, Qiwen Cui, Maryam Fazel, and Simon S Du. Near-optimal randomized exploration
 715 for tabular markov decision processes. *Advances in Neural Information Processing Systems*, 35:6358–6371,
 716 2022.

717 Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement learning without
 718 domain knowledge using value function bounds. In *International Conference on Machine Learning*, pages
 719 7304–7312, 2019.

720 Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learning via reference-
 721 advantage decomposition. In *Advances in Neural Information Processing Systems*, 2020.

722 Zihan Zhang, Xiangyang Ji, and Simon Du. Is reinforcement learning more difficult than bandits? a near-optimal
 723 algorithm escaping the curse of horizon. In *Conference on Learning Theory*, pages 4528–4531, 2021.

724 Zihan Zhang, Xiangyang Ji, and Simon Du. Horizon-free reinforcement learning in polynomial time: the power
 725 of stationary policies. In *Conference on Learning Theory*, pages 3858–3904, 2022.

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742	Appendix	15
743		
744		
745	A Overline of the Proofs	16
746		
747	A.1 Definitions	16
748	A.2 Appendix Roadmap	16
750	A.3 Proof outline of robust planner	17
751		
752	A.4 Proof outline of weakly replicable RL	18
753		
754	A.5 Proof outline of strong replicable RL	19
755		
756	B Experiments Demonstrating ListReplicability	20
757		
758	B.1 Minimal ChainMDP	20
759		
760	B.1.1 Setup	20
761	B.1.2 Result	20
762	B.1.3 Analyze	20
763		
764	B.2 An GridWorld Experiment	22
765		
766	B.2.1 Setup	22
767	B.2.2 Result	22
768		
769		
770		
771	C Missing Proofs in Section 5	23
772		
773		
774	D Structural Characterizations of Reaching Probabilities in Truncated MDPs	26
775		
776	E Missing Proofs in Section 6	29
777		
778		
779	F Weakly k-list Replicable RL Algorithm	34
780		
781		
782	G Perturbation Analysis in MDPs	39
783		
784		
785	H Hardness Result	43
786		
787	I Experiments of more Complex Environment	46
788		
789	I.1 CartPole-v1 with DQN	46
790		
791	I.2 Acrobot-v1 with Double DQN	47
792		
793	I.3 MountainCar-v0 with Tabular Q-Learning	48
794		
	I.4 Namethisgame with Beyond The Rainbow	49

795 **J LLM Usage** **52**

796

797

798 **A OVERLINE OF THE PROOFS**

799

800

801

802 **PAC RL and sample complexity.** We work in the standard Probably Approximately Correct (PAC) framework
803 for episodic reinforcement learning. Let M be a finite-horizon Markov decision process with state space \mathcal{S} , action
804 space \mathcal{A} , horizon H , and a fixed initial-state distribution. Consider a (possibly randomized) learning algorithm
805 Alg that interacts with M (either via a generative model or by running episodes). Denote by $\pi_{\text{Alg}, M}$ the final policy
806 output by Alg , and by V_M^π the value of a policy π in M .
807

808

809 **PAC RL.** Given accuracy $\epsilon > 0$ and confidence $\delta \in (0, 1)$, we say that Alg is an (ϵ, δ) -PAC RL algorithm for a
810 class of MDPs \mathcal{M} if, for every $M \in \mathcal{M}$,

811

812
$$\mathbb{P}(V_M^{\pi_{\text{Alg}, M}} \geq V_M^* - \epsilon) \geq 1 - \delta,$$

813

814 where the probability is over all randomness of Alg and the environment, and V_M^* is the value of an optimal policy
815 in M .
816

817

818 **Sample complexity.** The *sample complexity* of Alg in this PAC RL setting is the worst-case (over $M \in \mathcal{M}$)
819 expected number of environment samples used by Alg before it outputs its final policy and stops. In the episodic
820 setting this is the total number of state–action–next-state transitions (equivalently, time steps across all episodes);
821 in the generative-model setting this is the total number of generative queries. We are interested in algorithms
822 whose sample complexity is polynomial in $|\mathcal{S}|, |\mathcal{A}|, H, 1/\epsilon$, and $1/\delta$.
823

824

825 **A.2 APPENDIX ROADMAP**

826

827 We begin with a concise guide to the appendix materials.

828

829 Appendix **A** provides an outline of the appendix, high-level proof blueprints for strong and weak list replicability,
830 and several schematic figures for intuition.
831832 Appendices **B** and **I** contain experiments:

833

834

- Appendix **B** presents a direct toy experiment in the generative model with $|\mathcal{A}| = 2$ that compares the
835 robust planner with the greedy planner by measuring the size of returned policies;
- Appendix **I** documents the implementation details for the experiments reported in the main text.

836

837

838 Appendix **G** gathers perturbation tools used across proofs, split into two parts: (i) when two MDPs have close
839 transition kernels, their value functions are close; and (ii) after truncation, the resulting value functions remain
840 close to those of the original MDP.
841842 Appendices **C–E** develop the theory for strong list replicability.
843

844

845

- Appendix **C** analyzes the robust planner: it proves a small sub-optimality gap, establishes the mapping
846 between the tolerance parameter r_{action} and the selected actions, and derives the generative-model list-size
847 result.

848 • Appendix D proves structural properties used by the strong result most notably, that the number of distinct
 849 truncated MDPs (as a function of the reachability threshold) is finite and instance-dependent.
 850

851 • Appendix E then combines the above ingredients into the complete proof of strong list replicability.
 852

856 Appendix F presents the algorithm and proof for weak list replicability, which is technically simpler than the
 857 strong case.
 858

859 Appendix H establishes the hardness (lower-bound) result on list complexity.
 860

863 A.3 PROOF OUTLINE OF ROBUST PLANNER

865 This part introduces the following scenario: when we have obtained estimates of all transition probabilities with
 866 small errors (M and \hat{M} are ϵ_0 -related as defined in Equation 2), the returned policy satisfies both list replicability
 867 (Lemma 5.2) and approximate optimality (Lemma 5.1).

869 Lemma 5.1: We obtain approximate optimality through the following decomposition:
 870

$$\begin{aligned} \underbrace{V_M^* - V_M^\pi}_{\text{Lemma 5.1}} &= \underbrace{V_M^* - V_{\hat{M}}^*}_{\text{Lemma G.1}} + \underbrace{V_{\hat{M}}^* - V_{\hat{M}}^\pi}_{\text{Lemma C.1}} + \underbrace{V_{\hat{M}}^\pi - V_M^\pi}_{\text{Lemma G.2}} \\ &\leq 2H^2\epsilon_0 + r_{\text{action}}H. \end{aligned}$$

878 Lemma 5.2:

880 We use $\hat{Q}_h(s, a) - \hat{V}_h(s)$ as an estimate of $\text{Gap}_h(s, a) = V_h^*(s) - Q_h^*(s, a)$.
 881

$$\begin{aligned} |\hat{Q}_h(s, a) - \hat{V}_h(s) - \text{Gap}_h(s, a)| &\leq |\hat{Q}_h(s, a) - Q_{h,M}^*(s, a)| + |\hat{V}_h(s) - V_{h,M}^*(s)| \\ &= \underbrace{|Q_{h,\hat{M}}^*(s, a) - Q_{h,M}^*(s, a)|}_{\text{Lemma G.1}} + \underbrace{|V_{h,M}^*(s) - V_{h,\hat{M}}^*(s)|}_{\text{Lemma G.1}} \\ &\leq 2H^2\epsilon_0 \end{aligned}$$

890 Note that there are $|S||A|H$ elements in the set $\text{Gap}_M = \{V_{h,M}^*(s) - Q_{h,M}^*(s, a) \mid (s, a) \in S \times A, h \in [H]\}$
 891 which is defined in Equation 1.

893 From the figure above, we observe that for the r_{action}^1 and r_{action}^2 not in the shaded regions
 894 $\bigcup_{g \in \text{Gap}_M} \text{Ball}(g, 2H^2\epsilon_0)$, if they lie in the same blank region between the two shaded regions, the policies
 895 π they return are identical.
 896

897 When ϵ_0 is sufficiently small, the proportion of the shaded area, as well as the failure probability, becomes suffi-
 898 ciently small.
 899

900 Corollary 5.3: Naturally, for the generative model, the length of the list is $|S||A|H + 1$.

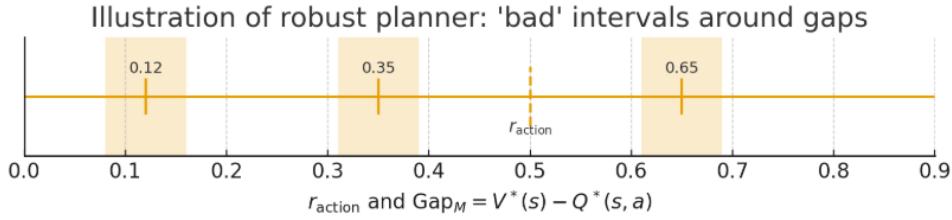


Figure 3: Robust planner

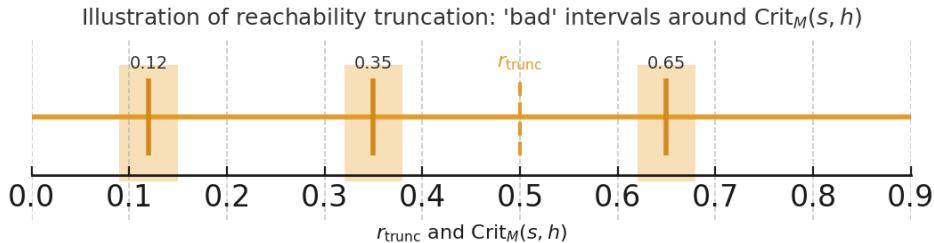


Figure 4: rtrunc illustration

A.4 PROOF OUTLINE OF WEAKLY REPLICABLE RL

For weak replicability, introduced in Algorithm 3, we first estimate the reachability probabilities using a black-box algorithm, and then remove the states with low reachability probabilities.

We use $\hat{d}(s, h)$ defined in Algorithm 3 to estimate $d_M^*(s, h)$. When the sample size is sufficiently large, their values are very close:

$$\underbrace{|\hat{d}(s, h) - d_M^*(s, h)|}_{\text{Lemma F.7}} = \underbrace{|d_M^{\hat{\pi}^{s, h}}(s, h) - \hat{d}(s, h)|}_{\text{chernoff bound}} + \underbrace{|d_M^*(s, h) - d_M^{\hat{\pi}^{s, h}}(s, h)|}_{\text{properties of the Algorithm A}} \leq 2\epsilon_0.$$

Lemma F.13: Following the above approach, we define the shaded regions similarly for r_{trunc} :

$$\text{Bad}'_{\text{trunc}} = \bigcup_{(s, h) \in S \times [H]} \text{Ball}(d_M^*(s, h), 2\epsilon_0),$$

There are $|S|H$ elements in the set $\{d_M^*(s, h)\}$, also note that the r_{trunc} values lying in the same blank region correspond to the same truncated MDP; thus, there are a total of $|S|H + 1$ truncated MDPs \bar{M}^r .

Based on the proof of the robust planner above (Lemma 5.2), each truncated MDP \bar{M}^r corresponds to at most $|S||A|H + 1$ policies; thus, the total list length for weak replicability is $(|S|H + 1)(|S||A|H + 1)$

Lemma F.12: The returned policy π is ϵ -optimal.

954
955
956
$$V_M^* - V_M^\pi = \underbrace{V_M^* - V_{M^r_{\text{trunc}}}^*}_{\text{Lemma G.3}} + \underbrace{V_{M^r_{\text{trunc}}}^* - V_{M^r_{\text{trunc}}}^\pi}_{\text{Lemma 5.1}} + \underbrace{V_{M^r_{\text{trunc}}}^\pi - V_M^\pi}_{\text{Lemma G.3}}$$

957
958
959
960
961
962

$$= H^2|S|r_{\text{trunc}} + 2H^2\epsilon_0 + r_{\text{action}}H + 0$$

$$\leq \epsilon$$

A.5 PROOF OUTLINE OF STRONG REPLICABLE RL

971 The key difference of strong list replicability lies in that we do not eliminate all the states to be removed at once;
972 instead, we estimate the reachability probabilities using replicable policies **layer by layer** to remove the states.
973 (Algorithm 2)

974 Due to the dependency between the states removed across layers, the shaded regions we defined earlier are also
975 interdependent; therefore, we must rely on structured information to control the number of truncated MDPs. (This
976 is shown in Appendix D)

977 Specifically, this property manifests as a form of **monotonicity**: the more states are removed in a given layer, the
978 smaller the estimated reachability probabilities for the next layer, thereby leading to the removal of more states in
979 the subsequent layer. Thus, each state corresponds to a critical r_{trunc} that determines whether the state is removed,
980 this is defined in Definition D.4:

981 For each $(s, h) \in S \times [H]$, define $\text{Crit}(s, h) = \inf\{r \in [0, 1] \mid s \in U_h(r)\}$.

982 Therefore, it is easy to know that there are at most $|S|H + 1$ truncated MDPs.

983 We note that for each truncated MDP, when selecting policies for arbitrary states via layer-wise estimation, the
984 policies lie within the list of length $|S||A|H + 1$ (Lemma 5.2). Since we perform this operation for all $|S|H$ states,
985 the length of the returned trajectory list for each truncated MDP is $|S|H(|S||A|H + 1)$.

986 Combining with there are at most $|S|H + 1$ truncated MDPs, the strong list size is $O(|S|^3|A|H^3)$.

987 Note that we use $d_{\tilde{M}^h}^*(s, h+1)$ to estimate $d_{M^r_{\text{trunc}}}^*(s, h+1)$ then for any $s \in S$, $|d_{M^r_{\text{trunc}}}^*(s, h+1) - d_{\tilde{M}^h}^*(s, h+1)| \leq H^2\epsilon_0$ (Lemma E.2).

988 So we just need η_0 to be big enough and the failure probability will be small.

989 The same as weak replicability, we have the returned policy π is ϵ -optimal.

1000
1001
1002
$$V_M^* - V_M^\pi = \underbrace{V_M^* - V_{M^r_{\text{trunc}}}^*}_{\text{Lemma G.3}} + \underbrace{V_{M^r_{\text{trunc}}}^* - V_{M^r_{\text{trunc}}}^\pi}_{\text{Lemma 5.1}} + \underbrace{V_{M^r_{\text{trunc}}}^\pi - V_M^\pi}_{\text{Lemma G.3}}$$

1003
1004
1005
1006

$$= H^2|S|r_{\text{trunc}} + 2H^2\epsilon_0 + r_{\text{action}}H + 0$$

$$\leq \epsilon$$

1007 B EXPERIMENTS DEMONSTRATING LISTREPLICABILITY
10081009 B.1 MINIMAL CHAINMDP
10101011 We conduct preliminary numerical experiments to validate our theoretical predictions.
10121013 It directly validates our key claim for the robust planner (Algorithm 1): replacing strict argmax planning with the
1014 tolerance and lexicographic rule collapses the set of policies observed across independent runs from many (often
1015 exponential in the horizon on neartie instances) to a small list, consistent with our theory for the generative model
1016 .
10171018 B.1.1 SETUP
10191020 We consider the following the Chain MDP with horizon $H = 8$; at each level $h \in \{0, \dots, H-1\}$ there is a
1021 single state and two actions $a \in \{0, 1\}$. Choosing a either advances to the next level (success) or transitions to an
1022 absorbing failure state (no reward). Only success at the last level yields reward 1. We make the two actions nearly
1023 tied:
1024

1025
$$p_{h,0} = 0.5 + \Delta, \quad p_{h,1} = 0.5 - \Delta, \quad \Delta = 0.02.$$

1026

1027 This is the standard near-tie chain where small estimation noise can flip action choices at many levels, yielding up
1028 to 2^H distinct greedy policies, exactly the pathology highlighted in Section 4.
10291030 For each levelaction pair (h, a) , we draw $n = 40$ i.i.d. next-state samples from the simulator, form an empirical
1031 MDP \widehat{M} , and compute \widehat{Q} , \widehat{V} by backward DP. We notice this is exactly the generative model case.
10321033 We compared the following two planners.
10341035

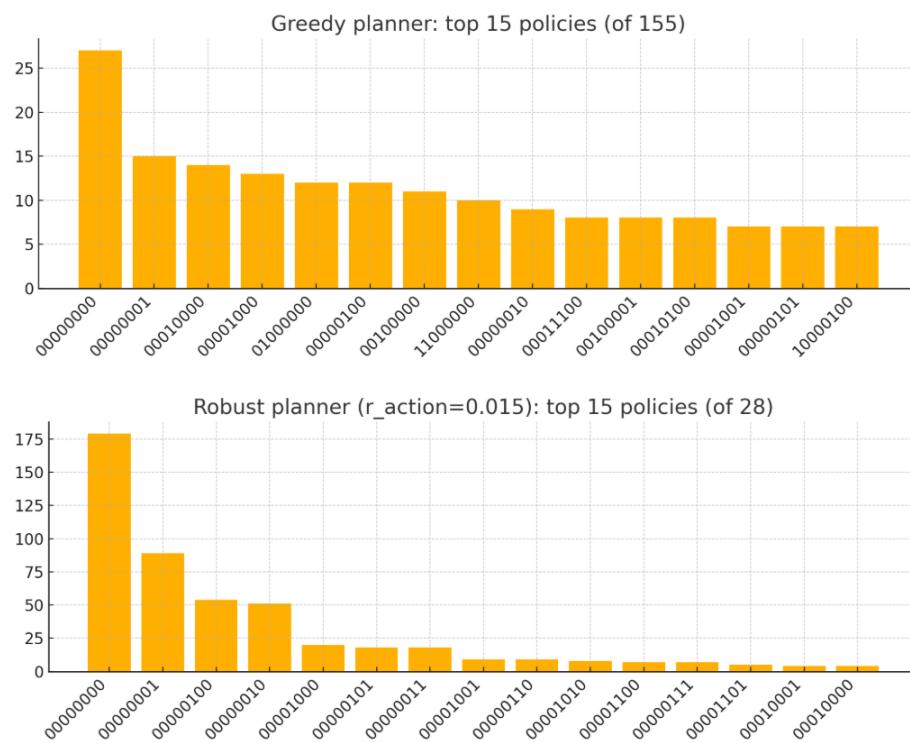
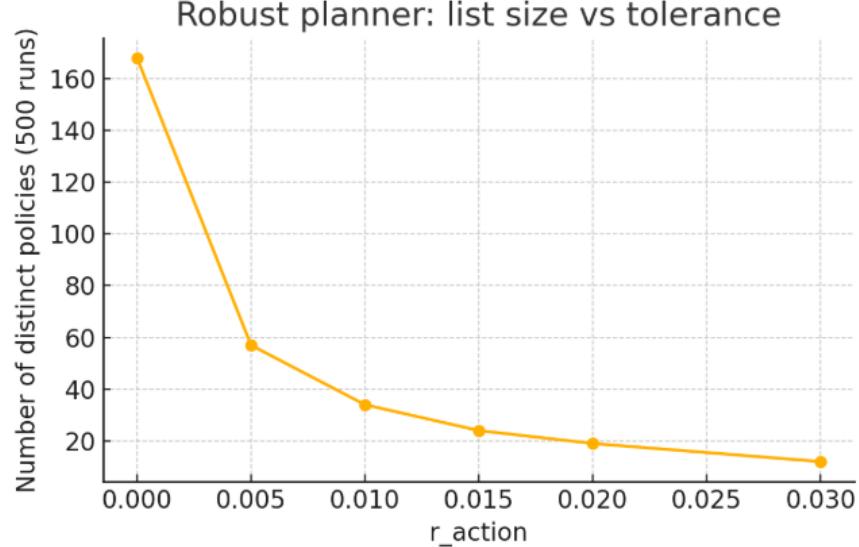
- Greedy: $\pi_h = \arg \max_a \widehat{Q}_h(\cdot, a)$.
- Robust planner (Alg. 1): with a fixed tolerance r_{action} , select the first action in a fixed lexicographic order
1036 (action 0 before 1) among those satisfying

1037

1038
$$\widehat{Q}_h(\cdot, a) \geq \max_{a'} \widehat{Q}_h(\cdot, a') - r_{\text{action}}.$$

1039

1040 When $r_{\text{action}} = 0$, this reduces exactly to greedy.
10411042 Over $R = 500$ independent runs with fresh samples, we count the number of distinct final deterministic policies
1043 produced by each planner, denoted distinct policies. This is the empirical analogue of the weak list size.
10441045 B.1.2 RESULT
10461047 Figure 5 shows that when using the greedy algorithm, policies are more dispersed, whereas when using the robust
1048 planner, policies are more concentrated, demonstrating stronger replicability and stability.
10491050 Figure 6 shows that the list size monotonically decreases with threshold.
10511052 B.1.3 ANALYZE
10531054 (1) We observed from Figure 6 that the list size monotonically decreases with threshold. The line plot shows that
1055 when r_{action} increases from 0 to 0.03, the number of distinct policies drops from 168 to 12, almost monotonically.
1056 This is completely consistent with the core criterion of Lemma 5.2.
1057

Figure 6: Numbers of Policies over r_{action}

(2) We observed that Greedy ($r_{\text{action}} = 0$) is extremely unstable, which matches the exponential policy count of the chain counter example. The line plot shows 168 policies at $r_{\text{action}} = 0$ (over 500 runs), while theoretically, the greedy policy in the chain MDP can have up to $\approx 2^H$ outputs under multi-level tiny gaps. The observation is entirely isomorphic to the chain example in Section 4 of the paper: strict $\arg \max Q$ amplifies tiny statistical fluctuations at each level layer by layer, leading to discontinuous jumps across exponentially many policies across runs.

(3) Robust Planner Turns Exponential into Polynomial: Under the generative model setting, Corollary 5.3 proves that if r_{action} is chosen randomly and avoids bad gaps, the number of possible output policies is at most $|S||A|H+1$. Our chain environment satisfies $|S| = H$, $|A| = 2$, so the upper bound is $2H^2 + 1$. For $H = 8$, the upper bound is 129; our list size (1257) for $r_{\text{action}} \in [0.005, 0.03]$ is significantly below the worst-case upper bound. This is consistent with the theoretical expectation that the upper bound is for the worst case, and specific instances are often smaller.

B.2 AN GRIDWORLD EXPERIMENT

Given that the experimental setup described earlier is overly simplistic, we have conducted analogous experiments in the more complex discrete GridWorld environment. Since the analytical process is analogous to that presented previously, we only elaborate on the experimental setup and report the corresponding results herein.

B.2.1 SETUP

- **Environment:** An $N \times N$ grid (default 5×5), with the start state $(0, 0)$ and the terminal state $(N - 1, N - 1)$. The action set is $\{R, U\}$.
- **Transition:** Executing R/U succeeds in moving forward with probability $p_{\text{true}}(s, a)$; otherwise, the agent enters a failure absorbing state. Reaching the terminal state yields a reward of 1 and terminates the episode. To create nearly tied action values, a checkerboard-style minor advantage is introduced:

$$p_{\text{true}}(s, R) = 0.5 \pm \delta, \quad p_{\text{true}}(s, U) = 0.5 \mp \delta \quad (\text{opposite signs for adjacent grids})$$

- **Learning/Planning:** Generative sampling is used to estimate $\hat{p}(s, a)$ (with $n_{\text{per pair}}$ samples per state-action pair), followed by dynamic programming to obtain \hat{Q} .

– **Ordinary:** Greedily select actions via $\arg\max \hat{Q}$ for each grid.

– **Robust:** Select actions lexicographically ($R < U$) within $\max_a \hat{Q}(s, a) - r_{\text{action}}$ (a simplified implementation of Algorithm 1).

- **Metrics:**

1. **Policy:** Count the number of distinct output policies across the entire table.
2. **Trajectory-level (Strong List):** Follow the learned policy from the start state to the terminal state, count the number of distinct action sequences, and report the minimum k required to cover 90% of runs.

B.2.2 RESULT

Result 1: List Size Shrinks Significantly with Increasing r_{action} (Policy-level) We extend r_{action} to $[0, 0.001, 0.002, 0.0035, 0.005, 0.01, 0.02]$.

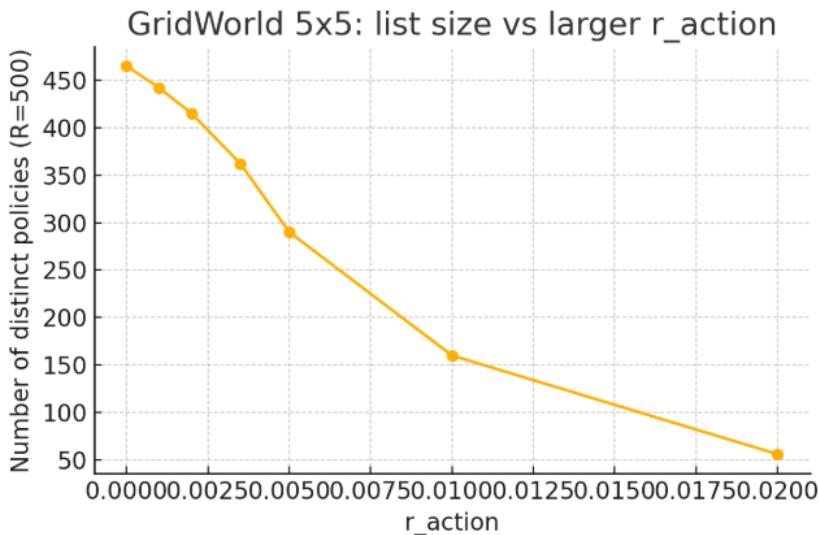


Figure 7:

A monotonic and rapid decrease is also observable in the figure: when r increases from 0 to 0.01, the list size drops from ~ 465 to ~ 160 ; further increasing to 0.02, only 56 policies remain. (Upper line chart: GridWorld 5 \times 5: list size vs larger r_{action})

Result 2: Trace Collapses to Very Few Trajectories under Large r For $r_{\text{action}} = 0.02$, the number of distinct action sequences from start to terminal state and the minimum k required to cover 90% of runs are as follows:

- Greedy: 64 distinct trajectories, $k_{90} = 40$, and Top-1 coverage is only 9.2%.
- Robust: 5 distinct trajectories, $k_{90} = 2$, and Top-1 coverage is 89.0%.

C MISSING PROOFS IN SECTION 5

Lemma C.1. Suppose that two MDPs M and \hat{M} are ϵ_0 -related. For the policy $\hat{\pi}$ returned by Algorithm 1, it holds that

$$0 \leq V_M^* - V_{\hat{M}}^{\hat{\pi}} \leq r_{\text{action}} H.$$

Proof. The lower bound, i.e., $0 \leq V_M^* - V_{\hat{M}}^{\hat{\pi}}$, is immediate from the definition of V_M^* .

We now prove the upper bound by induction on the time step h .

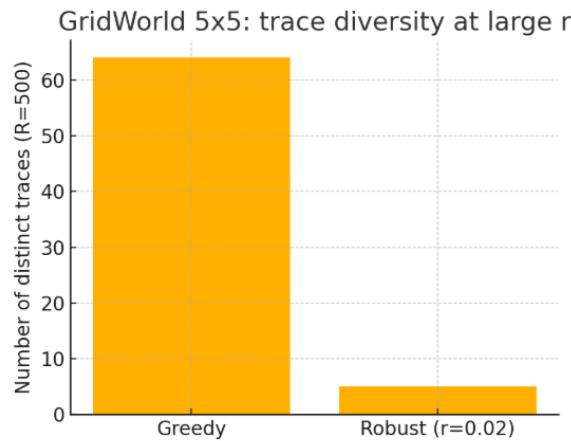


Figure 8: Trace

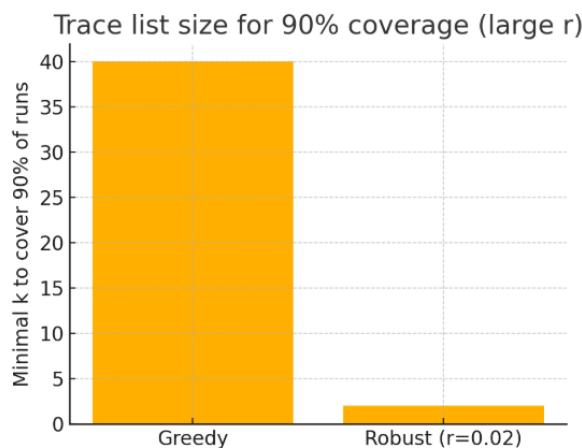


Figure 9: Enter Caption

1272 For $0 \leq h \leq H - 1$, we have

$$\begin{aligned}
 1274 \quad V_{h,\hat{M}}^*(s) - V_{h,\hat{M}}^*(s) &= V_{h,\hat{M}}^*(s) - Q_{h,\hat{M}}^*(s, \hat{\pi}_h(s)) + Q_{h,\hat{M}}^*(s, \hat{\pi}_h(s)) - Q_{h,\hat{M}}^*(s, \hat{\pi}_h(s)) \\
 1275 \quad &\stackrel{(1)}{\leq} r_{\text{action}} + \sum_{s'} \hat{P}_h(s'|s, \hat{\pi}_h(s)) \cdot V_{h+1,\hat{M}}^*(s') - \sum_{s'} \hat{P}_h(s'|s, \hat{\pi}_h(s)) \cdot V_{h+1,\hat{M}}^*(s') \\
 1276 \quad &= r_{\text{action}} + \sum_{s'} \hat{P}_h(s'|s, \hat{\pi}_h(s)) \cdot \left(V_{h+1,\hat{M}}^*(s') - V_{h+1,\hat{M}}^*(s') \right) \\
 1277 \quad &\leq r_{\text{action}} + \max_s \left(V_{h+1,\hat{M}}^*(s) - V_{h+1,\hat{M}}^*(s) \right).
 \end{aligned}$$

1283 Inequality (1) follows from the definition of $\hat{\pi}$, which guarantees that

$$1285 \quad V_{h,\hat{M}}^*(s) - Q_{h,\hat{M}}^*(s, \hat{\pi}_h(s)) \leq r_{\text{action}}.$$

1288 When $h = H$, we have $V_{H,\hat{M}}^*(s) = V_{H,\hat{M}}^*(s) = 0$. By induction, we have

$$1290 \quad V_M^* - V_{\hat{M}}^* \leq r_{\text{action}} H.$$

1292 This completes the proof. □

1297 *Proof of Lemma 5.1.* From Lemma C.1, we have:

$$1299 \quad V_M^* - V_{\hat{M}}^* \leq r_{\text{action}} H.$$

1301 By Lemma G.1, it follows that:

$$1303 \quad |V_M^* - V_{\hat{M}}^*| \leq H^2 \epsilon_0.$$

1304 Similarly, from Lemma G.2, we obtain:

$$1306 \quad |V_M^* - V_{\hat{M}}^*| \leq H^2 \epsilon_0.$$

1308 By combining these inequalities, we have

$$\begin{aligned}
 1310 \quad V_M^* - V_{\hat{M}}^* &= V_M^* - V_{\hat{M}}^* + V_{\hat{M}}^* - V_{\hat{M}}^* + V_{\hat{M}}^* - V_M^* \\
 1311 \quad &\leq 2H^2 \epsilon_0 + r_{\text{action}} H.
 \end{aligned}$$

1313 □

1318 *Proof of Lemma 5.2.* By Lemma G.1,

1320 For any $(h, s, a) \in [H - 1] \times S \times A$

$$1321 \quad |V_{h,M}^*(s) - V_{h,\hat{M}}^*(s)| \leq H^2 \epsilon_0,$$

$$1323 \quad |Q_{h,M}^*(s, a) - Q_{h,\hat{M}}^*(s, a)| \leq H^2 \epsilon_0.$$

1325 Hence,

$$\begin{aligned}
 & \left| (V_{h,\hat{M}}^*(s) - Q_{h,\hat{M}}^*(s, a)) - (V_{h,M}^*(s) - Q_{h,M}^*(s, a)) \right| \\
 & \leq \left| V_{h,M}^*(s) - V_{h,\hat{M}}^*(s) \right| + \left| Q_{h,M}^*(s, a) - Q_{h,\hat{M}}^*(s, a) \right| \\
 & \leq 2H^2\epsilon_0.
 \end{aligned}$$

1333 For any $g \in \text{Gap}_M$, where $g = V_h^*(s) - Q_h^*(s, a)$, if $g < r_{\text{action}}^1 < r_{\text{action}}^2$, then, because $r_{\text{action}}^1 \notin$
 1334 $\bigcup_{g \in \text{Gap}_M} \text{Ball}(g, 2H^2\epsilon_0)$ and $r_{\text{action}}^2 \notin \bigcup_{g \in \text{Gap}_M} \text{Ball}(g, 2H^2\epsilon_0)$, we have
 1335

$$(V_{h,M}^*(s) - Q_{h,M}^*(s, a)) + 2H^2\epsilon_0 < r_{\text{action}}^1 < r_{\text{action}}^2.$$

1338 Using the previous bound, we conclude that

$$V_{h,\hat{M}}^*(s) - Q_{h,\hat{M}}^*(s, a) < r_{\text{action}}^1 < r_{\text{action}}^2.$$

1342 Similarly, if $r_{\text{action}}^1 < r_{\text{action}}^2 < g$, we also have:

$$r_{\text{action}}^1 < r_{\text{action}}^2 < V_{h,\hat{M}}^*(s) - Q_{h,\hat{M}}^*(s, a).$$

1347 Therefore, for both tolerance parameters r_{action}^1 and r_{action}^2 , the chosen action $\hat{\pi}_h(s)$ remains the same for all
 1348 $(s, h) \in S \times [H]$. As a result, the policy $\hat{\pi}$ depends only on M and r_{action} . Moreover, for both tolerance
 1349 parameters r_{action}^1 and r_{action}^2 , the policy $\hat{\pi}$ returned would be identical. \square
 1350

1351 **Corollary C.2.** *In the generative model setting, there is an algorithm with sample complexity polynomial in
 1352 $|S|, |A|, 1/\epsilon$ and $1/\delta$, such that with probability at least $1 - \delta$, the returned policy is ϵ -optimal and always lies
 1353 in a list $\Pi(M)$ where $\Pi(M)$ is a list of policies that depend only on the unknown underlying MDP M with
 1354 $|\Pi(M)| = O(|S||A|H)$.*

1358 *Proof.* We collect N samples for each $(s, a) \in S \times A$ and $h \in [H]$ where N is polynomial in $|S|, |A|, H, 1/\epsilon$ and
 1359 $1/\delta$, and use the samples to build an empirical transition model \hat{P} to form an MDP \hat{M} . We then invoke Algorithm 1
 1360 with MDP \hat{M} and $r_{\text{action}} \sim \text{Unif}(0, \epsilon/(5H))$ and return its output. Standard analysis shows that M and \hat{M} are
 1361 ϵ_0 -related with $\epsilon_0 = \delta\epsilon/(20H^3)$ with probability at least $1 - \delta/2$. Moreover, $r_{\text{action}} \notin \bigcup_{g \in \text{Gap}_M} \text{Ball}(g, 2H^2\epsilon_0)$
 1362 with probability at least $1 - \delta/2$. We condition on the intersection of the above two events which holds with
 1363 probability at least $1 - \delta$ by union bound. By Lemma 5.1, the returned policy is ϵ -optimal. By Lemma 5.2, the
 1364 returned policy lies in a list $\Pi(M)$ with size at most $|S||A|H + 1$ since $|\text{Gap}_M| \leq |S||A|H$. \square
 1365

1368 D STRUCTURAL CHARACTERIZATIONS OF REACHING PROBABILITIES IN TRUNCATED 1369 MDPs

1372 In this section, we prove several properties of reaching probabilities in MDPs with truncation which will be used
 1373 later in the analysis. Given a reaching probability threshold $r \in [0, 1]$, we first define the set of unreachable states
 1374 $U_h(r)$ for each $h \in [H]$.

1376 **Definition D.1.** *For the underlying MDP $M = (S, A, P, R, H, s_0)$, given a real number $r \in [0, 1]$, we define
 1377 $U_h(r) \subseteq S$ inductively for each $h \in [H]$ as follows:*

1378 • $U_0(r) = \{s \in S \mid \Pr[s_0 = s] \leq r\};$
 1379
 1380 • Suppose $U_{h'}(r) \subseteq S$ is defined for all $0 \leq h' < h$, define
 1381
 1382 $U_h(r) = \{s \in S \mid \max_{\pi} \Pr[s_h = s, s_0 \notin U_0(r), s_1 \notin U_1(r), \dots, s_{h-1} \notin U_{h-1}(r) \mid M, \pi] \leq r\}.$
 1383

1384 We also write $U(r) = (U_0(r), U_1(r), \dots, U_{H-1}(r))$.

1385 Intuitively, the set of unreachable states $U_h(r)$ at level $h \in [H]$ includes all those states that can not be reached
 1386 with probability larger than a threshold r for any policy π , where we ignore those unreachable states included in
 1387 $U_{h'}(r)$ for all levels $h' < h$ when calculating the reaching probabilities. Also note that $U_h(1) = S$.

1388 The main observation is that $U_h(r)$ satisfies the following monotonicity property.

1389 **Lemma D.2.** Given $0 \leq r_1 \leq r_2 \leq 1$, for any $h \in [H]$, we have $U_h(r_1) \subseteq U_h(r_2)$.

1390 *Proof.* We prove the above claim by induction on h . The claim is clearly true when $h = 0$. Suppose the above
 1391 claim is true for all $0 \leq h' < h$, now we prove that $U_h(r_2) \subseteq U_h(r_1)$. Considering a fixed state $s \in S$, for any
 1392 fixed policy π , we have

$$\begin{aligned} 1393 \quad & \Pr[s_h = s, s_0 \notin U_0(r_1), s_1 \notin U_1(r_1), \dots, s_{h-1} \notin U_{h-1}(r_1) \mid M, \pi] \\ 1394 \quad & \geq \Pr[s_h = s, s_0 \notin U_0(r_2), s_1 \notin U_1(r_2), \dots, s_{h-1} \notin U_{h-1}(r_2) \mid M, \pi], \end{aligned}$$

1395 since $U_{h'}(r_1) \subseteq U_{h'}(r_2)$ for all $h' < h$ under the induction hypothesis. Therefore,

$$\begin{aligned} 1396 \quad & \max_{\pi} \Pr[s_h = s, s_0 \notin U_0(r_1), s_1 \notin U_1(r_1), \dots, s_{h-1} \notin U_{h-1}(r_1) \mid M, \pi] \\ 1397 \quad & \geq \max_{\pi} \Pr[s_h = s, s_0 \notin U_0(r_2), s_1 \notin U_1(r_2), \dots, s_{h-1} \notin U_{h-1}(r_2) \mid M, \pi] \end{aligned}$$

1398 which implies $U_h(r_1) \subseteq U_h(r_2)$. □

1399 An important corollary of Lemma D.2, is that the total number of distinct $U(r)$ for all $r \in [0, 1]$ is upper bounded
 1400 by $|S|H + 1$.

1401 **Corollary D.3.** For all $r \in [0, 1]$, there are at most of $|S|H + 1$ unique sequences of sets $U(r)$.

1402 *Proof.* Assume for the sake of contradiction that there are more than $|S|H + 1$ unique sequences of sets $U(r)$.
 1403 Note that $0 \leq \sum_{h \in [H]} |U(r)| \leq |S|H$ for all $r \in [0, 1]$. By the pigeonhole principle, there exists $0 \leq r_1 < r_2 \leq 1$
 1404 such that $U(r_1) \neq U(r_2)$ while $\sum_{h \in [H]} |U(r_1)| = \sum_{h \in [H]} |U(r_2)|$. By Lemma D.2, for all $h \in [H]$, we have
 1405 $U_h(r_1) \subseteq U_h(r_2)$ and thus $|U_h(r_1)| \leq |U_h(r_2)|$. This implies that $|U_h(r_1)| = |U_h(r_2)|$ for all $h \in [H]$. For any
 1406 $h \in [H]$, we have $U_h(r_1) \subseteq U_h(r_2)$ and $|U_h(r_1)| = |U_h(r_2)|$ which implies $U_h(r_1) = U_h(r_2)$, contradicting the
 1407 assumption that $U(r_1) \neq U(r_2)$. □

1408 For each $(s, h) \in S \times [H]$, we define $\text{Crit}(s, h)$ to be the infimum of those reaching probability threshold $r \in [0, 1]$
 1409 so that s would be unreachable under r .

1410 **Definition D.4.** For each $(s, h) \in S \times [H]$, define $\text{Crit}(s, h) = \inf\{r \in [0, 1] \mid s \in U_h(r)\}$.

1411 Note that $\{r \in [0, 1] \mid s \in U_h(r)\}$ is never an empty set since $U_h(1) = S$.

1412 Lemma D.2 implies that $\text{Crit}(s, h)$ is the critical reaching probability threshold for (s, h) , formalized as follows.

1431 **Corollary D.5.** For any $(s, h) \in S \times [H]$, we have

1432

- 1433 • for any $1 \geq r > \text{Crit}(s, h)$, $s \in U_h(r)$;
- 1434
- 1435 • for any $0 \leq r < \text{Crit}(s, h)$, $s \notin U_h(r)$.
- 1436

1437 Given the definition of unreachable states $U_h(r)$, for each $r \in [0, 1]$, we now formally define the truncated MDP
 1438 M^r where we direct the transition probabilities of all unreachable states to an absorbing state s_{absorb} .

1439

1440 **Definition D.6.** For the underlying MDP $M = (S, A, P, R, H, s_0)$, given a real number $r \in [0, 1]$, define $M^r =$
 1441 $(S \cup \{s_{\text{absorb}}\}, A, P^r, R, H, s_0)$, where

1442

$$P_h^r(s' | s, a) = \begin{cases} P_h(s' | s, a) & s \notin U_h(r) \cup \{s_{\text{absorb}}\}, s' \neq s_{\text{absorb}} \\ 0 & s \notin U_h(r) \cup \{s_{\text{absorb}}\}, s' = s_{\text{absorb}} \\ \mathbb{1}[s' = s_{\text{absorb}}] & s \in U_h(r) \cup \{s_{\text{absorb}}\} \end{cases} \quad (4)$$

1443 The following lemma builds a connection between the occupancy function in M^r and the set of unreachable states
 1444 $U_h(r)$.

1445 **Lemma D.7.** For any $r \in [0, 1]$, for any $(s, h) \in S \times [H]$

1446

$$d_{M^r}^*(s, h) = \max_{\pi} \Pr[s_h = s, s_0 \notin U_0(r), s_1 \notin U_1(r), \dots, s_{h-1} \notin U_{h-1}(r) | M, \pi],$$

1447 and therefore $s \in U_h(r)$ if and only if $d_{M^r}^*(s, h) \leq r$.

1448 *Proof.* By the construction of M^r ,

1449

$$d_{M^r}^{\pi}(s, h) = \Pr[s_h = s, s_0 \notin U_0(r), s_1 \notin U_1(r), \dots, s_{h-1} \notin U_{h-1}(r) | M, \pi],$$

1450 and therefore,

1451

$$d_{M^r}^*(s, h) = \max_{\pi} \Pr[s_h = s, s_0 \notin U_0(r), s_1 \notin U_1(r), \dots, s_{h-1} \notin U_{h-1}(r) | M, \pi],$$

1452 which also implies that $s \in U_h(r)$ if and only if $d_{M^r}^*(s, h) \leq r$ by Definition D.1. \square

1453 Combining Lemma D.7 and Lemma D.2, we have the following corollary which shows that $d_{M^r}^*(s, h)$ is monotonically non-increasing as we increase r .

1454 **Corollary D.8.** For the underlying MDP $M = (S, A, P, R, H, s_0)$, for any $0 \leq r_1 \leq r_2 \leq 1$ and any $(s, h) \in$
 1455 $S \times [H]$, we have $d_{M^{r_1}}^*(s, h) \geq d_{M^{r_2}}^*(s, h)$. Moreover, $d_M^*(s, h) \geq d_{M^r}^*(s, h)$ for any $(s, h) \in S \times [H]$ and
 1456 $r \in [0, 1]$.

1457 As illustrated in the following lemma, $d_{M^r}^*(s, h) \leq \text{Crit}(s, h)$ whenever $r > \text{Crit}(s, h)$, and $d_{M^r}^*(s, h) \geq$
 1458 $\text{Crit}(s, h)$ if $r < \text{Crit}(s, h)$.

1459 **Lemma D.9.** For any $r \in [0, 1]$ and $(s, h) \in S \times [H]$,

1460

- 1461 • if $r > \text{Crit}(s, h)$, $d_{M^r}^*(s, h) \leq \text{Crit}(s, h)$;
- 1462
- 1463 • if $r < \text{Crit}(s, h)$, $d_{M^r}^*(s, h) \geq \text{Crit}(s, h)$.
- 1464

1484 *Proof.* We only consider the case $r > \text{Crit}(s, h)$ in the proof, and the case $r < \text{Crit}(s, h)$ can be handled using
 1485 exactly the same argument.
 1486

1487 Since $r > \text{Crit}(s, h)$, by Corollary D.5, we have $s \in U_h(r)$, which implies $d_{M^r}^*(s, h) \leq r$ by Lemma D.7.
 1488 Assume for the sake of contradiction that $d_{M^r}^*(s, h) > \text{Crit}(s, h)$. Let r' be an arbitrary real number satisfying
 1489 $\text{Crit}(s, h) < r' < d_{M^r}^*(s, h) \leq r$. By Corollary D.8, we have $d_{M^{r'}}^*(s, h) \geq d_{M^r}^*(s, h) > r'$, which implies
 1490 $s \notin U_h(r')$ by Lemma D.7. On the other hand, since $r' > \text{Crit}(s, h)$, we must have $s \in U_h(r')$ by Corollary D.5
 1491 which leads to a contradiction. \square
 1492

1493
 1494
 1495 For each $(s, h) \in S \times [H]$ and $r \in [0, 1]$, we also define an auxiliary MDP $M^{r,s,h}$ based on M^r , which will be
 1496 later used in the analysis of our algorithm.
 1497

1498 **Definition D.10.** For each $(s, h) \in S \times [H]$ and $r \in [0, 1]$, define $M^{r,s,h}$ to be the MDP that has the same
 1499 state space, action space, horizon length and initial state as M^r . The reward function of $M^{r,s,h}$ is $R_{h'}^{s,h}(s', a) =$
 1500 $\mathbb{1}[h' = h, s' = s]$ for all $h' \in [H]$ and $(s', a) \in (S \cup \{s_{\text{absorb}}\}) \times A$, and the transition model of $M^{r,s,h}$ is
 1501

$$P_{h'}^{r,h}(s'' | s', a) = \begin{cases} P_{h'}^r(s'' | s', a) & h' < h \\ \mathbb{1}[s'' = s_{\text{absorb}}] & h' \geq h \end{cases}, \quad (5)$$

1502 where P^r is the transition model of M^r define in (6).
 1503

1504 A direct observation is that for any $(s, h) \in S \times [H]$ and $r \in [0, 1]$, for any policy π , $d_{M^r}^\pi(s, h) = V_{M^{r,s,h}}^\pi$, which
 1505 also implies $d_{M^r}^*(s, h) = V_{M^{r,s,h}}^*$.
 1506

1512 E MISSING PROOFS IN SECTION 6

1513 In this section, we give the formal proof of Theorem 6.1 based on the tools developed in Section D.
 1514

1515 **Lemma E.1.** Consider a pair of fixed choices of r_{trunc} and r_{action} in Algorithm 2. For a fixed $h \in [H - 1]$, if for
 1516 all $s \in S \setminus \hat{U}_h$ we have $d_M^{\hat{\pi}^{s,h}} \geq \eta_0$ whenever $h > 0$, then with probability $1 - \frac{\delta}{2H}$, for all $(s, a) \in (S \setminus \hat{U}_h) \times A$,
 1517

$$\sum_{s' \in S} |P_h(s' | s, a) - \hat{P}_h(s' | s, a)| \leq \epsilon_0.$$

1518
 1519
 1520
 1521
 1522
 1523 *Proof.* We divide the proof into two parts. First, we demonstrate that we have a sufficient number of effective
 1524 samples. Second, we show that the estimation error is small.
 1525

1526 For a given $(s, a) \in (S \setminus \hat{U}_h) \times A$, we first prove that with probability at least $1 - \frac{\delta}{4H|S||A|}$, the number of effective
 1527 samples is greater than $\frac{W\eta_0}{2}$, where the number of effective samples is defined as
 1528

$$W_{\text{effective}} = \sum_{w=1}^W \mathbb{1}[(s_h^{(w)}, a_h^{(w)}) = (s, a)].$$

1529
 1530 Given that $d_M^{\hat{\pi}^{s,h}} \geq \eta_0$, we have
 1531

$$\frac{\mathbb{E}[W_{\text{effective}}]}{W} = \frac{W \cdot d_M^{\hat{\pi}^{s,h}}}{W} = d_M^{\hat{\pi}^{s,h}} \geq \eta_0,$$

1537 and therefore by Chernoff bound,
 1538

$$1539 \quad \mathbb{P} \left(W_{\text{effective}} < \frac{\eta_0}{2} W \right) \leq \mathbb{P} \left(d_{\hat{M}}^{\hat{\pi}^{s,h}} - \frac{W_{\text{effective}}}{W} > \frac{\eta_0}{2} \right) < 2e^{-2(\frac{\eta_0}{2})^2 W} < \frac{\delta}{4H|S||A|}.$$

1542 Thus, with probability at least $1 - \frac{\delta}{4H|S||A|}$, the number of effective samples is at least $\frac{W\eta_0}{2}$.
 1543

1544 Next, we show that if the number of effective samples is greater than $\frac{W\eta_0}{2}$, then with probability at least $1 - \frac{\delta}{4H|S||A|}$,
 1545

$$1547 \quad \sum_{s' \in S} |P_h(s' | s, a) - \hat{P}_h(s' | s, a)| \leq \epsilon_0.$$

1549 To establish this, we first prove that for any specific s' , with probability at least $1 - \frac{\delta}{4H|S|^2|A|}$, we have
 1550

$$1552 \quad |P_h(s' | s, a) - \hat{P}_h(s' | s, a)| \leq \frac{\epsilon_0}{|S|}.$$

1554 Using the Chernoff bound,
 1555

$$1556 \quad \mathbb{P} \left(|P_h(s' | s, a) - \hat{P}_h(s' | s, a)| \geq \frac{\epsilon_0}{|S|} \right) < 2e^{-2(\frac{\epsilon_0}{|S|})^2 W_{\text{effective}}} < \frac{\delta}{4H|S|^2|A|}.$$

1559 Therefore, by the union bound, with probability at least $1 - \frac{\delta}{4H|S||A|}$, we have for all $s' \in S$,
 1560

$$1562 \quad |P_h(s' | s, a) - \hat{P}_h(s' | s, a)| \leq \frac{\epsilon_0}{|S|}.$$

1564 Summing over all s' gives
 1565

$$1566 \quad \sum_{s' \in S} |P_h(s' | s, a) - \hat{P}_h(s' | s, a)| \leq \epsilon_0.$$

1568 Combining these results, we conclude that for a specific (s, a) , with probability at least $1 - \frac{\delta}{2H|S||A|}$,
 1569

$$1571 \quad \sum_{s' \in S} |P_h(s' | s, a) - \hat{P}_h(s' | s, a)| \leq \epsilon_0.$$

1574 Thus, for a fixed $h \in [H-1]$, if for all $s \in S \setminus \hat{U}_h$ we have $d_{\hat{M}}^{\hat{\pi}^{s,h}} \geq \eta_0$ whenever $h > 0$, then with probability
 1575 $1 - \frac{\delta}{2H}$, for all $(s, a) \in (S \setminus \hat{U}_h) \times A$,
 1576

$$1577 \quad \sum_{s' \in S} |P_h(s' | s, a) - \hat{P}_h(s' | s, a)| \leq \epsilon_0.$$

1578 \square

1582 **Lemma E.2.** Consider a pair of fixed choices of $r_{\text{trunc}} < 1$ and r_{action} in Algorithm 2. For any $h \in [H-1]$, if
 1583 for all $h' \leq h$, we have
 1584

- 1585 • $\hat{U}_{h'} = U_{h'}(r_{\text{trunc}})$;
- 1586 • $\sum_{s'} |\hat{P}_{h'}(s' | s, a) - P_{h'}(s' | s, a)| \leq \epsilon_0$ for all $(s, a) \in (S \setminus \hat{U}_{h'}) \times A$,

1589 then for any $s \in S$, $|d_{M^r}^*(s, h+1) - d_{\hat{M}^h}^*(s, h+1)| \leq H^2 \epsilon_0$.

1590 *Proof.* Consider a fixed level $h \in [H - 1]$ and state $s \in S$. Note that $d_{M^r_{\text{trunc}}}^*(s, h + 1) = V_{M^r_{\text{trunc}}, s, h+1}^*$ and
 1591 $d_{\tilde{M}^h}^*(s, h + 1) = V_{\tilde{M}^h, s, h+1}^*$.

1593 Note that $M^r_{\text{trunc}}, s, h+1$ and $\tilde{M}^h, s, h+1$ share the same state space, action space, reward function and initial state.
 1594 Moreover, we have $\hat{U}_{h'} = U_{h'}(r_{\text{trunc}})$ for all $h' \leq h$ and $\sum_{s'} |\hat{P}_{h'}(s' | s, a) - P_{h'}(s' | s, a)| \leq \epsilon_0$ for all $h' \leq h$
 1595 and $(s, a) \in (S \setminus \hat{U}_{h'}) \times A$. Let $P^r_{\text{trunc}, h+1}$ be the transition model of $M^r_{\text{trunc}}, s, h+1$ defined in (5), and \tilde{P}^{h+1} be
 1596 the transition model of $\tilde{M}^h, s, h+1$ defined in (3). For all $h' \in [H]$, for any $(s, a) \in (S \cup \{s_{\text{absorb}}\}) \times A$, we have
 1597

$$\sum_{s' \in S \cup \{s_{\text{absorb}}\}} |P_{h'}^r(s' | s, a) - \tilde{P}_{h'}^{h+1}(s' | s, a)| \leq \epsilon_0.$$

1601 By Lemma G.1, we have $|V_{M^r_{\text{trunc}}, s, h+1}^* - V_{\tilde{M}^h, s, h+1}^*| \leq H^2 \epsilon_0$, which implies the desired result. \square
 1602

1603 **Lemma E.3.** *Consider a pair of fixed choices of $r_{\text{trunc}} \in (\eta_1, 2\eta_1)$ and r_{action} in Algorithm 2. For any $h \in [H - 1]$,
 1604 if for all $h' \leq h$, we have*

- 1606 • $\hat{U}_{h'} = U_{h'}(r_{\text{trunc}});$
- 1607 • $\sum_{s'} |\hat{P}_{h'}(s' | s, a) - P_{h'}(s' | s, a)| \leq \epsilon_0$ for all $(s, a) \in (S \setminus \hat{U}_{h'}) \times A$,

1610 then for any $s \in (S \setminus \hat{U}_{h+1})$, $d_M^{\hat{\pi}^s, h+1}(s, h + 1) \geq \eta_0$.

1612 *Proof.* Consider a fixed level $h \in [H - 1]$ and $s \in (S \setminus \hat{U}_{h+1})$. Since $s \in (S \setminus \hat{U}_{h+1})$, we have

$$1614 d_{\tilde{M}^h}^*(s, h + 1) > r_{\text{trunc}}.$$

1616 By Lemma E.2,

$$1617 d_{M^r_{\text{trunc}}}^*(s, h + 1) \geq r_{\text{trunc}} - H^2 \epsilon_0 \geq \eta_1 - \eta_0.$$

1619 Notice that $2H^2 \epsilon_0 + r_{\text{action}} H \leq 2H^2 \epsilon_0 + 2\epsilon_1 H \leq 3\epsilon_1 H \leq \eta_0$. By the same analysis as in Lemma E.2, for the
 1620 returned policy $\hat{\pi}^s, h+1$, by Lemma 5.1,

$$1622 V_{M^r_{\text{trunc}}, s, h+1}^* \geq V_{M^r_{\text{trunc}}, s, h+1}^* - \eta_0 = d_{M^r_{\text{trunc}}}^*(s, h + 1) - \eta_0 \geq \eta_1 - 2\eta_0 \geq \eta_0,$$

1624 and therefore $d_M^{\hat{\pi}^s, h+1}(s, h + 1) \geq \eta_0$. By Lemma D.8, this implies $d_M^{\hat{\pi}^s, h+1}(s, h + 1) \geq \eta_0$. \square
 1625

1626 **Definition E.4.** Define

$$1627 \text{Bad}_{\text{trunc}} = \bigcup_{(s, h) \in S \times [H]} \text{Ball}(\text{Crit}(s, h), H^2 \epsilon_0),$$

1630 where $\text{Crit}(s, h)$ is as defined in Definition D.4.

1631 **Lemma E.5.** *Consider a pair of fixed choices of $r_{\text{trunc}} \in (\eta_1, 2\eta_1)$ and r_{action} in Algorithm 2 such that $r_{\text{trunc}} \notin$
 1632 $\text{Bad}_{\text{trunc}}$. For any $h \in [H - 1]$, if for all $h' \leq h$, we have*

- 1634 • $\hat{U}_{h'} = U_{h'}(r_{\text{trunc}});$
- 1635 • $\sum_{s'} |\hat{P}_{h'}(s' | s, a) - P_{h'}(s' | s, a)| \leq \epsilon_0$ for all $(s, a) \in (S \setminus \hat{U}_{h'}) \times A$,

1638 then $\hat{U}_{h+1} = U_{h+1}(r_{\text{trunc}})$.

1640 *Proof.* By Lemma E.2, for any $s \in S$ we have

$$1642 |d_{M^r_{\text{trunc}}}^*(s, h + 1) - d_{\tilde{M}^h}^*(s, h + 1)| \leq H^2 \epsilon_0.$$

1643 Therefore, for any $s \in U_{h+1}(r_{\text{trunc}})$, we have

$$1645 \quad d_{\tilde{M}^h}^*(s, h+1) \leq d_{M^{r_{\text{trunc}}}}^*(s, h+1) + H^2\epsilon_0.$$

1647 By Corollary D.5, we have $r_{\text{trunc}} \geq \text{Crit}(s, h+1)$. Moreover, since $r_{\text{trunc}} \notin \text{Bad}_{\text{trunc}}$, it holds that

$$1649 \quad r_{\text{trunc}} \notin [\text{Crit}(s, h+1) - H^2\epsilon_0, \text{Crit}(s, h+1) + H^2\epsilon_0],$$

1651 which further implies that

$$1652 \quad r_{\text{trunc}} > \text{Crit}(s, h+1) + H^2\epsilon_0.$$

1654 Combining the above inequality with Lemma D.9, we have

$$1656 \quad r_{\text{trunc}} > \text{Crit}(s, h+1) + H^2\epsilon_0 \geq d_{M^{r_{\text{trunc}}}}^*(s, h+1) + H^2\epsilon_0 \geq d_{\tilde{M}^h}^*(s, h+1),$$

1658 which implies $s \in \hat{U}_{h+1}$.

1659 For those $s \notin U_{h+1}(r_{\text{trunc}})$, it can be shown that $s \notin \hat{U}_{h+1}$ using the same argument. Therefore, $\hat{U}_{h+1} =$
1660 $U_{h+1}(r_{\text{trunc}})$.
1661

□

1664 **Lemma E.6.** Consider a pair of fixed choices of $r_{\text{trunc}} \in (\eta_1, 2\eta_1)$ and r_{action} in Algorithm 2 such that $r_{\text{trunc}} \notin$
1665 $\text{Bad}_{\text{trunc}}$. With probability at least $1 - \delta/2$, we have

- 1667 • $\hat{U}_h = U_h(r_{\text{trunc}})$ for all $h \in [H]$;
- 1668 • $\sum_{s'} |\hat{P}_h(s' | s, a) - P_h(s' | s, a)| \leq \epsilon_0$ for all $h \in [H-1]$ and $(s, a) \in (S \setminus \hat{U}_h) \times A$.

1671 *Proof.* For each $h \in [H]$, let \mathcal{E}_h be the event that

- 1673 • $\hat{U}_h = U_h(r_{\text{trunc}})$;
- 1674 • if $h > 0$, $d_{\tilde{M}}^{\hat{\pi}^{s,h}}(s, h) \geq \eta_0$ for all $s \in S \setminus \hat{U}_h$;
- 1675 • if $h > 0$, $\sum_{s' \in S} |\hat{P}_{h-1}(s' | s, a) - P_{h-1}(s' | s, a)| \leq \epsilon_0$ for all $(s, a) \in (S \setminus \hat{U}_{h-1}) \times A$.

1677 Note that \mathcal{E}_0 holds deterministically, since we always have $r_{\text{trunc}} < 1$ which implies $U_0(r_{\text{trunc}}) = S \setminus \{s_0\}$. For
1678 each $h < H$, conditioned on $\bigcap_{h' \leq h} \mathcal{E}_{h'}$, by Lemma E.5 and Lemma E.3, we have $\hat{U}_{h+1} = U_{h+1}(r_{\text{trunc}})$, and for
1679 all $s \in S \setminus \hat{U}_{h+1}$, $d_{\tilde{M}}^{\hat{\pi}^{s,h+1}}(s, h+1) \geq \eta_0$. Moreover, by Lemma E.1, with probability at least $1 - \delta/(2H)$,

$$1684 \quad \sum_{s' \in S} |\hat{P}_h(s' | s, a) - P_h(s' | s, a)| \leq \epsilon_0$$

1686 for all $(s, a) \in (S \setminus \hat{U}_h) \times A$. Therefore, conditioned on $\bigcap_{h' \leq h} \mathcal{E}_{h'}$, \mathcal{E}_{h+1} holds with probability at least $1 - \delta/(2H)$.

1688 By the chain rule, $P\left(\bigcap_{h \in [H]} \mathcal{E}_h\right) \geq (1 - \delta/(2H))^{H-1} \geq 1 - \delta/2$.
1689

□

1691 **Definition E.7.** For a real number $r \in [0, 1]$, define

$$1693 \quad \text{Gap}(r) = \left(\bigcup_{h \in [H], s \in S \setminus U_h(r)} \text{Gap}_{M^{r,s,h}} \right) \cup \text{Gap}_{M^r}.$$

1696 Moreover, define

$$1697 \text{Bad}_{\text{action}}(r) = \bigcup_{g \in \text{Gap}(r)} \text{Ball}(g, 2H^2\epsilon_0).$$

1700 Clearly, for any $r \in [0, 1]$, $|\text{Gap}(r)| \leq 2|S|^2H^2|A|$. Moreover, since M^r and $M^{r,s,h}$ depends only on $U(r)$
1701 (cf. Definition D.6 and Definition D.10), for $r_1, r_2 \in [0, 1]$ with $U(r_1) = U(r_2)$, we would have $\text{Gap}(r_1) =$
1703 $\text{Gap}(r_2)$ and $\text{Bad}_{\text{action}}(r_1) = \text{Bad}_{\text{action}}(r_2)$.

1704 **Lemma E.8.** *Given $r_{\text{trunc}}^1, r_{\text{trunc}}^2 \in (\eta_1, 2\eta_1) \setminus \text{Bad}_{\text{trunc}}$ and $r_{\text{action}}^1, r_{\text{action}}^2 \in (\epsilon_1, 2\epsilon_1)$, suppose*

- 1706 • $U(r_{\text{trunc}}^1) = U(r_{\text{trunc}}^2)$;
- 1707 • $r_{\text{action}}^1 \notin \text{Bad}_{\text{action}}(r_{\text{trunc}}^1)$, and $r_{\text{action}}^2 \notin \text{Bad}_{\text{action}}(r_{\text{trunc}}^1)$;
- 1708 • for any $g \in \text{Gap}(r_{\text{trunc}}^1)$, either $g < r_{\text{action}}^1 < r_{\text{action}}^2$ or $r_{\text{action}}^1 < r_{\text{action}}^2 < g$,

1712 conditioned on the event in Lemma E.6, in Algorithm 2, the returned policy π and $\hat{\pi}^{s,h+1,a}$ will be identical for
1713 all $h \in [H-1]$, $(s, a) \in (S \setminus \hat{U}_{h+1}) \times A$, for all $(r_{\text{action}}, r_{\text{trunc}}) \in \{r_{\text{action}}^1, r_{\text{action}}^2\} \times \{r_{\text{trunc}}^1, r_{\text{trunc}}^2\}$.
1714

1716 *Proof.* Consider a fixed $h \in [H-1]$ and $(s, a) \in (S \setminus \hat{U}_{h+1}) \times A$. Since $U(r_{\text{trunc}}^1) = U(r_{\text{trunc}}^2)$, we write
1717

- 1718 • $U(r_{\text{trunc}}) = U(r_{\text{trunc}}^1) = U(r_{\text{trunc}}^2)$;
- 1719 • $\text{Bad}_{\text{action}}(r_{\text{trunc}}) = \text{Bad}_{\text{action}}(r_{\text{trunc}}^1) = \text{Bad}_{\text{action}}(r_{\text{trunc}}^2)$;
- 1720 • $\text{Gap}(r_{\text{trunc}}) = \text{Gap}(r_{\text{trunc}}^1) = \text{Gap}(r_{\text{trunc}}^2)$; and
- 1721 • $M^{r_{\text{trunc}}, s, h+1} = M^{r_{\text{trunc}}^1, s, h+1} = M^{r_{\text{trunc}}^2, s, h+1}$

1726 in the remaining part of the proof.

1728 Let $P^{r_{\text{trunc}}}$ be the transition model of $M^{r_{\text{trunc}}, s, h+1}$ defined in (6), and \tilde{P}^{h+1} be the transition model of $\tilde{M}^{s, h+1}$
1729 defined in (3). Note that conditioned on the event in Lemma E.6, $\hat{U}_{h+1} = U_{h+1}(r_{\text{trunc}})$, and therefore, for all
1730 $h' \in [H]$, for any $(s, a) \in (S \cup \{s_{\text{absorb}}\}) \times A$, we have

$$1732 \sum_{s' \in S \cup \{s_{\text{absorb}}\}} |P_{h'}^{r_{\text{trunc}}, h+1}(s' | s, a) - \tilde{P}_{h'}^{h+1}(s' | s, a)| \leq \epsilon_0.$$

1736 By Definition E.7, for any $g \in \text{Gap}_{M^{r_{\text{trunc}}, s, h+1}}$, we have

- 1738 • $r_{\text{action}}^1, r_{\text{action}}^2 \notin \text{Ball}(g, 2H^2\epsilon_0)$;
- 1739 • either $g < r_{\text{action}}^1 < r_{\text{action}}^2$ or $r_{\text{action}}^1 < r_{\text{action}}^2 < g$,

1742 which implies $\hat{\pi}^{s, h+1}$ in Algorithm 2 will be identical for all $(r_{\text{action}}, r_{\text{trunc}}) \in \{r_{\text{action}}^1, r_{\text{action}}^2\} \times \{r_{\text{trunc}}^1, r_{\text{trunc}}^2\}$
1743 by Lemma 5.2. This also implies that $\hat{\pi}^{s, h+1, a}$ will be identical for all $(r_{\text{action}}, r_{\text{trunc}}) \in \{r_{\text{action}}^1, r_{\text{action}}^2\} \times$
1744 $\{r_{\text{trunc}}^1, r_{\text{trunc}}^2\}$. Similarly, the desired property holds also for the returned policy π . \square
1745

1747 *Proof of Theorem 6.1.* Note that

$$1748 \Pr[r_{\text{trunc}} \notin \text{Bad}_{\text{trunc}}] \geq 1 - \delta/4.$$

1749 For any fixed choice of r_{trunc} ,

$$1751 \quad \Pr[r_{\text{action}} \notin \text{Bad}_{\text{action}}(r_{\text{trunc}})] \geq 1 - \delta/4.$$

1753 Combining these with Lemma E.6, with probability at least $1 - \delta$, we have

- 1755 • $r_{\text{trunc}} \notin \text{Bad}_{\text{trunc}}$;
- 1756 • $r_{\text{action}} \notin \text{Bad}_{\text{action}}(r_{\text{trunc}})$;
- 1757 • $\hat{U}_h = U_h(r_{\text{trunc}})$ for all $h \in [H]$;
- 1759 • $\sum_{s'} |\hat{P}_h(s' | s, a) - P_h(s' | s, a)| \leq \epsilon_0$ for all $h \in [H - 1]$ and $(s, a) \in (S \setminus \hat{U}_{h'}) \times A$.

1763 We condition on the above event in the remaining part of the proof.

1765 Conditioned on the above event, for the returned policy π , we have

$$1767 \quad V_M^\pi \geq V_{M^r}^\pi \geq V_{M^r}^* - 2H^2\epsilon_0 - r_{\text{action}}H \geq V_M^* - 2H^2\epsilon_0 - r_{\text{action}}H - H^2|S|r_{\text{trunc}} \geq V_M^* - \epsilon,$$

1768 where the first inequality is due to Lemma G.3, the second inequality is due to Lemma 5.1, the third inequality is
1769 due to Lemma G.3, and the last inequality is due to $r_{\text{trunc}} \leq 2\eta_1$ and $r_{\text{action}} \leq 2\epsilon_1$. Therefore, the returned policy
1770 π is ϵ -optimal.

1773 By Lemma D.3, there are at most of $SH + 1$ unique sequences of sets $U(r)$. Moreover, for each r , $|\text{Gap}(r)| \leq$
1774 $2|S|^2H^2|A|$. By Lemma E.6, the sequence of policies executed by Algorithm 2 and the policy returned by Algo-
1775 rithm 2 lie in a list $\text{Trace}(M)$ with size $|\text{Trace}(M)| \leq (SH + 1)(2|S|^2H^2|A| + 1)$. \square

1777 F WEAKLY k -LIST REPLICABLE RL ALGORITHM

1780 In this section, we present our RL algorithm with weakly k -list replicability guarantees. See Algorithm 3 for the
1781 formal description of the algorithm. In Algorithm 3, it is assumed that we have access to a black-box algorithm
1782 $\mathbb{A}(\epsilon_0, \delta_0)$, so that after interacting with the underlying MDP, with probability at least $1 - \delta_0$, \mathbb{A} returns an ϵ_0 -optimal
1783 policy.

1785 In Algorithm 3, for each $(s, h) \in S \times H$, we first invoke \mathbb{A} on the underlying MDP with modified reward function
1786 $R_{h'}^{s,h}(s', a) = \mathbb{1}[h' = h, s' = s]$ for all $h' \in [H]$ and $(s', a) \in S \times A$. The returned policy $\hat{\pi}^{s,h}$ is supposed
1787 to reach state s at level h with probability close to $d^*(s, h)$, and therefore we use $\hat{\pi}^{s,h}$ to collect samples and
1788 calculate $\hat{d}(s, h)$ which is our estimate of $d^*(s, h)$. For each action $a \in A$, we also construct a policy $\hat{\pi}^{s,h,a}$ based
1789 on $\hat{\pi}^{s,h}$ to collect samples for $(s, a) \in S \times A$ at level $h \in [H]$, and we calculate $\hat{P}_h(s, a)$ which is our estimate of
1790 $P_h(s, a)$ based the obtained samples.

1793 For those $(s, h) \in S \times [H]$ with $\hat{d}(s, h) \leq r_{\text{trunc}}$, we remove state s from level h by including s in \hat{T}_h . Here
1794 r_{trunc} is a randomly chosen reaching probability threshold drawn from the uniform distribution.

1796 Finally, based on \hat{P} and \hat{T} , we build an MDP \hat{M} which is our estimate of the underlying MDP M . For each
1797 (s, h) , if $s \in \hat{T}_h$, then we always transit s to an absorbing state s_{absorb} . Otherwise, we directly use our estimated
1798 transition model $\hat{P}_h(s, a)$. We then invoke Algorithm 1 with MDP \hat{M} and tolerance parameter r_{action} , where
1799 r_{action} is also drawn from the uniform distribution .

1801 The formal guarantee of Algorithm 3 is summarized in the following theorem.

1802 **Theorem F.1.** Suppose \mathbb{A} is an algorithm such that with probability at least $1 - \delta_0$, \mathbb{A} returns an ϵ_0 -optimal policy.
 1803 Then with probability at least $1 - \delta$, Algorithm 3 return a policy π , such that
 1804

1805 • π is ϵ -optimal;
 1806 • $\pi \in \Pi(M)$, where $\Pi(M)$ is a list of policies that depend only on the unknown underlying MDP M with
 1807 size $|\Pi(M)| \leq (H|S||A| + 1)(H|S| + 1)$.
 1808

1809 In the remaining part of this section, we give the full proof of Theorem F.1.
 1810

1811 Following the definition of $U_h(r)$ in Definition D.1, we define $T_h(r)$.
 1812

1813 **Definition F.2.** For the underlying MDP $M = (S, A, P, R, H, s_0)$, given a real number $r \in [0, 1]$, we define
 1814 $T_h(r) \subseteq S$ for each $h \in [H]$ as follows:
 1815

1816 • $T_0(r) = \{s \in S \mid \Pr[s_0 = s] \leq r\};$
 1817 • $T_h(r) = \{s \in S \mid \max_{\pi} \Pr[s_h = s \mid M, \pi] \leq r\}.$
 1818

1819 We also write $T(r) = (T_0(r), T_1(r), \dots, T_{H-1}(r))$.
 1820

1821 **Lemma F.3.** For all $r \in [0, 1]$, there are at most of $|S|H + 1$ unique sequences of sets $T(r)$.
 1822

1823 *Proof.* By the same analysis as in Lemma D.2, we know that given $0 \leq r_1 \leq r_2 \leq 1$, for any $h \in [H]$, we have
 1824 $T_h(r_1) \subseteq T_h(r_2)$. Moreover, by the same analysis as in Corollary D.3, for all $r \in [0, 1]$, there are at most of
 1825 $|S|H + 1$ unique sequences of sets $T(r)$.
 1826

□

1827 **Definition F.4.** For the underlying MDP $M = (S, A, P, R, H, s_0)$, given a real number $r \in [0, 1]$, define $\bar{M}^r =$
 1828 $(S \cup \{s_{\text{absorb}}\}, A, \bar{P}^r, R, H, s_0)$, where
 1829

$$\bar{P}_h^r(s' \mid s, a) = \begin{cases} P_h(s' \mid s, a) & s \notin T_h(r), s' \neq s_{\text{absorb}} \\ 0 & s \notin T_h(r), s' = s_{\text{absorb}} \\ \mathbb{1}[s' = s_{\text{absorb}}] & s \in T_h(r) \cup \{s_{\text{absorb}}\} \end{cases} \quad (6)$$

1830 **Definition F.5.** For each $(s, h) \in S \times [H]$, define $\text{Crit}'(s, h) = \inf\{r \in [0, 1] \mid s \in T_h(r)\}$.
 1831

1832 Note that $\{r \in [0, 1] \mid s \in T_h(r)\}$ is never an empty set since $T_h(1) = S$.
 1833

1834 **Lemma F.6.** Consider a pair of fixed choices of r_{trunc} and r_{action} in Algorithm 3. For all $h \in [H-1]$, if for all
 1835 $s \in S \setminus \hat{T}_h$ we have $d_M^{\hat{\pi}^{s,h}} \geq \epsilon_1$ whenever $h > 0$, then with probability $1 - \frac{\delta}{4}$, for all $(s, a, h) \in (S \setminus \hat{T}_h) \times A \times [H-1]$,
 1836

$$\sum_{s' \in S} |P_h(s' \mid s, a) - \hat{P}_h(s' \mid s, a)| \leq \epsilon_0.$$

1837 *Proof.* By the same analysis as Lemma E.1, for a fixed $h \in [H-1]$, if for all $s \in S \setminus \hat{T}_h$ we have $d_M^{\hat{\pi}^{s,h}} \geq \epsilon_1$
 1838 whenever $h > 0$, then with probability $1 - \frac{\delta}{4H}$, for all $(s, a) \in (S \setminus \hat{T}_h) \times A$,
 1839

$$\sum_{s' \in S} |P_h(s' \mid s, a) - \hat{P}_h(s' \mid s, a)| \leq \epsilon_0.$$

1840 By union bound, we know that with probability $1 - \frac{\delta}{4}$, for all $h \in [H-1]$, the inequality holds.
 1841

1855
1856
1857
1858
1859 **Algorithm 3** Weakly k -list Replicable RL Algorithm

1860 1: **Input:** RL algorithm $\mathbb{A}(\epsilon_0, \delta_0)$, error tolerance ϵ , failure probability δ
1861 2: **Output:** near-optimal policy π
1862 3: **Initialization:**
1863 4: Initialize constants $C_1 = \frac{4|A||S|H}{\delta}$, $\epsilon_0 = \frac{\epsilon\delta}{100|S|H^5|A|}$, $\epsilon_1 = 5C_1H^2\epsilon_0$
1864 5: Generate random numbers $r_{\text{action}} \sim \text{Unif}(\epsilon_1, 2\epsilon_1)$, $r_{\text{trunc}} \sim \text{Unif}(2\epsilon_1, 3\epsilon_1)$
1865 6: **for** $h \in [H - 1]$ **do**
1866 7: **for** each $s \in S$ **do**
1867 8: Invoke \mathbb{A} with $\epsilon_0 = \epsilon_0$ and $\delta_0 = \delta/(8|S|H)$ on the underlying MDP with modified reward function
1868 $R_h^{s,h}(s', a) = \mathbb{1}[h' = h, s' = s]$ for all $h' \in [H]$ and $(s', a) \in S \times A$
1869 9: Set $\hat{\pi}^{s,h}$ to be the policy returned in the previous step
1870 10: Collect $W = \frac{|S|^2}{\epsilon_0^2\epsilon_1} \log \frac{16|S|^2AH}{\delta}$ trajectories $\{(s_0^{(w)}, a_0^{(w)}, \dots, s_{H-1}^{(w)}, a_{H-1}^{(w)})\}_{w=1}^W$ by executing $\hat{\pi}^{s,h}$ for
1871 W times
1872 11: Set
1873 12: **for** each $a \in A$ **do**
1874 13: Define policy $\hat{\pi}^{s,h,a}$, where for each $h' \in [H]$ and $s' \in S$,

$$\hat{\pi}_{h'}^{s,h,a}(s') = \begin{cases} a & h' = h, s' = s \\ \hat{\pi}_{h'}^{s,h}(s') & h' \neq h \text{ or } s' \neq s \end{cases}$$

1875 14: Collect $W = \frac{|S|^2}{\epsilon_0^2\epsilon_1} \log \frac{16|S|^2AH}{\delta}$ trajectories $\{(s_0^{(w)}, a_0^{(w)}, \dots, s_{H-1}^{(w)}, a_{H-1}^{(w)})\}_{w=1}^W$ by executing $\hat{\pi}^{s,h,a}$
1876 for W times
1877 15: For each $s' \in S$, set
1878 16: $\hat{P}_h(s' | s, a) \leftarrow \frac{\sum_{w=1}^W \mathbb{1}[(s_h^{(w)}, a_h^{(w)}, s_{h+1}^{(w)}) = (s, a, s')]}{\sum_{w=1}^W \mathbb{1}[(s_h^{(w)}, a_h^{(w)}) = (s, a)]}$
1879 17: **end for**
1880 18: **end for**
1881 19: For each $h \in [H - 1]$, set $\hat{T}_h = \{s \in S \mid \hat{d}(s, h) \leq r_{\text{trunc}}\}$.
1882 20: Define MDP $\hat{M} = (S \cup \{s_{\text{absorb}}\}, A, \tilde{P}, R, H, s_0)$, where for each $h \in [H - 1]$,

$$\tilde{P}_h(s' | s, a) = \begin{cases} \hat{P}_h(s' | s, a) & s \notin \hat{T}_h \\ \mathbb{1}\{s' = s_{\text{absorb}}\} & s \in \hat{T}_h \end{cases}$$

1883 21: Invoke Algorithm 1 with MDP \hat{M} and tolerance parameter r_{action} , and set π to be the returned policy
1884 22: **return** π

1905
1906
1907

1908
1909
1910 **Lemma F.7.** *With probability at least $1 - \frac{\delta}{4}$, for all $s, h \in S \times [H - 1]$,*

□

1911
1912
1913 $|\hat{d}(s, h) - d_M^*(s, h)| \leq 2\epsilon_0,$
1914 $|d_M^{\hat{\pi}^{s, h}} - \hat{d}(s, h)| \leq \epsilon_0.$

1915
1916
1917 *Proof.* For a specific pair (s, h) , for the policy returned by \mathbb{A} , with probability at least $1 - \frac{\delta}{8|S|H}$, we have

1918
1919 $|d_M^*(s, h) - d_M^{\hat{\pi}^{s, h}}(s, h)| \leq \epsilon_0.$

1920
1921
1922 Thus, by Chernoff bound, with probability at least $1 - \frac{\delta}{8|S|H}$, we have

1923
1924 $|d_M^{\hat{\pi}^{s, h}}(s, h) - \hat{d}(s, h)| \leq \epsilon_0.$

1925
1926
1927 Combining the above two inequalities, with probability at least $1 - \frac{\delta}{4|S|H}$,

1928
1929
1930 $|\hat{d}(s, h) - d_M^*(s, h)| \leq 2\epsilon_0.$

1931
1932 Using the union bound, we know that with probability at least $1 - \frac{\delta}{4}$, for all $s, h \in S \times [H - 1]$

1933
1934 $|\hat{d}(s, h) - d_M^*(s, h)| \leq 2\epsilon_0,$
1935
1936 $|d_M^{\hat{\pi}^{s, h}} - \hat{d}(s, h)| \leq \epsilon_0.$

□

1937
1938
1939 **Definition F.8.** Define

1940
1941 $\text{Bad}'_{\text{trunc}} = \bigcup_{(s, h) \in S \times [H]} \text{Ball}(\text{Crit}'(s, h), 2\epsilon_0),$

1942
1943 where $\text{Crit}'(s, h)$ is as defined in Definition F.5.

1944
1945 **Lemma F.9.** *Consider a pair of fixed choices of $r_{\text{trunc}} \in (\eta_1, 2\eta_1)$ and r_{action} in Algorithm 2 such that $r_{\text{trunc}} \notin$*

1946 *$\text{Bad}'_{\text{trunc}}$. With probability at least $1 - \delta/2$, we have*

1947
1948
1949

- $\hat{T}_h = T_h(r_{\text{trunc}})$ for all $h \in [H - 1]$;
- $\sum_{s'} |\hat{P}_h(s' | s, a) - P_h(s' | s, a)| \leq \epsilon_0$ for all $h \in [H - 1]$ and $(s, a) \in (S \setminus \hat{T}_h) \times A$.

1950
1951
1952 *Proof.* Let \mathcal{E}_1 denote the event that for all (s, h) , the following two conditions hold:

1953
1954
1955

- $|\hat{d}(s, h) - d_M^*(s, h)| \leq 2\epsilon_0$
- $|d_M^{\hat{\pi}^{s, h}} - \hat{d}(s, h)| \leq \epsilon_0$

1956
1957
1958 By Lemma F.7, we know that with probability at least $1 - \frac{\delta}{4}$, event \mathcal{E}_1 occurs.

1959
1960 Let \mathcal{E}_2 denote the event that for all $(s, a, s', h) \in S \times A \times S \times [H - 1]$, the following conditions are satisfied:

- $\hat{T}_h = T_h(r_{\text{trunc}})$;
- $d_M^{\hat{\pi}^{s,h}}(s, h) \geq \epsilon_1$ for all $s \in S \setminus \hat{T}_h$;
- $d_M^*(s, h) \leq 4\epsilon_1$ for all $s \in \hat{T}_h$;
- $\sum_{s' \in S} |\hat{P}_h(s' | s, a) - P_h(s' | s, a)| \leq \epsilon_0$ for all $(s, a) \in (S \setminus \hat{T}_h) \times A$.

When \mathcal{E}_1 occurs, we know that $|\hat{d}(s, h) - d_M^*(s, h)| \leq 2\epsilon_0$. Therefore, when $r_{\text{trunc}} \notin \text{Bad}_{\text{trunc}}$, if $r_{\text{trunc}} > d_M^*(s, h)$, it follows that $r_{\text{trunc}} > \hat{d}(s, h)$, if $r_{\text{trunc}} < d_M^*(s, h)$, it follows that $r_{\text{trunc}} < \hat{d}(s, h)$. Hence, we conclude that $\hat{T}_h = T_h(r_{\text{trunc}})$.

For the second condition, when \mathcal{E}_1 occurs, we know that $|d_M^{\hat{\pi}^{s,h}} - \hat{d}(s, h)| \leq \epsilon_0$, and by definition, $\hat{d}(s, h) > 2\epsilon_1$. Thus, we obtain that

$$d_M^{\hat{\pi}^{s,h}} > 2\epsilon_1 - \epsilon_0 > \epsilon_1.$$

For the third condition, when \mathcal{E}_1 occurs, we know that $|\hat{d}(s, h) - d_M^*(s, h)| \leq 2\epsilon_0$, and by definition, $\hat{d}(s, h) < 3\epsilon_1$. Thus, we have

$$d_M^*(s, h) < 3\epsilon_1 + 2\epsilon_0 < 4\epsilon_1.$$

For the forth condition, combining the second condition with Lemma F.6, we conclude that with probability at least $(1 - \frac{\delta}{4})^2 \leq 1 - \frac{\delta}{2}$, the fourth condition holds.

Therefore, with probability at least $1 - \frac{\delta}{2}$, event \mathcal{E}_2 occurs, which implies the desired result. \square

Definition F.10. For a real number $r \in [0, 1]$, define

$$\text{Bad}'_{\text{action}}(r) = \bigcup_{g \in \text{Gap}_{\overline{M}^r}} \text{Ball}(g, 2H^2\epsilon_0).$$

Clearly, for any $r \in [0, 1]$, $|\text{Gap}(r)| \leq |S|HA$. Moreover, since \overline{M}^r depends only on $T(r)$ (cf. Definition F.4), for $r_1, r_2 \in [0, 1]$ with $T(r_1) = T(r_2)$, we would have $\text{Gap}(r_1) = \text{Gap}(r_2)$ and $\text{Bad}'_{\text{action}}(r_1) = \text{Bad}'_{\text{action}}(r_2)$.

Lemma F.11. Given $r_{\text{trunc}}^1, r_{\text{trunc}}^2 \in (2\epsilon_1, 3\epsilon_1) \setminus \text{Bad}_{\text{trunc}}$ and $r_{\text{action}}^1, r_{\text{action}}^2 \in (\epsilon_1, 2\epsilon_1)$, suppose

- $T(r_{\text{trunc}}^1) = T(r_{\text{trunc}}^2)$;
- $r_{\text{action}}^1 \notin \text{Bad}'_{\text{action}}(r_{\text{trunc}}^1)$, and $r_{\text{action}}^2 \notin \text{Bad}'_{\text{action}}(r_{\text{trunc}}^1)$;
- for any $g \in \text{Gap}(r_{\text{trunc}}^1)$, either $g < r_{\text{action}}^1 < r_{\text{action}}^2$ or $r_{\text{action}}^1 < r_{\text{action}}^2 < g$,

conditioned on the event in Lemma F.9, the returned policy π in Algorithm 3 will always be the same for all $(r_{\text{action}}, r_{\text{trunc}}) \in \{r_{\text{action}}^1, r_{\text{action}}^2\} \times \{r_{\text{trunc}}^1, r_{\text{trunc}}^2\}$.

Proof. The proof of the lemma follows the same reasoning as in the proof of Lemma E.8. \square

Lemma F.12. Conditioned on the event in Lemma F.9, the returned policy π is ϵ -optimal.

2014
2015*Proof.*2016
2017

$$V_M^\pi \geq V_{M^r_{\text{trunc}}}^\pi \geq V_{M^r_{\text{trunc}}}^* - 2H^2\epsilon_0 - r_{\text{action}}H \geq V_M^* - 2H^2\epsilon_0 - r_{\text{action}}H - H^2|S|r_{\text{trunc}} \geq V_M^* - \epsilon.$$

2018
2019
2020
2021

where the first inequality is due to Lemma G.3, the second inequality is due to Lemma 5.1, the third inequality is due to Lemma G.3, and the last inequality is due to $r_{\text{trunc}} \leq 3\epsilon_1$ and $r_{\text{action}} \leq 2\epsilon_1$. Therefore, the returned policy π is ϵ -optimal. \square

2022
2023
2024
20252026
2027
2028
2029

Lemma F.13. *Conditioned on the event in Lemma F.9, with probability at least $1 - \frac{\delta}{2}$, the returned policy π belongs to the set $\Pi(M)$, where $\Pi(M)$ is a list of policies that depend only on the unknown underlying MDP M , and the size of $\Pi(M)$ satisfies $|\Pi(M)| \leq (H|S||A| + 1)(H|S| + 1)$.*

2030
2031
2032
20332034
2035
2036
2037
2038

Proof. First, we have $\Pr[r_{\text{trunc}} \in \text{Bad}'_{\text{trunc}}] \leq \frac{5|S|H\epsilon_0}{\epsilon_1} < \frac{\delta}{4}$. Moreover, for a fixed $r_{\text{trunc}} \notin \text{Bad}'_{\text{trunc}}$, we have $\Pr[r_{\text{action}} \in \text{Bad}'_{\text{action}}(r_{\text{trunc}})] \leq \frac{5H^2\epsilon_0|S||A|H}{\epsilon_1} < \frac{\delta}{4}$. Thus, with probability at least $1 - \frac{\delta}{2}$, it is satisfied that $r_{\text{action}} \notin \text{Bad}'_{\text{action}}(r_{\text{trunc}})$ and $r_{\text{trunc}} \notin \text{Bad}'_{\text{trunc}}$.

2039
2040
2041
2042
2043

By Lemma F.11, and applying similar reasoning as in the proof of Theorem 6.1, we conclude that conditioned on the event in Lemma F.9, with probability at least $1 - \frac{\delta}{2}$, the policy π belongs to the set $\Pi(M)$, where $\Pi(M)$ is a list of policies that depend only on the unknown underlying MDP M . Moreover, the size of $\Pi(M)$ is bounded by $|\Pi(M)| \leq (H|S||A| + 1)(H|S| + 1)$. \square

2044
2045
2046
2047
2048

Proof of Theorem F.1. The proof follows by combining Lemma F.9, Lemma F.12 and Lemma F.13. \square

2049
2050
2051
2052

G PERTURBATION ANALYSIS IN MDPs

2053

2055
2056
2057

Lemma G.1. *Consider two MDP M_1 and M_2 that are ϵ_0 -related. Let P' and P'' denote the transition models of M_1 and M_2 , respectively. It holds that*

2058

$$|V_{h,M_1}^*(s) - V_{h,M_2}^*(s)| \leq H^2\epsilon_0,$$

2059
2060
2061
2062

$$|Q_{h,M_1}^*(s, a) - Q_{h,M_2}^*(s, a)| \leq H^2\epsilon_0,$$

where H is the horizon length.

2063
2064
2065

Specifically, for the value function at the initial state s_0 , it holds that

2066

$$|V_{M_1}^* - V_{M_2}^*| \leq H^2\epsilon_0.$$

2067 *Proof.* We denote π_1^* as the optimal policy of M_1 and π_2^* as the optimal policy of M_2 . For $0 \leq i \leq H-1$, we
 2068 have
 2069

$$\begin{aligned}
 2070 \quad & \left| V_{i, M_1}^{\pi_1^*}(s) - V_{i, M_2}^{\pi_2^*}(s) \right| \stackrel{(1)}{\leq} \max_a \left| Q_{i, M_1}^{\pi_1^*}(s, a) - Q_{i, M_2}^{\pi_2^*}(s, a) \right| \\
 2071 \quad & \leq \max_a \left(\left| \sum_{s'} P_i'(s' | s, a) \cdot V_{i+1, M_1}^{\pi_1^*}(s') - \sum_{s'} P_i''(s' | s, a) \cdot V_{i+1, M_2}^{\pi_2^*}(s') \right| \right) \\
 2072 \quad & \leq \max_a \left(\left| \sum_{s'} P_i'(s' | s, a) \cdot (V_{i+1, M_1}^{\pi_1^*}(s') - V_{i+1, M_2}^{\pi_2^*}(s')) \right| \right. \\
 2073 \quad & \quad \left. + \left| \sum_{s'} (P_i'(s' | s, a) - P_i''(s' | s, a)) \cdot V_{i+1, M_2}^{\pi_2^*}(s') \right| \right) \\
 2074 \quad & \stackrel{(2)}{\leq} H\epsilon_0 + \max_s \left| V_{i+1, M_1}^{\pi_1^*}(s) - V_{i+1, M_2}^{\pi_2^*}(s) \right|.
 \end{aligned}$$

2080
 2081 **Inequality (1):** This follows from selecting a^* as the optimal action and \hat{a} as the action selected by the policy,
 2082 which ensures $Q_{i, M_2}^{\pi_1^*}(s, a) \leq Q_{i, M_2}^{\pi_2^*}(s, a)$.
 2083

2084 **Inequality (2):** This holds because $V_{i+1}^{\pi^*}(s') \leq H$, the total variation bound $\sum_{s' \in S} |P_i'(s' | s, a) - P_i''(s' | s, a)| \leq \epsilon_0$, and the fact that $\sum_{s'} P_i'(s' | s, a) = 1$.
 2085

2086 At layer H , it is given that $V_{H, M_1}^{\pi_1^*} = V_{H, M_2}^{\pi_2^*} = 0$. Applying the above inequality recursively, we obtain
 2087

$$\begin{aligned}
 2088 \quad & \left| V_{i, M_1}^{\pi_1^*}(s) - V_{i, M_2}^{\pi_2^*}(s) \right| \leq H(H-i)\epsilon_0 \leq H^2\epsilon_0, \\
 2089 \quad & \left| Q_{i, M_1}^{\pi_1^*}(s, a) - Q_{i, M_2}^{\pi_2^*}(s, a) \right| \leq H\epsilon_0 + \max_s \left| V_{i+1, M_1}^{\pi_1^*}(s) - V_{i+1, M_2}^{\pi_2^*}(s) \right| \leq H\epsilon_0 + H(H-1)\epsilon_0 \leq H^2\epsilon_0.
 \end{aligned}$$

2090 In particular, for the initial layer,
 2091

$$2092 \quad \left| V_{M_1}^* - V_{M_2}^* \right| = \left| V_{0, M_1}^{\pi_1^*}(s_0) - V_{0, M_2}^{\pi_2^*}(s_0) \right| \leq H^2\epsilon_0.$$

□

2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114 **Lemma G.2.** Consider two MDP M_1 and M_2 that are ϵ_0 -related. Let P' and P'' denote the transition models
 2115 of M_1 and M_2 , respectively. For any policy π , it holds that
 2116

$$2117 \quad \left| V_{M_1}^\pi - V_{M_2}^\pi \right| \leq H^2\epsilon_0,$$

2118 where H is the horizon length.
 2119

2120 *Proof.* For $0 \leq i \leq H - 1$, we have

$$\begin{aligned}
 2122 \quad & |V_{i,M_1}^\pi(s) - V_{i,M_2}^\pi(s)| = |Q_{i,M_1}^\pi(s, \pi_i(s)) - Q_{i,M_2}^\pi(s, \pi_i(s))| \\
 2123 \quad & \leq \max_a \left(\left| \sum_{s'} P_i'(s' | s, a) \cdot V_{i+1,M_1}^\pi(s') - \sum_{s'} P_i''(s' | s, a) \cdot V_{i+1,M_2}^\pi(s') \right| \right) \\
 2124 \quad & \leq \max_a \left(\left| \sum_{s'} P_i'(s' | s, a) \cdot (V_{i+1,M_1}^\pi(s') - V_{i+1,M_2}^\pi(s')) \right| \right. \\
 2125 \quad & \quad \left. + \left| \sum_{s'} (P_i'(s' | s, a) - P_i''(s' | s, a)) \cdot V_{i+1,M_2}^\pi(s') \right| \right) \\
 2126 \quad & \stackrel{(1)}{\leq} H\epsilon_0 + \max_s |V_{i+1,M_1}^\pi(s) - V_{i+1,M_2}^\pi(s)|.
 \end{aligned}$$

2127 **Inequality (1):** This holds because $V_{i+1}^{\pi^*}(s') \leq H$, the total variation bound
 2128 $\sum_{s' \in S} |P_i'(s' | s, a) - P_i''(s' | s, a)| \leq \epsilon_0$, and the fact that $\sum_{s'} \hat{P}_i(s' | s, a) = 1$.

2129 At layer H , it is given that $V_{H,M_1}^\pi = V_{H,M_2}^\pi = 0$.

2130 Applying the above inequality recursively, we obtain

$$2131 \quad |V_{i,M_1}^\pi(s) - V_{i,M_2}^\pi(s)| \leq H^2\epsilon_0,$$

2132 In particular, for the initial layer,

$$2133 \quad |V_{0,M_1}^\pi(s_0) - V_{0,M_2}^\pi(s_0)| \leq H^2\epsilon_0,$$

2134 \square

2135 **Lemma G.3.** For any policy π , we have

$$2136 \quad 0 \leq V_M^\pi - V_{M^r}^\pi \leq H^2|S|r,$$

2137 where M^r is defined as in Definition D.6 and $|S|$ is the size of the state space.

2138 *Proof.* Clearly, $V_M^\pi - V_{M^r}^\pi \geq 0$.

2173 We observe that for any h and $s_h \in S$, the following holds:

$$\begin{aligned}
 & \sum_{s_h \in S} d_{M^r}^\pi(s_h, h) (V_{h,M}^\pi(s_h) - V_{h,M^r}^\pi(s_h)) \\
 & \stackrel{(1)}{=} \sum_{s_h \in U_h(r)} d_{M^r}^\pi(s_h, h) V_{h,M}^\pi(s_h) + \sum_{s_h \notin U_h(r)} d_{M^r}^\pi(s_h, h) (V_{h,M}^\pi(s_h) - V_{h,M^r}^\pi(s_h)) \\
 & \stackrel{(2)}{=} |S| \cdot r \cdot H + \sum_{s_h \notin U_h(r)} d_{M^r}^\pi(s_h, h) (V_{h,M}^\pi(s_h) - V_{h,M^r}^\pi(s_h)) \\
 & \stackrel{(3)}{=} |S| \cdot r \cdot H + \sum_{s_h \notin U_h(r)} d_{M^r}^\pi(s_0, h) \left(r_h(s_h, \pi(s_h)) + \sum_{s_{h+1} \in S} P_h(s_{h+1}|s_h, \pi(s_h)) V_{h+1,M}^\pi(s_{h+1}) \right. \\
 & \quad \left. - r_h(s_h, \pi(s_h)) - \sum_{s_{h+1} \in S} P_h(s_{h+1}|s_h, \pi(s_h)) V_{h+1,M^r}^\pi(s_{h+1}) \right) \\
 & = |S| \cdot r \cdot H + \sum_{s_h \notin U_h(r)} d_{M^r}^\pi(s_{h+1}, h+1) (V_{h+1,M}^\pi(s_{h+1}) - V_{h+1,M^r}^\pi(s_{h+1})) \\
 & \stackrel{(4)}{=} |S| \cdot r \cdot H + \sum_{s_{h+1} \in S} d_{M^r}^\pi(s_{h+1}, h+1) (V_{h+1,M}^\pi(s_{h+1}) - V_{h+1,M^r}^\pi(s_{h+1}))
 \end{aligned}$$

- **Step (1):** The first equality arises because for all $s_h \in U_h(r)$, the value function $V_{h,M^r}^\pi(s_h) = 0$.
- **Step (2):** The inequality follows from the definition of $d_{M^r}^\pi(s_h, h) \leq r$ and the fact that $V_{h,M}^\pi(s_h) \leq H$. This ensures that the first term in the sum is bounded by $|S| \cdot r \cdot H$.
- **Step (3):** The equality holds because for all $s_h \notin U_h(r)$, the transition probability $P_h(s_{h+1}|s_h, \pi(s_h))$ under the original model M is identical to that under the modified model M^r , i.e., $P_h(s_{h+1}|s_h, \pi(s_h)) = P_h^r(s_{h+1}|s_h, \pi(s_h))$. Thus, the only difference in the value functions is the difference in the values at the next time step.
- **Step (4):** The final equality follows from interchanging the order of summation, allowing us to express the sum over s_h as a sum over s_{h+1} .

2210 Next, we observe that

$$V_{0,M}^\pi(s_0) - V_{0,M^r}^\pi(s_0) \stackrel{(5)}{=} \sum_{s_1 \in S} d_{M^r}^\pi(s_1, 1) (V_{1,M}^\pi(s_1) - V_{1,M^r}^\pi(s_1)),$$

2215 where **Step (5):** holds because s_0 is the fixed initial state, and by definition, $d_{M^r}^\pi(s_1, 1) = d_M^\pi(s_1, 1) = P_0(s_1|s_0, \pi(s_0))$.

2218 By recursively applying the same reasoning for each time step h , we obtain the following upper bound:

$$V_{0,M}^\pi(s_0) - V_{0,M^r}^\pi(s_0) \leq |S| \cdot r \cdot H^2.$$

2222 Thus, we conclude that

$$0 \leq V_M^\pi - V_{M^r}^\pi \leq H^2 |S| r.$$

□

2226 **Lemma G.4.** For any policy π , we have
 2227

$$2228 \quad 0 \leq V_M^\pi - V_{\overline{M}^r}^\pi \leq H^2 |S|r,$$

2230 where \overline{M}^r is defined as in Definition F.4 and $|S|$ is the size of the state space.
 2231

2233 *Proof.* Clearly, $V_M^\pi - V_{\overline{M}^r}^\pi \geq 0$.
 2234

2235 By the similar analysis as above, we observe that for any h and $s_h \in S$, the following holds:
 2236

$$\begin{aligned} & \sum_{s_h \in S} d_{M^r}^\pi(s_h, h) \left(V_{h,M}^\pi(s_h) - V_{h,\overline{M}^r}^\pi(s_h) \right) \\ &= \sum_{s_h \in T_h(r)} d_{\overline{M}^r}^\pi(s_h, h) V_{h,M}^\pi(s_h) + \sum_{s_h \notin T_h(r)} d_{\overline{M}^r}^\pi(s_h, h) \left(V_{h,M}^\pi(s_h) - V_{h,\overline{M}^r}^\pi(s_h) \right) \\ &\stackrel{(1)}{\leq} |S| \cdot r \cdot H + \sum_{s_h \notin T_h(r)} d_{\overline{M}^r}^\pi(s_h, h) \left(V_{h,M}^\pi(s_h) - V_{h,\overline{M}^r}^\pi(s_h) \right) \\ &= |S| \cdot r \cdot H + \sum_{s_h \notin T_h(r)} d_{\overline{M}^r}^\pi(s_0, h) \left(r_h(s_h, \pi(s_h)) + \sum_{s_{h+1} \in S} P_h(s_{h+1} | s_h, \pi(s_h)) V_{h+1,M}^\pi(s_{h+1}) \right. \\ &\quad \left. - r_h(s_h, \pi(s_h)) - \sum_{s_{h+1} \in S} P_h(s_{h+1} | s_h, \pi(s_h)) V_{h+1,\overline{M}^r}^\pi(s_{h+1}) \right) \\ &= |S| \cdot r \cdot H + \sum_{s_{h+1} \in S} d_{\overline{M}^r}^\pi(s_{h+1}, h+1) \left(V_{h+1,M}^\pi(s_{h+1}) - V_{h+1,\overline{M}^r}^\pi(s_{h+1}) \right) \end{aligned}$$

2255 • **Step (1):** The inequality follows from the definition of $d_{\overline{M}^r}^\pi(s_h, h) \leq \max_\pi \Pr[s_h = s | M, \pi] \leq r$ and
 2256 the fact that $V_{h,M}^\pi(s_h) \leq H$. This ensures that the first term in the sum is bounded by $|S| \cdot r \cdot H$.
 2257

2258 Next, we observe that
 2259

$$2261 \quad V_{0,M}^\pi(s_0) - V_{0,\overline{M}^r}^\pi(s_0) = \sum_{s_1 \in S} d_{\overline{M}^r}^\pi(s_1, 1) \left(V_{1,M}^\pi(s_1) - V_{1,\overline{M}^r}^\pi(s_1) \right),$$

2264 By recursively applying the same reasoning for each time step h , we obtain the following upper bound:
 2265

$$2266 \quad V_{0,M}^\pi(s_0) - V_{0,\overline{M}^r}^\pi(s_0) \leq |S| \cdot r \cdot H^2.$$

2268 Thus, we conclude that
 2269

$$2270 \quad 0 \leq V_M^\pi - V_{\overline{M}^r}^\pi \leq H^2 |S|r.$$

2271 \square

2274 H HARDNESS RESULT

2275 **Definition H.1** (BESTARM Problem). Consider a k -armed bandit problem. Let k be the number of arms, and fix
 2276 parameters $\epsilon > 0$ and $\delta \in (0, 1)$. The (k, ϵ, δ) -BESTARM problem is defined as follows: given access to k arms,
 2277

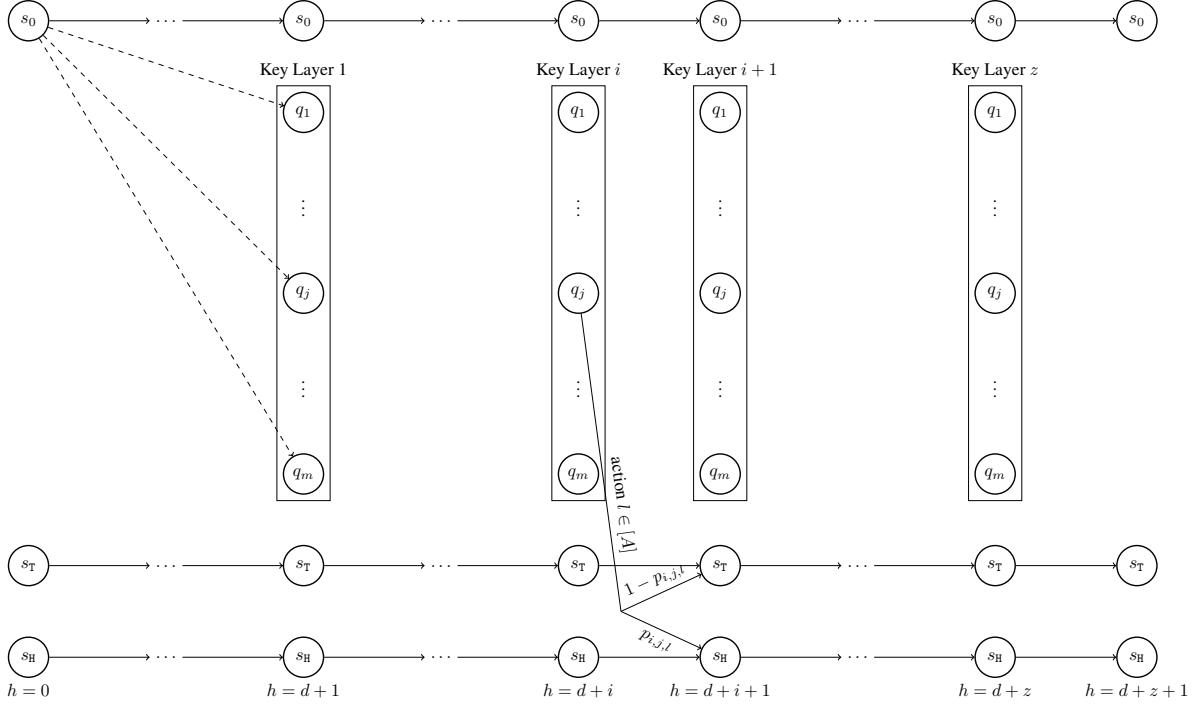


Figure 10: MDP to solve BESTARM.

each associated with an unknown distribution (e.g., Bernoulli), the goal for an algorithm is to identify an arm whose mean reward is within ϵ of the best arms mean, with probability at least $1 - \delta$.

Lemma H.2 (Chen et al., 2025)). Consider a k -armed bandit problem. Let $\epsilon \leq \frac{1}{2k}$ and $\delta \leq \frac{1}{k+1}$. Then, there exists no $(k-1)$ -list replicable algorithm for the (k, ϵ, δ) -BESTARM problem, even when each arm follows a Bernoulli distribution and an unbounded number of samples is allowed.

Theorem H.3. Suppose there exists a weakly ℓ -list replicable RL algorithm that interacts with an MDP M with state space S , action space A , and horizon length H , such that there is a list of policies $\Pi(M)$ with cardinality at most ℓ that depend only on M , so that with probability at least $1 - \delta$, π is ϵ -optimal and $\pi \in \Pi(M)$, where π is the near-optimal policy returned by the algorithm when interacting with M . Suppose $\epsilon \leq \frac{1}{2|S||A|H}$ and $\delta \leq \frac{1}{|S||A|H+1}$. Then it must hold that

$$\ell \geq \frac{|S||A| \left(H - \lceil \log_{|A|} |S| \rceil - 3 \right)}{3}.$$

Proof. Assume for contradiction that there exists an RL algorithm that satisfies the conditions of the theorem, with

$$\ell < \frac{|S||A| \left(H - \lceil \log_{|A|} |S| \rceil - 3 \right)}{3}.$$

We will show that this assumption leads to a contradiction with Lemma H.2.

Without loss of generality, assume $|S|$ is divisible by 3. Let $m = |S|/3$, $n = |A|$, $z = H - \lceil \log_n m \rceil - 3$, and define $k = mnz$. We now construct a reduction from the k -armed bandit problem (with Bernoulli rewards) to an MDP instance.

We index the k arms by triplets (i, j, ℓ) , where $i \in [z]$, $j \in [m]$, and $\ell \in [n]$. Each arm is associated with a Bernoulli distribution $D_{i,j,\ell}$ with mean $p_{i,j,\ell}$. We will design an MDP M such that interacting with it corresponds to querying these k arms.

Key Layer Construction. Let $\{q_1, \dots, q_m\} \subset S$ denote a set of m designated *key-layer* states (illustrated in Figure 10). We will construct the MDP such that for each $i \in [z]$ and $j \in [m]$, there exists a unique deterministic policy that reaches state q_j precisely at time step $h_i = d + i$, where $d = \lceil \log_n m \rceil$.

Once in state q_j at time h_i , the agent can choose action $a_\ell \in A$ to simulate pulling arm (i, j, ℓ) . Let $s_H, s_T \in S$ denote two absorbing states. We define

$$\forall (i, j, \ell), \quad P_{h_i}(s_H \mid q_j, a_\ell) = p_{i,j,\ell}, \quad P_{h_i}(s_T \mid q_j, a_\ell) = 1 - p_{i,j,\ell}.$$

and for all h, a : $r_h(s_H, a) = \mathbb{1}[h = H - 1]$ and $r_h(s_T, a) = 0$. Both s_H and s_T are absorbing: $P(s' \mid s_H, a) = \mathbb{1}[s' = s_H]$ and similarly for s_T .

Auxiliary Structure. We now describe the deterministic routing structure that reaches each q_j in exactly d steps. We construct a complete n -ary tree rooted at a state $w_1 \in S$. Every non-leaf state in the tree has n children, one for each action in A , and transitions deterministically based on the action played.

The final layer connects to key-layer states q_1, \dots, q_m . There may be more than m leaf actions; any excess actions simply self-loop. The tree has depth d , requires at most $2m$ states, and all transitions have reward zero. Transitions are time-homogeneous.

Initial State and Entry Mechanism. Let $s_0 \in S$ be the initial state. Define its transitions as follows:

1. Playing a designated action $a_0 \in A$ transitions to the root w_1 of the n -ary tree;
2. Playing a designated action $a_1 \in A$ causes the agent to remain in s_0 ;
3. All other actions lead to s_T .

To reach a key-layer state q_j at time $h_i = d + i$, a policy selects a_1 for i time steps in s_0 , followed by action a_0 to enter the tree, and then a sequence of d actions that leads to q_j . From there, it plays a_ℓ to simulate arm (i, j, ℓ) .

Correctness of the Reduction. This construction yields a one-to-one correspondence between bandit arms and deterministic policies in the MDP that reach q_j at h_i and play a_ℓ . Thus, any ϵ -optimal policy in the MDP induces an ϵ -optimal arm in the bandit problem. Note also that all non-rewarding policies cannot match the optimal value due to the delayed structure and reward placement.

Contradiction. Now suppose we run the assumed RL algorithm on this MDP. By hypothesis, the algorithm returns a ϵ -optimal policy that lies in a list of ℓ policies with $\ell < k = mnz$, with probability at least $1 - \delta$, where $\epsilon \leq \frac{1}{2k}$ and $\delta \leq \frac{1}{k+1}$. Since each policy corresponds to a unique arm, this implies the existence of a $(k - 1)$ -list replicable algorithm for the (k, ϵ, δ) -BESTARM problem. This contradicts Lemma H.2, completing the proof. \square

2385 I EXPERIMENTS OF MORE COMPLEX ENVIRONMENT

2388 All our experiments are performed based on environments in the Gymnasium (Towers et al., 2024) package, and
 2389 we use the PyTorch 2.1.2 for training neural networks. We use fixed random seeds in our experiments for better
 2390 reproducibility.

2394 I.1 CARTPOLE-v1 WITH DQN

2397 We evaluate the performance of the DQN algorithm (Mnih et al., 2015) on `CartPole-v1`, where we replace the
 2398 planning algorithm with our robust planner (Algorithm 1) in Section 5.

2400 Network Architecture:

2401 We use a feedforward neural network to approximate the Q-function.

- 2405 • Input layer: 4-dimensional state vector
- 2408 • Hidden layer 1: Fully connected, 64 units, ReLU
- 2411 • Hidden layer 2: Fully connected, 64 units, ReLU
- 2414 • Output layer: Fully connected, 2 units (Q-values)

2416 Experience Replay:

- 2418 • Buffer capacity: 10^5 transitions stored in a FIFO deque
- 2421 • Batch size: $B = 256$
- 2424 • Learning begins once buffer size $\geq B$

2427 Target Network Updates:

- 2429 • Two networks: local (θ) and target (θ^-)
- 2432 • We use soft target updates to stabilize learning. After every Q-network update (which occurs every
 2433 step once the buffer contains ≥ 256 transitions), the target network parameters are softly updated using
 2434 $\theta_{\text{target}} \leftarrow \tau \theta_{\text{online}} + (1 - \tau) \theta_{\text{target}}$ with $\tau = 0.001$.

2437 Hyperparameters:

2438	Parameter	Symbol	Value(s)	Description
2439	Learning rate	α	2.5×10^{-3}	Adam optimizer step size
2440	Discount factor	γ	0.99	Future reward discount
2441	Replay batch size	B	256	Transitions per learning update
2442	Replay buffer capacity	N	10^5	Max number of stored transitions
2443	Soft update factor	τ	10^{-3}	Target network mixing coefficient
2444	Exploration start	ϵ_0	1.0	Initial exploration probability
2445	Exploration end	ϵ_{\min}	0.01	Minimum exploration probability
2446	Exploration decay	ϵ_{decay}	0.997	Multiplicative decay per episode
2447	Training episodes	—	400	Total training episodes
2448	Max steps per episode	—	500	Episode length limit
2449	Evaluation episodes	—	100	Used to compute mean returns
2450	Independent runs	—	50	Used to report mean/std
2451				

2455 Training Procedure:

- 2457 1. Initialize local and target networks; create empty replay buffer.
- 2458 2. For each episode:
 - 2459 • Reset environment; compute $\epsilon_t = \max(\epsilon_{\min}, \epsilon_0 \cdot \epsilon_{\text{decay}}^t)$
 - 2460 • For each step t :
 - 2461 – Select action using ϵ -greedy or Algorithm 1
 - 2462 – Store transition (s, a, r, s') in the replay buffer
 - 2463 – If buffer size $\geq B$, sample mini-batch and update Q-network
 - 2464 – Update target network using soft update rule

2465 When invoking Algorithm 1, we use the Q-network as our estimate of $Q_{h, \hat{M}}^*$, and select actions using Algorithm 1
 2466 with $r_{\text{action}} \in \{0.0, 0.05, 0.1, 0.5\}$. Note that when $r_{\text{action}} = 0$, Algorithm 1 is equivalent to picking actions that
 2467 maximize the estimated Q -value as in the original DQN algorithm.

2472 Evaluation Protocol:

2473 Every 10 training episodes, we evaluate the policy over 100 test episodes, where each episode is initialized using
 2474 a fixed random seed for reproducibility. During the evaluation, we disable ϵ -greedy but still use Algorithm 1 to
 2475 choose actions. In Figure 1(a), we report the average award of the trained policy, \pm standard deviation, across
 2476 different runs.

2479 I.2 ACROBOT-v1 WITH DOUBLE DQN

2480 We evaluate the performance of the Double DQN algorithm (Van Hasselt et al., 2016) on Acrobot-v1, where
 2481 we replace the planning algorithm with our robust planner (Algorithm 1) in Section 5.

2482 **Network Architecture:** We use a feedforward neural network to approximate the Q-function.

- 2483 • Input layer: state vector (dim = 6)
- 2484 • Hidden layers: 256 512 512 units, ReLU activations
- 2485 • Output layer: Q-values for each action (dim = 3)

2491 **Hyperparameters:**

2493	Parameter	Symbol	Value(s)	Description
2495	Learning rate	α	1×10^{-5}	Adam step size
2496	Discount factor	γ	0.99	Future reward discount
2497	Batch size	B	8192	Samples per update
2498	Replay capacity	N	5×10^4	Max transitions stored
2499	Target update freq.	–	100 steps	Hard copy interval
2500	Initial ε	ε_0	1.0	Exploration start
2501	Min ε	ε_{\min}	0.01	Exploration floor
2502	ε -decay	δ	5×10^{-4}	Exploration decay per episode
2503	Training epochs	–	90	Total learning epochs
2504	Eval interval	–	10 episodes	Test frequency
2505	Eval episodes	–	100 runs	Used to compute mean returns
2506	Independent runs	–	25	Used to report mean/std

2510 **Replay Buffer:**

2511 • Capacity: 50,000 transitions
 2512 • Batch size: $B = 8192$

2517 **Training Procedure:**

2518 1. Initialize networks, replay buffer, and seeds.
 2519 2. For each episode t :
 2520 • Reset environment; compute $\varepsilon_t = \max(\varepsilon_{\min}, \varepsilon_0 - t\delta)$
 2521 • For each step:
 2522 – Select action using ε -greedy or Algorithm 1
 2523 – Store transition (s, a, r, s') in the replay buffer.
 2524 – If buffer size $\geq B$, sample mini-batch and update Q-network using double Q-learning
 2525 – Every 100 learning steps, replace target weights

2526 When invoking Algorithm 1, we use the Q-network as our estimate of $Q_{h, \hat{M}}^*$, and select actions using Algorithm 1
 2527 with $r_{\text{action}} \in \{0, 0.05, 0.1, 0.2\}$. Note that when $r_{\text{action}} = 0$, Algorithm 1 is equivalent to picking actions that
 2528 maximize the estimated Q-value as in the original Double DQN algorithm.

2529 **Evaluation Protocol:**

2530 Same as Section I.1.

2531 **I.3 MOUNTAINCAR-v0 WITH TABULAR Q-LEARNING**

2532 We evaluate the performance of the Q-Learning on MountainCar-v0, where we replace the planning algorithm
 2533 with our robust planner (Algorithm 1) in Section 5.

2544 **State Discretization:**

2545

- 2546 • Discretized into a 20×20 grid
- 2547 • Bin size computed from environment bounds
- 2548 • Discrete state: `tuple((s - smin)/Δs)`

2551 **Q-table:**

2552

- 2553 • Shape: (20, 20, 3)
- 2554 • Initialized uniformly in $[-2, 0]$

2558 **Hyperparameters:**

2559	Parameter	Symbol	Value(s)	Description
2560	Learning rate	α	0.1	Q-learning update step
2561	Discount factor	γ	0.95	Discount for future rewards
2562	Exploration schedule	ϵ	$\max(0.01, 1 - t/500)$	Episode-based decay
2563	State bins	–	20×20	For discretization
2564	Training episodes	–	10,000	Total learning episodes
2565	Evaluation interval	–	200	Test policy every 200 episodes
2566	Test episodes	–	100	Used to compute mean returns
2567	Independent runs	–	25	Used to report mean/std

2572 **Training Procedure:**

2573 For each episode t :

2574

- 2575 • Reset environment; discretize initial state; compute $\epsilon_t = \max(0.01, 1 - t/500)$
- 2576 • Select actions using ϵ -greedy or Algorithm 1
- 2577 • Update Q-table with learning rate $\alpha = 0.1$ and discount factor $\gamma = 0.95$:

$$2581 \quad Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') \right]$$

2582

- 2583 • If terminal state is reached and the goal is achieved, set $Q(s, a) \leftarrow 0$

2584 When invoking Algorithm 1, we use the Q-table as our estimate of $Q_{h, \hat{M}}^*$, and select actions using Algorithm 1 with $r_{\text{action}} \in \{0, 0.001, 0.005, 0.02\}$. Note that when $r_{\text{action}} = 0$, Algorithm 1 is equivalent to picking actions that maximize the estimated Q-value as in the original Q-learning algorithm.

2585

2586 **Evaluation Protocol:** Same as Section I.1.

2587 **I.4 NAMETHISGAME WITH BEYOND THE RAINBOW**

2588 We evaluate the performance of the Beyond The Rainbow on Namethisgame, where we replace the planning
2589 algorithm with our robust planner (Algorithm 1) in Section 5.

2597 **Environment:**

2598

2599

2600 • Domain: Atari 2600, evaluated on NameThisGame

2601

2602

2603

2604 • Simulator: ALE with frame skip = 4

2605

2606

2607

2608 • Observations: grayscale 84×84 stacked frames

2609

2610

2611 • Actions: discrete Atari action set

2612

2613

2614

2615

2616 **Baseline:**

2617

2618

2619 • Algorithm: BTR (Bootstrapped Transformer Reinforcement learning)

2620

2621

2622

2623 • Training budget: 100M Atari frames

2624

2625

2626

2627

2628 **Threshold Strategy:**

2629

2630

2631 • Planner augmented with a decaying action-threshold rule

2632

2633

2634

2635 • At each decision point, we select

2636

2637
$$a = \arg \max_{a'} Q(s, a') \quad \text{subject to} \quad Q(s, a) \geq \max_{a'} Q(s, a') - r_{\text{action}}(t),$$

2638

2639 where $r_{\text{action}}(t)$ is a step-dependent threshold

2640

2641

2642

2643 • Decay schedule:

2644
$$r_{\text{action}}(t) = 0.4 \times (0.98)^{\lfloor t/5000 \rfloor},$$

2645 with t denoting the training step index

2646

2647

2648

2649 • When $r_{\text{action}}(t) \rightarrow 0$, the method reduces to the vanilla BTR algorithm

Parameter	Symbol	Value(s)	Description
Learning rate	lr	1×10^{-4}	Optimizer step size (Adam/AdamW)
Discount factor	γ	0.997	Discount for future rewards
Batch size	B	256	Mini-batch size for updates
Replay buffer size	–	10^6	PER capacity
PER coefficient	α	0.2	Priority exponent
PER annealing	β	$0.45 \rightarrow 1.0$	Importance weight schedule
Gradient clipping	–	10.0	Norm clipping for stability
Target update	–	500 steps	Replace target network
Slow net update	–	5000 steps	Replace slow network
Optimizer	–	Adam/AdamW	With $\epsilon = 0.005/B$
Loss function	–	Huber	Temporal difference loss
Replay ratio	–	1.0	Grad updates per env step
Exploration schedule	ϵ	$1.0 \rightarrow 0.01$ (2M steps)	ϵ -greedy decay
Noisy layers	–	Enabled	Factorized Gaussian noise
Network arch.	–	Impala-IQN / C51	Conv backbone + distributional head
Model size	–	2	Scale factor for Impala CNN
Linear hidden size	–	512	Fully-connected layer width
Cosine embeddings	n_{\cos}	64	IQN quantile embedding size
Number of quantiles	τ	8	Quantile samples for IQN
Frame stack	–	4	History frames per state
Image size	–	84×84	Input resolution
Trust-region	–	Disabled	Optional stabilizer
EMA stabilizer	τ	0.001	Soft target update (if enabled)
Munchausen	α	0.9	Entropy regularization (if enabled)
Distributional	–	C51/IQN	Distributional RL variants
Threshold start	D_{start}	0.4	Initial threshold ratio
Threshold decay	D_{decay}	0.98	Multiplicative decay factor
Threshold interval	–	5000 steps	Decay period
D-strategy	–	none / minnumber / lastact / slownet	Action selection rule
Training frames	–	200M	Total Atari interaction budget
Evaluation freq.	–	250k frames	Eval episodes per checkpoint
Independent runs	–	5 seeds	Reported mean/std

Training Procedure:

- Interact with the environment for 100M frames using ϵ -greedy exploration
- Store transitions into a replay buffer and update the Q-network with Adam optimizer
- Report mean and standard deviation over 5 independent seeds

We observe that augmenting BTR with the threshold strategy improves performance in NameThisGame by over 10% compared to the baseline.

2703 **J LLM USAGE**
27042705 We used large language models (LLMs) only for minor language polishing and for assistance in generating plotting
2706 scripts. No LLMs were involved in the research ideation, theoretical derivations, experiment design, or analysis.
2707 All scientific contributions of this work are entirely our own.
27082709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755