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ABSTRACT

Replicability is a fundamental challenge in reinforcement learning (RL), as RL algorithms are
empirically observed to be unstable and sensitive to variations in training conditions. To formally
address this issue, we study list replicability in the Probably Approximately Correct (PAC) RL
framework, where an algorithm must return a near-optimal policy that lies in a small list of
policies across different runs, with high probability. The size of this list defines the list complexity.
We introduce both weak and strong forms of list replicability: the weak form ensures that the
final learned policy belongs to a small list, while the strong form further requires that the entire
sequence of executed policies remains constrained. These objectives are challenging, as existing
RL algorithms exhibit exponential list complexity due to their instability. Our main theoretical
contribution is a provably efficient tabular RL algorithm that guarantees list replicability by
ensuring the list complexity remains polynomial in the number of states, actions, and the horizon
length. We further extend our techniques to achieve strong list replicability, bounding the number
of possible policy execution traces polynomially with high probability. Our theoretical result
is made possible by key innovations including (i) a novel planning strategy that selects actions
based on lexicographic order among near-optimal choices within a randomly chosen tolerance
threshold, and (ii) a mechanism for testing state reachability in stochastic environments while
preserving replicability. Finally, we demonstrate that our theoretical investigation sheds light
on resolving the instability issue of RL algorithms used in practice. In particular, we show that
empirically, our new planning strategy can be incorporated into practical RL frameworks to
enhance their stability.

1 INTRODUCTION

The issue of replicability (or lack thereof) has been a major concern in many scientific areas (Begley and Ellis,
2012; Toannidis, 2005; Baker, 2016; of Sciences et al., 2019). In machine learning, a common strategy to ensure
replicability and reproducibility is to publicly share datasets and code. Indeed, several prominent machine learning
conferences have hosted reproducibility challenges to promote best practices (Sinha et al., 2023). However, this
approach may not be sufficient, as machine learning algorithms rely on sampling from data distributions and
often incorporate randomness. This inherent stochasticity leads to non-replicability. A more effective solution is
to design replicable algorithms— ideally algorithms that consistently produce the same output across multiple
runs, even when each run processes a different sample from the data distribution. This approach has recently
spurred theoretical investigations, resulting in formal definitions of replicability and the development of various
replicability frameworks (Impagliazzo et al., 2022; Dixon et al., 2023). In this paper, we focus on the notion of
list replicability (Dixon et al., 2023). Informally, a learning algorithm is k-list replicable if there is a list L of
cardinality k of good hypotheses so that the algorithm always outputs a hypothesis in L with high probability. & is
called the list complexity of the algorithm. List replicability generalizes perfect replicability, which corresponds to
the special case where &k = 1. However, as noted in Dixon et al. (2023), perfect replicability is unattainable even
for simple problems. List replicability provides a natural relaxation, allowing meaningful guarantees while still
ensuring controlled variability in algorithm outputs.

We investigate list replicability in the context of reinforcement learning (RL), or more specifically, probably
approximately correct (PAC) RL in the tabular setting. In RL, an agent interacts with an unknown environment
modeled as a Markov decision process (MDP) in which there is a set of states .S with bounded size that describes
all possible status of the environment. At a state s € S, the agent interacts with the environment by taking an action
a from an action space A, receives an immediate reward and transits to the next state. The agent interacts with the
environment episodically, where each episode consists of H steps. The goal of the agent is to interact with the
environment by executing a series a policies, so that after a certain number of interactions, sufficient information
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is collected so that the agent could find a policy that performs nearly optimally. Replicability is a well-known
challenge in RL, as RL algorithms are empirically observed to be unstable and sensitive to variations in training
conditions. Our work aims to address this issue by introducing and analyzing list replicability in the PAC-RL
framework. Moreover, by studying the replicability of RL from a theoretical point of view, we could build a clearer
understanding of the instability issue of RL algorithms, and finally make progress towards enhancing the stability
of empirical RL algorithms.

Theoretically, there are multiple ways to define the notion of list replicability in the context of RL. We may say
an RL algorithm is k-list replicable, if there is a list L of policies with cardinality &, so that the near-optimal
policy found by the agent always lies in L with high probability, where the list L depends only on the unknown
MDP instance. Under this definition of list replicability, it is only guaranteed that the returned policy lies in a list
with small size: there is no limit on the sequence of policies executed by the agent (the trace). We call such RL
algorithms to be weakly k-list replicable.

In certain applications, the above weak notion of list replicability may not suffice, and a more desirable notion
of list replicability is to require both the returned policy and the trace (i.e., sequence of policies executed by the
agent) lies in a list of small-size. This stronger notion of list replicability has been studied in multi-armed bandit
(MAB) (Chen et al., 2025), and similar definition of replicability has been studied by Esfandiari et al. (2023) in
MAB under p-replicability (Impagliazzo et al., 2022). In these work, it has been argued that limiting the number of
possible traces (in terms of actions) of an MAB algorithm is more desirable in scenarios including clinical trials
and social experiments. Therefore, the stronger notion of list replicability for RL mentioned above is a natural
generalization of existing replicability definitions in MAB, and in this work, we say an RL algorithm to be strongly
k-list replicable if such stronger notion (in terms of traces of policies) of list replicability holds.

The central theoretical question studied in this work is whether we can design list replicable PAC RL algorithms in
the tabular setting. We give an affirmative answer to this question. We note that existing algorithms can potentially
generate an exponentially large number of policies (and their execution traces) for the same problem instance, and
hence, new techniques are needed to achieve our goal.

Interestingly, our theoretical investigation offers insights into addressing the instability commonly observed in
practical RL algorithms. In particular, the new technical tools developed through our analysis can be integrated into
existing RL frameworks to enhance their stability.

Below we give a more detailed description of our theoretical and empirical contributions.

Theoretical Contributions. Our first theoretical result is a black-box reduction which converts any PAC RL
algorithm in the tabular setting to one that is weakly k-list replicable with k = O(|S|?| A|H?). Here, |S]| is the
number of states, | A| is the number of actions and H is the horizon length. Due to space limitation, the description
of the reduction and its analysis is deferred to Appendix D.

Theorem 1.1 (Informal version of Theorem D.1). Given a RL algorithm A(eg, do) that interacts with an unknown
MDP and returns an eq-optimal policy with probability at least 1 — &g. There is a weakly k-list replicable algorithm
(Algorithm 3) with k = O(|S|?|A|H?) that makes |S|H calls to A with ey = W‘M and 6o = 6/ (8|S||H]).
For any unknown MDP instance M, with probability at least 1 — 6, the algorithm returns an e-optimal policy
m € II(M), where IL(M) is a list of policies that depends only on the underlying MDP M with size |IL(M)| = k.

Using PAC RL algorithms in the tabular setting (e.g. the algorithm by Kearns and Singh (1998a)) with sample
complexity polynomial in |S|, |A|, H, 1/eq and log(1/d0)) as A, the final sample complexity of our weakly k-list
replicable algorithm in Theorem 1.1 would be polynomial in |S|, |A|, H, 1/e and 1/6. Compared to existing
algorithms in the tabular setting, the sample complexity of our algorithm has much worse dependence on 1/§
(polynomial dependence instead of logarithm dependence), which is common for algorithms with list replicability
guarantees (Dixon et al., 2023). On the other hand, the list complexity & of our algorithm has no dependence on 4.

Our second result is a new RL algorithm that is strongly k-list replicable with k = O(|S|3| A|H?).

Theorem 1.2 (Informal version of Theorem 6.1). There is a strongly k-list replicable algorithm (Algorithm 2) with
k= O(|S|3|A|H?), such that for any unknown MDP instance M, with probability at least 1 — §, the algorithm
returns an e-optimal policy, and the sequence of policies executed by the algorithm and the returned policy lies in a
list with size k that depends only on M. Moreover, the sample complexity of the algorithm is polynomial in |S
H,1/¢ 1/4.

’ )
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Our second result shows that, perhaps surprisingly, even under the more stringent definition of list replicability,
designing RL algorithm in the tabular setting with polynomial sample complexity and polynomial list complexity
is still possible. The description of Algorithm 2 is given in Section 6.

Finally, we prove a hardness result on the list complexity of weakly replicable RL algorithm in the tabular setting,
completing our new algorithms.
Theorem 1.3 (Informal version of Theorem F.3). For any weakly k-list replicable RL algorithm that returns an

, . . . [S||A|(H —Tlog, 4, |S]1—3)
e-optimal policy with probability at least 1 — 0, we have k > 3 4]

1
o< |S||A|H+1"

1
as long as € < SETATH and

Theorem 1.3 shows that the list complexity of any weakly k-list replicable algorithm is (S AH ), provided that its
suboptimality and failure probability are both at most O(1/(SAH)). Theorem 1.3 is proved by a reduction from
RL to the MAB and known list complexity lower bound for MAB (Chen et al., 2025). Its formal proof can be
found in Appendix F.

Empirical Contributions. We further show that our robust planner (presented in Section 5), one of our new
technical tools for establishing Theorem 1.1 and Theorem 1.2, can be incorporated into practical RL frameworks to
enhance their stability. The empirical findings are presented in Section 7.

2 RELATED WORK

There is a long line of research dedicated to understanding the complexity of reinforcement learning by studying
learning in a Markov Decision Process (MDP). One well-established setting is the generative model, which abstracts
away exploration challenges by assuming access to a simulator that allows sampling from any state-action pair. A
number of works (Kearns and Singh, 1998a; Pananjady and Wainwright, 2020; Kakade, 2003; Azar et al., 2013;
Agarwal et al., 2020; Wainwright, 2019b;a; Sidford et al., 2018a;b; Li et al., 2024b;a; 2022; Even-Dar and Mansour,
2003; Shi et al., 2023; Beck and Srikant, 2012; Cui and Yang, 2021; Sidford et al., 2018b; Wainwright, 2019b;
Azar et al., 2013; Agarwal et al., 2020) have established near-optimal sample complexity bounds for learning
a policy in this regime. Specifically, to learn an e-optimal policy with high probability, the statistically optimal
sample complexity is of the order poly(|S|, |A|, H, 1/¢), where H denotes the horizon or the effective horizon of
the environment. These algorithms generally fall into two categories: those that estimate the probability transition
model and those that directly estimate the optimal Q-function. However, due to the inherent randomness in
sampling, these approaches do not guarantee list-replicable policies—each independent execution of the algorithm
may return a different policy, potentially leading to an exponentially large set of output policies.

In contrast, the online RL setting—where there is no access to a generative model—has seen significant progress
over the past decades in optimizing sample complexity. Notable contributions include (Kearns and Singh, 1998b;
Brafman and Tennenholtz, 2002; Kakade, 2003; Strehl et al., 2009; Auer, 2002; Strehl et al., 2006; Strehl and
Littman, 2008; Kolter and Ng, 2009; Bartlett and Tewari, 2009; Jaksch et al., 2010; Szita and Szepesvari, 2010;
Lattimore and Hutter, 2012; Osband et al., 2013; Dann and Brunskill, 2015; Agrawal and Jia, 2017; Dann et al.,
2017; Jin et al., 2018; Efroni et al., 2019; Fruit et al., 2018; Zanette and Brunskill, 2019; Cai et al., 2019; Dong et al.,
2019; Russo, 2019; Neu and Pike-Burke, 2020; Zhang et al., 2020; 2021; Tarbouriech et al., 2021; Xiong et al.,
2022; Ménard et al., 2021; Wang et al., 2020; Li et al., 2021b;a; Domingues et al., 2021; Zhang et al., 2022). These
works typically evaluate algorithmic performance within the regret framework, comparing the accumulated reward
of an algorithm against that of an optimal policy. When adapted to the Probably Approximately Correct (PAC) RL
framework, these results imply a sample complexity of poly(|.S|, | A|, H, 1/¢) to learn an e-optimal policy with high
probability. To achieve a balance between exploration and exploitation, the aforementioned algorithms generally
follow a common iterative framework—maintaining a policy and refining it as new data is collected. For example,
UCB-type algorithms (e.g., Jin et al. (2018)) maintain an approximate ()-function and leverage an upper-confidence
bound to guide data collection. However, due to the iterative updates of these algorithms, they inherently fail to
achieve polynomial complexity in either the strong or the weak notion of list replicability, as policies are likely to
change at each iteration, and small stochastic error could have significant impact on the policies executed by the
algorithm.

Recent studies have begun exploring replicable reinforcement learning. (Karbasi et al., 2024; Eaton et al., 2023)
examined p-replicability, as defined in (Impagliazzo et al., 2022). Intuitively, p-replicability ensures that two
executions of the same algorithm, when initialized with the same random seed, yield the same policy with probability
at least 1 — §. Meanwhile, (k, §)-weak list replicability requires that an algorithm consistently outputs a policy
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from a fixed list of at most & policies with probability at least 1 — §. However, a p-replicable algorithm may still
generate an exponentially large number of distinct policies, as each seed may correspond to a different output policy.
Thus, such algorithms may still suffer from exponential weak (or strong) list complexity. (Esfandiari et al., 2023)
further studied the Multi-Armed Bandit (MAB) problem under p-replicability, where two independent executions
of a p-replicable MAB algorithm, sharing the same random string, must follow the same sequence of actions with
probability at least 1 — p.

In the online learning setting, the only known work addressing list replicability is by Chen et al. (2025), who
studied the concept in the context of Multi-Armed Bandits (MAB). The authors define an MAB algorithm as
(k, 9)-list replicable if, for any MAB instance, there exists a list of at most k action traces such that the algorithm
selects one of these traces with probability at least 1 — §. Our definition of strong list replicability for RL naturally
extends this notion to RL. However, due to the long-horizon nature of RL, achieving list replicability in RL presents
significantly greater challenges.

3 PRELIMINARIES

Notations. For a positive integer N, we use [N] to denote {0, 1,..., N — 1}. For a condition &£, we use 1[€] to
denote the indicator function, i.e., 1[{€] = 1 if £ holds and 1[€] = 0 otherwise. For a real number z and € > 0,
we use Ball(z, €) to denote [x — €, z + €]. For two real numbers a < b, we use Unif(a, b) to denote the uniform
distribution over (a, b).

Markov Decision Process. Let M = (S, A, P, R, H, s¢) be a Markov Decision Process (MDP). Here, S is the state
space, and A = {1,2,...,|Al} is the action space. P = (Pp,)ne(z), Where for each h € [H]|, P, : S x A — A(S)
is the transition model at level & which maps a state-action pair to a distribution over states. R = (Rp)ne[m), Where
foreach h € [H], Ry, : S x A — [0,1] is the deterministic reward function at level h. H € Z* is the horizon
length, and s¢ € S is the initial state. We further assume that the reward functions R = (Rp,)pe[p] are known. :

A (non-stationary) policy 7 chooses an action a € A based on the current state s € S and the time step h € [H].
Formally, 7 = {m,};/~; where for each h € [H], 7, : S — A maps a given state to an action. The policy
induces a (random) trajectory So, ag, 7o, S1, 41,71, - - -y SH—1,@H—1,7H—1, Where for each h € [H], ap, = mx(sp),
Ty = Rh(sh, ah) and Sha1 ™~ Ph(sh,ah) when h < H — 1.

Interacting with the MDP. In RL, an agent interacts with an unknown MDP. In the online setting, in each episode,
the agent decides a policy 7, observes the induced trajectory, and proceeds to the next episode. In the generative
model setting, in each round, the agent is allowed to choose a state-action pair (s,a) € S x A and alevel h € [H],
and receives a sample drawn from P, (s, a) as feedback.

Value Functions and Q-Functions. For an MDP M, given a policy 7, alevel h € [H] and (s,a) € S x A, the
Q-function is defined as QZM(S, a)=FE [25;2 Ty | sp = s,an =a, M, 77}, and the value function is defined
as Vit (s) = B[S0 v | s = s, M, | We denote @y (5.a) = QFyy(s,0) and Vi 5, (s) = Vi (s)

where 7* is the optimal policy. We also write Vi, = V") (s0) and Vj; = V{7 (s0) for a policy 7. We may omit
M from the subscript of value functions and @)-functions when M is clear from the context (e.g., when M is the
underlying MDP that the agent interacts with). We say a policy 7 to be e-optimal if V™ > V* —e.

The goal of the agent is to return a near-optimal policy 7 after interacting with the unknown MDP M by executing
a sequence of policies (or by querying the transition model in the generative model).

Further Notations. For an MDP M, define the occupancy function d7,(s,h) = Pr[s;, = s | M, x| and
di;(s, h) = max, Pr[s;, = s | M, n]. We may omit M from the subscript of d7,(s, h) and d},(s, h) when M is
clear from the context. For an MDP M, we write

Gapy, = {Vh*,M(S) —Qhm(s,a) | (s,a) € Sx A h € [H]}. (H

"For simplicity, we assume deterministic rewards and the initial state, and known reward function. Our algorithms can be
easily extended to handle stochastic rewards and initial state, and unknown rewards distributions.
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Two MDPs M; and Ms are said to be e-related if My and M, share the same state space .S, action space A, reward
function and initial state, and for all (s,a) € S x Aand h € [H — 1],

Z ’P}]LV[] (s'| s,a) — PM2(s' | s,a)| < ¢ )
s'eS
where P! is the transition model of M at level h and P2 is that of M at the same level.

List Replicability in RL. We now formally define the notion of list replicability of RL algorithms in the online
setting. For an RL algorithm A, we say A to be weakly (k, §)-list replicable, if for any MDP instance M, there is
a list of policies II(M) with cardinality at most &, so that Pr[r € II(M)] > 1 — d, where T is the (supposedly)
near-optimal policy returned by A when interacting with M.

For an RL algorithm A, we say A to be strongly (k, §)-list replicable, if for any MDP instance M, there is a list
Trace(M) with cardinality at most k, so that Pr[((mo, 71, ...),7) € Trace(M)] > 1 — ¢, where (7g, 71,...) is
the (random) sequence of policies executed by A when interacting with M and 7 is the (supposedly) near-optimal
policy returned by A when interacting with M.

4 OVERVIEW OF NEW TECHNIQUES

In this section, we discuss the techniques for establishing Theorem 1.1 and Theorem 1.2.

The Robust Planner. To motivate our new approach, consider the following simple MDP instance for which most
existing RL algorithms would fail to achieve polynomial list complexity. There is a state s, at each level h € [H],
and the action space is {a1, az}. Atlevel h, if a; is chosen, sy, transitions to s;,+1 with an unknown probability py, ;,
otherwise sy, transitions to an absorbing state. The agent receives a reward of 1 at the last level. For this instance,
if |pn1 — pr,2| = exp(—H), then for all h € [H], no RL algorithm could differentiate pj, 1 and py, 2 unless we
draw an exponential number of samples. Therefore, if the RL algorithm simply returns a policy by maximizing
the estimated optimal @)-values for each sy, then we would choose either a; or as, and hence, there could be oH
different policies returned by the algorithm. As most existing RL algorithms choose actions by maximizing the
estimated (Q-values, they would all fail to achieve polynomial list complexity even for this simple instance. This
also explains why existing RL algorithms tend to be unstable and sensitive to noise.

To better understand our new approach, let us first consider the simpler generative model setting. Standard analysis
shows that by taking sufficient samples for all (s,a) € S x A and h € [H] to build the empirical model M, we
would have |Qp, (s, a) — Qp a(s,a)] < e forall (s,a) € Sx Aand h € [H]. Here, Qn(s,a) = QZ,M(S’ a) is the
estimated (Q-value, and ¢ is a statistical error that can be made arbitrarily small by drawing more samples. Now,
for a given state s and level h, instead of choosing an action by maximizing Qh(s, a), we go through all actions in a

fixed order 1,2, . .. |A|, and choose the lexicographically first action a so that Qj, (s, a) > maxg Qp (S, @) — Factions
where 7,¢ti0n 1S @ tolerance parameter drawn from the uniform distribution.

Now we show that our new approach achieves small list complexity. The main observation is the that, for a
fixed tolerance parameter raction, if the difference between racion and Gapy, (s, a) = V¥ (s) — Q7 (s, a) satisfies
Taction & Ball(Gapy,(s,a),2¢e) for all (s,a) € S x A and h € [H], then the returned policy will always be
the same regardless of the estimation errors. To see this, for an action a, if Taction ¢ Ball(Gapy, (s, a), 2¢),

then whether Qh(s, a) > Vh(s) — Taction OF Not will always be the same regardless of the stochastic noise as
long as |Qx(s,a) — Q}(s,a)| < €. Since we always choose the lexicographically first action a satisfying

Qh(s, a) > Vi, (8) — T'action, the action chosen for s will always be the same. Equivalently, by defining Badaction =
hosa Ball(Gapy,(s,a), 2¢g), the returned policy will always be the same so long as raction ¢ Badaction- BY

drawing 7,¢tion from the uniform distribution over (0, 2H .S Aeg/d), we would have Pr[raction ¢ Badaction] > 1—9.
Moreover, for two tolerance parameters . ;0. 2ion & Badaction, if for all (s,a) € S x A and h € [H] we
have either 72 ;00 < T2otion < Gapy (s, a) or Gapy,(s,a) < T2iion < T2etion» then the returned policy will also
be the same N0 MALEr Taction = Tetion OF Taction = Mction- SiNCE there are at most | S||A|H + 1 different values
for Gapy, (s, a) for the underlying MDP M, there could be at most |S||A|H + 1 different policies returned by our
algorithm as long as 7action ¢ Badaction. Finally, the suboptimality of the returned policy can be easily shown to

be O(H : raction) .

Weakly k-list Replicable Algorithm in the Online Setting. Our algorithm in the online setting with weakly k-list
replicable guarantee is based on building a policy cover (Jin et al., 2020). Given a black-box RL algorithm, for
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each (s, h) € S x [H], we set the reward function to be R:;"(s',a) = 1[s' = s, h = h'], invoke the black-box RL
algorithm with the modified reward function, and set the returned policy to be 7%". Since 7" is an e-optimal
policy, we have d*™" (s,h) > d*(s,h) — . At this point, one could use 7*" to collect samples and estimate the
transition model Py (s, a), and return a policy by invoking the robust planning algorithm mentioned above. The
issue is that there could be some (s, k) € S x [H]| unreachable for any policy , i.e., d*(s, h) is small. For those
(s, h), it is impossible to estimate the transition model P, (s, a) accurately. On the other hand, our robust planning

algorithm requires | Q5 (s, a) — Q} (s, a)| < e forall (s,a) € S x Aand h € [H].

To tackle the above issue, we use an additional truncation step to remove unreachable states. For each (s, h) €
S x [H], we first use the roll-in policy 7" to estimate the probability of reaching s at level h. If the estimated

probability is small, it would be clear that d*(s, h) is also small as a=" (s,h) > d*(s,h) — ¢, so that (s, h) can be
removed from the MDP. On the other hand, implementing the above truncation step naively would significantly
increase the list complexity of our algorithm as the returned policy depends on the set of (s,h) € S x [H]|
being removed. Here, we use an approach similar to the robust planning algorithm mentioned earlier. We use
a randomly chosen reaching probability truncation threshold 7.y drawn from the uniform distribution, and
for each (s,h) € S x [H], we declare (s, h) to be unreachable iff the estimated reaching probability (using
#%") does not exceed 7¢;unc. Similar to the analysis in the robust planning algorithm, for a reaching probability
truncation threshold 7¢unc, the set of (s, k) being removed would be the same as long as the difference 7 ync
and d* (s, h) is large enough for all (s, h) € S x [H]. Moreover, two reaching probability truncation thresholds
Tt une and 72, - will result in the same set of (s, h) being removed if for all (s,h) € S x [H] we have either
e < Toune < d*(s,h) or d*(s,h) < rl .. < r2.nc- Therefore, the total number of different sets of (s, h)
being removed is at most O(|S|H).

Strongly £-list Replicable Algorithm in the Online Setting. Unlike the case of weak list replicability where we
can use a black-box RL algorithm to determine the set of unreachable states independently at each level, for strongly
list replicable RL, such a method would not suffice due to the potentially large list complexity of the black-box
algorithm. Our algorithm with strongly k-list replicable guarantees employs a level-by-level approach: for each
level h, we find a policy 7*" to reach s at level h for each s € S, build an empirical transition model for level
h, and proceed to the next level h + 1. To ensure list replicability guarantees, for each (s, h) € S x [H], we use
the same robust planning algorithm to find 7#%". As mentioned ealier, for any level h, there could be unreachable
states, and the estimated transition model for those states could be inaccurate. To handle this, for each level h,
based on the estimated transition models of previous levels, we test the reachability of all states in level h by using
the same mechanism as in our previous algorithm, and remove those unreachable states by transitioning them to an
absorbing state s,psorb in the estimated model.

Although the algorithm is conceptually straightforward given existing components, the analysis is not. For the new
algorithm, states removed at level i have significant impact on the reaching probabilities of later levels, which
also affect the planned roll-in policies of later levels. Such dependency issue must be handled carefully to have
a polynomial list complexity. To handle this, we prove several structural properties of reaching probabilities in
truncated MDPs in Section B. For the time being we assume that in our algorithm, for each level &, instead of using
estimated reaching probabilities, the algorithm has access to the true reaching probabilities, and those reaching
probabilities have taken unreachable states removed in previous levels into consideration. Le., for a reaching
probability truncation threshold 7t,,y., We first remove all states in the first level that cannot be reached with
probability higher than 7,y,., recalculate the reaching probability in the second level after truncating the first
level, remove unreachable states in the second level (again using the same threshold 7¢.ync), an so on. We use
Uy, (Ttrunc) to denote the set of states removed in level i during the above process, and see Definition B.1 for a
formal definition. We show that for different rt,unc, Ur (Ttrunc) could not be an arbitrary subset of the state space,
and the main observation is that Uy, (r;unc) satisfies certain monotonicity property, i.e., given r1,72 € [0,1], if
r1 < 19 then we have Uy (r1) C Uy(r2). This observation can be proved by induction on h, and see Lemma B.2
and its proof for more details.

As an implication, if we write U (r) = (Uy(r), U1(r), ..., Ug—1(r)), then there could be at most | S| H +1 different
choices of U(r) for all r € [0, 1] by the pigeonhole principle. Therefore, after fixing the reaching probability
truncation threshold, the set of states that will be removed at each level will be fixed, and for all different reaching
probability truncation thresholds, there could be at most |S|H + 1 different ways to remove states even if we
consider all levels simultaneously.

The above discussion heavily relies on the true reaching probabilities. As another implication of the monotonicity
property, there is a critical reaching probability threshold Crit(s, h) for each (s, k), and s € Up,(r) iff r < Crit(s, h)
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(cf. Corollary B.5). Therefore, for a fixed reaching probability truncation threshold 7,5, as long as the distance
between r,une and Crit(s, k) is much larger than the statistical errors, the set of states being removed will still be
the same as U (7;unc) €ven with statistical errors. In particular, if we draw 7,y from a uniform distribution as in
previous algorithms, with high probability 7,,nc and Crit(s, h) would have a large distance for all (s, h) € S x [H],
in which case the set of removed states will be one of those |S|H + 1 different choices of U (r).

5 ROBUST PLANNING

In this section, we formally describe our robust planning algorithm (Algorithm 1). Here, it is assumed that there is
an unknown underlying MDP M. Algorithm 1 receives an MDP M and a tolerance parameter r,ction as input, and

it is assumed that M and M are ey-related (see (2) for the definition). In Algorithm 1, for each (s, h) € S x [H],
we go through all actions in the action space A in a fixed order 1,2, ..., |AJ, and choose the first action a so that

Q;Nj(sv (I) Z V};:M(S) — Taction-

Algorithm 1 Robust Planning

: Input: MDP M, tolerance parameter Taction-
: Output: near-optimal policy &

1

2

3: Define 75 (s) = min{a € A | Q} y,(s,a) > V)" o — Taction} for each (s, h) € S x [H]
4

h, M
. return 7

Our first lemma characterizes the suboptimality of the returned policy. Its formal proof is based on the performance
difference lemma (Kakade and Langford, 2002) and can be found in Section A.

Lemma 5.1. Suppose M and M are ey-related. The policy # returned by Algorithm 1 satisfies Vi > Vi —
21—1260 - 7qac‘cionfl

Our second lemma shows that if raction is chosen to be far from Gapy, 1/ (s, a) = V' 5, (s) — Q} 5,(s,a) for all

(s,a) € S x A and h € [H], then the returned policy 7 depends only on M and 7action- Moreover for two choices
7l ion @and 72 of the tolerance parameter r,ction, the returned policy will be the same if 7} ;. and r2.; .

always lie on the same side of Gapy, (s, a) for all (s,a) € S x A and h € [H]. Full proof of the lemma and
corollary can be found in Section A.

Lemma 5.2. Suppose M and M are eq-related. For two tolerance parameters vl . andr? ., if
1 2 2 . . .
* Taction: Taction & Ugecap,, Ball(g, 2H eo) where Gap,, is as defined in (1)
1
for any g € Ga‘pJV[’ ettherg < ractlon < Tactlon OF T action < Tactlon <9

then the returned pollcy 7 depends only on M and r,ction, and for both tolerance parameters rictwn and rdctlon’
the returned policy 7 would be identical for the same underlying MDP M.
As a corollary of Lemma 5.1 and Lemma 5.2, we show how to design a list-replicable RL algorithm in the generative

model setting by invoking Algorithm 1 with a randomly chosen parameter r,¢tion-

Corollary 5.3. In the generative model setting, there is an algorithm with sample complexity polynomial in
1 — 6, the returned policy is e-optimal and always lies
in a list H(M) where II(M) is a list of policies that depend only on the unknown underlying MDP M with
[T(M)[ = O(|S||A[H).

6 STRONGLY k-LIST REPLICABLE RL ALGORITHM

In this section, we present our strongly k-list replicable algorithm (Algorithm 2). As mentioned in Section 4,
Algorithm 2 employs a layer-by-layer approach. In Algorithm 2, for each h € [H], Uy, is the set of states estimated
to be unreachable at level h, and we initialize Uy = S \ {so} where s is the fixed initial state. For each iteration

h, we assume that U, has been calculated, and for all s ¢ U, we assume that a roll-in policy 7" has been
determined (except for A = 0, since any policy would suffice for reaching the initial state). Now we describe how
to proceed to the next iteration h + 1.
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For each s ¢ Uy, and a € A, we build a policy 7%/ based on 7*", and execute 7%/ to collect samples and
calculate Py, (s, a) as our estimate of Py, (s, a). Based on { Py (s, a)}h/<h and {Uy/ }h/<h, we build an MDP M"+1
(cf. (3)). Foreach h’ < hands € S, if s ¢ U;L the transition model of s in M"*! at level i’ would be the
same as P;,/( ). If s € U;,/ we always transit s to an absorbing state Spsorb in M"+1 at level A/. Given
M"+1 for each s € S, we calculate d"‘[h+l (s, h + 1) as our estimate of d*(s, h + 1), and we include s in Uy, 1,
if d*- Ah (s, h + 1) < rrunc. Here, riunc is a reaching probability truncation threshold drawn from the uniform

distribution. For each s ¢ U, 41, we further find a roll-in policy 7%"*! by invoking Algorithm 1 on M1 with a

modified reward function R,SI’,thl (s',a) = 1[W = h + 1, s’ = s] and tolerance parameter 7 action, Where raction 18
also drawn from the uniform distribution. After finishing all these steps, we proceed to the next iteration.

Finally, after finishing all iterations, we invoke Algorithm 1 again with MDP M%7 ~1 and the same tolerance
parameter 7,ction, and return the output of Algorithm 1 as the final output. The formal guarantee of Algorithm 2 is
stated in the following theorem. Its proof can be found in Section C.

Theorem 6.1. For any unknown MDP instance M, there is a list Trace(M ) with size at most k = O(|S|3|A|H?)
that depends only on M, and with probability at least 1 — 0, the policy  returned by Algorithm 2 is e-optimal,
and ((mwo, 71, ...),m) € Trace(M), where (mg, 71, .. .) is the sequence of policies executed by Algorithm 2 when
interacting with M .

Algorithm 2 Strongly k-list Replicable RL Algorithm
1: Input: error tolerance e, failure probability §

2: Qutput: near-optimal policy 7
2772 2 2
3: Initialize Cy = 845 ¢ = 8 ¢; = 5C1 H?¢p, o = 3 H, W = %ﬁl]fw
0
4: Generate random numbers 7,ction ~ Unif (€1, 2€1), Ttrunc ~ Unif (37, 610)
5: Initialize Uy = S\ {so}
6: for h € [H — 1] do
7. for (s,a) € (S\Uy) x Ado
W >h
8: Define policy #5/¢, where for each i’ € [H], #5/%(s') = { ¢ -
poucy 7 » W [ } Thy (S) {ﬁ‘;,h(sl) W < h
9: Collect W trajectories {(s\"”,a{"’, ..., s\, a%*) }W_| by executing 7% for W times
/ B (o ZW 1]1[(551”)7@51“)75(1“) )=(s,a,5")]
10 For each s’ € S, set P,(s' | s,a) = == L
w=1 (s}, ,ah )=(s,a)]
11:  end for

12:  Define MDP M"*! = (S U {Sabsorb }, A, P"t1, R, H, s0), where for each i’ € [H],

Ph’ (S/ ‘ 870’) hl S ha S ¢ Uh/ U {Sabsorb} and 5/ 7& Sabsorb
PIiL’Jrl (S/ | 5, a) =40 I < h7 S ¢ Uh’ U {Sabsorb} and s’ = Sabsorb - (3)
]l[sl = Sabsorb] W >horse€ Up U {Sabsorb}

13: SetUpy1={seS| drpni (8, +1) < Prrunch
14: forse S\ Uh+1 do

15: Define MDP M "+ = (S U {Sabsorb}a A, PhH1 RSM1 H 50, where PPt is as defined in (3) and
RyMN(s a) =1 =h+ 1,5 = 5]

16: Invoke Algorithm 1 with input M#5h+! and Taction, and set 751 to be the returned policy

17:  end for

18: end for

19: Invoke Algorithm | with input MH-1 and T'action, and set 7 to be the returned policy
20: return 7

7 EXPERIMENTS

In this section, we show that our new planning strategy can be incorporated into empirical RL frameworks to
enhance their stability. In our experiments, we use three different environments in Gymnasium (Towers et al.,
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2024): Cartpole-v1, Acrobot-vl and MountainCar-v0. For each environment, we use a different empirical RL
algorithms: DQN (Mnih et al., 2015), Double DQN (Van Hasselt et al., 2016) and tabular Q-learning based on
discretization. We combine our robust planner in Section 5 with the above empirical RL algorithm by replacing
the planning algorithm with Algorithm 1. Unlike our theoretical analysis, we treat the tolerance parameter 7ction
as a hyperparameter and experiment with different choices of 7,¢¢ion- Note that when r,¢tion = 0, Algorithm 1 is
equivalent to picking actions that maximize the estimated ()-value as in the original empirical RL algorithms (DQN,
Double DQN and tabular Q-learning). The results are presented in Figure 1. Here we repeat each experiment by
25 times. The z-axis is the number of training episodes, the y-axis is the average award of the trained policy, &
standard deviation across 25 runs. More details can be found in Appendix G.

Our experiments show that by choosing a larger tolerance parameter r,¢tion, the performance of the algorithm
becomes more stable at the cost of worse accuracy. Therefore, by choosing a suitable hyperparameter 7,ction, We
could achieve a balance between stability and accuracy.

We further use our new planning strategy in more challenging Atari environments, such as NameThisGame. Using
the BTR algorithm ( (Clark et al., 2024)) as the baseline, we find that simply augmenting it with the robust planner
leads to a substantial improvement. In particular, the performance on NameThisGame increases by more than
10%, demonstrating that even this lightweight modification can yield significant gains in practice. The results are
presented in Figure 2.

8 CONCLUSION

We conclude the paper by several interesting directions for future work. Theoretically, our results show that even
under a seemingly stringent definition of replicability (strong list replicability), efficient RL is still possible in
the tabular setting. An interesting future direction is to develop replicable RL algorithms under more practical
definitions of replicability and/or with function approximation schemes using our new techniques. Empirically,
it would be interesting to incorporate our robust planner with other practical RL algorithms to see whether their
stability could be improved. Currently, our robust planner can only work with discrete action spaces, and it remains
to develop new techniques to overcome this limitation.
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A MISSING PROOFS IN SECTION 5

Lemma A.1. Suppose that two MDPs M and M are ey-related. For the policy 7 returned by Algorithm 1, it holds
that

0 S VJ\‘;[ - V;\Z S TactionH~

Proof. The lower bound, i.e., 0 < V* VJ@, is immediate from the definition of V*

We now prove the upper bound by induction on the time step h.

For0 < h < H — 1, we have

Vit (8) = Vil (8) = Vi i (8) = @, gy (5, 7n(5) +QZ,M(Svﬁh(s)) = Qs (s:7a(s))

(1) .
< Taction“”zph(sl‘sﬂﬁ_h(s)) h+1M th |5 7Th ) h+1 M( /)
= Taction T Z Pu(s'|s, 7tn(s)) - (V;H (80 = Vf:rl (s ))

*
< Taction msax (Vh+1 M( ) Vh7r+1 M( ))

Inequality (1) follows from the definition of 7r, which guarantees that
V;N[( ) Q} M(S 7Th( )) S Taction-
When h = H, we have V:IM(S) = VgM(s) = 0. By induction, we have

* T
VM - VM < Taction .

This completes the proof. O
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Proof of Lemma 5.1. From Lemma A.1, we have:
V];;[ - V]F{ S ractionH'

By Lemma E.1, it follows that:

\Var = Vi | < H?e.
Similarly, from Lemma E.2, we obtain:

\Var = Vi | < H?e.
By combining these inequalities, we have

Vit =V =V = Vi +VE —VE+VE -V
S 2}1260 + TactionH-

O
Proof of Lemma 5.2. By LemmaE.1,
For any (h,s,a) € [H—1] xS x A
Viar(s) = Vit (s)] < Hoeo,
‘Q,*L’M(s,a) - Q;M(s,a)‘ < H?%.

Hence,

(Ve (9) = @5 g5, ) = (Vi 5) = Qiaa(5,0))|

< [Viiar(s) = Vi (9| + @i (5. 0) = @y (s,0)]

< 2H?%¢,
For any g € Gap,,, where ¢ = V;*(s) — Qi(s,a), if ¢ < rlion < T2tions then, because rl . =~ ¢

Uyecap,, Ball(g, 2H?%¢p) and r2 ;.. ¢ Uyecap,, Ball(g, 2H?¢), we have

2 1 2
(Vi;k,]w(s) - Q;,M(Sva)) +2H €0 < Taction < Taction*
Using the previous bound, we conclude that

V:,M(s) - QZ’M(S’ a’) < T;ction < riction'

1
action

2

Similarly, if r action

<r < g, we also have:

riction < 7gction < V;M(S) - Q;N{(&a)'

Therefore, for both tolerance parameters 71 ;. and r2_ . the chosen action 7 (s) remains the same for all
(s,h) € S x [H]. As aresult, the policy 7 depends only on M and 7,ction. Moreover, for both tolerance parameters

r and r the policy 7 returned would be identical. O

action action?

Corollary A.2. In the generative model setting, there is an algorithm with sample complexity polynomial in
|S|, |Al, 1/€ and 1/, such that with probability at least 1 — 6, the returned policy is e-optimal and always lies
in a list II(M) where ILI(M) is a list of policies that depend only on the unknown underlying MDP M with
[I(M)| = O(|S||A|H).

Proof. We collect N samples for each (s,a) € S x A and h € [H] where N is polynomial in |S|, |A|, H, 1 /¢ and
1/4, and use the samples to build an empirical transition model P to form an MDP M. We then invoke Algorithm 1
with MDP M and 7,ction ~ Unif (0,¢/(5H)) and return its output. Standard analysis shows tha M and M are
eo-related with g = de/(20H?) with probability at least 1 — &/2. Moreover, action ¢ U 9EGap,, Ball(g, 2H?¢g)
with probability at least 1 — §/2. We condition on the intersection of the above two events which holds with
probability at least 1 — § by union bound. By Lemma 5.1, the returned policy is e-optimal. By Lemma 5.2, the
returned policy lies in a list II(M) with size at most | S||A|H + 1 since |Gap,,| < |S||A|H. O
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B STRUCTURAL CHARACTERIZATIONS OF REACHING PROBABILITIES IN TRUNCATED
MDPs

In this section, we prove several properties of reaching probabilities in MDPs with truncation which will be used
later in the analysis Given a reaching probability threshold r € [0, 1], we first define the set of unreachable states
Up(r) for each h € [H].

Definition B.1. For the underlying MDP M = (S, A, P,R, H, so), given a real number r € [0, 1], we define
Un(r) C S inductively for each h € [H) as follows:

e Up(r) ={se€ S| Pr[sg=s] <r}s
* Suppose Uy (1) C S is defined for all 0 < h/ < h, define
Un(r)={s eS| m;iXPI‘[Sh =38,80 ¢ Up(r),81 € U1 (r),...,8h—1 ¢ Up_1(r) | M, 7] <7}

We also write U(r) = (Ug(r), Ur(1), ..., U —1(1)).

Intuitively, the set of unreachable states Uy, () at level h € [H] includes all those states that can not be reached
with probability larger than a threshold r for any policy m, where we ignore those unreachable states included in
Uy (r) for all levels A’ < h when calculating the reaching probabilities. Also note that Uy, (1) = S.

The main observation is that Uy, (1) satisfies the following monotonicity property.
Lemma B.2. Given 0 < ry <1y <1, forany h € [H], we have Uy (r1) C Up(rs).

Proof. We prove the above claim by induction on h. The claim is clearly true when h = 0. Suppose the above
claim is true for all 0 < b’ < h, now we prove that Uy (rg) C Up(r1). Considering a fixed state s € S, for any
fixed policy m, we have

Pr[sp, = 8,50 ¢ Ug(r1),81 € U1 (11),...,8h—1 & Up_1(r1) | M, 7]
>Pr[sy, = s,50 ¢ Ug(ra),s1 ¢ Ur(r2),...,8h—1 ¢ Up—1(r2) | M, 7],
since U/ (r1) € Uy (r2) for all b’ < h under the induction hypothesis. Therefore,
mgxPr[sh =38,80 ¢ Up(r1),81 € U1(r1)s. .., Sh—1 & Up—1(r1) | M, 7]
ZmﬁxPr[sh =s,50 ¢ Up(ra),s1 ¢ Ur(r2),...,8h—1 & Up_1(r2) | M, 7]

which implies Uy, (1) C Up (7). -

An important corollary of Lemma B.2, is that the total number of distinct U (r) for all € [0, 1] is upper bounded
by |S|H + 1.

Corollary B.3. Forall r € [0, 1), there are at most of |S|H + 1 unique sequences of sets U (r).

Proof. Assume for the sake of contradiction that there are more than |S|H + 1 unique sequences of sets U(r).
Note that 0 < 3¢y [U(r)| < |S|H forall r € [0, 1]. By the pigeonhole principle, there exists 0 <71 <72 <1
such that U(ry) # U(rz) while 3=, 1 [U(r1)| = 225y U (r2)|. By Lemma B.2, for all h € [H], we have
Un(r1) C Up(r2) and thus |Up,(r1)] < |Up(r2)|. This implies that |Uy,(r1)| = |Up(r2)| for all h € [H]. For any
h € [H], we have Uy (1) C Ux(r2) and |Up(r1)| = |Un(r2)| which implies Uy, (1) = Up(r2), contradicting the
assumption that U (1) # U(ra). O

For each (s, h) € S x [H], we define Crit(s, h) to be the infimum of those reaching probability threshold r € [0, 1]
so that s would be unreachable under .

Definition B.4. For each (s,h) € S x [H], define Crit(s, h) = inf{r € [0,1] | s € Un(r)}.

Note that {r € [0,1] | s € Up(r)} is never an empty set since Up (1) = S.
Lemma B.2 implies that Crit(s, &) is the critical reaching probability threshold for (s, h), formalized as follows.
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Corollary B.5. Forany (s,h) € S x [H], we have
s forany 1 > r > Crit(s, h), s € Up(r);
o forany 0 <r < Crit(s, h), s ¢ Up(r).

Given the definition of unreachable states Uy, (1), for each r € [0, 1], we now formally define the truncated MDP
M7 where we direct the transition probabilities of all unreachable states to an absorbing state Sabsorb-
Definition B.6. For the underlying MDP M = (S, A, P,R, H, s), given a real number r € [0,1], define
M"™ = (S U {Sabsorb}, 4, P", R, H, s0), where
Ph(sl | S, CL) S ¢ Uh(’f’) U {sabsorb}u S, 7é Sabsorb
P]’:(S/ | S, a) = 0 S ¢ Uh(’f‘) U {sabsorb}; S/ = Sabsorb - (4)
1[5/ = Sabsorb} s € Uh(r) U {Sabsorb}

The following lemma builds a connection between the occupancy function in M" and the set of unreachable states
Uh (7‘)
Lemma B.7. Foranyr € [0,1], forany (s,h) € S x [H|

dyr (s, h) = m;ixPr[sh =3s,50 ¢ Up(r),s1 € Ur(r),...,Sh—1 ¢ Up_1(r) | M, 7],
and therefore s € Uy (r) if and only if di ;- (s, h) <.

Proof. By the construction of M",
dir(s,h) =Prlsp = s,80 ¢ Up(r), 81 € Ur(7r),...,8h—1 & Up—1(r) | M, 7],
and therefore,

(s, h) = mgXPr[sh =38,80 ¢ Up(r),81 € Ur(r),...,8h—1 ¢ Up_1(r) | M, 7],
which also implies that s € Uy (r) if and only if d},. (s, k) < r by Definition B.1. O

Combining Lemma B.7 and Lemma B.2, we have the following corollary which shows that d},. (s, k) is monotoni-
cally non-increasing as we increase r.

Corollary B.8. For the underlying MDP M = (S, A, P,R, H, sq), forany 0 < r; < 19 < 1 and any (s,h) €
S x [H], we have A (s,h) > dirs (8, h). Moreover, di;(s,h) > di;-(s,h) for any (s,h) € S x [H| and
r € [0,1].

As illustrated in the following lemma, d3,.(s,h) < Crit(s, h) whenever r > Crit(s, h), and d};-(s,h) >
Crit(s, h) if r < Crit(s, h).
Lemma B.9. Foranyr € [0,1] and (s,h) € S x [H],

o if r > Crit(s, h), di; (s, h) < Crit(s, h);
* ifr < Crit(s, h), d;- (s, h) > Crit(s, h).

Proof. We only consider the case r > Crit(s, h) in the proof, and the case » < Crit(s, h) can be handled using
exactly the same argument.

Since r > Crit(s, h), by Corollary B.5, we have s € Up/(r), which implies d},.(s,h) < r by Lemma B.7.
Assume for the sake of contradiction that d%,. (s, h) > Crit(s, h). Let r be an arbitrary real number satisfying
Crit(s,h) < 1’ < dj-(s,h) < r. By Corollary B.8, we have d} . (s,h) > dj;-(s,h) > r’, which implies
s ¢ Up(r") by Lemma B.7. On the other hand, since ' > Crit(s, h), we must have s € Up(r’) by Corollary B.5
which leads to a contradiction. O

For each (s, h) € S x [H] and r € [0, 1], we also define an auxiliary MDP M"-*" based on M", which will be
later used in the analysis of our algorithm.
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Definition B.10. For each (s,h) € S x [H] and r € [0, 1], define M"*" to be the MDP that has the same state
space, action space, horizon length and initial state as M". The reward function of M"*" is RZ’,h (s',a) = 1[0 =
h,s' = s]forall h' € [H) and (s',a) € (S U {Sabsorb}) X A, and the transition model of M"*" is

T 12 ! !
PiM(s" | 8 a) = {Ph’(s |s,a)  h'<h

5
]]-[SH = Sabsorb] B > h’ ( )
where P" is the transition model of M" define in (6).

A direct observation is that for any (s, h) € S x [H] and r € [0, 1], for any policy 7, d7;. (s, h) = V..., which
also implies d} ;. (s, h) =

*
Mr,s,h'
C MISSING PROOFS IN SECTION 6

In this section, we give the formal proof of Theorem 6.1 based on the tools developed in Section B.
Lemma C.1. Consider a pair of fixed choices of Ttrunc and Taction in Algorithm 2. For a fixed h € [H — 1], if for
all s € S\ Uy, we have dﬁ;’h > 1o whenever h > 0, then with probability 1 — 5>, for all (s,a) € (S'\ Un) x A,

> P8 | s,a) = Pu(s' | 5,0)] < €.
s'eS

Proof. We divide the proof into two parts. First, we demonstrate that we have a sufficient number of effective
samples. Second, we show that the estimation error is small.

For a given (s, a) € (S'\ U 1) % A, we first prove that with probability at least 1 — the number of effective

0
4HI[S[|A]°

Wit , where the number of effective samples is defined as

2

samples is greater than

w
Weffective = Z ]1[(5#)7 agw)) = (Sa a)]

w=1

. ~s,h
Given that dj; > 19, we have

E[Weffective} _ w- d?y;h ss:h

= dﬂ' >
W W M =0
and therefore by Chernoff bound,
10 aoih Wetfective _ 70 —2(%0) *w J
P (W » —W) <P(d - > 2 2 —_
clfecive < "5 W) = ( M W 2) <2 < 1H|S|[A]

Wno
5 -

Thus, with probability at least 1 — W, the number of effective samples is at least

Next, we show that if the number of effective samples is greater than Wi then with probability at least 1 — m,

2

> IPu(s' | s,0) — Pu(s' | 5,0)| < €.

s'€S
To establish this, we first prove that for any specific s’, with probability at least 1 — m, we have
IPu(s" | s,a) — Pu(s' | s,a)| < %‘
Using the Chernoff bound,
P17 1500 P [ = () < 22 M <0

17
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Therefore, by the union bound, with probability at least 1 — m, we have forall ' € S,

1Pu(s' | 5,a) — Bu(s' | s,a)| < %‘

Summing over all s’ gives

SRS | 5,0) = Puls' | 5,0)] < eo.
s'esS

Combining these results, we conclude that for a specific (s, a), with probability at least 1 — m,

> P8 | s,0) = Pu(s' | 5,0)| < €.
s'eS

Thus, for a fixed h € [H — 1], if forall s € S\ U}, we have d}rwh > 1o whenever h > 0, then with probability
1— 2, forall (s,a) € (S\ Up) x A,

— 53
> IPu(s' | 5,0) = Pu(s' | 5,0)| < eo.
s'eS

O

Lemma C.2. Consider a pair of fixed choices of Ttyunc < 1 and raction in Algorithm 2. For any h € [H — 1], if for
all k' < h, we have

° Uh/ = Uh’ (Ttrunc);
* > |Ph/ (s' | s,a) — Pr (s | s,a)| < eoforall (s,a) € (S\ Uh/) X A,

then for any s € S,

Birenune (5,04 1) = diy (5,1 1)] < B2,

Proof. Consider a fixed level h € [H — 1] and state s € S. Note that d};r,.. (5,7 +1) = Vi, oo ong and
din(s;h+1) =V

]Ms,h+1 *

Note that M"trunce:$:h+1 and Ns:h+1 share the same state space, action space, reward function and initial state.
Moreover, we have Uy, = Up' (Ttrunc) forall A < hand ), |]5h/ (s' | s,a) — Pp(s' | s,a)| <eforallh’ <h
and (s,a) € (S\ Up/) x A. Let Perune:h+1 be the transition model of M7rune:5:"+1 defined in (5), and PP be
the transition model of M/*/+! defined in (3). For all b’ € [H], for any (s,a) € (S U {sabsorb}) X A, we have

S Bt s0) = PR | sa)| < e
S,GSU{Sabsorb}

By Lemma E.1, we have |V}, -V L al <H 2¢9, which implies the desired result. O

Ttrunc:S,h+1 M

Lemma C.3. Consider a pair of fixed choices of Ttrunc € (01, 201) and Taction in Algorithm 2. Forany h € [H —1],
if forall ' < h, we have

® Uh’ = Uh’ (Ttrunc);
« S |Pu(s | s,a) — Pu(s' | s,a)| < e forall (s,a) € (S\ Un) x 4,

s,h+1

then for any s € (S\ Uni1), iy (s,h+1) > np.

Proof. Consider a fixed level h € [H — 1] and s € (S \ Up41). Since s € (S \ Upy1), we have

d}k\Zh (57 h + 1) > Ttrunc-

18
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By Lemma C.2,
d}kwn:runc (87 h + 1) Z Ttrunc — H2€0 Z m —"No-

Notice that 2H?ey + TactionH < 2H?€g + 261 H < 361 H < No. By the same analysis as in Lemma C.2, for the
returned policy 7%"*1, by Lemma 5.1,

PR

reranc s ht1 = Viproane shtt — 10 = Qpprane (8,0 4+ 1) =109 = m1 — 219 > 10,

and therefore dﬁp’ztlb (s,h+ 1) > ny. By Lemma B.8, this implies d’;{;'hﬂ (s,h+1) > no. O
Definition C.4. Define
Badiune = ] Ball(Crit(s, h), H?¢),
(s,h)ESX[H]

where Crit(s, h) is as defined in Definition B.4.

Lemma C.5. Consider a pair of fixed choices of Ttrunc € (11, 211) and raction in Algorithm 2 such that ripune ¢
Badgyune. Forany h € [H — 1], if for all h' < h, we have

° Uh’ - Uh’ (Ttrunc);
* > |]5h/ (s' | s,a) — Pu(s' | s,a)| <eoforall (s,a) € (S\ Uh/) x A,

then Uh+1 = Uh+1(7"trunc)-

Proof. By Lemma C.2, for any s € S we have
| sroeane (8,14 1) — di (s, b+ 1)] < H?eq.
Therefore, for any s € Up11(Ttrunc)> We have
T (80 + 1) < djypriane (5, +1) + H?¢.
By Corollary B.5, we have r,unc > Crit(s, h + 1). Moreover, since runc ¢ Badgrunc, it holds that
Perune & [Crit(s, h + 1) — H?eq, Crit(s, h 4+ 1) + H?eg],

which further implies that
Perane > Crit(s, h+ 1) 4+ H?e.

Combining the above inequality with Lemma B.9, we have

Trune > Crit(s, h+ 1) + H?€o > diyproune (5, h + 1) + H?eg > d,. (s, h + 1),
which implies s € Up, 1.

For those s ¢ Up41(Ttrunc), it can be shown that s ¢ Uh+1 using the same argument. Therefore, Uh+1 =
Uh+1 (Ttrunc>-

O

Lemma C.6. Consider a pair of fixed choices of Ttyunc € (11, 211 ) and Taction in Algorithm 2 such that Tyune ¢
Badirune. With probability at least 1 — §/2, we have

e Uy = Up(Peranc) for all h € [H];
* > |Pu(s' | s,a) — Pu(s' | s,a)| < eo forall h € [H — 1] and (s,a) € (S \ Up) x A.
Proof. For each h € [H], let &, be the event that

° Uh = Uh(rtrunc);

« ifh>0,d5;" (s,h) > no forall s € S\ Up:
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cifh>0,) 4 |Py_1(s' | s,a) — Pu_1(s' | s,0)| < e forall (s,a) € (S\ Up_1) x A.

Note that & holds deterministically, since we always have r;une < 1 which implies Up(7trunc) = S \ {So}. For
each h < H, conditioned on ﬂh/gh En, by Lemma C.5 and Lemma C.3, we have Uy 11 = Up 11 (Ttrunc), and for

alls € S\ Upy1s dﬁhﬂ (s, h + 1) > no. Moreover, by Lemma C.1, with probability at least 1 — §/(2H),

D P8 | s,0) = Pu(s' | s,0)] < g
s'esS

for all (s,a) € (S\Uy) x A. Therefore, conditioned on ir<n En’s Ep+1 holds with probability at least 1 -4 /(2H).
By the chain rule, P (ﬂhe{H] Eh) >(1—6/(2H)H-1 >1-4§/2.
O

Definition C.7. For a real number r € [0, 1], define

Gap(r) = U GapMT,s,h U Gap]\/[T .
he[H],s€S\Un(r)

Moreover, define

Badaction(r) = () Ball(g, 2H o).
gE€Gap(r)

Clearly, for any r € [0,1], |Gap(r)| < 2|S|2H?|A|. Moreover, since M" and M"*" depends only on U(r)
(cf. Definition B.6 and Definition B.10), for ry,73 € [0,1] with U(r1) = U(r2), we would have Gap(r;) =
Gap(’rZ) and Badaction (7’1) = Badaction(r2)~

1

Lemma C.8. Given 1, "2 ume € (11,271) \ Badirune and vl o 2 tion € (€1,2€1), suppose
* U(rt}runc) = U(TthunC>’.
¢ riction ¢ BadaCtiOH(rtlrunc)’ and Tiction ¢ BadaCtiOH(rtlrunc);
¢ for any g € Gap(rtlrunc)’ eitherg < T;ction < Tiction or T;Ction < riction <9

conditioned on the event in Lemma C.6, in Algorithm 2 , the returned policy m and 7" 1%will be identical for all
h e [H - 1]’ (87 (l) € (S \ Uh+1) X A’ fO}" all (Tactionyrtrunc) € {rachtion’ rgction} X {Ttlrun(:?rthunc}'

Proof. Consider a fixed h € [H — 1] and (s,a) € (S \ Uh+1) x A. Since U(rdne) = U(rZ e ) We write

* U(rtrunc) = U(Ttlrunc) = U(rgrunc);
° Badaction(rtrunc) - Badaction (Ttlrunc> - Badaction (Tgrunc)§
* Gap(Ttrunc) = Gap(rtlrunc) = Gap(rtzrunc); and

o ]\ Ttrunc,s,h+1 — Mrtlrl,,,c,s,h+1 — Mrfrl‘nc,s,h+1

in the remaining part of the proof.

Let Preune be the transition model of M7 trune::h+1 defined in (6), and P"*! be the transition model of M ®h+1
defined in (3). Note that conditioned on the event in Lemma C.6, Uj,+1 = Up1(7trunc), and therefore, for all
K’ € [H], for any (s,a) € (S U {Sabsorb}) X A, we have

ST Bt | s,a) — B | s,a)] < co
s'€SU{sabsorb }

By Definition C.7, for any g € Gap jsrecunc.s,n+1 » We have
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oyl r2 ¢ Ball(g,2H?%e);

action’ " action

: 1 2 1 2
* either g < Taction < Taction OF T'action < Taction < 9,

which implies 7"+ in Algorithm 2 will be identical for all (Taction, Ttrunc) € {7 tetions T 2etion X 1T truncs " eeunc b

by Lemma 5.2. This also implies that 7#*"*1:¢ will be identical for all (Taction; Ttrunc) € 1T ctions T 2ction } X
{7t unes Toeunce - Similarly, the desired property holds also for the returned policy 7.

Proof of Theorem 6.1. Note that
Pr[rtrunc ¢ Badtrunc] Z 1 - 6/4

For any fixed choice of ¢;ync,
Pr[’raction ¢ Badaction(’rtrunc)] >1- 5/4
Combining these with Lemma C.6, with probability at least 1 — &, we have

* Trune & Badgunes

* Taction ¢ Badaction(Ttrunc);

« Uy = Uy, (Ttrunc) for all h € [H];

« S |Pu(s' | 5,a) — Pu(s' | s,a)] < e forall h € [H —1] and (s,a) € (S\ Upn/) x A,

We condition on the above event in the remaining part of the proof.

Conditioned on the above event, for the returned policy 7w, we have
2 2 2
V]@ > V]\ZT‘trunc > VI\t[Tcmnc — 2H"€y — Tactiond > V]\*4 —2H"€y — Tactiond — H |S‘7‘trunc > Vjtf — €

where the first inequality is due to Lemma E.3, the second inequality is due to Lemma 5.1, the third inequality is
due to Lemma E.3, and the last inequality is due to r¢rune < 271 and Taction < 2€1. Therefore, the returned policy
T is e-optimal.

By Lemma B.3, there are at most of SH + 1 unique sequences of sets U (r). Moreover, for each r, |Gap(r)| <
2|S|?H?%|A|. By Lemma C.6, the sequence of policies executed by Algorithm 2 and the policy returned by
Algorithm 2 lie in a list Trace(M ) with size | Trace(M)| < (SH + 1)(2|S|?H?|A| + 1). O

D WEAKLY k-LIST REPLICABLE RL ALGORITHM

In this section, we present our RL algorithm with weakly k-list replicability guarantees. See Algorithm 3 for the
formal description of the algorithm. In Algorithm 3, it is assumed that we have access to a black-box algorithm
A(ep, dp), so that after interacting with the underlying MDP, with probability at least 1 — do, A returns an ep-optimal
policy.

In Algorithm 3, for each (s, h) € S x H, we first invoke A on the underlying MDP with modified reward function
RZ}h(s’,a) = 1[h' = h,s’ = s]forall B’ € [H] and (s',a) € S x A. The returned policy #*" is supposed to
reach state s at level h with probability close to d*(s, h), and therefore we use 7% to collect samples and calculate
d(s, h) which is our estimate of d* (s, ). For each action a € A, we also construct a policy 7% based on 7" to

collect samples for (s, a) € S x A atlevel h € [H], and we calculate P, (s, a) which is our estimate of Py (s, a)
based the obtained samples.

For those (s, h) € S x [H] with d(s, h) < Ttunc. We remove state s from level h by including s in T},. Here 7 unc
is a randomly chosen reaching probability threshold drawn from the uniform distribution.

Finally, based on P and T, we build an MDP M which is our estimate of the underlying MDP M. For each (s, h),
if s € Ty, then we always transit s to an absorbing state s,psorh. Otherwise, we directly use our estimated transition

model Ph (s,a). We then invoke Algorithm | with MDP M and tolerance parameter 7ction, Where raction 18 also
drawn from the uniform distribution .

The formal guarantee of Algorithm 3 is summarized in the following theorem.
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Theorem D.1. Suppose A is an algorithm such that with probability at least 1 — dg, A returns an eqg-optimal policy.
Then with probability at least 1 — 0, Algorithm 3 return a policy w, such that

* T is e-optimal;

o m € (M), where II(M) is a list of policies that depend only on the unknown underlying MDP M with
size |IL(M)| < (H|S||A| + 1)(H|S| + 1).

In the remaining part of this section, we give the full proof of Theorem D.1.

Algorithm 3 Weakly k-list Replicable RL Algorithm
1: Input: RL algorithm A (e, do), error tolerance e, failure probability 0

2: Output: near-optimal policy 7
3. Initialization:
4: Tnitialize constants C; = 4‘A‘(|SS|H, € = 100‘56“;{5|A‘ , €1 = bC1H?¢
5: Generate random numbers 7,¢tion ~ Unif(ey, 2€1), rtrunc ~ Unif(2€7, 3e1)
6: for h € [H — 1] do
7. foreach s € S do
8: Invoke A with €9 = ¢y and 09 = §/(8|S|H) on the underlying MDP with modified reward function
RiM(s',a) = 1[0 = h,s' = s] forall W’ € [H] and (s',a) € S x A
9: Set %" to be the policy returned in the previous step
2 2
10: Collect W = L‘g—ll log w trajectories {(s(()w), a(()w), e 3;}"21, ag’ll)}g’:l by executing #*" for
W times
11: Set
(o, ) = S Ui = o
’ W
12: for each a € A do
13: Define policy 7%, where for each h’ € [H] and s’ € S,
As’h’a(sl) a h/ = h, S/ = 8
iy =< ..
h ﬁh}h(s’) W #hors #s
14: Collect W = L?—lj log M trajectories {(sgw), agw), R sgfll, ag’_)l) W_, by executing 75/@
for W times
15: For each s’ € S, set
w w w w
- St Ly 0 sith) = (s, 8')
Pu(s' | s,a) W ) ()
szl ]]'[(Sh aah ) = (5704)}
16: end for
17:  end for
18: end for

19: Foreach h € [H —1],set Ty = {s € S | d(s, h) < Frunc}-
20: Define MDP M = (S U {Sabsorb 1 A, P, R, H, so), where for each h € [H — 1],

~ Py(s' | s,a) s ¢ Ty
P,(s' | 5,a) = ’ -
h( | ) {1{3/ = Sabsorb} seTy

21: Invoke Algorithm 1 with MDP M and tolerance parameter r,ction, and set 7 to be the returned policy
22: return 7

Following the definition of Uj, (r) in Definition B.1, we define T}, (7).

Definition D.2. For the underlying MDP M = (S, A, P, R, H, so), given a real number r € [0, 1], we define
Tw(r) C S for each h € [H] as follows:
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e To(r)={se S|Prlsop=s] <r}
* Th(r)={s € S| max, Pr[s, =s | M,n] <r}.

We also write T(r) = (To(r), T1(r), ..., Tr—_1(r)).
Lemma D.3. Forallr € [0, 1], there are at most of |S|H + 1 unique sequences of sets T(r).

Proof. By the same analysis as in Lemma B.2 , we know that given 0 < ry < 7y < 1, for any h € [H|, we have
Th(r1) C Ty(re). Moreover, by the same analysis as in Corollary B.3 , for all » € [0, 1], there are at most of
|S|H + 1 unique sequences of sets T'(r").

O

Definition D.4. For the underlying MDP M = (S, A, P,R, H, so), given a real number r € [0,1], define
MT = (S U {Sabsorb}, A,PT, R, H, 50), where

— Ph(sl | S, a‘) S ¢ Th(r)a 8/ # Sabsorb
Ph(sl | S, a) = 0 S ¢ Th(T)> 3/ = Sabsorb (6)
]l[sl = Sabsorb] s € Th (T) U {sabsorb}

Definition D.5. For each (s,h) € S x [H], define Crit'(s,h) = inf{r € [0,1] | s € Th(r)}.

Note that {r € [0,1] | s € T, (r)} is never an empty set since T;,(1) = S.
Lemma D.6. Consider a pair of fixed choices of Ttrunc and Taction in Algorithm 3. For all h € [H — 1], if for all
s € S\T), we have dﬁ;’h > €1 whenever h > 0, then with probability 1—2, for all (s, a, h) € (S\T}) x Ax [H—1],

> P8 | s.a) — Pu(s' | 5,0)] < eo.
s’eS

Proof. By the same analysis as Lemma C.1, for a fixed h € [H — 1], if forall s € S\ Ty, we have d’}(;’h > €
whenever h > 0, then with probability 1 — ;% for all (s,a) € (S\ T},) x A,

Z |Pu(s" | s,a) — Pu(s" | s,a)| < eo.

s'esS

By union bound, we know that with probability 1 — g, for all h € [H — 1], the inequality holds.

Lemma D.7. With probability at least 1 — %,for all s,h € S x [H —1],

ld(s, h) — di; (s, h)| < 2e0,

~s,h

i, —d(s,h)| < eo.

Proof. For a specific pair (s, h), for the policy returned by A, with probability at least 1 — we have

0
HEER

s,k

(s (s, 1) = 3" (5, )| < co.

Thus, by Chernoff bound, with probability at least 1 — we have

_0
S[S[H

~s,h ~

3" (5 0) = d(s, )| < o

Combining the above two inequalities, with probability at least 1 — 1 g‘ 7>

ld(s, h) — iy (s, h)] < 2e0.
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Using the union bound, we know that with probability at least 1 — ¢, forall s, h € S x [H — 1]

|d(s, h) — d};(s,h)| < 2€0,

iy = d(s,h)| < eo.

Definition D.8. Define
Bad{, e = ()  Ball(Crit'(s, h),2€0),
(s,h)ESX[H]

where Crit/ (s, h) is as defined in Definition D.5.

Lemma D.9. Consider a pair of fixed choices of Ttrunc € (M1, 211 ) and raction in Algorithm 2 such that Tyune ¢
Bad, .. With probability at least 1 — §/2, we have

o Ty = T (revunc) forall h € [H — 1];
* >y |]5h(s’ | s,a) — Py(s' | s,a)| < egforallh € [H— 1] and (s,a) € (S\Th/) x A.

Proof. Let & denote the event that for all (s, h), the following two conditions hold:

o 1d(s, ) — d%, (s, )] < 20

~s,h

* |di; " —d(s,h)| < e

By Lemma D.7, we know that with probability at least 1 — 2, event £; occurs.

Let &; denote the event that for all (s, a,s’,h) € S x A x S x [H — 1], the following conditions are satisfied:

® Th = Th(rtrunc);
. dﬁ;’h(s, h) > e foralls € S\ Ty;
o d%,(s,h) < 4e; forall s € T,;

* > ses Pu(s' | s,a) — Pu(s' | s,a)| < e forall (s,a) € (S\ 1)) x A.

When &; occurs, we know that \cz(& h) — d3;(s, h)| < 2¢p. Therefore, when Tyrune ¢ Badiruncs if Ttrune >
di; (s, h), it follows that 7yyune > d(s, h), if ripune < di; (s, h), it follows that 7une < d(s, h). Hence, we
conclude that 7), = Th (Ttrunc)-

For the second condition, when £; occurs, we know that |d§{;"h — ci(s, h)| < €p, and by definition, ci(s, h) > 2¢;.
Thus, we obtain that

~s,h
dﬂM > 2€1 — €9 > €7.

For the third condition, when &; occurs, we know that |d(s, k) — d%, (s, h)| < 2¢o, and by definition, d(s, h) < 3e;.
Thus, we have

dys(s,h) < 3e1 + 2€p < 4dey.

For the forth condition, combining the second condition with Lemma D.6, we conclude that with probability at
least (1 — g)z <1- g, the fourth condition holds.

Therefore, with probability at least 1 — %, event & occurs, which implies the desired result.
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Definition D.10. For a real number r € [0, 1], define

Bad/actlon( ) = U Ball(g, 2H260).

g€Gapyr

Clearly, for any r € [0, 1], ()| < |S|H A. Moreover, since M depends only on T(r) (cf. Definition D.4),
for r1, 79 € [0,1] with T'(r1) = T(r3), we would have Gap(r1) = Gap(rz2) and Bad,, ;.. (r1) = Bad,¢;on(72)-

: 1 2 2
Lemma D.11. Givenrl. ., 72 € (2€1,3¢€1) \ Baderune and s m2eiion € (€1,2€1), suppose
— 2 .
¢ T(rtrunc) - T(rtrunc)’
actlon ¢ Badmctlon(rtrunc) and Tacmon ¢ Badactlon(rtrunc)
e forany g € Gap(ri. ..), either g < r} <r? orrliion < T2 <
y g P{"trunc g action action action action 9

conditioned on the event in Lemma D.9, the returned policy © in Algorithm 3 will always be the same for all
(TaCtiOH7TtYUHC) € {Tal»ction7r22tction} X {Ttlruncvrtrunc}'
Proof. The proof of the lemma follows the same reasoning as in the proof of Lemma C.8. O

Lemma D.12. Conditioned on the event in Lemma D.9, the returned policy 7 is e-optimal.

Proof.
* 2 * 2 2 *
V]\‘[/r[ > V]C[Tmmc > VM"'trunc — 2H%€y — Taction > V]u —2H"€y — Tactiond — H |S‘Ttrunc > VM -

where the first inequality is due to Lemma E.3, the second inequality is due to Lemma 5.1, the third inequality is
due to Lemma E.3, and the last inequality is due to r¢;unc < 3€1 and raction < 2€1. Therefore, the returned policy
T is e-optimal. O

Lemma D.13. Conditioned on the event in Lemma D.9, with probability at least 1 — %, the returned policy 7
belongs to the set II(M ), where II(M) is a list of policies that depend only on the unknown underlying MDP M,
and the size of IL(M) satisfies |IL(M)| < (H|S||A| + 1)(H|S| + 1).

5|S|He
Proof. First, we have Pr[ryune € Bad, ] < | 6‘1 o

2
Pr[raction € Bad,tion (Ttrunc)] < SH cox|S|IAIH %. Thus, with probability at least 1 — 5, it is satisfied that

€1
’ /
Taction §é Badaction(rtrunc) and Trunc % Badtrunc .

. Moreover, for a fixed 7trunc gé Bad! we have

trunc>

By Lemma D.11, and applying similar reasoning as in the proof of Theorem 6.1, we conclude that conditioned on
the event in Lemma D.9, with probability at least 1 — £ the policy 7 belongs to the set II(M), where II(M) is a
list of policies that depend only on the unknown underlymg MDP M. Moreover, the size of II(M) is bounded by
[I(M)| < (H[S||A] + 1)(H[S| +1). 0

Proof of Theorem D. 1. The proof follows by combining Lemma D.9, Lemma D.12 and Lemma D.13 O

E PERTURBATION ANALYSIS IN MDPS
Lemma E.1. Consider two MDP M7 and M, that are €y-related. Let P’ and P" denote the transition models of
My and Ms, respectively. It holds that
‘Vh*,Ml(S) - Vh*,Mz(S)‘ < H2€07
|QZ,M1 (S, CL) - QZ,MQ (37 CL)| < H2€07

where H is the horizon length.
Specifically, for the value function at the initial state s, it holds that

|Var, = Van| < Heo.
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Proof. We denote 7] as the optimal policy of M; and 75 as the optimal policy of Ms. For 0 < ¢ < H — 1, we have

)

T oY ) Ty T
Vi () = Vi ()] < max| QT (s,0) = QT3 (s5,0)

< max (
a

< max (
a

Y (s | s,a) = P'(s"| 5,0)) - Vi ag, (5)

’

ZH(SI | s,a) - ‘/;111,1\41 (5/) - Z Pi”(s/ | s,a) - Vi?l,Mz (3/)

s/ s/

(" | 5,a) - (Viin () = Vi s (s ’>)’

)

Inequality (1): This follows from selecting a* as the optimal action and & as the action selected by the policy,
which ensures Q7. (s,a) < Q7% (s, a).

+

S

(2)
< Hep + max

Vi (5) = Vi a6

Inequality (2): This holds because V;|(s') < H, the total variation bound >, ¢ |P/(s' | s,a) — P/'(s" |
s,a)| < €, and the fact that ), P/(s" | s,a) = 1.

At layer H, it is given that VE}*Ml = VI}?MQ = 0. Applying the above inequality recursively, we obtain

Vi () = Vi ()| < H(H = i)eo < H2e0,

QZ‘Ml(s, a) — Q:‘}V[Q(S, a)’ < Hep + max

‘/2+11M1( ) ‘/;ELM2(S)’§H60+H(H_1)€O§H260,

In particular, for the initial layer,

s

Vi, = Vi = [Vifin (s0) = Vilke, (s0)] < Hoeo.

O

Lemma E.2. Consider two MDP M, and M, that are ey-related . Let P’ and P" denote the transition models of
My and Mo, respectively. For any policy , it holds that

2
Viy, — Vi | < H?eo,

where H is the horizon length.

Proof. For 0 < i< H — 1, we have

’Viier(S) - ‘/iTMz(S)‘ = ‘QZMl(Svﬂ'i(S)) - QZMz (s, 771(5))’

< max (
a
Sl

ZH(S/|S’G) o1 ( ZPNS | s,a) - z+1M2( s')
( ZP/ s' | s,a) ( Vi (s )_VilLMQ(S/))‘

Y (s | s,0) = P'(s"| 5,0)) - Viiy ag, (5) )

ry

)

+

(1)
< Hep + max |V1+1 a, (8) — 1'11,MQ(5)| .
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Inequality (1): This holds because V;fl(s’ ) < H, the total variation bound
Yoves|Pi(s'|s,a) = P/'(s"| s,a)| < €, and the fact that ), Pi(s' | s,a) = 1.
Atlayer H, itis given that V}j , = Vj ,, = 0.
Applying the above inequality recursively, we obtain
| iT]Ml (s) — ‘/zﬂMg(s)‘ < H250a
In particular, for the initial layer,
|Vo7,TM1 (s0) — ‘/()7:Mz(50)| < H¢,
O

Lemma E.3. For any policy m, we have
0 <V — Vi < H?|S|r,

where M" is defined as in Definition B.6 and |S)| is the size of the state space.

Proof. Clearly, Vi, — Vi > 0.
We observe that for any h and s;, € S, the following holds:

Z dyrr(Sny h) (Vhﬂ,M(Sh) - V}:MT (Sh))

spLES

( ) us s us T ™

= Z digr(sh, h)Vh,M(Sh) + Z dsr(Snsh) (V}L,M(Sh) - Vh,M’“(Sh))
sp€UR(T) sp@Un (1)

(2)

<|S|-r-H+ Z dyrr (Sny h) (VhTiM(Sh) - Vhﬂ,M"'(Sh))

sngUn(r)

3

S| H+ o dipe(so.h) [ rasnom(sn) + D Palsnralsn, w(sn))Vity ar(sns1)
sngUn(r) Sh+1€S

—rn(sn.m(sn)) = D Palsnealsn m(sn))Vilir arr (Sn41)

Sh+1€S
=I[S[-r-H+ Z i (snr, b+ 1) (Viipn i (Sn1) = Vitea are (Sn1))
Sthh(’r‘)
4) T ™ Tr
=|S|-r-H+ Z i (sne1, b+ 1) (Vi ar(Sn1) = Vil aee (Sh41))
Sh4+1€S

* Step (1): The first equality arises because for all sy, € Uy, (r), the value function Vil e (sn) = 0.

Step (2): The inequality follows from the definition of dfj;, (sp, h) < r and the fact that V;"(sp) < H.
This ensures that the first term in the sum is bounded by |S| - r - H.

Step (3): The equality holds because for all s;, ¢ Up,(r), the transition probability P, (sp+1|sh, 7(sn))
under the original model M is identical to that under the modified model M", i.e., Py (sp41|sn, 7(sp)) =
Pl (sh+1l|sh,m(sr)). Thus, the only difference in the value functions is the difference in the values at the
next time step.

Step (4): The final equality follows from interchanging the order of summation, allowing us to express
the sum over sy, as a sum over sp1.
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Next, we observe that

- - (5) oy n ™
VO,M(SO) - VO,MT(SO) = E dyr(s1,1) (Vl,M(Sl) - V1,1W(51)) )
s1ES

where Step (5): holds because sg is the fixed initial state, and by definition, d7f;.(s1,1) = df;(s1,1) =
P0(81|80, 71'(80)).

By recursively applying the same reasoning for each time step h, we obtain the following upper bound:
VOTM(SO) - VoT,rMT(SO) <I[S|-r- H?.
Thus, we conclude that

0 <V — Vi < H?S|r.

Lemma E.4. For any policy m, we have

0< Vi — % < HQ\S|T7
where M is defined as in Definition D.4 and |S| is the size of the state space.
Proof. Clearly, V], — V%r > 0.

By the similar analysis as above, we observe that for any h and s;, € S, the following holds:

> dire(sno ) (Vilarsn) = Vg (sn)

SpES
= Z di‘r S}“ )Vh M S}L Z d Sh, (Vhﬂ-M(Sh) — V}ZHT(S}L)>
sh€TR(r) spgTh(r)
<USlor-H4 30 g (onh) (Vitar(on) = Vg (sn)
sp@Th(r)

=S| H+ Y dipe(so,h) [ ru(snom(sn) + D Palsnsalsn m(sn) Vit ar(sni1)
sn@Tn(r) Sh41€85

=7 (8h, T(sn)) — Pr(shy1lsn, m(sn)V,", | 577 (Sh1)
h+1,M

Sh+1 es

=IS|-r-H+ Y d(snerh+1) (vth,M(shH)—V;HMT(SW))

Sh+1€S

* Step (1): The inequality follows from the definition of d3(sp, h) < max, Pr[sp = s | M, 7] < r and
the fact that V;';(s5) < H. This ensures that the first term in the sum is bounded by [S| - - H.

Next, we observe that

ViTar(s0) = = 3 (1, ) (Vimur(s1) = Ve (5))

s1ES

By recursively applying the same reasoning for each time step h, we obtain the following upper bound:
Vo (s0) — %’fﬁr(so) <|S|-r- H2.

Thus, we conclude that
0< Vi — Vﬁ < H2\5|r.
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Figure 3: MDP to solve BESTARM.

F HARDNESS RESULT

Definition F.1 (BESTARM Problem). Consider a k-armed bandit problem. Let k be the number of arms, and fix
parameters € > 0 and § € (0,1). The (k, €,0)-BESTARM problem is defined as follows: given access to k arms,
each associated with an unknown distribution (e.g., Bernoulli), the goal for an algorithm is to identify an arm
whose mean reward is within € of the best arm’s mean, with probability at least 1 — 6.

Lemma F.2 ((Chen et al., 2025)). Consider a k-armed bandit problem. Let ¢ < i and § < %ﬂ Then, there
exists no (k — 1)-list replicable algorithm for the (k,¢€,)-BESTARM problem, even when each arm follows a

Bernoulli distribution and an unbounded number of samples is allowed.

Theorem F.3. Suppose there exists a weakly {-list replicable RL algorithm that interacts with an MDP M with
state space S, action space A, and horizon length H, such that there is a list of policies IL(M ) with cardinality at
most £ that depend only on M, so that with probability at least 1 — 6, 7 is e-optimal and @ € TI(M), where T is the
near-optimal policy returned by the algorithm when interacting with M. Suppose € < m and 0 < m.
Then it must hold that

SI1A] (H = log4/ 1S1] - 3)
{> 3 .

Proof. Assume for contradiction that there exists an RL algorithm that satisfies the conditions of the theorem, with

[SI14] (H - Mogy 111 - 3)
l< .
3
We will show that this assumption leads to a contradiction with Lemma F.2.

Without loss of generality, assume || is divisible by 3. Let m = |S|/3,n = |A|, z = H — [log,, m] — 3, and
define £ = mnz. We now construct a reduction from the k-armed bandit problem (with Bernoulli rewards) to an
MDP instance.
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We index the k arms by triplets (4, j,¢), where ¢ € [z], j € [m], and ¢ € [n]. Each arm is associated with a
Bernoulli distribution D; ;  with mean p; ; ,. We will design an MDP M such that interacting with it corresponds
to querying these k arms.

Key Layer Construction. Let {qi,...,¢,} C S denote a set of m designated key-layer states (illustrated in
Figure 3). We will construct the MDP such that for each ¢ € [z] and j € [m], there exists a unique deterministic
policy that reaches state g; precisely at time step h; = d + ¢, where d = [log,, m].

Once in state ¢; at time h;, the agent can choose action a; € A to simulate pulling arm (¢, j,¢). Let sg, s7 € S
denote two absorbing states. We define

V(@ 5,0 Pui(sm | gj:a0) = pijes Prist|gj,a0) =1 =pije
and for all h, a: r,(sg,a) = 1[h = H — 1] and 71, (s, a) = 0. Both sy and sy are absorbing: P(s' | sg,a) =
1[s" = sy and similarly for sy.

Aucxiliary Structure. We now describe the deterministic routing structure that reaches each ¢; in exactly d steps.
We construct a complete n-ary tree rooted at a state w; € .S. Every non-leaf state in the tree has n children, one for
each action in A, and transitions deterministically based on the action played.

The final layer connects to key-layer states q1, . . ., ¢,,. There may be more than m leaf actions; any excess actions
simply self-loop. The tree has depth d, requires at most 2m states, and all transitions have reward zero. Transitions
are time-homogeneous.

Initial State and Entry Mechanism. Let sy € S be the initial state. Define its transitions as follows:

1. Playing a designated action ag € A transitions to the root wy of the n-ary tree;
2. Playing a designated action a; € A causes the agent to remain in So;

3. All other actions lead to s.

To reach a key-layer state g; at time h; = d + 1, a policy selects a; for ¢ time steps in s¢, followed by action ag to
enter the tree, and then a sequence of d actions that leads to ¢;. From there, it plays a, to simulate arm (¢, 7, £).

Correctness of the Reduction. This construction yields a one-to-one correspondence between bandit arms and
deterministic policies in the MDP that reach g; at h; and play a,. Thus, any e-optimal policy in the MDP induces
an e-optimal arm in the bandit problem. Note also that all non-rewarding policies cannot match the optimal value
due to the delayed structure and reward placement.

Contradiction. Now suppose we run the assumed RL algorithm on this MDP. By hypothesis, the algorithm
returns a e-optimal policy that lies in a list of £ policies with £ < k = mnz, with probability at least 1 — §, where
€< i and § < %H Since each policy corresponds to a unique arm, this implies the existence of a (k — 1)-list

replicable algorithm for the (k, €,0)-BESTARM problem. This contradicts Lemma F.2, completing the proof. [

G EXPERIMENTS

All our experiments are performed based on environments in the Gymnasium (Towers et al., 2024) package, and
we use the PyTorch 2.1.2 for training neural networks. We use fixed random seeds in our experiments for better
reproducibility.

G.1 CARTPOLE-V1 WiTH DQN

We evaluate the performance of the DQN algorithm (Mnih et al., 2015) on CartPole-v1, where we replace the
planning algorithm with our robust planner (Algorithm 1) in Section 5.

Network Architecture:

We use a feedforward neural network to approximate the Q-function.
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Input layer: 4-dimensional state vector

Hidden layer 1: Fully connected, 64 units, ReLU
Hidden layer 2: Fully connected, 64 units, ReLU
Output layer: Fully connected, 2 units (Q-values)

Experience Replay:

» Buffer capacity: 10° transitions stored in a FIFO deque

Batch size: B = 256
Learning begins once buffer size > B

Target Network Updates:

Two networks: local (f) and target (67)

* We use soft target updates to stabilize learning. After every Q-network update (which occurs every
step once the buffer contains > 256 transitions), the target network parameters are softly updated using

Brarget < TOontine + (1 — T)Brarger With 7 = 0.001.

Hyperparameters:
Parameter Symbol Value(s) Description
Learning rate o 2.5 x 1073 Adam optimizer step size
Discount factor ~ 0.99 Future reward discount
Replay batch size B 256 Transitions per learning update
Replay buffer capacity N 10° Max number of stored transitions
Soft update factor T 1073 Target network mixing coefficient
Exploration start €0 1.0 Initial exploration probability
Exploration end €min 0.01 Minimum exploration probability
Exploration decay €decay 0.997 Multiplicative decay per episode
Training episodes - 400 Total training episodes
Max steps per episode  — 500 Episode length limit
Evaluation episodes - 100 Used to compute mean returns
Independent runs - 50 Used to report mean/std

Training Procedure:

1. Initialize local and target networks; create empty replay buffer.

2.

When invoking Algorithm 1, we use the Q-network as our estimate of )

For each episode:

* Reset environment; compute ¢; = max(€min, €0 etdecay)

* For each step ¢:

— Select action using e-greedy or Algorithm 1
— Store transition (s, a, r, s’) in the replay buffer

— If buffer size > B, sample mini-batch and update Q-network

— Update target network using soft update rule

*

o and select actions using Algorithm |

with raction € {0.0,0.05,0.1,0.5}. Note that when 7action = 0, Algorithm 1 is equivalent to picking actions that
maximize the estimated ()-value as in the original DQN algorithm.

Evaluation Protocol:

Every 10 training episodes, we evaluate the policy over 100 test episodes, where each episode is initialized using
a fixed random seed for reproducibility. During the evaluation, we disable e-greedy but still use Algorithm 1 to
choose actions. In Figure 1(a), we report the average award of the trained policy, 4 standard deviation, across
different runs.
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G.2 ACROBOT-V1 WITH DOUBLE DQN

We evaluate the performance of the Double DQN algorithm (Van Hasselt et al., 2016) on Acrobot-v1, where we
replace the planning algorithm with our robust planner (Algorithm 1) in Section 5.

Network Architecture: We use a feedforward neural network to approximate the Q-function.

¢ Input layer: state vector (dim = 6)
* Hidden layers: 256 — 512 — 512 units, ReL.U activations
¢ Qutput layer: Q-values for each action (dim = 3)

Hyperparameters:
Parameter Symbol Value(s) Description
Learning rate a 1x107° Adam step size
Discount factor ol 0.99 Future reward discount
Batch size B 8192 Samples per update
Replay capacity N 5x10% Max transitions stored
Target update freq. - 100 steps Hard copy interval
Initial € €0 1.0 Exploration start
Min e €min 0.01 Exploration floor
e-decay ) 5x 1074 Exploration decay per episode
Training epochs - 90 Total learning epochs
Eval interval - 10 episodes  Test frequency
Eval episodes - 100 runs Used to compute mean returns
Independent runs - 25 Used to report mean/std

Replay Buffer:

 Capacity: 50,000 transitions
* Batch size: B = 8192

Training Procedure:

1. Initialize networks, replay buffer, and seeds.
2. For each episode ¢:

* Reset environment; compute £; = max(Emin, €9 — t0)
* For each step:
— Select action using e-greedy or Algorithm 1
— Store transition (s, a, r, s") in the replay buffer.
— If buffer size > B, sample mini-batch and update Q-network using double Q-learning
— Every 100 learning steps, replace target weights

When invoking Algorithm 1, we use the Q-network as our estimate of QZ > and select actions using Algorithm 1

with 7action € {0,0.05,0.1,0.2}. Note that when r,cti0n = 0, Algorithm 1 is equivalent to picking actions that
maximize the estimated ()-value as in the original Double DQN algorithm.

Evaluation Protocol:
Same as Section G.1.

G.3 MOUNTAINCAR-VO WITH TABULAR Q-LEARNING

We evaluate the performance of the Q-Learning on MountainCar-v0, where we replace the planning algorithm
with our robust planner (Algorithm 1) in Section 5.
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State Discretization:

* Discretized into a 20 x 20 grid
* Bin size computed from environment bounds

* Discrete state: tuple((s — Smin)/AS)

Q-table:

* Shape: (20,20, 3)

* Initialized uniformly in [—2, 0]

Hyperparameters:
Parameter Symbol Value(s) Description
Learning rate « 0.1 Q-learning update step
Discount factor v 0.95 Discount for future rewards
Exploration schedule ¢ max(0.01,1 —¢/500) Episode-based decay
State bins - 20 x 20 For discretization
Training episodes - 10,000 Total learning episodes
Evaluation interval - 200 Test policy every 200 episodes
Test episodes - 100 Used to compute mean returns
Independent runs - 25 Used to report mean/std

Training Procedure:

For each episode ¢:

* Reset environment; discretize initial state; compute €; = max(0.01,1 — ¢/500)
* Select actions using e-greedy or Algorithm 1

* Update Q-table with learning rate « = 0.1 and discount factor v = 0.95:
Qs,0) (1= a)Q(s,a) + a |r +ymax Q(s', )
a/
* If terminal state is reached and the goal is achieved, set Q(s, a) < 0

When invoking Algorithm 1, we use the Q-table as our estimate of QZ and select actions using Algorithm 1

BN
with 7action € {0,0.001,0.005,0.02}. Note that when r,cti0n = 0, Algorithm 1 is equivalent to picking actions
that maximize the estimated ()-value as in the original Q-learning algorithm.

Evaluation Protocol: Same as Section G.1.

G.4 NAMETHISGAME WITH BEYOND THE RAINBOW

We evaluate the performance of the Beyond The Rainbow on Namethisgame, where we replace the planning
algorithm with our robust planner (Algorithm 1) in Section 5.

Environment:

e Domain: Atari 2600, evaluated on NameThisGame
* Simulator: ALE with frame skip = 4
* Observations: grayscale 84 x 84 stacked frames

e Actions: discrete Atari action set
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Baseline:

* Algorithm: BTR (Bootstrapped Transformer Reinforcement learning)

* Training budget: 100M Atari frames

Threshold Strategy:

* Planner augmented with a decaying action-threshold rule

* At each decision point, we select

a = argmax Q(s,a’) subjectto Q(s,a) > maxQ(s,a’) — racon(t),
a’ a’

where 7'cion (1) is a step-dependent threshold

* Decay schedule:

Taction(t) = 0.4 x (0.98) [1/5000),
with ¢ denoting the training step index
* When 7yiion(t) — 0, the method reduces to the vanilla BTR algorithm

Parameter Symbol  Value(s) Description

Learning rate lr 1x1074 Optimizer step size (Adam/AdamW)
Discount factor y 0.997 Discount for future rewards

Batch size B 256 Mini-batch size for updates
Replay buffer size - 106 PER capacity

PER coefficient «a 0.2 Priority exponent

PER annealing B 045 — 1.0 Importance weight schedule
Gradient clipping - 10.0 Norm clipping for stability

Target update - 500 steps Replace target network

Slow net update - 5000 steps Replace slow network

Optimizer - Adam/AdamW With ¢ = 0.005/B

Loss function - Huber Temporal difference loss

Replay ratio - 1.0 Grad updates per env step
Exploration schedule € 1.0 — 0.01 (2M steps) e-greedy decay

Noisy layers - Enabled Factorized Gaussian noise
Network arch. - Impala-IQN / C51 Conv backbone + distributional head
Model size - 2 Scale factor for Impala CNN
Linear hidden size - 512 Fully-connected layer width
Cosine embeddings Neos 64 IQN quantile embedding size
Number of quantiles 7 8 Quantile samples for IQN

Frame stack - 4 History frames per state

Image size - 84 x 84 Input resolution

Trust-region - Disabled Optional stabilizer

EMA stabilizer T 0.001 Soft target update (if enabled)
Munchausen o 0.9 Entropy regularization (if enabled)
Distributional - C51/IQN Distributional RL variants
Threshold start Dygart 0.4 Initial threshold ratio

Threshold decay Decay 0.98 Multiplicative decay factor
Threshold interval - 5000 steps Decay period

D-strategy - none / minnumber / lastact / slownet ~ Action selection rule

Training frames
Evaluation freq.
Independent runs

200M
250k frames
5 seeds

Total Atari interaction budget
Eval episodes per checkpoint
Reported mean/std

Training Procedure:

* Interact with the environment for 100M frames using e-greedy exploration
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* Store transitions into a replay buffer and update the Q-network with Adam optimizer

* Report mean and standard deviation over 5 independent seeds

We observe that augmenting BTR with the threshold strategy improves performance in Name ThisGame by over
10% compared to the baseline.

H LLM USAGE

We used large language models (LLMs) only for minor language polishing and for assistance in generating plotting
scripts. No LLMs were involved in the research ideation, theoretical derivations, experiment design, or analysis.
All scientific contributions of this work are entirely our own.
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