
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052

Under review as a conference paper at ICLR 2026

LIST REPLICABLE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Replicability is a fundamental challenge in reinforcement learning (RL), as RL algorithms are
empirically observed to be unstable and sensitive to variations in training conditions. To formally
address this issue, we study list replicability in the Probably Approximately Correct (PAC) RL
framework, where an algorithm must return a near-optimal policy that lies in a small list of
policies across different runs, with high probability. The size of this list defines the list complexity.
We introduce both weak and strong forms of list replicability: the weak form ensures that the
final learned policy belongs to a small list, while the strong form further requires that the entire
sequence of executed policies remains constrained. These objectives are challenging, as existing
RL algorithms exhibit exponential list complexity due to their instability. Our main theoretical
contribution is a provably efficient tabular RL algorithm that guarantees list replicability by
ensuring the list complexity remains polynomial in the number of states, actions, and the horizon
length. We further extend our techniques to achieve strong list replicability, bounding the number
of possible policy execution traces polynomially with high probability. Our theoretical result
is made possible by key innovations including (i) a novel planning strategy that selects actions
based on lexicographic order among near-optimal choices within a randomly chosen tolerance
threshold, and (ii) a mechanism for testing state reachability in stochastic environments while
preserving replicability. Finally, we demonstrate that our theoretical investigation sheds light
on resolving the instability issue of RL algorithms used in practice. In particular, we show that
empirically, our new planning strategy can be incorporated into practical RL frameworks to
enhance their stability.

1 INTRODUCTION

The issue of replicability (or lack thereof) has been a major concern in many scientific areas (Begley and Ellis,
2012; Ioannidis, 2005; Baker, 2016; of Sciences et al., 2019). In machine learning, a common strategy to ensure
replicability and reproducibility is to publicly share datasets and code. Indeed, several prominent machine learning
conferences have hosted reproducibility challenges to promote best practices (Sinha et al., 2023). However, this
approach may not be sufficient, as machine learning algorithms rely on sampling from data distributions and
often incorporate randomness. This inherent stochasticity leads to non-replicability. A more effective solution is
to design replicable algorithms— ideally algorithms that consistently produce the same output across multiple
runs, even when each run processes a different sample from the data distribution. This approach has recently
spurred theoretical investigations, resulting in formal definitions of replicability and the development of various
replicability frameworks (Impagliazzo et al., 2022; Dixon et al., 2023). In this paper, we focus on the notion of
list replicability (Dixon et al., 2023). Informally, a learning algorithm is k-list replicable if there is a list L of
cardinality k of good hypotheses so that the algorithm always outputs a hypothesis in L with high probability. k is
called the list complexity of the algorithm. List replicability generalizes perfect replicability, which corresponds to
the special case where k = 1. However, as noted in Dixon et al. (2023), perfect replicability is unattainable even
for simple problems. List replicability provides a natural relaxation, allowing meaningful guarantees while still
ensuring controlled variability in algorithm outputs.

We investigate list replicability in the context of reinforcement learning (RL), or more specifically, probably
approximately correct (PAC) RL in the tabular setting. In RL, an agent interacts with an unknown environment
modeled as a Markov decision process (MDP) in which there is a set of states S with bounded size that describes
all possible status of the environment. At a state s ∈ S, the agent interacts with the environment by taking an action
a from an action space A, receives an immediate reward and transits to the next state. The agent interacts with the
environment episodically, where each episode consists of H steps. The goal of the agent is to interact with the
environment by executing a series a policies, so that after a certain number of interactions, sufficient information

1



053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105

Under review as a conference paper at ICLR 2026

is collected so that the agent could find a policy that performs nearly optimally. Replicability is a well-known
challenge in RL, as RL algorithms are empirically observed to be unstable and sensitive to variations in training
conditions. Our work aims to address this issue by introducing and analyzing list replicability in the PAC-RL
framework. Moreover, by studying the replicability of RL from a theoretical point of view, we could build a clearer
understanding of the instability issue of RL algorithms, and finally make progress towards enhancing the stability
of empirical RL algorithms.

Theoretically, there are multiple ways to define the notion of list replicability in the context of RL. We may say
an RL algorithm is k-list replicable, if there is a list L of policies with cardinality k, so that the near-optimal
policy found by the agent always lies in L with high probability, where the list L depends only on the unknown
MDP instance. Under this definition of list replicability, it is only guaranteed that the returned policy lies in a list
with small size: there is no limit on the sequence of policies executed by the agent (the trace). We call such RL
algorithms to be weakly k-list replicable.

In certain applications, the above weak notion of list replicability may not suffice, and a more desirable notion
of list replicability is to require both the returned policy and the trace (i.e., sequence of policies executed by the
agent) lies in a list of small-size. This stronger notion of list replicability has been studied in multi-armed bandit
(MAB) (Chen et al., 2025), and similar definition of replicability has been studied by Esfandiari et al. (2023) in
MAB under ρ-replicability (Impagliazzo et al., 2022). In these work, it has been argued that limiting the number of
possible traces (in terms of actions) of an MAB algorithm is more desirable in scenarios including clinical trials
and social experiments. Therefore, the stronger notion of list replicability for RL mentioned above is a natural
generalization of existing replicability definitions in MAB, and in this work, we say an RL algorithm to be strongly
k-list replicable if such stronger notion (in terms of traces of policies) of list replicability holds.

The central theoretical question studied in this work is whether we can design list replicable PAC RL algorithms in
the tabular setting. We give an affirmative answer to this question. We note that existing algorithms can potentially
generate an exponentially large number of policies (and their execution traces) for the same problem instance, and
hence, new techniques are needed to achieve our goal.

Interestingly, our theoretical investigation offers insights into addressing the instability commonly observed in
practical RL algorithms. In particular, the new technical tools developed through our analysis can be integrated into
existing RL frameworks to enhance their stability.

Below we give a more detailed description of our theoretical and empirical contributions.

Theoretical Contributions. Our first theoretical result is a black-box reduction which converts any PAC RL
algorithm in the tabular setting to one that is weakly k-list replicable with k = O(|S|2|A|H2). Here, |S| is the
number of states, |A| is the number of actions and H is the horizon length. Due to space limitation, the description
of the reduction and its analysis is deferred to Appendix D.

Theorem 1.1 (Informal version of Theorem D.1). Given a RL algorithm A(ϵ0, δ0) that interacts with an unknown
MDP and returns an ϵ0-optimal policy with probability at least 1− δ0. There is a weakly k-list replicable algorithm
(Algorithm 3) with k = O(|S|2|A|H2) that makes |S|H calls to A with ϵ0 = ϵδ

poly(|S|,|A|,H) and δ0 = δ/(8|S||H|).
For any unknown MDP instance M , with probability at least 1 − δ, the algorithm returns an ϵ-optimal policy
π ∈ Π(M), where Π(M) is a list of policies that depends only on the underlying MDP M with size |Π(M)| = k.

Using PAC RL algorithms in the tabular setting (e.g. the algorithm by Kearns and Singh (1998a)) with sample
complexity polynomial in |S|, |A|, H , 1/ϵ0 and log(1/δ0)) as A, the final sample complexity of our weakly k-list
replicable algorithm in Theorem 1.1 would be polynomial in |S|, |A|, H , 1/ϵ and 1/δ. Compared to existing
algorithms in the tabular setting, the sample complexity of our algorithm has much worse dependence on 1/δ
(polynomial dependence instead of logarithm dependence), which is common for algorithms with list replicability
guarantees (Dixon et al., 2023). On the other hand, the list complexity k of our algorithm has no dependence on δ.

Our second result is a new RL algorithm that is strongly k-list replicable with k = O(|S|3|A|H3).

Theorem 1.2 (Informal version of Theorem 6.1). There is a strongly k-list replicable algorithm (Algorithm 2) with
k = O(|S|3|A|H3), such that for any unknown MDP instance M , with probability at least 1− δ, the algorithm
returns an ϵ-optimal policy, and the sequence of policies executed by the algorithm and the returned policy lies in a
list with size k that depends only on M . Moreover, the sample complexity of the algorithm is polynomial in |S|, |A|,
H , 1/ϵ, 1/δ.

2



106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

Under review as a conference paper at ICLR 2026

Our second result shows that, perhaps surprisingly, even under the more stringent definition of list replicability,
designing RL algorithm in the tabular setting with polynomial sample complexity and polynomial list complexity
is still possible. The description of Algorithm 2 is given in Section 6.

Finally, we prove a hardness result on the list complexity of weakly replicable RL algorithm in the tabular setting,
completing our new algorithms.
Theorem 1.3 (Informal version of Theorem F.3). For any weakly k-list replicable RL algorithm that returns an
ϵ-optimal policy with probability at least 1− δ, we have k ≥ |S||A|(H−⌈log|A| |S|⌉−3)

3 as long as ϵ ≤ 1
2|S||A|H and

δ ≤ 1
|S||A|H+1 .

Theorem 1.3 shows that the list complexity of any weakly k-list replicable algorithm is Ω(SAH), provided that its
suboptimality and failure probability are both at most O(1/(SAH)). Theorem 1.3 is proved by a reduction from
RL to the MAB and known list complexity lower bound for MAB (Chen et al., 2025). Its formal proof can be
found in Appendix F.

Empirical Contributions. We further show that our robust planner (presented in Section 5), one of our new
technical tools for establishing Theorem 1.1 and Theorem 1.2, can be incorporated into practical RL frameworks to
enhance their stability. The empirical findings are presented in Section 7.

2 RELATED WORK

There is a long line of research dedicated to understanding the complexity of reinforcement learning by studying
learning in a Markov Decision Process (MDP). One well-established setting is the generative model, which abstracts
away exploration challenges by assuming access to a simulator that allows sampling from any state-action pair. A
number of works (Kearns and Singh, 1998a; Pananjady and Wainwright, 2020; Kakade, 2003; Azar et al., 2013;
Agarwal et al., 2020; Wainwright, 2019b;a; Sidford et al., 2018a;b; Li et al., 2024b;a; 2022; Even-Dar and Mansour,
2003; Shi et al., 2023; Beck and Srikant, 2012; Cui and Yang, 2021; Sidford et al., 2018b; Wainwright, 2019b;
Azar et al., 2013; Agarwal et al., 2020) have established near-optimal sample complexity bounds for learning
a policy in this regime. Specifically, to learn an ϵ-optimal policy with high probability, the statistically optimal
sample complexity is of the order poly(|S|, |A|, H, 1/ϵ), where H denotes the horizon or the effective horizon of
the environment. These algorithms generally fall into two categories: those that estimate the probability transition
model and those that directly estimate the optimal Q-function. However, due to the inherent randomness in
sampling, these approaches do not guarantee list-replicable policies—each independent execution of the algorithm
may return a different policy, potentially leading to an exponentially large set of output policies.

In contrast, the online RL setting—where there is no access to a generative model—has seen significant progress
over the past decades in optimizing sample complexity. Notable contributions include (Kearns and Singh, 1998b;
Brafman and Tennenholtz, 2002; Kakade, 2003; Strehl et al., 2009; Auer, 2002; Strehl et al., 2006; Strehl and
Littman, 2008; Kolter and Ng, 2009; Bartlett and Tewari, 2009; Jaksch et al., 2010; Szita and Szepesvári, 2010;
Lattimore and Hutter, 2012; Osband et al., 2013; Dann and Brunskill, 2015; Agrawal and Jia, 2017; Dann et al.,
2017; Jin et al., 2018; Efroni et al., 2019; Fruit et al., 2018; Zanette and Brunskill, 2019; Cai et al., 2019; Dong et al.,
2019; Russo, 2019; Neu and Pike-Burke, 2020; Zhang et al., 2020; 2021; Tarbouriech et al., 2021; Xiong et al.,
2022; Ménard et al., 2021; Wang et al., 2020; Li et al., 2021b;a; Domingues et al., 2021; Zhang et al., 2022). These
works typically evaluate algorithmic performance within the regret framework, comparing the accumulated reward
of an algorithm against that of an optimal policy. When adapted to the Probably Approximately Correct (PAC) RL
framework, these results imply a sample complexity of poly(|S|, |A|, H, 1/ϵ) to learn an ϵ-optimal policy with high
probability. To achieve a balance between exploration and exploitation, the aforementioned algorithms generally
follow a common iterative framework—maintaining a policy and refining it as new data is collected. For example,
UCB-type algorithms (e.g., Jin et al. (2018)) maintain an approximate Q-function and leverage an upper-confidence
bound to guide data collection. However, due to the iterative updates of these algorithms, they inherently fail to
achieve polynomial complexity in either the strong or the weak notion of list replicability, as policies are likely to
change at each iteration, and small stochastic error could have significant impact on the policies executed by the
algorithm.

Recent studies have begun exploring replicable reinforcement learning. (Karbasi et al., 2024; Eaton et al., 2023)
examined ρ-replicability, as defined in (Impagliazzo et al., 2022). Intuitively, ρ-replicability ensures that two
executions of the same algorithm, when initialized with the same random seed, yield the same policy with probability
at least 1 − δ. Meanwhile, (k, δ)-weak list replicability requires that an algorithm consistently outputs a policy

3



159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

Under review as a conference paper at ICLR 2026

from a fixed list of at most k policies with probability at least 1− δ. However, a ρ-replicable algorithm may still
generate an exponentially large number of distinct policies, as each seed may correspond to a different output policy.
Thus, such algorithms may still suffer from exponential weak (or strong) list complexity. (Esfandiari et al., 2023)
further studied the Multi-Armed Bandit (MAB) problem under ρ-replicability, where two independent executions
of a ρ-replicable MAB algorithm, sharing the same random string, must follow the same sequence of actions with
probability at least 1− ρ.

In the online learning setting, the only known work addressing list replicability is by Chen et al. (2025), who
studied the concept in the context of Multi-Armed Bandits (MAB). The authors define an MAB algorithm as
(k, δ)-list replicable if, for any MAB instance, there exists a list of at most k action traces such that the algorithm
selects one of these traces with probability at least 1− δ. Our definition of strong list replicability for RL naturally
extends this notion to RL. However, due to the long-horizon nature of RL, achieving list replicability in RL presents
significantly greater challenges.

3 PRELIMINARIES

Notations. For a positive integer N , we use [N ] to denote {0, 1, . . . , N − 1}. For a condition E , we use 1[E ] to
denote the indicator function, i.e., 1[E ] = 1 if E holds and 1[E ] = 0 otherwise. For a real number x and ϵ ≥ 0,
we use Ball(x, ϵ) to denote [x− ϵ, x+ ϵ]. For two real numbers a < b, we use Unif(a, b) to denote the uniform
distribution over (a, b).

Markov Decision Process. Let M = (S,A, P,R,H, s0) be a Markov Decision Process (MDP). Here, S is the state
space, and A = {1, 2, . . . , |A|} is the action space. P = (Ph)h∈[H], where for each h ∈ [H], Ph : S ×A→ ∆(S)
is the transition model at level h which maps a state-action pair to a distribution over states. R = (Rh)h∈[H], where
for each h ∈ [H], Rh : S × A → [0, 1] is the deterministic reward function at level h. H ∈ Z+ is the horizon
length, and s0 ∈ S is the initial state. We further assume that the reward functions R = (Rh)h∈[H] are known. 1

A (non-stationary) policy π chooses an action a ∈ A based on the current state s ∈ S and the time step h ∈ [H].
Formally, π = {πh}H−1

h=0 where for each h ∈ [H], πh : S → A maps a given state to an action. The policy π
induces a (random) trajectory s0, a0, r0, s1, a1, r1, . . . , sH−1, aH−1, rH−1, where for each h ∈ [H], ah = πh(sh),
rh = Rh(sh, ah) and sh+1 ∼ Ph(sh, ah) when h < H − 1.

Interacting with the MDP. In RL, an agent interacts with an unknown MDP. In the online setting, in each episode,
the agent decides a policy π, observes the induced trajectory, and proceeds to the next episode. In the generative
model setting, in each round, the agent is allowed to choose a state-action pair (s, a) ∈ S ×A and a level h ∈ [H],
and receives a sample drawn from Ph(s, a) as feedback.

Value Functions and Q-Functions. For an MDP M , given a policy π, a level h ∈ [H] and (s, a) ∈ S × A, the
Q-function is defined as Qπ

h,M (s, a) = E
[∑H−1

h′=h rh′ | sh = s, ah = a,M, π
]
, and the value function is defined

as V π
h,M (s) = E

[∑H−1
h′=h rh′ | sh = s,M, π

]
. We denote Q∗

h,M (s, a) = Qπ∗

h,M (s, a) and V ∗
h,M (s) = V π∗

h,M (s)

where π∗ is the optimal policy. We also write V ∗
M = V ∗

0,M (s0) and V π
M = V π

0,M (s0) for a policy π. We may omit
M from the subscript of value functions and Q-functions when M is clear from the context (e.g., when M is the
underlying MDP that the agent interacts with). We say a policy π to be ϵ-optimal if V π ≥ V ∗ − ϵ.

The goal of the agent is to return a near-optimal policy π after interacting with the unknown MDP M by executing
a sequence of policies (or by querying the transition model in the generative model).

Further Notations. For an MDP M , define the occupancy function dπM (s, h) = Pr[sh = s | M,π] and
d∗M (s, h) = maxπ Pr[sh = s |M,π]. We may omit M from the subscript of dπM (s, h) and d∗M (s, h) when M is
clear from the context. For an MDP M , we write

GapM = {V ∗
h,M (s)−Q∗

h,M (s, a) | (s, a) ∈ S ×A, h ∈ [H]}. (1)

1For simplicity, we assume deterministic rewards and the initial state, and known reward function. Our algorithms can be
easily extended to handle stochastic rewards and initial state, and unknown rewards distributions.

4



212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

Under review as a conference paper at ICLR 2026

Two MDPs M1 and M2 are said to be ϵ-related if M1 and M2 share the same state space S, action space A, reward
function and initial state, and for all (s, a) ∈ S ×A and h ∈ [H − 1],∑

s′∈S

∣∣∣PM1

h (s′ | s, a)− PM2

h (s′ | s, a)
∣∣∣ ≤ ϵ (2)

where PM1

h is the transition model of M1 at level h and PM2

h is that of M2 at the same level.

List Replicability in RL. We now formally define the notion of list replicability of RL algorithms in the online
setting. For an RL algorithm A, we say A to be weakly (k, δ)-list replicable, if for any MDP instance M , there is
a list of policies Π(M) with cardinality at most k, so that Pr[π ∈ Π(M)] ≥ 1 − δ, where π is the (supposedly)
near-optimal policy returned by A when interacting with M .

For an RL algorithm A, we say A to be strongly (k, δ)-list replicable, if for any MDP instance M , there is a list
Trace(M) with cardinality at most k, so that Pr[((π0, π1, . . .), π) ∈ Trace(M)] ≥ 1 − δ, where (π0, π1, . . .) is
the (random) sequence of policies executed by A when interacting with M and π is the (supposedly) near-optimal
policy returned by A when interacting with M .

4 OVERVIEW OF NEW TECHNIQUES

In this section, we discuss the techniques for establishing Theorem 1.1 and Theorem 1.2.

The Robust Planner. To motivate our new approach, consider the following simple MDP instance for which most
existing RL algorithms would fail to achieve polynomial list complexity. There is a state sh at each level h ∈ [H],
and the action space is {a1, a2}. At level h, if ai is chosen, sh transitions to sh+1 with an unknown probability ph,i,
otherwise sh transitions to an absorbing state. The agent receives a reward of 1 at the last level. For this instance,
if |ph,1 − ph,2| = exp(−H), then for all h ∈ [H], no RL algorithm could differentiate ph,1 and ph,2 unless we
draw an exponential number of samples. Therefore, if the RL algorithm simply returns a policy by maximizing
the estimated optimal Q-values for each sh, then we would choose either a1 or a2, and hence, there could be 2H

different policies returned by the algorithm. As most existing RL algorithms choose actions by maximizing the
estimated Q-values, they would all fail to achieve polynomial list complexity even for this simple instance. This
also explains why existing RL algorithms tend to be unstable and sensitive to noise.

To better understand our new approach, let us first consider the simpler generative model setting. Standard analysis
shows that by taking sufficient samples for all (s, a) ∈ S × A and h ∈ [H] to build the empirical model M̂ , we
would have |Q̂h(s, a)−Q∗

h,M (s, a)| ≤ ϵ0 for all (s, a) ∈ S×A and h ∈ [H]. Here, Q̂h(s, a) = Q∗
h,M̂

(s, a) is the
estimated Q-value, and ϵ0 is a statistical error that can be made arbitrarily small by drawing more samples. Now,
for a given state s and level h, instead of choosing an action by maximizing Q̂h(s, a), we go through all actions in a
fixed order 1, 2, . . . |A|, and choose the lexicographically first action a so that Q̂h(s, a) ≥ maxa Q̂h(s, a)− raction,
where raction is a tolerance parameter drawn from the uniform distribution.

Now we show that our new approach achieves small list complexity. The main observation is the that, for a
fixed tolerance parameter raction, if the difference between raction and Gaph(s, a) = V ∗

h (s)−Q∗
h(s, a) satisfies

raction /∈ Ball(Gaph(s, a), 2ϵ0) for all (s, a) ∈ S × A and h ∈ [H], then the returned policy will always be
the same regardless of the estimation errors. To see this, for an action a, if raction /∈ Ball(Gaph(s, a), 2ϵ0),
then whether Q̂h(s, a) ≥ V̂h(s) − raction or not will always be the same regardless of the stochastic noise as
long as |Q̂h(s, a) − Q∗

h(s, a)| ≤ ϵ0. Since we always choose the lexicographically first action a satisfying
Q̂h(s, a) ≥ V̂h(s)−raction, the action chosen for s will always be the same. Equivalently, by defining Badaction =⋃

h,s,a Ball(Gaph(s, a), 2ϵ0), the returned policy will always be the same so long as raction /∈ Badaction. By
drawing raction from the uniform distribution over (0, 2HSAϵ0/δ), we would have Pr[raction /∈ Badaction] ≥ 1−δ.
Moreover, for two tolerance parameters r1action, r

2
action /∈ Badaction, if for all (s, a) ∈ S × A and h ∈ [H] we

have either r1action < r2action < Gaph(s, a) or Gaph(s, a) < r1action < r2action, then the returned policy will also
be the same no matter raction = r1action or raction = r2action. Since there are at most |S||A|H + 1 different values
for Gaph(s, a) for the underlying MDP M , there could be at most |S||A|H + 1 different policies returned by our
algorithm as long as raction /∈ Badaction. Finally, the suboptimality of the returned policy can be easily shown to
be O(H · raction) .

Weakly k-list Replicable Algorithm in the Online Setting. Our algorithm in the online setting with weakly k-list
replicable guarantee is based on building a policy cover (Jin et al., 2020). Given a black-box RL algorithm, for

5



265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

Under review as a conference paper at ICLR 2026

each (s, h) ∈ S × [H], we set the reward function to be Rs,h
h′ (s′, a) = 1[s′ = s, h = h′], invoke the black-box RL

algorithm with the modified reward function, and set the returned policy to be π̂s,h. Since π̂s,h is an ϵ-optimal
policy, we have dπ̂

s,h

(s, h) ≥ d∗(s, h)− ϵ. At this point, one could use π̂s,h to collect samples and estimate the
transition model Ph(s, a), and return a policy by invoking the robust planning algorithm mentioned above. The
issue is that there could be some (s, h) ∈ S × [H] unreachable for any policy π, i.e., d∗(s, h) is small. For those
(s, h), it is impossible to estimate the transition model Ph(s, a) accurately. On the other hand, our robust planning
algorithm requires |Q̂h(s, a)−Q∗

h(s, a)| ≤ ϵ0 for all (s, a) ∈ S ×A and h ∈ [H].

To tackle the above issue, we use an additional truncation step to remove unreachable states. For each (s, h) ∈
S × [H], we first use the roll-in policy π̂s,h to estimate the probability of reaching s at level h. If the estimated
probability is small, it would be clear that d∗(s, h) is also small as dπ̂

s,h

(s, h) ≥ d∗(s, h)− ϵ, so that (s, h) can be
removed from the MDP. On the other hand, implementing the above truncation step naïvely would significantly
increase the list complexity of our algorithm as the returned policy depends on the set of (s, h) ∈ S × [H]
being removed. Here, we use an approach similar to the robust planning algorithm mentioned earlier. We use
a randomly chosen reaching probability truncation threshold rtrunc drawn from the uniform distribution, and
for each (s, h) ∈ S × [H], we declare (s, h) to be unreachable iff the estimated reaching probability (using
π̂s,h) does not exceed rtrunc. Similar to the analysis in the robust planning algorithm, for a reaching probability
truncation threshold rtrunc, the set of (s, h) being removed would be the same as long as the difference rtrunc
and d∗(s, h) is large enough for all (s, h) ∈ S × [H]. Moreover, two reaching probability truncation thresholds
r1trunc and r2trunc will result in the same set of (s, h) being removed if for all (s, h) ∈ S × [H] we have either
r1trunc < r2trunc < d∗(s, h) or d∗(s, h) < r1trunc < r2trunc. Therefore, the total number of different sets of (s, h)
being removed is at most O(|S|H).

Strongly k-list Replicable Algorithm in the Online Setting. Unlike the case of weak list replicability where we
can use a black-box RL algorithm to determine the set of unreachable states independently at each level, for strongly
list replicable RL, such a method would not suffice due to the potentially large list complexity of the black-box
algorithm. Our algorithm with strongly k-list replicable guarantees employs a level-by-level approach: for each
level h, we find a policy π̂s,h to reach s at level h for each s ∈ S, build an empirical transition model for level
h, and proceed to the next level h+ 1. To ensure list replicability guarantees, for each (s, h) ∈ S × [H], we use
the same robust planning algorithm to find π̂s,h. As mentioned ealier, for any level h, there could be unreachable
states, and the estimated transition model for those states could be inaccurate. To handle this, for each level h,
based on the estimated transition models of previous levels, we test the reachability of all states in level h by using
the same mechanism as in our previous algorithm, and remove those unreachable states by transitioning them to an
absorbing state sabsorb in the estimated model.

Although the algorithm is conceptually straightforward given existing components, the analysis is not. For the new
algorithm, states removed at level h have significant impact on the reaching probabilities of later levels, which
also affect the planned roll-in policies of later levels. Such dependency issue must be handled carefully to have
a polynomial list complexity. To handle this, we prove several structural properties of reaching probabilities in
truncated MDPs in Section B. For the time being we assume that in our algorithm, for each level h, instead of using
estimated reaching probabilities, the algorithm has access to the true reaching probabilities, and those reaching
probabilities have taken unreachable states removed in previous levels into consideration. I.e., for a reaching
probability truncation threshold rtrunc, we first remove all states in the first level that cannot be reached with
probability higher than rtrunc, recalculate the reaching probability in the second level after truncating the first
level, remove unreachable states in the second level (again using the same threshold rtrunc), an so on. We use
Uh(rtrunc) to denote the set of states removed in level h during the above process, and see Definition B.1 for a
formal definition. We show that for different rtrunc, Uh(rtrunc) could not be an arbitrary subset of the state space,
and the main observation is that Uh(rtrunc) satisfies certain monotonicity property, i.e., given r1, r2 ∈ [0, 1], if
r1 < r2 then we have Uh(r1) ⊆ Uh(r2). This observation can be proved by induction on h, and see Lemma B.2
and its proof for more details.

As an implication, if we write U(r) = (U0(r), U1(r), . . . , UH−1(r)), then there could be at most |S|H+1 different
choices of U(r) for all r ∈ [0, 1] by the pigeonhole principle. Therefore, after fixing the reaching probability
truncation threshold, the set of states that will be removed at each level will be fixed, and for all different reaching
probability truncation thresholds, there could be at most |S|H + 1 different ways to remove states even if we
consider all levels simultaneously.

The above discussion heavily relies on the true reaching probabilities. As another implication of the monotonicity
property, there is a critical reaching probability threshold Crit(s, h) for each (s, h), and s ∈ Uh(r) iff r ≤ Crit(s, h)

6



318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

Under review as a conference paper at ICLR 2026

(cf. Corollary B.5). Therefore, for a fixed reaching probability truncation threshold rtrunc, as long as the distance
between rtrunc and Crit(s, h) is much larger than the statistical errors, the set of states being removed will still be
the same as U(rtrunc) even with statistical errors. In particular, if we draw rtrunc from a uniform distribution as in
previous algorithms, with high probability rtrunc and Crit(s, h) would have a large distance for all (s, h) ∈ S×[H],
in which case the set of removed states will be one of those |S|H + 1 different choices of U(r).

5 ROBUST PLANNING

In this section, we formally describe our robust planning algorithm (Algorithm 1). Here, it is assumed that there is
an unknown underlying MDP M . Algorithm 1 receives an MDP M̂ and a tolerance parameter raction as input, and
it is assumed that M and M̂ are ϵ0-related (see (2) for the definition). In Algorithm 1, for each (s, h) ∈ S × [H],
we go through all actions in the action space A in a fixed order 1, 2, . . . , |A|, and choose the first action a so that
Q∗

h,M̂
(s, a) ≥ V ∗

h,M̂
(s)− raction.

Algorithm 1 Robust Planning

1: Input: MDP M̂ , tolerance parameter raction.
2: Output: near-optimal policy π̂
3: Define π̂h(s) = min{a ∈ A | Q∗

h,M̂
(s, a) ≥ V ∗

h,M̂
− raction} for each (s, h) ∈ S × [H]

4: return π̂

Our first lemma characterizes the suboptimality of the returned policy. Its formal proof is based on the performance
difference lemma (Kakade and Langford, 2002) and can be found in Section A.

Lemma 5.1. Suppose M and M̂ are ϵ0-related. The policy π̂ returned by Algorithm 1 satisfies V π̂
M ≥ V ∗

M −
2H2ϵ0 − ractionH .

Our second lemma shows that if raction is chosen to be far from Gaph,M (s, a) = V ∗
h,M (s)−Q∗

h,M (s, a) for all
(s, a) ∈ S ×A and h ∈ [H], then the returned policy π̂ depends only on M and raction. Moreover, for two choices
r1action and r2action of the tolerance parameter raction, the returned policy will be the same if r1action and r2action
always lie on the same side of Gaph,M (s, a) for all (s, a) ∈ S × A and h ∈ [H]. Full proof of the lemma and
corollary can be found in Section A.

Lemma 5.2. Suppose M and M̂ are ϵ0-related. For two tolerance parameters r1action and r2action, if

• r1action, r
2
action /∈

⋃
g∈GapM

Ball(g, 2H2ϵ0) where GapM is as defined in (1);

• for any g ∈ GapM , either g < r1action < r2action or r1action < r2action < g,

then the returned policy π̂ depends only on M and raction, and for both tolerance parameters r1action and r2action,
the returned policy π̂ would be identical for the same underlying MDP M .

As a corollary of Lemma 5.1 and Lemma 5.2, we show how to design a list-replicable RL algorithm in the generative
model setting by invoking Algorithm 1 with a randomly chosen parameter raction.

Corollary 5.3. In the generative model setting, there is an algorithm with sample complexity polynomial in
|S|, |A|, 1/ϵ and 1/δ, such that with probability at least 1 − δ, the returned policy is ϵ-optimal and always lies
in a list Π(M) where Π(M) is a list of policies that depend only on the unknown underlying MDP M with
|Π(M)| = O(|S||A|H).

6 STRONGLY k-LIST REPLICABLE RL ALGORITHM

In this section, we present our strongly k-list replicable algorithm (Algorithm 2). As mentioned in Section 4,
Algorithm 2 employs a layer-by-layer approach. In Algorithm 2, for each h ∈ [H], Ûh is the set of states estimated
to be unreachable at level h, and we initialize Û0 = S \ {s0} where s0 is the fixed initial state. For each iteration
h, we assume that Ûh has been calculated, and for all s /∈ Ûh, we assume that a roll-in policy π̂s,h has been
determined (except for h = 0, since any policy would suffice for reaching the initial state). Now we describe how
to proceed to the next iteration h+ 1.

7



371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

Under review as a conference paper at ICLR 2026

For each s /∈ Ûh and a ∈ A, we build a policy π̂s,h,a based on π̂s,h, and execute π̂s,h,a to collect samples and
calculate P̂h(s, a) as our estimate of Ph(s, a). Based on {P̂h′(s, a)}h′≤h and {Ûh′}h′≤h, we build an MDP M̃h+1

(cf. (3)). For each h′ ≤ h and s ∈ S, if s /∈ Ûh′ the transition model of s in M̃h+1 at level h′ would be the
same as P̂h′(s, ·). If s ∈ Ûh′ , we always transit s to an absorbing state sabsorb in M̃h+1 at level h′. Given
M̃h+1, for each s ∈ S, we calculate d∗

M̃h+1(s, h+ 1) as our estimate of d∗(s, h+ 1), and we include s in Ûh+1

if d∗
M̃h+1(s, h+ 1) ≤ rtrunc. Here, rtrunc is a reaching probability truncation threshold drawn from the uniform

distribution. For each s /∈ Ûh+1, we further find a roll-in policy π̂s,h+1 by invoking Algorithm 1 on M̃h+1 with a
modified reward function Rs,h+1

h′ (s′, a) = 1[h′ = h+ 1, s′ = s] and tolerance parameter raction, where raction is
also drawn from the uniform distribution. After finishing all these steps, we proceed to the next iteration.

Finally, after finishing all iterations, we invoke Algorithm 1 again with MDP M̃H−1 and the same tolerance
parameter raction, and return the output of Algorithm 1 as the final output. The formal guarantee of Algorithm 2 is
stated in the following theorem. Its proof can be found in Section C.

Theorem 6.1. For any unknown MDP instance M , there is a list Trace(M) with size at most k = O(|S|3|A|H3)
that depends only on M , and with probability at least 1 − δ, the policy π returned by Algorithm 2 is ϵ-optimal,
and ((π0, π1, . . .), π) ∈ Trace(M), where (π0, π1, . . .) is the sequence of policies executed by Algorithm 2 when
interacting with M .

Algorithm 2 Strongly k-list Replicable RL Algorithm
1: Input: error tolerance ϵ, failure probability δ
2: Output: near-optimal policy π

3: Initialize C1 = 8AS2H2

δ , ϵ0 = ϵδ
1440S3H7A , ϵ1 = 5C1H

2ϵ0, η0 = 3ϵ1H , W = S2 log(8HS2A/δ)
ϵ20η0

4: Generate random numbers raction ∼ Unif(ϵ1, 2ϵ1), rtrunc ∼ Unif(3η0, 6η0)

5: Initialize Û0 = S \ {s0}
6: for h ∈ [H − 1] do
7: for (s, a) ∈ (S \ Ûh)×A do

8: Define policy π̂s,h,a, where for each h′ ∈ [H], π̂s,h,a
h′ (s′) =

{
a h′ ≥ h

π̂s,h
h′ (s′) h′ < h

9: Collect W trajectories {(s(w)
0 , a

(w)
0 , . . . , s

(w)
H−1, a

(w))
H−1}Ww=1 by executing π̂s,h,a for W times

10: For each s′ ∈ S, set P̂h(s
′ | s, a) =

∑W
w=1 1[(s

(w)
h ,a

(w)
h ,s

(w)
h+1)=(s,a,s′)]∑W

w=1 1[(s
(w)
h ,a

(w)
h )=(s,a)]

11: end for
12: Define MDP M̃h+1 = (S ∪ {sabsorb}, A, P̃h+1, R,H, s0), where for each h′ ∈ [H],

P̃h+1
h′ (s′ | s, a) =


P̂h′(s′ | s, a) h′ ≤ h, s /∈ Ûh′ ∪ {sabsorb} and s′ ̸= sabsorb
0 h′ ≤ h, s /∈ Ûh′ ∪ {sabsorb} and s′ = sabsorb
1[s′ = sabsorb] h′ > h or s ∈ Ûh′ ∪ {sabsorb}

. (3)

13: Set Ûh+1 = {s ∈ S | d∗
M̃h+1(s, h+ 1) ≤ rtrunc}

14: for s ∈ S \ Ûh+1 do
15: Define MDP M̃s,h+1 = (S ∪ {sabsorb}, A, P̃h+1, Rs,h+1, H, s0), where P̃h+1 is as defined in (3) and

Rs,h+1
h′ (s′, a) = 1[h′ = h+ 1, s′ = s]

16: Invoke Algorithm 1 with input M̃s,h+1 and raction, and set π̂s,h+1 to be the returned policy
17: end for
18: end for
19: Invoke Algorithm 1 with input M̃H−1 and raction, and set π to be the returned policy
20: return π

7 EXPERIMENTS

In this section, we show that our new planning strategy can be incorporated into empirical RL frameworks to
enhance their stability. In our experiments, we use three different environments in Gymnasium (Towers et al.,

8



424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

Under review as a conference paper at ICLR 2026

(a) Cartpole (DQN) (b) Acrobot (Double DQN) (c) MountainCar (Tabular)

Figure 1: Different threhold

Figure 2: Namethisgame ( BTR )

2024): Cartpole-v1, Acrobot-v1 and MountainCar-v0. For each environment, we use a different empirical RL
algorithms: DQN (Mnih et al., 2015), Double DQN (Van Hasselt et al., 2016) and tabular Q-learning based on
discretization. We combine our robust planner in Section 5 with the above empirical RL algorithm by replacing
the planning algorithm with Algorithm 1. Unlike our theoretical analysis, we treat the tolerance parameter raction
as a hyperparameter and experiment with different choices of raction. Note that when raction = 0, Algorithm 1 is
equivalent to picking actions that maximize the estimated Q-value as in the original empirical RL algorithms (DQN,
Double DQN and tabular Q-learning). The results are presented in Figure 1. Here we repeat each experiment by
25 times. The x-axis is the number of training episodes, the y-axis is the average award of the trained policy, ±
standard deviation across 25 runs. More details can be found in Appendix G.

Our experiments show that by choosing a larger tolerance parameter raction, the performance of the algorithm
becomes more stable at the cost of worse accuracy. Therefore, by choosing a suitable hyperparameter raction, we
could achieve a balance between stability and accuracy.

We further use our new planning strategy in more challenging Atari environments, such as NameThisGame. Using
the BTR algorithm ( (Clark et al., 2024)) as the baseline, we find that simply augmenting it with the robust planner
leads to a substantial improvement. In particular, the performance on NameThisGame increases by more than
10%, demonstrating that even this lightweight modification can yield significant gains in practice. The results are
presented in Figure 2.

8 CONCLUSION

We conclude the paper by several interesting directions for future work. Theoretically, our results show that even
under a seemingly stringent definition of replicability (strong list replicability), efficient RL is still possible in
the tabular setting. An interesting future direction is to develop replicable RL algorithms under more practical
definitions of replicability and/or with function approximation schemes using our new techniques. Empirically,
it would be interesting to incorporate our robust planner with other practical RL algorithms to see whether their
stability could be improved. Currently, our robust planner can only work with discrete action spaces, and it remains
to develop new techniques to overcome this limitation.

9



477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

Under review as a conference paper at ICLR 2026

REFERENCES

Alekh Agarwal, Sham Kakade, and Lin F Yang. Model-based reinforcement learning with a generative model is
minimax optimal. In Conference on Learning Theory, pages 67–83, 2020.

Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-case regret
bounds. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages 1184–1194. Curran Associates, Inc., 2017.

P Auer. Finite-time analysis of the multiarmed bandit problem, 2002.

Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax PAC bounds on the sample complexity
of reinforcement learning with a generative model. Machine learning, 91(3):325–349, 2013.

Monya Baker. 1,500 scientists lift the lid on reproducibility. Nature, 533(7604), 2016.

Peter L Bartlett and Ambuj Tewari. Regal: a regularization based algorithm for reinforcement learning in weakly
communicating mdps. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI
2009)), 2009.

Carolyn L Beck and Rayadurgam Srikant. Error bounds for constant step-size Q-learning. Systems & control
letters, 61(12):1203–1208, 2012.

C Glenn Begley and Lee M Ellis. Raise standards for preclinical cancer research. Nature, 483(7391):531–533,
2012.

Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-optimal reinforce-
ment learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimization. arXiv
preprint arXiv:1912.05830, 2019.

Michael Chen, A. Pavan, N. V. Vinodchandran, Ruosong Wang, and Lin Yang. Regret-optimal list replicable bandit
learning: Matching upper and lower bounds. In International Conference on Learning Representations (ICLR),
2025. URL https://openreview.net/forum?id=0T49QbSOho.

Tyler Clark, Mark Towers, Christine Evers, and Jonathon Hare. Beyond the rainbow: High performance deep
reinforcement learning on a desktop pc. arXiv preprint arXiv:2411.03820, 2024.

Qiwen Cui and Lin F Yang. Minimax sample complexity for turn-based stochastic game. In Uncertainty in
Artificial Intelligence, pages 1496–1504, 2021.

Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon reinforcement learning. In
Advances in Neural Information Processing Systems, pages 2818–2826, 2015.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying PAC and regret: Uniform PAC bounds for episodic
reinforcement learning. Advances in Neural Information Processing Systems, 30, 2017.

Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran. List and certificate complexities
in replicable learning. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, ed-
itors, Advances in Neural Information Processing Systems, volume 36, pages 30784–30806. Curran As-
sociates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/61d0a96d4a73b626367310b3ad32579d-Paper-Conference.pdf.

Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal Valko. Episodic reinforcement learning
in finite mdps: Minimax lower bounds revisited. In Algorithmic Learning Theory, pages 578–598, 2021.

Kefan Dong, Yuanhao Wang, Xiaoyu Chen, and Liwei Wang. Q-learning with UCB exploration is sample efficient
for infinite-horizon MDP. arXiv preprint arXiv:1901.09311, 2019.

Eric Eaton, Marcel Hussing, Michael Kearns, and Jessica Sorrell. Replicable reinforcement learning. In Alice
Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

10

https://openreview.net/forum?id=0T49QbSOho
https://proceedings.neurips.cc/paper_files/paper/2023/file/61d0a96d4a73b626367310b3ad32579d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/61d0a96d4a73b626367310b3ad32579d-Paper-Conference.pdf


530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

Under review as a conference paper at ICLR 2026

Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, and Shie Mannor. Tight regret bounds for model-based
reinforcement learning with greedy policies. Advances in Neural Information Processing Systems, 32, 2019.

Hossein Esfandiari, Alkis Kalavasis, Amin Karbasi, Andreas Krause, Vahab Mirrokni, and Grigoris Velegkas.
Replicable bandits. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=gcD2UtCGMc2.

Eyal Even-Dar and Yishay Mansour. Learning rates for Q-learning. Journal of Machine Learning Research, 5
(Dec):1–25, 2003.

Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Ronald Ortner. Efficient bias-span-constrained exploration-
exploitation in reinforcement learning. In ICML 2018-The 35th International Conference on Machine Learning,
volume 80, pages 1578–1586, 2018.

Russell Impagliazzo, Rex Lei, Toniann Pitassi, and Jessica Sorrell. Reproducibility in learning. In Proceedings of
the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 818–831, 2022.

John PA Ioannidis. Why most published research findings are false. PLoS medicine, 2(8):e124, 2005.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. Journal of
Machine Learning Research, 11(Apr):1563–1600, 2010.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably efficient? In Advances
in Neural Information Processing Systems, pages 4863–4873, 2018.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for reinforcement
learning. International Conference on Machine Learning, 2020.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In International
Conference on Machine Learning, pages 267–274, 2002.

Sham M Kakade. On the sample complexity of reinforcement learning. PhD thesis, University of London London,
England, 2003.

Amin Karbasi, Grigoris Velegkas, Lin Yang, and Felix Zhou. Replicability in reinforcement learning. Advances in
Neural Information Processing Systems, 36, 2024.

Michael Kearns and Satinder Singh. Finite-sample convergence rates for Q-learning and indirect algorithms.
Advances in neural information processing systems, 11, 1998a.

Michael J Kearns and Satinder P Singh. Near-optimal reinforcement learning in polynominal time. In Proceedings
of the Fifteenth International Conference on Machine Learning, pages 260–268, 1998b.

J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In Proceedings of the 26th annual
international conference on machine learning, pages 513–520, 2009.

Tor Lattimore and Marcus Hutter. PAC bounds for discounted MDPs. In International Conference on Algorithmic
Learning Theory, pages 320–334. Springer, 2012.

Gen Li, Laixi Shi, Yuxin Chen, Yuantao Gu, and Yuejie Chi. Breaking the sample complexity barrier to regret-
optimal model-free reinforcement learning. Advances in Neural Information Processing Systems, 34, 2021a.

Gen Li, Yuejie Chi, Yuting Wei, and Yuxin Chen. Minimax-optimal multi-agent RL in Markov games with a
generative model. Advances in Neural Information Processing Systems, 35:15353–15367, 2022.

Gen Li, Changxiao Cai, Yuxin Chen, Yuting Wei, and Yuejie Chi. Is Q-learning minimax optimal? a tight sample
complexity analysis. Operations Research, 72(1):222–236, 2024a.

Gen Li, Yuting Wei, Yuejie Chi, and Yuxin Chen. Breaking the sample size barrier in model-based reinforcement
learning with a generative model. Operations Research, 72(1):203–221, 2024b.

Yuanzhi Li, Ruosong Wang, and Lin F Yang. Settling the horizon-dependence of sample complexity in reinforce-
ment learning. In IEEE Symposium on Foundations of Computer Science, 2021b.

11

https://openreview.net/forum?id=gcD2UtCGMc2


583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

Under review as a conference paper at ICLR 2026

Pierre Ménard, Omar Darwiche Domingues, Xuedong Shang, and Michal Valko. UCB momentum Q-learning:
Correcting the bias without forgetting. In International Conference on Machine Learning, pages 7609–7618,
2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement
learning. nature, 518(7540):529–533, 2015.

Gergely Neu and Ciara Pike-Burke. A unifying view of optimism in episodic reinforcement learning. arXiv preprint
arXiv:2007.01891, 2020.

National Academies of Sciences, Policy, Global Affairs, Board on Research Data, Information, Division on Engi-
neering, Physical Sciences, Committee on Applied, Theoretical Statistics, Board on Mathematical Sciences, et al.
Reproducibility and replicability in science. National Academies Press, 2019.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via posterior sampling.
In Advances in Neural Information Processing Systems, pages 3003–3011, 2013.

Ashwin Pananjady and Martin J Wainwright. Instance-dependent ℓ∞-bounds for policy evaluation in tabular
reinforcement learning. IEEE Transactions on Information Theory, 67(1):566–585, 2020.

Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. In Advances in Neural
Information Processing Systems, pages 14433–14443, 2019.

Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, Matthieu Geist, and Yuejie Chi. The curious price of distributional
robustness in reinforcement learning with a generative model. Advances in Neural Information Processing
Systems, 2023.

Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye. Near-optimal time and sample complexities for
solving Markov decision processes with a generative model. In Advances in Neural Information Processing
Systems, pages 5186–5196, 2018a.

Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance reduced value iteration and faster algorithms
for solving Markov decision processes. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 770–787. Society for Industrial and Applied Mathematics, 2018b.

Koustuv Sinha, Jessica Zosa Forde, Mandana Samiei, Arna Ghosh, Lintang Sutawika, and Siba Smarak Pani-
grahi. Machine learning reproducibility challenge 2023https://reproml.org/, 2023. URL https:
//reproml.org/.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for markov decision
processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. PAC model-free reinforce-
ment learning. In Proceedings of the 23rd international conference on Machine learning, pages 881–888. ACM,
2006.

Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement learning in finite mdps: Pac analysis.
Journal of Machine Learning Research, 10(11), 2009.

István Szita and Csaba Szepesvári. Model-based reinforcement learning with nearly tight exploration complexity
bounds. In ICML, 2010.

Jean Tarbouriech, Runlong Zhou, Simon S Du, Matteo Pirotta, Michal Valko, and Alessandro Lazaric. Stochastic
shortest path: Minimax, parameter-free and towards horizon-free regret. Advances in Neural Information
Processing Systems, 34, 2021.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu, Manuel Goulão,
Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard interface for reinforcement
learning environments. arXiv preprint arXiv:2407.17032, 2024.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In
Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

12

https://reproml.org/
https://reproml.org/
https://reproml.org/


636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

Under review as a conference paper at ICLR 2026

Martin J Wainwright. Stochastic approximation with cone-contractive operators: Sharp ℓ∞-bounds for Q-learning.
arXiv preprint arXiv:1905.06265, 2019a.

Martin J Wainwright. Variance-reduced Q-learning is minimax optimal. arXiv preprint arXiv:1906.04697, 2019b.

Ruosong Wang, Simon S Du, Lin F Yang, and Sham M Kakade. Is long horizon reinforcement learning more
difficult than short horizon reinforcement learning? In Advances in Neural Information Processing Systems,
2020.

Zhihan Xiong, Ruoqi Shen, Qiwen Cui, Maryam Fazel, and Simon S Du. Near-optimal randomized exploration for
tabular markov decision processes. Advances in Neural Information Processing Systems, 35:6358–6371, 2022.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement learning without
domain knowledge using value function bounds. In International Conference on Machine Learning, pages
7304–7312, 2019.

Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learning via reference-
advantage decomposition. In Advances in Neural Information Processing Systems, 2020.

Zihan Zhang, Xiangyang Ji, and Simon Du. Is reinforcement learning more difficult than bandits? a near-optimal
algorithm escaping the curse of horizon. In Conference on Learning Theory, pages 4528–4531, 2021.

Zihan Zhang, Xiangyang Ji, and Simon Du. Horizon-free reinforcement learning in polynomial time: the power of
stationary policies. In Conference on Learning Theory, pages 3858–3904, 2022.

A MISSING PROOFS IN SECTION 5

Lemma A.1. Suppose that two MDPs M and M̂ are ϵ0-related. For the policy π̂ returned by Algorithm 1, it holds
that

0 ≤ V ∗
M̂
− V π̂

M̂
≤ ractionH.

Proof. The lower bound, i.e., 0 ≤ V ∗
M̂
− V π̂

M̂
, is immediate from the definition of V ∗

M̂
.

We now prove the upper bound by induction on the time step h.

For 0 ≤ h ≤ H − 1, we have

V ∗
h,M̂

(s)− V π̂
h,M̂

(s) = V ∗
h,M̂

(s)−Q∗
h,M̂

(s, π̂h(s)) +Q∗
h,M̂

(s, π̂h(s))−Qπ̂
h,M̂

(s, π̂h(s))

(1)

≤ raction +
∑
s′

P̂h(s
′|s, π̂h(s)) · V ∗

h+1,M̂
(s′)−

∑
s′

P̂h(s
′|s, π̂h(s)) · V π̂

h+1,M̂
(s′)

= raction +
∑
s′

P̂h(s
′|s, π̂h(s)) ·

(
V ∗
h+1,M̂

(s′)− V π̂
h+1,M̂

(s′)
)

≤ raction +max
s

(
V ∗
h+1,M̂

(s)− V π̂
h+1,M̂

(s)
)
.

Inequality (1) follows from the definition of π̂, which guarantees that

V ∗
h,M̂

(s)−Q∗
h,M̂

(s, π̂h(s)) ≤ raction.

When h = H , we have V ∗
H,M̂

(s) = V π̂
H,M̂

(s) = 0. By induction, we have

V ∗
M̂
− V π̂

M̂
≤ ractionH.

This completes the proof.

13



689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741

Under review as a conference paper at ICLR 2026

Proof of Lemma 5.1. From Lemma A.1, we have:

V ∗
M̂
− V π̂

M̂
≤ ractionH.

By Lemma E.1, it follows that: ∣∣V ∗
M − V ∗

M̂

∣∣ ≤ H2ϵ0.

Similarly, from Lemma E.2, we obtain: ∣∣V π̂
M − V π̂

M̂

∣∣ ≤ H2ϵ0.

By combining these inequalities, we have

V ∗
M − V π̂

M = V ∗
M − V ∗

M̂
+ V ∗

M̂
− V π̂

M̂
+ V π̂

M̂
− V π̂

M

≤ 2H2ϵ0 + ractionH.

Proof of Lemma 5.2. By Lemma E.1,

For any (h, s, a) ∈ [H − 1]× S ×A ∣∣∣V ∗
h,M (s)− V ∗

h,M̂
(s)
∣∣∣ ≤ H2ϵ0,∣∣∣Q∗

h,M (s, a)−Q∗
h,M̂

(s, a)
∣∣∣ ≤ H2ϵ0.

Hence, ∣∣∣(V ∗
h,M̂

(s)−Q∗
h,M̂

(s, a)
)
−
(
V ∗
h,M (s)−Q∗

h,M (s, a)
)∣∣∣

≤
∣∣∣V ∗

h,M (s)− V ∗
h,M̂

(s)
∣∣∣+ ∣∣∣Q∗

h,M (s, a)−Q∗
h,M̂

(s, a)
∣∣∣

≤ 2H2ϵ0.

For any g ∈ GapM , where g = V ∗
h (s) − Q∗

h(s, a), if g < r1action < r2action, then, because r1action /∈⋃
g∈GapM

Ball(g, 2H2ϵ0) and r2action /∈
⋃

g∈GapM
Ball(g, 2H2ϵ0), we have(

V ∗
h,M (s)−Q∗

h,M (s, a)
)
+ 2H2ϵ0 < r1action < r2action.

Using the previous bound, we conclude that

V ∗
h,M̂

(s)−Q∗
h,M̂

(s, a) < r1action < r2action.

Similarly, if r1action < r2action < g, we also have:

r1action < r2action < V ∗
h,M̂

(s)−Q∗
h,M̂

(s, a).

Therefore, for both tolerance parameters r1action and r2action, the chosen action π̂h(s) remains the same for all
(s, h) ∈ S× [H]. As a result, the policy π̂ depends only on M and raction. Moreover, for both tolerance parameters
r1action and r2action, the policy π̂ returned would be identical.

Corollary A.2. In the generative model setting, there is an algorithm with sample complexity polynomial in
|S|, |A|, 1/ϵ and 1/δ, such that with probability at least 1 − δ, the returned policy is ϵ-optimal and always lies
in a list Π(M) where Π(M) is a list of policies that depend only on the unknown underlying MDP M with
|Π(M)| = O(|S||A|H).

Proof. We collect N samples for each (s, a) ∈ S ×A and h ∈ [H] where N is polynomial in |S|, |A|, H , 1/ϵ and
1/δ, and use the samples to build an empirical transition model P̂ to form an MDP M̂ . We then invoke Algorithm 1
with MDP M̂ and raction ∼ Unif(0, ϵ/(5H)) and return its output. Standard analysis shows tha M and M̂ are
ϵ0-related with ϵ0 = δϵ/(20H3) with probability at least 1− δ/2. Moreover, raction /∈

⋃
g∈GapM

Ball(g, 2H2ϵ0)

with probability at least 1 − δ/2. We condition on the intersection of the above two events which holds with
probability at least 1− δ by union bound. By Lemma 5.1, the returned policy is ϵ-optimal. By Lemma 5.2, the
returned policy lies in a list Π(M) with size at most |S||A|H + 1 since |GapM | ≤ |S||A|H .

14



742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794

Under review as a conference paper at ICLR 2026

B STRUCTURAL CHARACTERIZATIONS OF REACHING PROBABILITIES IN TRUNCATED
MDPS

In this section, we prove several properties of reaching probabilities in MDPs with truncation which will be used
later in the analysis Given a reaching probability threshold r ∈ [0, 1], we first define the set of unreachable states
Uh(r) for each h ∈ [H].
Definition B.1. For the underlying MDP M = (S,A, P,R,H, s0), given a real number r ∈ [0, 1], we define
Uh(r) ⊆ S inductively for each h ∈ [H] as follows:

• U0(r) = {s ∈ S | Pr[s0 = s] ≤ r};

• Suppose Uh′(r) ⊆ S is defined for all 0 ≤ h′ < h, define

Uh(r) = {s ∈ S | max
π

Pr[sh = s, s0 /∈ U0(r), s1 /∈ U1(r), . . . , sh−1 /∈ Uh−1(r) |M,π] ≤ r}.

We also write U(r) = (U0(r), U1(r), . . . , UH−1(r)).

Intuitively, the set of unreachable states Uh(r) at level h ∈ [H] includes all those states that can not be reached
with probability larger than a threshold r for any policy π, where we ignore those unreachable states included in
Uh′(r) for all levels h′ < h when calculating the reaching probabilities. Also note that Uh(1) = S.

The main observation is that Uh(r) satisfies the following monotonicity property.
Lemma B.2. Given 0 ≤ r1 ≤ r2 ≤ 1, for any h ∈ [H], we have Uh(r1) ⊆ Uh(r2).

Proof. We prove the above claim by induction on h. The claim is clearly true when h = 0. Suppose the above
claim is true for all 0 ≤ h′ < h, now we prove that Uh(r2) ⊆ Uh(r1). Considering a fixed state s ∈ S, for any
fixed policy π, we have

Pr[sh = s, s0 /∈ U0(r1), s1 /∈ U1(r1), . . . , sh−1 /∈ Uh−1(r1) |M,π]

≥Pr[sh = s, s0 /∈ U0(r2), s1 /∈ U1(r2), . . . , sh−1 /∈ Uh−1(r2) |M,π],

since Uh′(r1) ⊆ Uh′(r2) for all h′ < h under the induction hypothesis. Therefore,

max
π

Pr[sh = s, s0 /∈ U0(r1), s1 /∈ U1(r1), . . . , sh−1 /∈ Uh−1(r1) |M,π]

≥max
π

Pr[sh = s, s0 /∈ U0(r2), s1 /∈ U1(r2), . . . , sh−1 /∈ Uh−1(r2) |M,π]

which implies Uh(r1) ⊆ Uh(r2).

An important corollary of Lemma B.2, is that the total number of distinct U(r) for all r ∈ [0, 1] is upper bounded
by |S|H + 1.
Corollary B.3. For all r ∈ [0, 1], there are at most of |S|H + 1 unique sequences of sets U(r).

Proof. Assume for the sake of contradiction that there are more than |S|H + 1 unique sequences of sets U(r).
Note that 0 ≤

∑
h∈[H] |U(r)| ≤ |S|H for all r ∈ [0, 1]. By the pigeonhole principle, there exists 0 ≤ r1 < r2 ≤ 1

such that U(r1) ̸= U(r2) while
∑

h∈[H] |U(r1)| =
∑

h∈[H] |U(r2)|. By Lemma B.2, for all h ∈ [H], we have
Uh(r1) ⊆ Uh(r2) and thus |Uh(r1)| ≤ |Uh(r2)|. This implies that |Uh(r1)| = |Uh(r2)| for all h ∈ [H]. For any
h ∈ [H], we have Uh(r1) ⊆ Uh(r2) and |Uh(r1)| = |Uh(r2)| which implies Uh(r1) = Uh(r2), contradicting the
assumption that U(r1) ̸= U(r2).

For each (s, h) ∈ S× [H], we define Crit(s, h) to be the infimum of those reaching probability threshold r ∈ [0, 1]
so that s would be unreachable under r.
Definition B.4. For each (s, h) ∈ S × [H], define Crit(s, h) = inf{r ∈ [0, 1] | s ∈ Uh(r)}.

Note that {r ∈ [0, 1] | s ∈ Uh(r)} is never an empty set since Uh(1) = S.

Lemma B.2 implies that Crit(s, h) is the critical reaching probability threshold for (s, h), formalized as follows.

15



795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847

Under review as a conference paper at ICLR 2026

Corollary B.5. For any (s, h) ∈ S × [H], we have

• for any 1 ≥ r > Crit(s, h), s ∈ Uh(r);

• for any 0 ≤ r < Crit(s, h), s /∈ Uh(r).

Given the definition of unreachable states Uh(r), for each r ∈ [0, 1], we now formally define the truncated MDP
Mr where we direct the transition probabilities of all unreachable states to an absorbing state sabsorb.
Definition B.6. For the underlying MDP M = (S,A, P,R,H, s0), given a real number r ∈ [0, 1], define
Mr = (S ∪ {sabsorb}, A, P r, R,H, s0), where

P r
h(s

′ | s, a) =


Ph(s

′ | s, a) s /∈ Uh(r) ∪ {sabsorb}, s′ ̸= sabsorb
0 s /∈ Uh(r) ∪ {sabsorb}, s′ = sabsorb
1[s′ = sabsorb] s ∈ Uh(r) ∪ {sabsorb}

. (4)

The following lemma builds a connection between the occupancy function in Mr and the set of unreachable states
Uh(r).
Lemma B.7. For any r ∈ [0, 1], for any (s, h) ∈ S × [H]

d∗Mr (s, h) = max
π

Pr[sh = s, s0 /∈ U0(r), s1 /∈ U1(r), . . . , sh−1 /∈ Uh−1(r) |M,π],

and therefore s ∈ Uh(r) if and only if d∗Mr (s, h) ≤ r.

Proof. By the construction of Mr,

dπMr (s, h) = Pr[sh = s, s0 /∈ U0(r), s1 /∈ U1(r), . . . , sh−1 /∈ Uh−1(r) |M,π],

and therefore,

d∗Mr (s, h) = max
π

Pr[sh = s, s0 /∈ U0(r), s1 /∈ U1(r), . . . , sh−1 /∈ Uh−1(r) |M,π],

which also implies that s ∈ Uh(r) if and only if d∗Mr (s, h) ≤ r by Definition B.1.

Combining Lemma B.7 and Lemma B.2, we have the following corollary which shows that d∗Mr (s, h) is monotoni-
cally non-increasing as we increase r.
Corollary B.8. For the underlying MDP M = (S,A, P,R,H, s0), for any 0 ≤ r1 ≤ r2 ≤ 1 and any (s, h) ∈
S × [H], we have d∗Mr1 (s, h) ≥ d∗Mr2 (s, h). Moreover, d∗M (s, h) ≥ d∗Mr (s, h) for any (s, h) ∈ S × [H] and
r ∈ [0, 1].

As illustrated in the following lemma, d∗Mr (s, h) ≤ Crit(s, h) whenever r > Crit(s, h), and d∗Mr (s, h) ≥
Crit(s, h) if r < Crit(s, h).
Lemma B.9. For any r ∈ [0, 1] and (s, h) ∈ S × [H],

• if r > Crit(s, h), d∗Mr (s, h) ≤ Crit(s, h);

• if r < Crit(s, h), d∗Mr (s, h) ≥ Crit(s, h).

Proof. We only consider the case r > Crit(s, h) in the proof, and the case r < Crit(s, h) can be handled using
exactly the same argument.

Since r > Crit(s, h), by Corollary B.5, we have s ∈ Uh(r), which implies d∗Mr (s, h) ≤ r by Lemma B.7.
Assume for the sake of contradiction that d∗Mr (s, h) > Crit(s, h). Let r′ be an arbitrary real number satisfying
Crit(s, h) < r′ < d∗Mr (s, h) ≤ r. By Corollary B.8, we have d∗

Mr′ (s, h) ≥ d∗Mr (s, h) > r′, which implies
s /∈ Uh(r

′) by Lemma B.7. On the other hand, since r′ > Crit(s, h), we must have s ∈ Uh(r
′) by Corollary B.5

which leads to a contradiction.

For each (s, h) ∈ S × [H] and r ∈ [0, 1], we also define an auxiliary MDP Mr,s,h based on Mr, which will be
later used in the analysis of our algorithm.

16



848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900

Under review as a conference paper at ICLR 2026

Definition B.10. For each (s, h) ∈ S × [H] and r ∈ [0, 1], define Mr,s,h to be the MDP that has the same state
space, action space, horizon length and initial state as Mr. The reward function of Mr,s,h is Rs,h

h′ (s′, a) = 1[h′ =

h, s′ = s] for all h′ ∈ [H] and (s′, a) ∈ (S ∪ {sabsorb})×A, and the transition model of Mr,s,h is

P r,h
h′ (s′′ | s′, a) =

{
P r
h′(s′′ | s′, a) h′ < h

1[s′′ = sabsorb] h′ ≥ h
, (5)

where P r is the transition model of Mr define in (6).

A direct observation is that for any (s, h) ∈ S × [H] and r ∈ [0, 1], for any policy π, dπMr (s, h) = V π
Mr,s,h , which

also implies d∗Mr (s, h) = V ∗
Mr,s,h .

C MISSING PROOFS IN SECTION 6

In this section, we give the formal proof of Theorem 6.1 based on the tools developed in Section B.
Lemma C.1. Consider a pair of fixed choices of rtrunc and raction in Algorithm 2. For a fixed h ∈ [H − 1], if for
all s ∈ S \ Ûh we have dπ̂

s,h

M ≥ η0 whenever h > 0, then with probability 1− δ
2H , for all (s, a) ∈ (S \ Ûh)×A,∑

s′∈S

|Ph(s
′ | s, a)− P̂h(s

′ | s, a)| ≤ ϵ0.

Proof. We divide the proof into two parts. First, we demonstrate that we have a sufficient number of effective
samples. Second, we show that the estimation error is small.

For a given (s, a) ∈ (S \ Ûh)×A, we first prove that with probability at least 1− δ
4H|S||A| , the number of effective

samples is greater than Wη0

2 , where the number of effective samples is defined as

Weffective =

W∑
w=1

1[(s
(w)
h , a

(w)
h ) = (s, a)].

Given that dπ̂
s,h

M ≥ η0, we have

E[Weffective]

W
=

W · dπ̂s,h

M

W
= dπ̂

s,h

M ≥ η0,

and therefore by Chernoff bound,

P
(
Weffective <

η0
2
W
)
≤ P

(
dπ̂

s,h

M − Weffective

W
>

η0
2

)
< 2e−2( η0

2 )
2
W <

δ

4H|S||A|
.

Thus, with probability at least 1− δ
4H|S||A| , the number of effective samples is at least Wη0

2 .

Next, we show that if the number of effective samples is greater than Wη0

2 , then with probability at least 1− δ
4H|S||A| ,∑

s′∈S

|Ph(s
′ | s, a)− P̂h(s

′ | s, a)| ≤ ϵ0.

To establish this, we first prove that for any specific s′, with probability at least 1− δ
4H|S|2|A| , we have

|Ph(s
′ | s, a)− P̂h(s

′ | s, a)| ≤ ϵ0
|S|

.

Using the Chernoff bound,

P
(
|Ph(s

′ | s, a)− P̂h(s
′ | s, a)| ≥ ϵ0

|S|

)
< 2e−2( ϵ0

S )
2
Weffective <

δ

4H|S|2|A|
.

17



901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953

Under review as a conference paper at ICLR 2026

Therefore, by the union bound, with probability at least 1− δ
4H|S||A| , we have for all s′ ∈ S,

|Ph(s
′ | s, a)− P̂h(s

′ | s, a)| ≤ ϵ0
|S|

.

Summing over all s′ gives ∑
s′∈S

|Ph(s
′ | s, a)− P̂h(s

′ | s, a)| ≤ ϵ0.

Combining these results, we conclude that for a specific (s, a), with probability at least 1− δ
2H|S||A| ,∑

s′∈S

|Ph(s
′ | s, a)− P̂h(s

′ | s, a)| ≤ ϵ0.

Thus, for a fixed h ∈ [H − 1], if for all s ∈ S \ Ûh we have dπ̂
s,h

M ≥ η0 whenever h > 0, then with probability
1− δ

2H , for all (s, a) ∈ (S \ Ûh)×A,∑
s′∈S

|Ph(s
′ | s, a)− P̂h(s

′ | s, a)| ≤ ϵ0.

Lemma C.2. Consider a pair of fixed choices of rtrunc < 1 and raction in Algorithm 2. For any h ∈ [H − 1], if for
all h′ ≤ h, we have

• Ûh′ = Uh′(rtrunc);

•
∑

s′ |P̂h′(s′ | s, a)− Ph′(s′ | s, a)| ≤ ϵ0 for all (s, a) ∈ (S \ Ûh′)×A,

then for any s ∈ S, |d∗Mrtrunc (s, h+ 1)− d∗
M̃h(s, h+ 1)| ≤ H2ϵ0.

Proof. Consider a fixed level h ∈ [H − 1] and state s ∈ S. Note that d∗Mrtrunc (s, h + 1) = V ∗
Mrtrunc,s,h+1 and

d∗
M̃h(s, h+ 1) = V ∗

M̃s,h+1 .

Note that Mrtrunc,s,h+1 and M̃s,h+1 share the same state space, action space, reward function and initial state.
Moreover, we have Ûh′ = Uh′(rtrunc) for all h′ ≤ h and

∑
s′ |P̂h′(s′ | s, a)− Ph′(s′ | s, a)| ≤ ϵ0 for all h′ ≤ h

and (s, a) ∈ (S \ Ûh′)×A. Let P rtrunc,h+1 be the transition model of Mrtrunc,s,h+1 defined in (5), and P̃h+1 be
the transition model of M̃s,h+1 defined in (3). For all h′ ∈ [H], for any (s, a) ∈ (S ∪ {sabsorb})×A, we have∑

s′∈S∪{sabsorb}

|P rtrunc,h+1
h′ (s′ | s, a)− P̃h+1

h′ (s′ | s, a)| ≤ ϵ0.

By Lemma E.1, we have |V ∗
Mrtrunc,s,h+1 − V ∗

M̃s,h+1 | ≤ H2ϵ0, which implies the desired result.

Lemma C.3. Consider a pair of fixed choices of rtrunc ∈ (η1, 2η1) and raction in Algorithm 2. For any h ∈ [H−1],
if for all h′ ≤ h, we have

• Ûh′ = Uh′(rtrunc);

•
∑

s′ |P̂h′(s′ | s, a)− Ph′(s′ | s, a)| ≤ ϵ0 for all (s, a) ∈ (S \ Ûh′)×A,

then for any s ∈ (S \ Ûh+1), dπ̂
s,h+1

M (s, h+ 1) ≥ η0.

Proof. Consider a fixed level h ∈ [H − 1] and s ∈ (S \ Ûh+1). Since s ∈ (S \ Ûh+1), we have

d∗
M̃h(s, h+ 1) > rtrunc.

18



954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006

Under review as a conference paper at ICLR 2026

By Lemma C.2,
d∗Mrtrunc (s, h+ 1) ≥ rtrunc −H2ϵ0 ≥ η1 − η0.

Notice that 2H2ϵ0 + ractionH ≤ 2H2ϵ0 + 2ϵ1H ≤ 3ϵ1H ≤ η0. By the same analysis as in Lemma C.2, for the
returned policy π̂s,h+1, by Lemma 5.1,

V π̂s,h+1

Mrtrunc,s,h+1 ≥ V ∗
Mrtrunc,s,h+1 − η0 = d∗Mrtrunc (s, h+ 1)− η0 ≥ η1 − 2η0 ≥ η0,

and therefore dπ̂
s,h+1

Mrtrunc (s, h+ 1) ≥ η0. By Lemma B.8, this implies dπ̂
s,h+1

M (s, h+ 1) ≥ η0.

Definition C.4. Define
Badtrunc =

⋃
(s,h)∈S×[H]

Ball(Crit(s, h), H2ϵ0),

where Crit(s, h) is as defined in Definition B.4.
Lemma C.5. Consider a pair of fixed choices of rtrunc ∈ (η1, 2η1) and raction in Algorithm 2 such that rtrunc /∈
Badtrunc. For any h ∈ [H − 1], if for all h′ ≤ h, we have

• Ûh′ = Uh′(rtrunc);

•
∑

s′ |P̂h′(s′ | s, a)− Ph′(s′ | s, a)| ≤ ϵ0 for all (s, a) ∈ (S \ Ûh′)×A,

then Ûh+1 = Uh+1(rtrunc).

Proof. By Lemma C.2, for any s ∈ S we have

|d∗Mrtrunc (s, h+ 1)− d∗
M̃h(s, h+ 1)| ≤ H2ϵ0.

Therefore, for any s ∈ Uh+1(rtrunc), we have

d∗
M̃h(s, h+ 1) ≤ d∗Mrtrunc (s, h+ 1) +H2ϵ0.

By Corollary B.5, we have rtrunc ≥ Crit(s, h+ 1). Moreover, since rtrunc /∈ Badtrunc, it holds that

rtrunc /∈ [Crit(s, h+ 1)−H2ϵ0,Crit(s, h+ 1) +H2ϵ0],

which further implies that
rtrunc > Crit(s, h+ 1) +H2ϵ0.

Combining the above inequality with Lemma B.9, we have

rtrunc > Crit(s, h+ 1) +H2ϵ0 ≥ d∗Mrtrunc (s, h+ 1) +H2ϵ0 ≥ d∗
M̃h(s, h+ 1),

which implies s ∈ Ûh+1.

For those s /∈ Uh+1(rtrunc), it can be shown that s /∈ Ûh+1 using the same argument. Therefore, Ûh+1 =
Uh+1(rtrunc).

Lemma C.6. Consider a pair of fixed choices of rtrunc ∈ (η1, 2η1) and raction in Algorithm 2 such that rtrunc /∈
Badtrunc. With probability at least 1− δ/2, we have

• Ûh = Uh(rtrunc) for all h ∈ [H];

•
∑

s′ |P̂h(s
′ | s, a)− Ph(s

′ | s, a)| ≤ ϵ0 for all h ∈ [H − 1] and (s, a) ∈ (S \ Ûh′)×A.

Proof. For each h ∈ [H], let Eh be the event that

• Ûh = Uh(rtrunc);

• if h > 0, dπ̂
s,h

M (s, h) ≥ η0 for all s ∈ S \ Ûh;

19



1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059

Under review as a conference paper at ICLR 2026

• if h > 0,
∑

s′∈S |P̂h−1(s
′ | s, a)− Ph−1(s

′ | s, a)| ≤ ϵ0 for all (s, a) ∈ (S \ Ûh−1)×A.

Note that E0 holds deterministically, since we always have rtrunc < 1 which implies U0(rtrunc) = S \ {s0}. For
each h < H , conditioned on

⋂
h′≤h Eh′ , by Lemma C.5 and Lemma C.3, we have Ûh+1 = Uh+1(rtrunc), and for

all s ∈ S \ Ûh+1, dπ̂
s,h+1

M (s, h+ 1) ≥ η0. Moreover, by Lemma C.1, with probability at least 1− δ/(2H),∑
s′∈S

|P̂h(s
′ | s, a)− Ph(s

′ | s, a)| ≤ ϵ0

for all (s, a) ∈ (S\Ûh)×A. Therefore, conditioned on
⋂

h′≤h Eh′ , Eh+1 holds with probability at least 1−δ/(2H).

By the chain rule, P
(⋂

h∈[H] Eh
)
≥ (1− δ/(2H))H−1 ≥ 1− δ/2.

Definition C.7. For a real number r ∈ [0, 1], define

Gap(r) =

 ⋃
h∈[H],s∈S\Uh(r)

GapMr,s,h

 ∪GapMr .

Moreover, define
Badaction(r) =

⋃
g∈Gap(r)

Ball(g, 2H2ϵ0).

Clearly, for any r ∈ [0, 1], |Gap(r)| ≤ 2|S|2H2|A|. Moreover, since Mr and Mr,s,h depends only on U(r)
(cf. Definition B.6 and Definition B.10), for r1, r2 ∈ [0, 1] with U(r1) = U(r2), we would have Gap(r1) =
Gap(r2) and Badaction(r1) = Badaction(r2).
Lemma C.8. Given r1trunc, r

2
trunc ∈ (η1, 2η1) \ Badtrunc and r1action, r

2
action ∈ (ϵ1, 2ϵ1), suppose

• U(r1trunc) = U(r2trunc);

• r1action /∈ Badaction(r
1
trunc), and r2action /∈ Badaction(r

1
trunc);

• for any g ∈ Gap(r1trunc), either g < r1action < r2action or r1action < r2action < g,

conditioned on the event in Lemma C.6, in Algorithm 2 , the returned policy π and π̂s,h+1,awill be identical for all
h ∈ [H − 1], (s, a) ∈

(
S \ Ûh+1

)
×A, for all (raction, rtrunc) ∈ {r1action, r2action} × {r1trunc, r2trunc}.

Proof. Consider a fixed h ∈ [H − 1] and (s, a) ∈
(
S \ Ûh+1

)
×A. Since U(r1trunc) = U(r2trunc), we write

• U(rtrunc) = U(r1trunc) = U(r2trunc);

• Badaction(rtrunc) = Badaction(r
1
trunc) = Badaction(r

2
trunc);

• Gap(rtrunc) = Gap(r1trunc) = Gap(r2trunc); and

• Mrtrunc,s,h+1 = Mr1trunc,s,h+1 = Mr2trunc,s,h+1

in the remaining part of the proof.

Let P rtrunc be the transition model of Mrtrunc,s,h+1 defined in (6), and P̃h+1 be the transition model of M̃s,h+1

defined in (3). Note that conditioned on the event in Lemma C.6, Ûh+1 = Uh+1(rtrunc), and therefore, for all
h′ ∈ [H], for any (s, a) ∈ (S ∪ {sabsorb})×A, we have∑

s′∈S∪{sabsorb}

|P rtrunc,h+1
h′ (s′ | s, a)− P̃h+1

h′ (s′ | s, a)| ≤ ϵ0.

By Definition C.7, for any g ∈ GapMrtrunc,s,h+1 , we have

20



1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112

Under review as a conference paper at ICLR 2026

• r1action, r
2
action /∈ Ball(g, 2H2ϵ0);

• either g < r1action < r2action or r1action < r2action < g,

which implies π̂s,h+1 in Algorithm 2 will be identical for all (raction, rtrunc) ∈ {r1action, r2action}×{r1trunc, r2trunc}
by Lemma 5.2. This also implies that π̂s,h+1,a will be identical for all (raction, rtrunc) ∈ {r1action, r2action} ×
{r1trunc, r2trunc}. Similarly, the desired property holds also for the returned policy π.

Proof of Theorem 6.1. Note that
Pr[rtrunc /∈ Badtrunc] ≥ 1− δ/4.

For any fixed choice of rtrunc,
Pr[raction /∈ Badaction(rtrunc)] ≥ 1− δ/4.

Combining these with Lemma C.6, with probability at least 1− δ, we have

• rtrunc /∈ Badtrunc;

• raction /∈ Badaction(rtrunc);

• Ûh = Uh(rtrunc) for all h ∈ [H];

•
∑

s′ |P̂h(s
′ | s, a)− Ph(s

′ | s, a)| ≤ ϵ0 for all h ∈ [H − 1] and (s, a) ∈ (S \ Ûh′)×A.

We condition on the above event in the remaining part of the proof.

Conditioned on the above event, for the returned policy π, we have
V π
M ≥ V π

Mrtrunc ≥ V ∗
Mrtrunc − 2H2ϵ0 − ractionH ≥ V ∗

M − 2H2ϵ0 − ractionH −H2|S|rtrunc ≥ V ∗
M − ϵ,

where the first inequality is due to Lemma E.3, the second inequality is due to Lemma 5.1, the third inequality is
due to Lemma E.3, and the last inequality is due to rtrunc ≤ 2η1 and raction ≤ 2ϵ1. Therefore, the returned policy
π is ϵ-optimal.

By Lemma B.3, there are at most of SH + 1 unique sequences of sets U(r). Moreover, for each r, |Gap(r)| ≤
2|S|2H2|A|. By Lemma C.6, the sequence of policies executed by Algorithm 2 and the policy returned by
Algorithm 2 lie in a list Trace(M) with size |Trace(M)| ≤ (SH + 1)(2|S|2H2|A|+ 1).

D WEAKLY k-LIST REPLICABLE RL ALGORITHM

In this section, we present our RL algorithm with weakly k-list replicability guarantees. See Algorithm 3 for the
formal description of the algorithm. In Algorithm 3, it is assumed that we have access to a black-box algorithm
A(ϵ0, δ0), so that after interacting with the underlying MDP, with probability at least 1−δ0, A returns an ϵ0-optimal
policy.

In Algorithm 3, for each (s, h) ∈ S ×H , we first invoke A on the underlying MDP with modified reward function
Rs,h

h′ (s′, a) = 1[h′ = h, s′ = s] for all h′ ∈ [H] and (s′, a) ∈ S × A. The returned policy π̂s,h is supposed to
reach state s at level h with probability close to d∗(s, h), and therefore we use π̂s,h to collect samples and calculate
d̂(s, h) which is our estimate of d∗(s, h). For each action a ∈ A, we also construct a policy π̂s,h,a based on π̂s,h to
collect samples for (s, a) ∈ S ×A at level h ∈ [H], and we calculate P̂h(s, a) which is our estimate of Ph(s, a)
based the obtained samples.

For those (s, h) ∈ S × [H] with d̂(s, h) ≤ rtrunc, we remove state s from level h by including s in T̂h. Here rtrunc
is a randomly chosen reaching probability threshold drawn from the uniform distribution.

Finally, based on P̂ and T̂ , we build an MDP M̂ which is our estimate of the underlying MDP M . For each (s, h),
if s ∈ T̂h, then we always transit s to an absorbing state sabsorb. Otherwise, we directly use our estimated transition
model P̂h(s, a). We then invoke Algorithm 1 with MDP M̂ and tolerance parameter raction, where raction is also
drawn from the uniform distribution .

The formal guarantee of Algorithm 3 is summarized in the following theorem.

21



1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

Under review as a conference paper at ICLR 2026

Theorem D.1. Suppose A is an algorithm such that with probability at least 1− δ0, A returns an ϵ0-optimal policy.
Then with probability at least 1− δ, Algorithm 3 return a policy π, such that

• π is ϵ-optimal;

• π ∈ Π(M), where Π(M) is a list of policies that depend only on the unknown underlying MDP M with
size |Π(M)| ≤ (H|S||A|+ 1)(H|S|+ 1).

In the remaining part of this section, we give the full proof of Theorem D.1.

Algorithm 3 Weakly k-list Replicable RL Algorithm
1: Input: RL algorithm A(ϵ0, δ0), error tolerance ϵ, failure probability δ
2: Output: near-optimal policy π
3: Initialization:
4: Initialize constants C1 = 4|A||S|H

δ , ϵ0 = ϵδ
100|S|H5|A| , ϵ1 = 5C1H

2ϵ0
5: Generate random numbers raction ∼ Unif(ϵ1, 2ϵ1), rtrunc ∼ Unif(2ϵ1, 3ϵ1)
6: for h ∈ [H − 1] do
7: for each s ∈ S do
8: Invoke A with ϵ0 = ϵ0 and δ0 = δ/(8|S|H) on the underlying MDP with modified reward function

Rs,h
h′ (s′, a) = 1[h′ = h, s′ = s] for all h′ ∈ [H] and (s′, a) ∈ S ×A

9: Set π̂s,h to be the policy returned in the previous step
10: Collect W = |S|2

ϵ20ϵ1
log 16|S|2AH

δ trajectories {(s(w)
0 , a

(w)
0 , . . . , s

(w)
H−1, a

(w)
H−1)}Ww=1 by executing π̂s,h for

W times
11: Set

d̂(s, h) =

∑W
w=1 1[s

(w)
h = s]

W
12: for each a ∈ A do
13: Define policy π̂s,h,a, where for each h′ ∈ [H] and s′ ∈ S,

π̂s,h,a
h′ (s′) =

{
a h′ = h, s′ = s

π̂s,h
h′ (s′) h′ ̸= h or s′ ̸= s

14: Collect W = |S|2
ϵ20ϵ1

log 16|S|2AH
δ trajectories {(s(w)

0 , a
(w)
0 , . . . , s

(w)
H−1, a

(w)
H−1)}Ww=1 by executing π̂s,h,a

for W times
15: For each s′ ∈ S, set

P̂h(s
′ | s, a)←

∑W
w=1 1[(s

(w)
h , a

(w)
h , s

(w)
h+1) = (s, a, s′)]∑W

w=1 1[(s
(w)
h , a

(w)
h ) = (s, a)]

16: end for
17: end for
18: end for
19: For each h ∈ [H − 1], set T̂h = {s ∈ S | d̂(s, h) ≤ rtrunc}.
20: Define MDP M̂ = (S ∪ {sabsorb}, A, P̃ , R,H, s0), where for each h ∈ [H − 1],

P̃h(s
′ | s, a) =

{
P̂h(s

′ | s, a) s /∈ T̂h

1{s′ = sabsorb} s ∈ T̂h

21: Invoke Algorithm 1 with MDP M̂ and tolerance parameter raction, and set π to be the returned policy
22: return π

Following the definition of Uh(r) in Definition B.1, we define Th(r).

Definition D.2. For the underlying MDP M = (S,A, P,R,H, s0), given a real number r ∈ [0, 1], we define
Th(r) ⊆ S for each h ∈ [H] as follows:

22



1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218

Under review as a conference paper at ICLR 2026

• T0(r) = {s ∈ S | Pr[s0 = s] ≤ r};

• Th(r) = {s ∈ S | maxπ Pr[sh = s |M,π] ≤ r}.

We also write T (r) = (T0(r), T1(r), . . . , TH−1(r)).
Lemma D.3. For all r ∈ [0, 1], there are at most of |S|H + 1 unique sequences of sets T (r).

Proof. By the same analysis as in Lemma B.2 , we know that given 0 ≤ r1 ≤ r2 ≤ 1, for any h ∈ [H], we have
Th(r1) ⊆ Th(r2). Moreover, by the same analysis as in Corollary B.3 , for all r ∈ [0, 1], there are at most of
|S|H + 1 unique sequences of sets T (r).

Definition D.4. For the underlying MDP M = (S,A, P,R,H, s0), given a real number r ∈ [0, 1], define
M

r
= (S ∪ {sabsorb}, A, P

r
, R,H, s0), where

P
r

h(s
′ | s, a) =


Ph(s

′ | s, a) s /∈ Th(r), s
′ ̸= sabsorb

0 s /∈ Th(r), s
′ = sabsorb

1[s′ = sabsorb] s ∈ Th(r) ∪ {sabsorb}
(6)

Definition D.5. For each (s, h) ∈ S × [H], define Crit′(s, h) = inf{r ∈ [0, 1] | s ∈ Th(r)}.

Note that {r ∈ [0, 1] | s ∈ Th(r)} is never an empty set since Th(1) = S.
Lemma D.6. Consider a pair of fixed choices of rtrunc and raction in Algorithm 3. For all h ∈ [H − 1], if for all
s ∈ S\T̂h we have dπ̂

s,h

M ≥ ϵ1 whenever h > 0, then with probability 1− δ
4 , for all (s, a, h) ∈ (S\T̂h)×A×[H−1],∑

s′∈S

|Ph(s
′ | s, a)− P̂h(s

′ | s, a)| ≤ ϵ0.

Proof. By the same analysis as Lemma C.1, for a fixed h ∈ [H − 1], if for all s ∈ S \ T̂h we have dπ̂
s,h

M ≥ ϵ1
whenever h > 0, then with probability 1− δ

4H , for all (s, a) ∈ (S \ T̂h)×A,∑
s′∈S

|Ph(s
′ | s, a)− P̂h(s

′ | s, a)| ≤ ϵ0.

By union bound, we know that with probability 1− δ
4 , for all h ∈ [H − 1], the inequality holds.

Lemma D.7. With probability at least 1− δ
4 , for all s, h ∈ S × [H − 1],

|d̂(s, h)− d∗M (s, h)| ≤ 2ϵ0,

|dπ̂
s,h

M − d̂(s, h)| ≤ ϵ0.

Proof. For a specific pair (s, h), for the policy returned by A, with probability at least 1− δ
8|S|H , we have∣∣∣d∗M (s, h)− dπ̂

s,h

M (s, h)
∣∣∣ ≤ ϵ0.

Thus, by Chernoff bound, with probability at least 1− δ
8|S|H , we have∣∣∣dπ̂s,h

M (s, h)− d̂(s, h)
∣∣∣ ≤ ϵ0.

Combining the above two inequalities, with probability at least 1− δ
4|S|H ,

|d̂(s, h)− d∗M (s, h)| ≤ 2ϵ0.

23



1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

Under review as a conference paper at ICLR 2026

Using the union bound, we know that with probability at least 1− δ
4 , for all s, h ∈ S × [H − 1]

|d̂(s, h)− d∗M (s, h)| ≤ 2ϵ0,

|dπ̂
s,h

M − d̂(s, h)| ≤ ϵ0.

Definition D.8. Define
Bad′trunc =

⋃
(s,h)∈S×[H]

Ball(Crit′(s, h), 2ϵ0),

where Crit′(s, h) is as defined in Definition D.5.

Lemma D.9. Consider a pair of fixed choices of rtrunc ∈ (η1, 2η1) and raction in Algorithm 2 such that rtrunc /∈
Bad′trunc. With probability at least 1− δ/2, we have

• T̂h = Th(rtrunc) for all h ∈ [H − 1];

•
∑

s′ |P̂h(s
′ | s, a)− Ph(s

′ | s, a)| ≤ ϵ0 for all h ∈ [H − 1] and (s, a) ∈ (S \ T̂h′)×A.

Proof. Let E1 denote the event that for all (s, h), the following two conditions hold:

• |d̂(s, h)− d∗M (s, h)| ≤ 2ϵ0

• |dπ̂s,h

M − d̂(s, h)| ≤ ϵ0

By Lemma D.7, we know that with probability at least 1− δ
4 , event E1 occurs.

Let E2 denote the event that for all (s, a, s′, h) ∈ S ×A× S × [H − 1], the following conditions are satisfied:

• T̂h = Th(rtrunc);

• dπ̂
s,h

M (s, h) ≥ ϵ1 for all s ∈ S \ T̂h;

• d∗M (s, h) ≤ 4ϵ1 for all s ∈ T̂h;

•
∑

s′∈S

∣∣∣P̂h(s
′ | s, a)− Ph(s

′ | s, a)
∣∣∣ ≤ ϵ0 for all (s, a) ∈ (S \ T̂h)×A.

When E1 occurs, we know that |d̂(s, h) − d∗M (s, h)| ≤ 2ϵ0. Therefore, when rtrunc /∈ Badtrunc, if rtrunc >

d∗M (s, h), it follows that rtrunc > d̂(s, h), if rtrunc < d∗M (s, h), it follows that rtrunc < d̂(s, h). Hence, we
conclude that T̂h = Th(rtrunc).

For the second condition, when E1 occurs, we know that |dπ̂s,h

M − d̂(s, h)| ≤ ϵ0, and by definition, d̂(s, h) > 2ϵ1.
Thus, we obtain that

dπ̂
s,h

M > 2ϵ1 − ϵ0 > ϵ1.

For the third condition, when E1 occurs, we know that |d̂(s, h)−d∗M (s, h)| ≤ 2ϵ0, and by definition, d̂(s, h) < 3ϵ1.
Thus, we have

d∗M (s, h) < 3ϵ1 + 2ϵ0 < 4ϵ1.

For the forth condition, combining the second condition with Lemma D.6, we conclude that with probability at
least

(
1− δ

4

)2 ≤ 1− δ
2 , the fourth condition holds.

Therefore, with probability at least 1− δ
2 , event E2 occurs, which implies the desired result.

24



1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324

Under review as a conference paper at ICLR 2026

Definition D.10. For a real number r ∈ [0, 1], define

Bad′action(r) =
⋃

g∈GapMr

Ball(g, 2H2ϵ0).

Clearly, for any r ∈ [0, 1], |Gap(r)| ≤ |S|HA. Moreover, since M
r

depends only on T (r) (cf. Definition D.4),
for r1, r2 ∈ [0, 1] with T (r1) = T (r2), we would have Gap(r1) = Gap(r2) and Bad′action(r1) = Bad′action(r2).
Lemma D.11. Given r1trunc, r

2
trunc ∈ (2ϵ1, 3ϵ1) \ Badtrunc and r1action, r

2
action ∈ (ϵ1, 2ϵ1), suppose

• T (r1trunc) = T (r2trunc);

• r1action /∈ Bad′action(r
1
trunc), and r2action /∈ Bad′action(r

1
trunc);

• for any g ∈ Gap(r1trunc), either g < r1action < r2action or r1action < r2action < g,

conditioned on the event in Lemma D.9, the returned policy π in Algorithm 3 will always be the same for all
(raction, rtrunc) ∈ {r1action, r2action} × {r1trunc, r2trunc}.

Proof. The proof of the lemma follows the same reasoning as in the proof of Lemma C.8.

Lemma D.12. Conditioned on the event in Lemma D.9, the returned policy π is ϵ-optimal.

Proof.

V π
M ≥ V π

Mrtrunc ≥ V ∗
Mrtrunc − 2H2ϵ0 − ractionH ≥ V ∗

M − 2H2ϵ0 − ractionH −H2|S|rtrunc ≥ V ∗
M − ϵ.

where the first inequality is due to Lemma E.3, the second inequality is due to Lemma 5.1, the third inequality is
due to Lemma E.3, and the last inequality is due to rtrunc ≤ 3ϵ1 and raction ≤ 2ϵ1. Therefore, the returned policy
π is ϵ-optimal.

Lemma D.13. Conditioned on the event in Lemma D.9, with probability at least 1 − δ
2 , the returned policy π

belongs to the set Π(M), where Π(M) is a list of policies that depend only on the unknown underlying MDP M ,
and the size of Π(M) satisfies |Π(M)| ≤ (H|S||A|+ 1)(H|S|+ 1).

Proof. First, we have Pr[rtrunc ∈ Bad′trunc] ≤
5|S|Hϵ0

ϵ1
< δ

4 . Moreover, for a fixed rtrunc /∈ Bad′trunc, we have

Pr[raction ∈ Bad′action(rtrunc)] ≤
5H2ϵ0∗|S||A|H

ϵ1
< δ

4 . Thus, with probability at least 1 − δ
2 , it is satisfied that

raction /∈ Bad′action(rtrunc) and rtrunc /∈ Bad′trunc .

By Lemma D.11, and applying similar reasoning as in the proof of Theorem 6.1, we conclude that conditioned on
the event in Lemma D.9, with probability at least 1− δ

2 , the policy π belongs to the set Π(M), where Π(M) is a
list of policies that depend only on the unknown underlying MDP M . Moreover, the size of Π(M) is bounded by
|Π(M)| ≤ (H|S||A|+ 1)(H|S|+ 1).

Proof of Theorem D.1. The proof follows by combining Lemma D.9, Lemma D.12 and Lemma D.13

E PERTURBATION ANALYSIS IN MDPS

Lemma E.1. Consider two MDP M1 and M2 that are ϵ0-related. Let P ′ and P ′′ denote the transition models of
M1 and M2, respectively. It holds that ∣∣V ∗

h,M1
(s)− V ∗

h,M2
(s)
∣∣ ≤ H2ϵ0,∣∣Q∗

h,M1
(s, a)−Q∗

h,M2
(s, a)

∣∣ ≤ H2ϵ0,

where H is the horizon length.

Specifically, for the value function at the initial state s0, it holds that∣∣V ∗
M1
− V ∗

M2

∣∣ ≤ H2ϵ0.

25



1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377

Under review as a conference paper at ICLR 2026

Proof. We denote π∗
1 as the optimal policy of M1 and π∗

2 as the optimal policy of M2. For 0 ≤ i ≤ H − 1, we have∣∣∣V π∗
1

i,M1
(s)− V

π∗
2

i,M2
(s)
∣∣∣ (1)≤ max

a

∣∣∣Qπ∗
1

i,M1
(s, a)−Q

π∗
2

i,M2
(s, a)

∣∣∣
≤ max

a

(∣∣∣∣∣∑
s′

P ′
i (s

′ | s, a) · V π∗
1

i+1,M1
(s′)−

∑
s′

P ′′
i (s

′ | s, a) · V π∗
2

i+1,M2
(s′)

∣∣∣∣∣
)

≤ max
a

(∣∣∣∣∣∑
s′

P ′
i (s

′ | s, a) ·
(
V

π∗
1

i+1,M1
(s′)− V

π∗
2

i+1,M2
(s′)
)∣∣∣∣∣

+

∣∣∣∣∣∑
s′

(P ′
i (s

′ | s, a)− P ′′
i (s

′ | s, a)) · V π∗
2

i+1,M2
(s′)

∣∣∣∣∣
)

(2)

≤ Hϵ0 +max
s

∣∣∣V π∗
1

i+1,M1
(s)− V

π∗
2

i+1,M2
(s)
∣∣∣ .

Inequality (1): This follows from selecting a∗ as the optimal action and â as the action selected by the policy,
which ensures Qπ∗

1

i,M2
(s, a) ≤ Q

π∗
2

i,M2
(s, a).

Inequality (2): This holds because V π∗

i+1(s
′) ≤ H , the total variation bound

∑
s′∈S |P ′

i (s
′ | s, a) − P ′′

i (s
′ |

s, a)| ≤ ϵ0, and the fact that
∑

s′ P
′
i (s

′ | s, a) = 1.

At layer H , it is given that V π∗
1

H,M1
= V

π∗
2

H,M2
= 0. Applying the above inequality recursively, we obtain∣∣∣V π∗

1

i,M1
(s)− V

π∗
2

i,M2
(s)
∣∣∣ ≤ H(H − i)ϵ0 ≤ H2ϵ0,∣∣∣Qπ∗

1

i,M1
(s, a)−Q

π∗
2

i,M2
(s, a)

∣∣∣ ≤ Hϵ0 +max
s

∣∣∣V π∗
1

i+1,M1
(s)− V

π∗
2

i+1,M2
(s)
∣∣∣ ≤ Hϵ0 +H(H − 1)ϵ0 ≤ H2ϵ0.

In particular, for the initial layer,∣∣V ∗
M1
− V ∗

M2

∣∣ = ∣∣∣V π∗
1

0,M1
(s0)− V

π∗
2

0,M2
(s0)

∣∣∣ ≤ H2ϵ0.

Lemma E.2. Consider two MDP M1 and M2 that are ϵ0-related . Let P ′ and P ′′ denote the transition models of
M1 and M2, respectively. For any policy π, it holds that∣∣V π

M1
− V π

M2

∣∣ ≤ H2ϵ0,

where H is the horizon length.

Proof. For 0 ≤ i ≤ H − 1, we have∣∣V π
i,M1

(s)− V π
i,M2

(s)
∣∣ = ∣∣Qπ

i,M1
(s, πi(s))−Qπ

i,M2
(s, πi(s))

∣∣
≤ max

a

(∣∣∣∣∣∑
s′

P ′
i (s

′ | s, a) · V π
i+1,M1

(s′)−
∑
s′

P ′′
i (s

′ | s, a) · V π
i+1,M2

(s′)

∣∣∣∣∣
)

≤ max
a

(∣∣∣∣∣∑
s′

P ′
i (s

′ | s, a) ·
(
V π
i+1,M1

(s′)− V π
i+1,M2

(s′)
)∣∣∣∣∣

+

∣∣∣∣∣∑
s′

(P ′
i (s

′ | s, a)− P ′′
i (s

′ | s, a)) · V π
i+1,M2

(s′)

∣∣∣∣∣
)

(1)

≤ Hϵ0 +max
s

∣∣V π
i+1,M1

(s)− V π
i+1,M2

(s)
∣∣ .

26



1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

Under review as a conference paper at ICLR 2026

Inequality (1): This holds because V π∗

i+1(s
′) ≤ H , the total variation bound∑

s′∈S |P ′
i (s

′ | s, a)− P ′′
i (s

′ | s, a)| ≤ ϵ0, and the fact that
∑

s′ P̂i(s
′ | s, a) = 1.

At layer H , it is given that V π
H,M1

= V π
H,M2

= 0.

Applying the above inequality recursively, we obtain∣∣V π
i,M1

(s)− V π
i,M2

(s)
∣∣ ≤ H2ϵ0,

In particular, for the initial layer, ∣∣V π
0,M1

(s0)− V π
0,M2

(s0)
∣∣ ≤ H2ϵ0,

Lemma E.3. For any policy π, we have

0 ≤ V π
M − V π

Mr ≤ H2|S|r,

where Mr is defined as in Definition B.6 and |S| is the size of the state space.

Proof. Clearly, V π
M − V π

Mr ≥ 0.

We observe that for any h and sh ∈ S, the following holds:∑
sh∈S

dπMr (sh, h)
(
V π
h,M (sh)− V π

h,Mr (sh)
)

(1)
=

∑
sh∈Uh(r)

dπMr (sh, h)V
π
h,M (sh) +

∑
sh /∈Uh(r)

dπMr (sh, h)
(
V π
h,M (sh)− V π

h,Mr (sh)
)

(2)

≤ |S| · r ·H +
∑

sh /∈Uh(r)

dπMr (sh, h)
(
V π
h,M (sh)− V π

h,Mr (sh)
)

(3)
= |S| · r ·H +

∑
sh /∈Uh(r)

dπMr (s0, h)

rh(sh, π(sh)) +
∑

sh+1∈S

Ph(sh+1|sh, π(sh))V π
h+1,M (sh+1)

−rh(sh, π(sh))−
∑

sh+1∈S

Ph(sh+1|sh, π(sh))V π
h+1,Mr (sh+1)


= |S| · r ·H +

∑
sh /∈Uh(r)

dπMr (sh+1, h+ 1)
(
V π
h+1,M (sh+1)− V π

h+1,Mr (sh+1)
)

(4)
= |S| · r ·H +

∑
sh+1∈S

dπMr (sh+1, h+ 1)
(
V π
h+1,M (sh+1)− V π

h+1,Mr (sh+1)
)

• Step (1): The first equality arises because for all sh ∈ Uh(r), the value function V π
h,Mr (sh) = 0.

• Step (2): The inequality follows from the definition of dπMr (sh, h) ≤ r and the fact that V π
h,M (sh) ≤ H .

This ensures that the first term in the sum is bounded by |S| · r ·H .

• Step (3): The equality holds because for all sh /∈ Uh(r), the transition probability Ph(sh+1|sh, π(sh))
under the original model M is identical to that under the modified model Mr, i.e., Ph(sh+1|sh, π(sh)) =
P r
h(sh+1|sh, π(sh)). Thus, the only difference in the value functions is the difference in the values at the

next time step.

• Step (4): The final equality follows from interchanging the order of summation, allowing us to express
the sum over sh as a sum over sh+1.

27



1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483

Under review as a conference paper at ICLR 2026

Next, we observe that

V π
0,M (s0)− V π

0,Mr (s0)
(5)
=
∑
s1∈S

dπMr (s1, 1)
(
V π
1,M (s1)− V π

1,Mr (s1)
)
,

where Step (5): holds because s0 is the fixed initial state, and by definition, dπMr (s1, 1) = dπM (s1, 1) =
P0(s1|s0, π(s0)).
By recursively applying the same reasoning for each time step h, we obtain the following upper bound:

V π
0,M (s0)− V π

0,Mr (s0) ≤ |S| · r ·H2.

Thus, we conclude that
0 ≤ V π

M − V π
Mr ≤ H2|S|r.

Lemma E.4. For any policy π, we have

0 ≤ V π
M − V π

M
r ≤ H2|S|r,

where M
r

is defined as in Definition D.4 and |S| is the size of the state space.

Proof. Clearly, V π
M − V π

M
r ≥ 0.

By the similar analysis as above, we observe that for any h and sh ∈ S, the following holds:∑
sh∈S

dπMr (sh, h)
(
V π
h,M (sh)− V π

h,M
r (sh)

)
=

∑
sh∈Th(r)

dπ
M

r (sh, h)V
π
h,M (sh) +

∑
sh /∈Th(r)

dπ
M

r (sh, h)
(
V π
h,M (sh)− V π

h,M
r (sh)

)
(1)

≤ |S| · r ·H +
∑

sh /∈Th(r)

dπ
M

r (sh, h)
(
V π
h,M (sh)− V π

h,M
r (sh)

)

= |S| · r ·H +
∑

sh /∈Th(r)

dπ
M

r (s0, h)

rh(sh, π(sh)) +
∑

sh+1∈S

Ph(sh+1|sh, π(sh))V π
h+1,M (sh+1)

−rh(sh, π(sh))−
∑

sh+1∈S

Ph(sh+1|sh, π(sh))V π
h+1,M

r (sh+1)


= |S| · r ·H +

∑
sh+1∈S

dπ
M

r (sh+1, h+ 1)
(
V π
h+1,M (sh+1)− V π

h+1,M
r (sh+1)

)

• Step (1): The inequality follows from the definition of dπ
M

r (sh, h) ≤ maxπ Pr[sh = s |M,π] ≤ r and
the fact that V π

h,M (sh) ≤ H . This ensures that the first term in the sum is bounded by |S| · r ·H .

Next, we observe that

V π
0,M (s0)− V π

0,M
r (s0) =

∑
s1∈S

dπ
M

r (s1, 1)
(
V π
1,M (s1)− V π

1,M
r (s1)

)
,

By recursively applying the same reasoning for each time step h, we obtain the following upper bound:

V π
0,M (s0)− V π

0,M
r (s0) ≤ |S| · r ·H2.

Thus, we conclude that
0 ≤ V π

M − V π
M

r ≤ H2|S|r.

28



1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536

Under review as a conference paper at ICLR 2026

s0 . . . s0 . . . s0 s0 . . . s0 s0

q1

...

qj

...

qm

Key Layer 1

q1

...

qj

...

qm

Key Layer i

q1

...

qj

...

qm

Key Layer i+ 1

q1

...

qj

...

qm

Key Layer z

sT . . . sT sT . . . sT sT. . .sT

sH

h = 0

. . . sH

h = d+ 1

. . . sH

h = d+ i

sH

h = d+ i+ 1

. . . sH

h = d+ z

sH

h = d+ z + 1

action
l ∈

[A
]

1−
pi,j,

l

pi,j,l

Figure 3: MDP to solve BESTARM.

F HARDNESS RESULT

Definition F.1 (BESTARM Problem). Consider a k-armed bandit problem. Let k be the number of arms, and fix
parameters ϵ > 0 and δ ∈ (0, 1). The (k, ϵ, δ)-BESTARM problem is defined as follows: given access to k arms,
each associated with an unknown distribution (e.g., Bernoulli), the goal for an algorithm is to identify an arm
whose mean reward is within ϵ of the best arm’s mean, with probability at least 1− δ.

Lemma F.2 ((Chen et al., 2025)). Consider a k-armed bandit problem. Let ϵ ≤ 1
2k and δ ≤ 1

k+1 . Then, there
exists no (k − 1)-list replicable algorithm for the (k, ϵ, δ)-BESTARM problem, even when each arm follows a
Bernoulli distribution and an unbounded number of samples is allowed.

Theorem F.3. Suppose there exists a weakly ℓ-list replicable RL algorithm that interacts with an MDP M with
state space S, action space A, and horizon length H , such that there is a list of policies Π(M) with cardinality at
most ℓ that depend only on M , so that with probability at least 1− δ, π is ϵ-optimal and π ∈ Π(M), where π is the
near-optimal policy returned by the algorithm when interacting with M . Suppose ϵ ≤ 1

2|S||A|H and δ ≤ 1
|S||A|H+1 .

Then it must hold that

ℓ ≥
|S||A|

(
H − ⌈log|A| |S|⌉ − 3

)
3

.

Proof. Assume for contradiction that there exists an RL algorithm that satisfies the conditions of the theorem, with

ℓ <
|S||A|

(
H − ⌈log|A| |S|⌉ − 3

)
3

.

We will show that this assumption leads to a contradiction with Lemma F.2.

Without loss of generality, assume |S| is divisible by 3. Let m = |S|/3, n = |A|, z = H − ⌈logn m⌉ − 3, and
define k = mnz. We now construct a reduction from the k-armed bandit problem (with Bernoulli rewards) to an
MDP instance.

29



1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589

Under review as a conference paper at ICLR 2026

We index the k arms by triplets (i, j, ℓ), where i ∈ [z], j ∈ [m], and ℓ ∈ [n]. Each arm is associated with a
Bernoulli distribution Di,j,ℓ with mean pi,j,ℓ. We will design an MDP M such that interacting with it corresponds
to querying these k arms.

Key Layer Construction. Let {q1, . . . , qm} ⊂ S denote a set of m designated key-layer states (illustrated in
Figure 3). We will construct the MDP such that for each i ∈ [z] and j ∈ [m], there exists a unique deterministic
policy that reaches state qj precisely at time step hi = d+ i, where d = ⌈logn m⌉.
Once in state qj at time hi, the agent can choose action aℓ ∈ A to simulate pulling arm (i, j, ℓ). Let sH , sT ∈ S
denote two absorbing states. We define

∀(i, j, ℓ), Phi
(sH | qj , aℓ) = pi,j,ℓ, Phi

(sT | qj , aℓ) = 1− pi,j,ℓ.

and for all h, a: rh(sH , a) = 1[h = H − 1] and rh(sT , a) = 0. Both sH and sT are absorbing: P (s′ | sH , a) =
1[s′ = sH ] and similarly for sT .

Auxiliary Structure. We now describe the deterministic routing structure that reaches each qj in exactly d steps.
We construct a complete n-ary tree rooted at a state w1 ∈ S. Every non-leaf state in the tree has n children, one for
each action in A, and transitions deterministically based on the action played.

The final layer connects to key-layer states q1, . . . , qm. There may be more than m leaf actions; any excess actions
simply self-loop. The tree has depth d, requires at most 2m states, and all transitions have reward zero. Transitions
are time-homogeneous.

Initial State and Entry Mechanism. Let s0 ∈ S be the initial state. Define its transitions as follows:

1. Playing a designated action a0 ∈ A transitions to the root w1 of the n-ary tree;

2. Playing a designated action a1 ∈ A causes the agent to remain in s0;

3. All other actions lead to sT .

To reach a key-layer state qj at time hi = d+ i, a policy selects a1 for i time steps in s0, followed by action a0 to
enter the tree, and then a sequence of d actions that leads to qj . From there, it plays aℓ to simulate arm (i, j, ℓ).

Correctness of the Reduction. This construction yields a one-to-one correspondence between bandit arms and
deterministic policies in the MDP that reach qj at hi and play aℓ. Thus, any ϵ-optimal policy in the MDP induces
an ϵ-optimal arm in the bandit problem. Note also that all non-rewarding policies cannot match the optimal value
due to the delayed structure and reward placement.

Contradiction. Now suppose we run the assumed RL algorithm on this MDP. By hypothesis, the algorithm
returns a ϵ-optimal policy that lies in a list of ℓ policies with ℓ < k = mnz, with probability at least 1− δ, where
ϵ ≤ 1

2k and δ ≤ 1
k+1 . Since each policy corresponds to a unique arm, this implies the existence of a (k − 1)-list

replicable algorithm for the (k, ϵ, δ)-BESTARM problem. This contradicts Lemma F.2, completing the proof.

G EXPERIMENTS

All our experiments are performed based on environments in the Gymnasium (Towers et al., 2024) package, and
we use the PyTorch 2.1.2 for training neural networks. We use fixed random seeds in our experiments for better
reproducibility.

G.1 CARTPOLE-V1 WITH DQN

We evaluate the performance of the DQN algorithm (Mnih et al., 2015) on CartPole-v1, where we replace the
planning algorithm with our robust planner (Algorithm 1) in Section 5.

Network Architecture:

We use a feedforward neural network to approximate the Q-function.

30



1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642

Under review as a conference paper at ICLR 2026

• Input layer: 4-dimensional state vector
• Hidden layer 1: Fully connected, 64 units, ReLU
• Hidden layer 2: Fully connected, 64 units, ReLU
• Output layer: Fully connected, 2 units (Q-values)

Experience Replay:

• Buffer capacity: 105 transitions stored in a FIFO deque
• Batch size: B = 256

• Learning begins once buffer size ≥ B

Target Network Updates:

• Two networks: local (θ) and target (θ−)
• We use soft target updates to stabilize learning. After every Q-network update (which occurs every

step once the buffer contains ≥ 256 transitions), the target network parameters are softly updated using
θtarget ← τθonline + (1− τ)θtarget with τ = 0.001.

Hyperparameters:

Parameter Symbol Value(s) Description

Learning rate α 2.5× 10−3 Adam optimizer step size
Discount factor γ 0.99 Future reward discount
Replay batch size B 256 Transitions per learning update
Replay buffer capacity N 105 Max number of stored transitions
Soft update factor τ 10−3 Target network mixing coefficient
Exploration start ϵ0 1.0 Initial exploration probability
Exploration end ϵmin 0.01 Minimum exploration probability
Exploration decay ϵdecay 0.997 Multiplicative decay per episode
Training episodes – 400 Total training episodes
Max steps per episode – 500 Episode length limit
Evaluation episodes – 100 Used to compute mean returns
Independent runs – 50 Used to report mean/std

Training Procedure:

1. Initialize local and target networks; create empty replay buffer.
2. For each episode:

• Reset environment; compute ϵt = max(ϵmin, ϵ0 · ϵtdecay)
• For each step t:

– Select action using ϵ-greedy or Algorithm 1
– Store transition (s, a, r, s′) in the replay buffer
– If buffer size ≥ B, sample mini-batch and update Q-network
– Update target network using soft update rule

When invoking Algorithm 1, we use the Q-network as our estimate of Q∗
h,M̂

, and select actions using Algorithm 1
with raction ∈ {0.0, 0.05, 0.1, 0.5}. Note that when raction = 0, Algorithm 1 is equivalent to picking actions that
maximize the estimated Q-value as in the original DQN algorithm.

Evaluation Protocol:

Every 10 training episodes, we evaluate the policy over 100 test episodes, where each episode is initialized using
a fixed random seed for reproducibility. During the evaluation, we disable ϵ-greedy but still use Algorithm 1 to
choose actions. In Figure 1(a), we report the average award of the trained policy, ± standard deviation, across
different runs.

31



1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695

Under review as a conference paper at ICLR 2026

G.2 ACROBOT-V1 WITH DOUBLE DQN

We evaluate the performance of the Double DQN algorithm (Van Hasselt et al., 2016) on Acrobot-v1, where we
replace the planning algorithm with our robust planner (Algorithm 1) in Section 5.

Network Architecture: We use a feedforward neural network to approximate the Q-function.

• Input layer: state vector (dim = 6)
• Hidden layers: 256 → 512 → 512 units, ReLU activations
• Output layer: Q-values for each action (dim = 3)

Hyperparameters:

Parameter Symbol Value(s) Description

Learning rate α 1× 10−5 Adam step size
Discount factor γ 0.99 Future reward discount
Batch size B 8192 Samples per update
Replay capacity N 5×104 Max transitions stored
Target update freq. – 100 steps Hard copy interval
Initial ε ε0 1.0 Exploration start
Min ε εmin 0.01 Exploration floor
ε-decay δ 5× 10−4 Exploration decay per episode
Training epochs – 90 Total learning epochs
Eval interval – 10 episodes Test frequency
Eval episodes – 100 runs Used to compute mean returns
Independent runs – 25 Used to report mean/std

Replay Buffer:

• Capacity: 50,000 transitions
• Batch size: B = 8192

Training Procedure:

1. Initialize networks, replay buffer, and seeds.
2. For each episode t:

• Reset environment; compute εt = max(εmin, ε0 − tδ)

• For each step:
– Select action using ϵ-greedy or Algorithm 1
– Store transition (s, a, r, s′) in the replay buffer.
– If buffer size ≥ B, sample mini-batch and update Q-network using double Q-learning
– Every 100 learning steps, replace target weights

When invoking Algorithm 1, we use the Q-network as our estimate of Q∗
h,M̂

, and select actions using Algorithm 1
with raction ∈ {0, 0.05, 0.1, 0.2}. Note that when raction = 0, Algorithm 1 is equivalent to picking actions that
maximize the estimated Q-value as in the original Double DQN algorithm.

Evaluation Protocol:

Same as Section G.1.

G.3 MOUNTAINCAR-V0 WITH TABULAR Q-LEARNING

We evaluate the performance of the Q-Learning on MountainCar-v0, where we replace the planning algorithm
with our robust planner (Algorithm 1) in Section 5.

32



1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748

Under review as a conference paper at ICLR 2026

State Discretization:

• Discretized into a 20× 20 grid

• Bin size computed from environment bounds

• Discrete state: tuple((s− smin)/∆s)

Q-table:

• Shape: (20, 20, 3)

• Initialized uniformly in [−2, 0]

Hyperparameters:

Parameter Symbol Value(s) Description
Learning rate α 0.1 Q-learning update step
Discount factor γ 0.95 Discount for future rewards
Exploration schedule ϵ max(0.01, 1− t/500) Episode-based decay
State bins – 20× 20 For discretization
Training episodes – 10,000 Total learning episodes
Evaluation interval – 200 Test policy every 200 episodes
Test episodes – 100 Used to compute mean returns
Independent runs – 25 Used to report mean/std

Training Procedure:

For each episode t:

• Reset environment; discretize initial state; compute ϵt = max(0.01, 1− t/500)

• Select actions using ϵ-greedy or Algorithm 1

• Update Q-table with learning rate α = 0.1 and discount factor γ = 0.95:

Q(s, a)← (1− α)Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)

]
• If terminal state is reached and the goal is achieved, set Q(s, a)← 0

When invoking Algorithm 1, we use the Q-table as our estimate of Q∗
h,M̂

, and select actions using Algorithm 1
with raction ∈ {0, 0.001, 0.005, 0.02}. Note that when raction = 0, Algorithm 1 is equivalent to picking actions
that maximize the estimated Q-value as in the original Q-learning algorithm.

Evaluation Protocol: Same as Section G.1.

G.4 NAMETHISGAME WITH BEYOND THE RAINBOW

We evaluate the performance of the Beyond The Rainbow on Namethisgame, where we replace the planning
algorithm with our robust planner (Algorithm 1) in Section 5.

Environment:

• Domain: Atari 2600, evaluated on NameThisGame

• Simulator: ALE with frame skip = 4

• Observations: grayscale 84× 84 stacked frames

• Actions: discrete Atari action set

33



1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801

Under review as a conference paper at ICLR 2026

Baseline:

• Algorithm: BTR (Bootstrapped Transformer Reinforcement learning)
• Training budget: 100M Atari frames

Threshold Strategy:

• Planner augmented with a decaying action-threshold rule
• At each decision point, we select

a = argmax
a′

Q(s, a′) subject to Q(s, a) ≥ max
a′

Q(s, a′)− raction(t),

where raction(t) is a step-dependent threshold
• Decay schedule:

raction(t) = 0.4× (0.98) ⌊t/5000⌋,

with t denoting the training step index
• When raction(t)→ 0, the method reduces to the vanilla BTR algorithm

Parameter Symbol Value(s) Description

Learning rate lr 1× 10−4 Optimizer step size (Adam/AdamW)
Discount factor γ 0.997 Discount for future rewards
Batch size B 256 Mini-batch size for updates
Replay buffer size – 106 PER capacity
PER coefficient α 0.2 Priority exponent
PER annealing β 0.45→ 1.0 Importance weight schedule
Gradient clipping – 10.0 Norm clipping for stability
Target update – 500 steps Replace target network
Slow net update – 5000 steps Replace slow network
Optimizer – Adam/AdamW With ϵ = 0.005/B
Loss function – Huber Temporal difference loss
Replay ratio – 1.0 Grad updates per env step
Exploration schedule ϵ 1.0→ 0.01 (2M steps) ϵ-greedy decay
Noisy layers – Enabled Factorized Gaussian noise
Network arch. – Impala-IQN / C51 Conv backbone + distributional head
Model size – 2 Scale factor for Impala CNN
Linear hidden size – 512 Fully-connected layer width
Cosine embeddings ncos 64 IQN quantile embedding size
Number of quantiles τ 8 Quantile samples for IQN
Frame stack – 4 History frames per state
Image size – 84× 84 Input resolution
Trust-region – Disabled Optional stabilizer
EMA stabilizer τ 0.001 Soft target update (if enabled)
Munchausen α 0.9 Entropy regularization (if enabled)
Distributional – C51/IQN Distributional RL variants
Threshold start Dstart 0.4 Initial threshold ratio
Threshold decay Ddecay 0.98 Multiplicative decay factor
Threshold interval – 5000 steps Decay period
D-strategy – none / minnumber / lastact / slownet Action selection rule
Training frames – 200M Total Atari interaction budget
Evaluation freq. – 250k frames Eval episodes per checkpoint
Independent runs – 5 seeds Reported mean/std

Training Procedure:

• Interact with the environment for 100M frames using ϵ-greedy exploration

34



1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854

Under review as a conference paper at ICLR 2026

• Store transitions into a replay buffer and update the Q-network with Adam optimizer
• Report mean and standard deviation over 5 independent seeds

We observe that augmenting BTR with the threshold strategy improves performance in NameThisGame by over
10% compared to the baseline.

H LLM USAGE

We used large language models (LLMs) only for minor language polishing and for assistance in generating plotting
scripts. No LLMs were involved in the research ideation, theoretical derivations, experiment design, or analysis.
All scientific contributions of this work are entirely our own.

35


	Introduction
	Related Work
	Preliminaries
	Overview of New Techniques
	Robust Planning
	Strongly k-list Replicable RL Algorithm
	Experiments
	Conclusion
	Missing Proofs in Section 5
	Structural Characterizations of Reaching Probabilities in Truncated MDPs
	Missing Proofs in Section 6
	Weakly k-list Replicable RL Algorithm
	Perturbation Analysis in MDPs
	Hardness Result
	Experiments
	CartPole-v1 with DQN
	Acrobot-v1 with Double DQN
	MountainCar-v0 with Tabular Q-Learning
	Namethisgame with Beyond The Rainbow

	LLM Usage

