LIST REPLICABLE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

000

001 002 003

004

005

007

009

010

011

012

013

014

015

016

017

018

020

022

026

027

030 031

032

033

034

037

038

039

040

041

042

043

044

045

047

048

049

050

051

ABSTRACT

Replicability is a fundamental challenge in reinforcement learning (RL), as RL algorithms are empirically observed to be unstable and sensitive to variations in training conditions. To formally address this issue, we study list replicability in the Probably Approximately Correct (PAC) RL framework, where an algorithm must return a near-optimal policy that lies in a small list of policies across different runs, with high probability. The size of this list defines the *list complexity*. We introduce both weak and strong forms of list replicability: the weak form ensures that the final learned policy belongs to a small list, while the strong form further requires that the entire sequence of executed policies remains constrained. These objectives are challenging, as existing RL algorithms exhibit exponential list complexity due to their instability. Our main theoretical contribution is a provably efficient tabular RL algorithm that guarantees list replicability by ensuring the list complexity remains polynomial in the number of states, actions, and the horizon length. We further extend our techniques to achieve strong list replicability, bounding the number of possible policy execution traces polynomially with high probability. Our theoretical result is made possible by key innovations including (i) a novel planning strategy that selects actions based on lexicographic order among near-optimal choices within a randomly chosen tolerance threshold, and (ii) a mechanism for testing state reachability in stochastic environments while preserving replicability. Finally, we demonstrate that our theoretical investigation sheds light on resolving the *instability* issue of RL algorithms used in practice. In particular, we show that empirically, our new planning strategy can be incorporated into practical RL frameworks to enhance their stability.

1 Introduction

The issue of replicability (or lack thereof) has been a major concern in many scientific areas (Begley and Ellis, 2012; Ioannidis, 2005; Baker, 2016; of Sciences et al., 2019). In machine learning, a common strategy to ensure replicability and reproducibility is to publicly share datasets and code. Indeed, several prominent machine learning conferences have hosted reproducibility challenges to promote best practices (Sinha et al., 2023). However, this approach may not be sufficient, as machine learning algorithms rely on sampling from data distributions and often incorporate randomness. This inherent stochasticity leads to non-replicability. A more effective solution is to design replicable algorithms— ideally algorithms that consistently produce the same output across multiple runs, even when each run processes a different sample from the data distribution. This approach has recently spurred theoretical investigations, resulting in formal definitions of replicability and the development of various replicability frameworks (Impagliazzo et al., 2022; Dixon et al., 2023). In this paper, we focus on the notion of list replicability (Dixon et al., 2023). Informally, a learning algorithm is k-list replicable if there is a list L of cardinality k of good hypotheses so that the algorithm always outputs a hypothesis in L with high probability. k is called the list complexity of the algorithm. List replicability generalizes perfect replicability, which corresponds to the special case where k=1. However, as noted in Dixon et al. (2023), perfect replicability is unattainable even for simple problems. List replicability provides a natural relaxation, allowing meaningful guarantees while still ensuring controlled variability in algorithm outputs.

We investigate list replicability in the context of reinforcement learning (RL), or more specifically, probably approximately correct (PAC) RL in the tabular setting. In RL, an agent interacts with an unknown environment modeled as a Markov decision process (MDP) in which there is a set of states S with bounded size that describes all possible status of the environment. At a state $s \in S$, the agent interacts with the environment by taking an action a from an action space A, receives an immediate reward and transits to the next state. The agent interacts with the environment episodically, where each episode consists of H steps. The goal of the agent is to interact with the environment by executing a series a policies, so that after a certain number of interactions, sufficient information

is collected so that the agent could find a policy that performs nearly optimally. Replicability is a well-known challenge in RL, as RL algorithms are empirically observed to be unstable and sensitive to variations in training conditions. Our work aims to address this issue by introducing and analyzing list replicability in the PAC-RL framework. Moreover, by studying the replicability of RL from a theoretical point of view, we could build a clearer understanding of the instability issue of RL algorithms, and finally make progress towards enhancing the stability of empirical RL algorithms.

Theoretically, there are multiple ways to define the notion of list replicability in the context of RL. We may say an RL algorithm is k-list replicable, if there is a list L of policies with cardinality k, so that the near-optimal policy found by the agent always lies in L with high probability, where the list L depends only on the unknown MDP instance. Under this definition of list replicability, it is only guaranteed that the returned policy lies in a list with small size: there is no limit on the sequence of policies executed by the agent (the trace). We call such RL algorithms to be $weakly \ k$ -list t-list t-list

In certain applications, the above weak notion of list replicability may not suffice, and a more desirable notion of list replicability is to require both the returned policy and the trace (i.e., sequence of policies executed by the agent) lies in a list of small-size. This stronger notion of list replicability has been studied in multi-armed bandit (MAB) (Chen et al., 2025), and similar definition of replicability has been studied by Esfandiari et al. (2023) in MAB under ρ -replicability (Impagliazzo et al., 2022). In these work, it has been argued that limiting the number of possible traces (in terms of actions) of an MAB algorithm is more desirable in scenarios including clinical trials and social experiments. Therefore, the stronger notion of list replicability for RL mentioned above is a natural generalization of existing replicability definitions in MAB, and in this work, we say an RL algorithm to be *strongly k-list replicable* if such stronger notion (in terms of traces of policies) of list replicability holds.

The central theoretical question studied in this work is whether we can design list replicable PAC RL algorithms in the tabular setting. We give an affirmative answer to this question. We note that existing algorithms can potentially generate an exponentially large number of policies (and their execution traces) for the same problem instance, and hence, new techniques are needed to achieve our goal.

Interestingly, our theoretical investigation offers insights into addressing the instability commonly observed in practical RL algorithms. In particular, the new technical tools developed through our analysis can be integrated into existing RL frameworks to enhance their stability.

Below we give a more detailed description of our theoretical and empirical contributions.

Theoretical Contributions. Our first theoretical result is a black-box reduction which converts any PAC RL algorithm in the tabular setting to one that is weakly k-list replicable with $k = O(|S|^2|A|H^2)$. Here, |S| is the number of states, |A| is the number of actions and H is the horizon length. Due to space limitation, the description of the reduction and its analysis is deferred to Appendix D.

Theorem 1.1 (Informal version of Theorem D.1). Given a RL algorithm $\mathbb{A}(\epsilon_0, \delta_0)$ that interacts with an unknown MDP and returns an ϵ_0 -optimal policy with probability at least $1 - \delta_0$. There is a weakly k-list replicable algorithm (Algorithm 3) with $k = O(|S|^2|A|H^2)$ that makes |S|H calls to \mathbb{A} with $\epsilon_0 = \frac{\epsilon \delta}{\operatorname{poly}(|S|,|A|,H)}$ and $\delta_0 = \delta/(8|S||H|)$. For any unknown MDP instance M, with probability at least $1 - \delta$, the algorithm returns an ϵ -optimal policy $\pi \in \Pi(M)$, where $\Pi(M)$ is a list of policies that depends only on the underlying MDP M with size $|\Pi(M)| = k$.

Using PAC RL algorithms in the tabular setting (e.g. the algorithm by Kearns and Singh (1998a)) with sample complexity polynomial in |S|, |A|, H, $1/\epsilon_0$ and $\log(1/\delta_0)$) as \mathbb{A} , the final sample complexity of our weakly k-list replicable algorithm in Theorem 1.1 would be polynomial in |S|, |A|, H, $1/\epsilon$ and $1/\delta$. Compared to existing algorithms in the tabular setting, the sample complexity of our algorithm has much worse dependence on $1/\delta$ (polynomial dependence instead of logarithm dependence), which is common for algorithms with list replicability guarantees (Dixon et al., 2023). On the other hand, the list complexity k of our algorithm has no dependence on δ .

Our second result is a new RL algorithm that is strongly k-list replicable with $k = O(|S|^3|A|H^3)$.

Theorem 1.2 (Informal version of Theorem 6.1). There is a strongly k-list replicable algorithm (Algorithm 2) with $k = O(|S|^3|A|H^3)$, such that for any unknown MDP instance M, with probability at least $1 - \delta$, the algorithm returns an ϵ -optimal policy, and the sequence of policies executed by the algorithm and the returned policy lies in a list with size k that depends only on M. Moreover, the sample complexity of the algorithm is polynomial in |S|, |A|, H, $1/\epsilon$, $1/\delta$.

Our second result shows that, perhaps surprisingly, even under the more stringent definition of list replicability, designing RL algorithm in the tabular setting with polynomial sample complexity and polynomial list complexity is still possible. The description of Algorithm 2 is given in Section 6.

Finally, we prove a hardness result on the list complexity of weakly replicable RL algorithm in the tabular setting, completing our new algorithms.

Theorem 1.3 (Informal version of Theorem F.3). For any weakly k-list replicable RL algorithm that returns an ϵ -optimal policy with probability at least $1-\delta$, we have $k \geq \frac{|S||A|(H-\lceil \log_{|A|}|S|\rceil-3)}{3}$ as long as $\epsilon \leq \frac{1}{2|S||A|H}$ and $\delta \leq \frac{1}{|S||A|H+1}$.

Theorem 1.3 shows that the list complexity of any weakly k-list replicable algorithm is $\Omega(SAH)$, provided that its suboptimality and failure probability are both at most O(1/(SAH)). Theorem 1.3 is proved by a reduction from RL to the MAB and known list complexity lower bound for MAB (Chen et al., 2025). Its formal proof can be found in Appendix F.

Empirical Contributions. We further show that our robust planner (presented in Section 5), one of our new technical tools for establishing Theorem 1.1 and Theorem 1.2, can be incorporated into practical RL frameworks to enhance their stability. The empirical findings are presented in Section 7.

2 RELATED WORK

There is a long line of research dedicated to understanding the complexity of reinforcement learning by studying learning in a Markov Decision Process (MDP). One well-established setting is the *generative model*, which abstracts away exploration challenges by assuming access to a simulator that allows sampling from any state-action pair. A number of works (Kearns and Singh, 1998a; Pananjady and Wainwright, 2020; Kakade, 2003; Azar et al., 2013; Agarwal et al., 2020; Wainwright, 2019b;a; Sidford et al., 2018a;b; Li et al., 2024b;a; 2022; Even-Dar and Mansour, 2003; Shi et al., 2023; Beck and Srikant, 2012; Cui and Yang, 2021; Sidford et al., 2018b; Wainwright, 2019b; Azar et al., 2013; Agarwal et al., 2020) have established near-optimal sample complexity bounds for learning a policy in this regime. Specifically, to learn an ϵ -optimal policy with high probability, the statistically optimal sample complexity is of the order poly(|S|, |A|, |A|, |A|, where |A| denotes the horizon or the effective horizon of the environment. These algorithms generally fall into two categories: those that estimate the probability transition model and those that directly estimate the optimal |A|-function. However, due to the inherent randomness in sampling, these approaches do not guarantee *list-replicable* policies—each independent execution of the algorithm may return a different policy, potentially leading to an exponentially large set of output policies.

In contrast, the online RL setting—where there is no access to a generative model—has seen significant progress over the past decades in optimizing sample complexity. Notable contributions include (Kearns and Singh, 1998b; Brafman and Tennenholtz, 2002; Kakade, 2003; Strehl et al., 2009; Auer, 2002; Strehl et al., 2006; Strehl and Littman, 2008; Kolter and Ng, 2009; Bartlett and Tewari, 2009; Jaksch et al., 2010; Szita and Szepesvári, 2010; Lattimore and Hutter, 2012; Osband et al., 2013; Dann and Brunskill, 2015; Agrawal and Jia, 2017; Dann et al., 2017; Jin et al., 2018; Efroni et al., 2019; Fruit et al., 2018; Zanette and Brunskill, 2019; Cai et al., 2019; Dong et al., 2019; Russo, 2019; Neu and Pike-Burke, 2020; Zhang et al., 2020; 2021; Tarbouriech et al., 2021; Xiong et al., 2022; Ménard et al., 2021; Wang et al., 2020; Li et al., 2021b;a; Domingues et al., 2021; Zhang et al., 2022). These works typically evaluate algorithmic performance within the regret framework, comparing the accumulated reward of an algorithm against that of an optimal policy. When adapted to the Probably Approximately Correct (PAC) RL framework, these results imply a sample complexity of poly(|S|, |A|, |A|, |A|, |A|, to learn an ϵ -optimal policy with high probability. To achieve a balance between exploration and exploitation, the aforementioned algorithms generally follow a common iterative framework—maintaining a policy and refining it as new data is collected. For example, UCB-type algorithms (e.g., Jin et al. (2018)) maintain an approximate Q-function and leverage an upper-confidence bound to guide data collection. However, due to the iterative updates of these algorithms, they inherently fail to achieve polynomial complexity in either the strong or the weak notion of list replicability, as policies are likely to change at each iteration, and small stochastic error could have significant impact on the policies executed by the algorithm.

Recent studies have begun exploring replicable reinforcement learning. (Karbasi et al., 2024; Eaton et al., 2023) examined ρ -replicability, as defined in (Impagliazzo et al., 2022). Intuitively, ρ -replicability ensures that two executions of the same algorithm, when initialized with the same random seed, yield the same policy with probability at least $1-\delta$. Meanwhile, (k,δ) -weak list replicability requires that an algorithm consistently outputs a policy

from a fixed list of at most k policies with probability at least $1-\delta$. However, a ρ -replicable algorithm may still generate an exponentially large number of distinct policies, as each seed may correspond to a different output policy. Thus, such algorithms may still suffer from exponential weak (or strong) list complexity. (Esfandiari et al., 2023) further studied the Multi-Armed Bandit (MAB) problem under ρ -replicability, where two independent executions of a ρ -replicable MAB algorithm, sharing the same random string, must follow the same sequence of actions with probability at least $1-\rho$.

In the online learning setting, the only known work addressing list replicability is by Chen et al. (2025), who studied the concept in the context of Multi-Armed Bandits (MAB). The authors define an MAB algorithm as (k, δ) -list replicable if, for any MAB instance, there exists a list of at most k action traces such that the algorithm selects one of these traces with probability at least $1 - \delta$. Our definition of *strong list replicability* for RL naturally extends this notion to RL. However, due to the long-horizon nature of RL, achieving list replicability in RL presents significantly greater challenges.

3 Preliminaries

Notations. For a positive integer N, we use [N] to denote $\{0,1,\ldots,N-1\}$. For a condition \mathcal{E} , we use $\mathbb{1}[\mathcal{E}]$ to denote the indicator function, i.e., $\mathbb{1}[\mathcal{E}] = 1$ if \mathcal{E} holds and $\mathbb{1}[\mathcal{E}] = 0$ otherwise. For a real number x and $\epsilon \geq 0$, we use $\mathrm{Ball}(x,\epsilon)$ to denote $[x-\epsilon,x+\epsilon]$. For two real numbers a < b, we use $\mathrm{Unif}(a,b)$ to denote the uniform distribution over (a,b).

Markov Decision Process. Let $M=(S,A,P,R,H,s_0)$ be a Markov Decision Process (MDP). Here, S is the state space, and $A=\{1,2,\ldots,|A|\}$ is the action space. $P=(P_h)_{h\in[H]}$, where for each $h\in[H]$, $P_h:S\times A\to \Delta(S)$ is the transition model at level h which maps a state-action pair to a distribution over states. $R=(R_h)_{h\in[H]}$, where for each $h\in[H]$, $R_h:S\times A\to[0,1]$ is the deterministic reward function at level h. $H\in\mathbb{Z}^+$ is the horizon length, and $s_0\in S$ is the initial state. We further assume that the reward functions $R=(R_h)_{h\in[H]}$ are known. I

A (non-stationary) policy π chooses an action $a \in A$ based on the current state $s \in S$ and the time step $h \in [H]$. Formally, $\pi = \{\pi_h\}_{h=0}^{H-1}$ where for each $h \in [H]$, $\pi_h : S \to A$ maps a given state to an action. The policy π induces a (random) trajectory $s_0, a_0, r_0, s_1, a_1, r_1, \ldots, s_{H-1}, a_{H-1}, r_{H-1}$, where for each $h \in [H]$, $a_h = \pi_h(s_h)$, $r_h = R_h(s_h, a_h)$ and $s_{h+1} \sim P_h(s_h, a_h)$ when h < H-1.

Interacting with the MDP. In RL, an agent interacts with an unknown MDP. In the online setting, in each episode, the agent decides a policy π , observes the induced trajectory, and proceeds to the next episode. In the generative model setting, in each round, the agent is allowed to choose a state-action pair $(s,a) \in S \times A$ and a level $h \in [H]$, and receives a sample drawn from $P_h(s,a)$ as feedback.

Value Functions and Q-Functions. For an MDP M, given a policy π , a level $h \in [H]$ and $(s,a) \in S \times A$, the Q-function is defined as $Q_{h,M}^{\pi}(s,a) = \mathbb{E}\left[\sum_{h'=h}^{H-1} r_{h'} \mid s_h = s, a_h = a, M, \pi\right]$, and the value function is defined as $V_{h,M}^{\pi}(s) = \mathbb{E}\left[\sum_{h'=h}^{H-1} r_{h'} \mid s_h = s, M, \pi\right]$. We denote $Q_{h,M}^{*}(s,a) = Q_{h,M}^{\pi^{*}}(s,a)$ and $V_{h,M}^{*}(s) = V_{h,M}^{\pi^{*}}(s)$ where π^{*} is the optimal policy. We also write $V_{M}^{*} = V_{0,M}^{*}(s_{0})$ and $V_{M}^{\pi} = V_{0,M}^{\pi}(s_{0})$ for a policy π . We may omit M from the subscript of value functions and Q-functions when M is clear from the context (e.g., when M is the underlying MDP that the agent interacts with). We say a policy π to be ϵ -optimal if $V^{\pi} \geq V^{*} - \epsilon$.

The goal of the agent is to return a near-optimal policy π after interacting with the unknown MDP M by executing a sequence of policies (or by querying the transition model in the generative model).

Further Notations. For an MDP M, define the occupancy function $d_M^\pi(s,h) = \Pr[s_h = s \mid M,\pi]$ and $d_M^*(s,h) = \max_\pi \Pr[s_h = s \mid M,\pi]$. We may omit M from the subscript of $d_M^\pi(s,h)$ and $d_M^*(s,h)$ when M is clear from the context. For an MDP M, we write

$$Gap_{M} = \{V_{h,M}^{*}(s) - Q_{h,M}^{*}(s,a) \mid (s,a) \in S \times A, h \in [H]\}.$$
(1)

¹For simplicity, we assume deterministic rewards and the initial state, and known reward function. Our algorithms can be easily extended to handle stochastic rewards and initial state, and unknown rewards distributions.

Two MDPs M_1 and M_2 are said to be ϵ -related if M_1 and M_2 share the same state space S, action space A, reward function and initial state, and for all $(s,a) \in S \times A$ and $h \in [H-1]$,

$$\sum_{s' \in S} \left| P_h^{M_1}(s' \mid s, a) - P_h^{M_2}(s' \mid s, a) \right| \le \epsilon \tag{2}$$

where $P_h^{M_1}$ is the transition model of M_1 at level h and $P_h^{M_2}$ is that of M_2 at the same level.

List Replicability in RL. We now formally define the notion of list replicability of RL algorithms in the online setting. For an RL algorithm \mathbb{A} , we say \mathbb{A} to be *weakly* (k, δ) -list replicable, if for any MDP instance M, there is a list of policies $\Pi(M)$ with cardinality at most k, so that $\Pr[\pi \in \Pi(M)] \geq 1 - \delta$, where π is the (supposedly) near-optimal policy returned by \mathbb{A} when interacting with M.

For an RL algorithm \mathbb{A} , we say \mathbb{A} to be $strongly\ (k,\delta)$ -list replicable, if for any MDP instance M, there is a list $\mathrm{Trace}(M)$ with cardinality at most k, so that $\Pr[((\pi_0,\pi_1,\ldots),\pi)\in\mathrm{Trace}(M)]\geq 1-\delta$, where (π_0,π_1,\ldots) is the (random) sequence of policies executed by \mathbb{A} when interacting with M and π is the (supposedly) near-optimal policy returned by \mathbb{A} when interacting with M.

4 OVERVIEW OF NEW TECHNIQUES

In this section, we discuss the techniques for establishing Theorem 1.1 and Theorem 1.2.

The Robust Planner. To motivate our new approach, consider the following simple MDP instance for which most existing RL algorithms would fail to achieve polynomial list complexity. There is a state s_h at each level $h \in [H]$, and the action space is $\{a_1, a_2\}$. At level h, if a_i is chosen, s_h transitions to s_{h+1} with an unknown probability $p_{h,i}$, otherwise s_h transitions to an absorbing state. The agent receives a reward of 1 at the last level. For this instance, if $|p_{h,1}-p_{h,2}|=\exp(-H)$, then for all $h \in [H]$, no RL algorithm could differentiate $p_{h,1}$ and $p_{h,2}$ unless we draw an exponential number of samples. Therefore, if the RL algorithm simply returns a policy by maximizing the estimated optimal Q-values for each s_h , then we would choose either a_1 or a_2 , and hence, there could be 2^H different policies returned by the algorithm. As most existing RL algorithms choose actions by maximizing the estimated Q-values, they would all fail to achieve polynomial list complexity even for this simple instance. This also explains why existing RL algorithms tend to be unstable and sensitive to noise.

To better understand our new approach, let us first consider the simpler generative model setting. Standard analysis shows that by taking sufficient samples for all $(s,a) \in S \times A$ and $h \in [H]$ to build the empirical model \hat{M} , we would have $|\hat{Q}_h(s,a) - Q_{h,M}^*(s,a)| \le \epsilon_0$ for all $(s,a) \in S \times A$ and $h \in [H]$. Here, $\hat{Q}_h(s,a) = Q_{h,\hat{M}}^*(s,a)$ is the estimated Q-value, and ϵ_0 is a statistical error that can be made arbitrarily small by drawing more samples. Now, for a given state s and level s, instead of choosing an action by maximizing $\hat{Q}_h(s,a)$, we go through all actions in a fixed order s, s, s, s, and s choose the lexicographically first action s so that s choose s characterisation is a tolerance parameter drawn from the uniform distribution.

Now we show that our new approach achieves small list complexity. The main observation is the that, for a fixed tolerance parameter $r_{\rm action}$, if the difference between $r_{\rm action}$ and ${\rm Gap}_h(s,a) = V_h^*(s) - Q_h^*(s,a)$ satisfies $r_{\rm action} \notin {\rm Ball}({\rm Gap}_h(s,a),2\epsilon_0)$ for all $(s,a)\in S\times A$ and $h\in [H]$, then the returned policy will always be the same regardless of the estimation errors. To see this, for an action a, if $r_{\rm action} \notin {\rm Ball}({\rm Gap}_h(s,a),2\epsilon_0)$, then whether $\hat{Q}_h(s,a)\geq \hat{V}_h(s)-r_{\rm action}$ or not will always be the same regardless of the stochastic noise as long as $|\hat{Q}_h(s,a)-Q_h^*(s,a)|\leq \epsilon_0$. Since we always choose the lexicographically first action a satisfying $\hat{Q}_h(s,a)\geq \hat{V}_h(s)-r_{\rm action}$, the action chosen for s will always be the same. Equivalently, by defining ${\rm Bad}_{\rm action}=\bigcup_{h,s,a}{\rm Ball}({\rm Gap}_h(s,a),2\epsilon_0)$, the returned policy will always be the same so long as $r_{\rm action}\notin {\rm Bad}_{\rm action}$. By drawing $r_{\rm action}$ from the uniform distribution over $(0,2HSA\epsilon_0/\delta)$, we would have ${\rm Pr}[r_{\rm action}\notin {\rm Bad}_{\rm action}]\geq 1-\delta$. Moreover, for two tolerance parameters $r_{\rm action}^1, r_{\rm action}^2\notin {\rm Bad}_{\rm action}$, if for all $(s,a)\in S\times A$ and $h\in [H]$ we have either $r_{\rm action}^1< r_{\rm action}^2< {\rm Gap}_h(s,a)$ or ${\rm Gap}_h(s,a)< r_{\rm action}^1< r_{\rm action}^2$, then the returned policy will also be the same no matter $r_{\rm action}=r_{\rm action}^1$ or $r_{\rm action}=r_{\rm action}^2$. Since there are at most |S||A|H+1 different values for ${\rm Gap}_h(s,a)$ for the underlying MDP M, there could be at most |S||A|H+1 different policies returned by our algorithm as long as $r_{\rm action}\notin {\rm Bad}_{\rm action}$. Finally, the suboptimality of the returned policy can be easily shown to be $O(H\cdot r_{\rm action})$.

Weakly k-list Replicable Algorithm in the Online Setting. Our algorithm in the online setting with weakly k-list replicable guarantee is based on building a policy cover (Jin et al., 2020). Given a black-box RL algorithm, for

each $(s,h) \in S \times [H]$, we set the reward function to be $R_{h'}^{s,h}(s',a) = \mathbbm{1}[s'=s,h=h']$, invoke the black-box RL algorithm with the modified reward function, and set the returned policy to be $\hat{\pi}^{s,h}$. Since $\hat{\pi}^{s,h}$ is an ϵ -optimal policy, we have $d^{\hat{\pi}^{s,h}}(s,h) \geq d^*(s,h) - \epsilon$. At this point, one could use $\hat{\pi}^{s,h}$ to collect samples and estimate the transition model $P_h(s,a)$, and return a policy by invoking the robust planning algorithm mentioned above. The issue is that there could be some $(s,h) \in S \times [H]$ unreachable for any policy π , i.e., $d^*(s,h)$ is small. For those (s,h), it is impossible to estimate the transition model $P_h(s,a)$ accurately. On the other hand, our robust planning algorithm requires $|\hat{Q}_h(s,a) - Q_h^*(s,a)| \leq \epsilon_0$ for all $(s,a) \in S \times A$ and $h \in [H]$.

To tackle the above issue, we use an additional truncation step to remove unreachable states. For each $(s,h) \in S \times [H]$, we first use the roll-in policy $\hat{\pi}^{s,h}$ to estimate the probability of reaching s at level h. If the estimated probability is small, it would be clear that $d^*(s,h)$ is also small as $d^{\hat{\pi}^{s,h}}(s,h) \geq d^*(s,h) - \epsilon$, so that (s,h) can be removed from the MDP. On the other hand, implementing the above truncation step naïvely would significantly increase the list complexity of our algorithm as the returned policy depends on the set of $(s,h) \in S \times [H]$ being removed. Here, we use an approach similar to the robust planning algorithm mentioned earlier. We use a randomly chosen reaching probability truncation threshold r_{trunc} drawn from the uniform distribution, and for each $(s,h) \in S \times [H]$, we declare (s,h) to be unreachable iff the estimated reaching probability (using $\hat{\pi}^{s,h}$) does not exceed r_{trunc} . Similar to the analysis in the robust planning algorithm, for a reaching probability truncation threshold r_{trunc} , the set of (s,h) being removed would be the same as long as the difference r_{trunc} and $d^*(s,h)$ is large enough for all $(s,h) \in S \times [H]$. Moreover, two reaching probability truncation thresholds r_{trunc}^1 we have either $r_{\text{trunc}}^2 < d^*(s,h)$ or $d^*(s,h) < r_{\text{trunc}}^1 < r_{\text{trunc}}^2$. Therefore, the total number of different sets of (s,h) being removed is at most O(|S|H).

Strongly k-list Replicable Algorithm in the Online Setting. Unlike the case of weak list replicability where we can use a black-box RL algorithm to determine the set of unreachable states independently at each level, for strongly list replicable RL, such a method would not suffice due to the potentially large list complexity of the black-box algorithm. Our algorithm with strongly k-list replicable guarantees employs a level-by-level approach: for each level k, we find a policy $\hat{\pi}^{s,h}$ to reach k at level k for each k for each k build an empirical transition model for level k, and proceed to the next level k 1. To ensure list replicability guarantees, for each k for each k same robust planning algorithm to find k as mentioned ealier, for any level k, there could be unreachable states, and the estimated transition model for those states could be inaccurate. To handle this, for each level k, based on the estimated transition models of previous levels, we test the reachability of all states in level k by using the same mechanism as in our previous algorithm, and remove those unreachable states by transitioning them to an absorbing state k0 to the estimated model.

Although the algorithm is conceptually straightforward given existing components, the analysis is not. For the new algorithm, states removed at level h have significant impact on the reaching probabilities of later levels, which also affect the planned roll-in policies of later levels. Such dependency issue must be handled carefully to have a polynomial list complexity. To handle this, we prove several structural properties of reaching probabilities in truncated MDPs in Section B. For the time being we assume that in our algorithm, for each level h, instead of using estimated reaching probabilities, the algorithm has access to the true reaching probabilities, and those reaching probabilities have taken unreachable states removed in previous levels into consideration. I.e., for a reaching probability truncation threshold $r_{\rm trunc}$, we first remove all states in the first level that cannot be reached with probability higher than $r_{\rm trunc}$, recalculate the reaching probability in the second level after truncating the first level, remove unreachable states in the second level (again using the same threshold $r_{\rm trunc}$), an so on. We use $U_h(r_{\rm trunc})$ to denote the set of states removed in level h during the above process, and see Definition B.1 for a formal definition. We show that for different $r_{\rm trunc}$, $U_h(r_{\rm trunc})$ could not be an arbitrary subset of the state space, and the main observation is that $U_h(r_{\rm trunc})$ satisfies certain monotonicity property, i.e., given $r_1, r_2 \in [0, 1]$, if $r_1 < r_2$ then we have $U_h(r_1) \subseteq U_h(r_2)$. This observation can be proved by induction on h, and see Lemma B.2 and its proof for more details.

As an implication, if we write $U(r) = (U_0(r), U_1(r), \dots, U_{H-1}(r))$, then there could be at most |S|H+1 different choices of U(r) for all $r \in [0,1]$ by the pigeonhole principle. Therefore, after fixing the reaching probability truncation threshold, the set of states that will be removed at each level will be fixed, and for all different reaching probability truncation thresholds, there could be at most |S|H+1 different ways to remove states even if we consider all levels simultaneously.

The above discussion heavily relies on the true reaching probabilities. As another implication of the monotonicity property, there is a critical reaching probability threshold $\operatorname{Crit}(s,h)$ for each (s,h), and $s \in U_h(r)$ iff $r \leq \operatorname{Crit}(s,h)$

(cf. Corollary B.5). Therefore, for a fixed reaching probability truncation threshold r_{trunc} , as long as the distance between r_{trunc} and Crit(s, h) is much larger than the statistical errors, the set of states being removed will still be the same as $U(r_{\rm trunc})$ even with statistical errors. In particular, if we draw $r_{\rm trunc}$ from a uniform distribution as in previous algorithms, with high probability r_{trunc} and Crit(s, h) would have a large distance for all $(s, h) \in S \times [H]$, in which case the set of removed states will be one of those |S|H+1 different choices of U(r).

ROBUST PLANNING

In this section, we formally describe our robust planning algorithm (Algorithm 1). Here, it is assumed that there is an unknown underlying MDP M. Algorithm 1 receives an MDP M and a tolerance parameter $r_{\rm action}$ as input, and it is assumed that M and \hat{M} are ϵ_0 -related (see (2) for the definition). In Algorithm 1, for each $(s,h) \in S \times [H]$, we go through all actions in the action space A in a fixed order $1, 2, \dots, |A|$, and choose the first action a so that $Q_{h,\hat{M}}^*(s,a) \ge V_{h,\hat{M}}^*(s) - r_{\text{action}}.$

Algorithm 1 Robust Planning

- 1: **Input:** MDP \hat{M} , tolerance parameter r_{action} .
- 2: **Output:** near-optimal policy $\hat{\pi}$
- 3: Define $\hat{\pi}_h(s) = \min\{\hat{a} \in A \mid Q_{h \hat{M}}^*(s, a) \geq V_{h \hat{M}}^* r_{\text{action}}\}$ for each $(s, h) \in S \times [H]$
- 4: return $\hat{\pi}$

318

319

320

321

322

323

325

327

328

329

330

331

332 333

334

335

336 337

338

339 340

341

342 343

344 345 346

347 348

349

350 351

352 353

354

355 356

357

358

359

361

362 363

364 365

366

367

368

369

370

Our first lemma characterizes the suboptimality of the returned policy. Its formal proof is based on the performance difference lemma (Kakade and Langford, 2002) and can be found in Section A.

Lemma 5.1. Suppose M and \hat{M} are ϵ_0 -related. The policy $\hat{\pi}$ returned by Algorithm 1 satisfies $V_M^{\hat{\pi}} \geq V_M^*$ – $2H^2\epsilon_0 - r_{\rm action}H$.

Our second lemma shows that if r_{action} is chosen to be far from $\text{Gap}_{h,M}(s,a) = V_{h,M}^*(s) - Q_{h,M}^*(s,a)$ for all $(s,a) \in S \times A$ and $h \in [H]$, then the returned policy $\hat{\pi}$ depends only on M and r_{action} . Moreover, for two choices r_{action}^1 and r_{action}^2 of the tolerance parameter r_{action} , the returned policy will be the same if r_{action}^1 and r_{action}^2 always lie on the same side of $\mathrm{Gap}_{h,M}(s,a)$ for all $(s,a) \in S \times A$ and $h \in [H]$. Full proof of the lemma and corollary can be found in Section A.

Lemma 5.2. Suppose M and \hat{M} are ϵ_0 -related. For two tolerance parameters $r_{\rm action}^1$ and $r_{\rm action}^2$, if

- $r_{\text{action}}^1, r_{\text{action}}^2 \notin \bigcup_{g \in \text{Gap}_M} \text{Ball}(g, 2H^2 \epsilon_0)$ where Gap_M is as defined in (1);
- for any $g \in \operatorname{Gap}_M$, either $g < r_{\operatorname{action}}^1 < r_{\operatorname{action}}^2$ or $r_{\operatorname{action}}^1 < r_{\operatorname{action}}^2 < g$,

then the returned policy $\hat{\pi}$ depends only on M and $r_{\rm action}$, and for both tolerance parameters $r_{\rm action}^1$ and $r_{\rm action}^2$, the returned policy $\hat{\pi}$ would be identical for the same underlying MDP M.

As a corollary of Lemma 5.1 and Lemma 5.2, we show how to design a list-replicable RL algorithm in the generative model setting by invoking Algorithm 1 with a randomly chosen parameter $r_{\rm action}$.

Corollary 5.3. In the generative model setting, there is an algorithm with sample complexity polynomial in |S|, |A|, $1/\epsilon$ and $1/\delta$, such that with probability at least $1-\delta$, the returned policy is ϵ -optimal and always lies in a list $\Pi(M)$ where $\Pi(M)$ is a list of policies that depend only on the unknown underlying MDP M with $|\Pi(M)| = O(|S||A|H).$

STRONGLY k-LIST REPLICABLE RL ALGORITHM

In this section, we present our strongly k-list replicable algorithm (Algorithm 2). As mentioned in Section 4, Algorithm 2 employs a layer-by-layer approach. In Algorithm 2, for each $h \in [H]$, \hat{U}_h is the set of states estimated to be unreachable at level h, and we initialize $\hat{U}_0 = S \setminus \{s_0\}$ where s_0 is the fixed initial state. For each iteration h, we assume that \hat{U}_h has been calculated, and for all $s \notin \hat{U}_h$, we assume that a roll-in policy $\hat{\pi}^{s,h}$ has been determined (except for h = 0, since any policy would suffice for reaching the initial state). Now we describe how to proceed to the next iteration h + 1.

For each $s \notin \hat{U}_h$ and $a \in A$, we build a policy $\hat{\pi}^{s,h,a}$ based on $\hat{\pi}^{s,h}$, and execute $\hat{\pi}^{s,h,a}$ to collect samples and calculate $\hat{P}_h(s,a)$ as our estimate of $P_h(s,a)$. Based on $\{\hat{P}_{h'}(s,a)\}_{h'\leq h}$ and $\{\hat{U}_{h'}\}_{h'\leq h}$, we build an MDP \tilde{M}^{h+1} (cf. (3)). For each $h' \leq h$ and $s \in S$, if $s \notin \hat{U}_{h'}$ the transition model of s in \tilde{M}^{h+1} at level h' would be the same as $\hat{P}_{h'}(s,\cdot)$. If $s \in \hat{U}_{h'}$, we always transit s to an absorbing state s_{absorb} in \tilde{M}^{h+1} at level h'. Given \tilde{M}^{h+1} , for each $s \in S$, we calculate $d^*_{\tilde{M}^{h+1}}(s,h+1)$ as our estimate of $d^*(s,h+1)$, and we include s in \hat{U}_{h+1} if $d^*_{\tilde{M}^{h+1}}(s,h+1) \leq r_{\mathrm{trunc}}$. Here, r_{trunc} is a reaching probability truncation threshold drawn from the uniform distribution. For each $s \notin \hat{U}_{h+1}$, we further find a roll-in policy $\hat{\pi}^{s,h+1}$ by invoking Algorithm 1 on \tilde{M}^{h+1} with a modified reward function $R_{h'}^{s,h+1}(s',a) = \mathbb{1}[h'=h+1,s'=s]$ and tolerance parameter $r_{\rm action}$, where $r_{\rm action}$ is also drawn from the uniform distribution. After finishing all these steps, we proceed to the next iteration.

Finally, after finishing all iterations, we invoke Algorithm 1 again with MDP \tilde{M}^{H-1} and the same tolerance parameter $r_{\rm action}$, and return the output of Algorithm 1 as the final output. The formal guarantee of Algorithm 2 is stated in the following theorem. Its proof can be found in Section C.

Theorem 6.1. For any unknown MDP instance M, there is a list Trace(M) with size at most $k = O(|S|^3|A|H^3)$ that depends only on M, and with probability at least $1-\delta$, the policy π returned by Algorithm 2 is ϵ -optimal, and $((\pi_0, \pi_1, \ldots), \pi) \in \text{Trace}(M)$, where (π_0, π_1, \ldots) is the sequence of policies executed by Algorithm 2 when interacting with M.

Algorithm 2 Strongly k-list Replicable RL Algorithm

```
1: Input: error tolerance \epsilon, failure probability \delta
```

- 2: **Output:** near-optimal policy π
- 3: Initialize $C_1 = \frac{8AS^2H^2}{\delta}$, $\epsilon_0 = \frac{\epsilon\delta}{1440S^3H^7A}$, $\epsilon_1 = 5C_1H^2\epsilon_0$, $\eta_0 = 3\epsilon_1H$, $W = \frac{S^2\log(8HS^2A/\delta)}{\epsilon_0^2\eta_0}$ 4: Generate random numbers $r_{\rm action} \sim {\rm Unif}(\epsilon_1, 2\epsilon_1)$, $r_{\rm trunc} \sim {\rm Unif}(3\eta_0, 6\eta_0)$
- 5: Initialize $\hat{U}_0 = S \setminus \{s_0\}$
- 6: **for** $h \in [H-1]$ **do**

371

372

373

374

375

376

377

378

379 380 381

382

383

384

385

386

387

388

389 390

391

392 393

395

397

398

399

400 401

402 403

404

405

406

407 408 409

410 411

412

413 414

415

416

417 418

419 420

421 422

423

- for $(s, a) \in (S \setminus \hat{U}_h) \times A$ do
- Define policy $\hat{\pi}^{s,h,a}$, where for each $h' \in [H]$, $\hat{\pi}^{s,h,a}_{h'}(s') = \begin{cases} a & h' \geq h \\ \hat{\pi}^{s,h}_{h'}(s') & h' < h \end{cases}$ 8:
- $\begin{aligned} &\text{Collect W trajectories } \{(s_0^{(w)}, a_0^{(w)}, \dots, s_{H-1}^{(w)}, a_{H-1}^{(w)})_{w=1}^W \text{ by executing } \hat{\pi}^{s,h,a} \text{ for W times} \\ &\text{For each $s' \in S$, set } \hat{P}_h(s' \mid s, a) = \frac{\sum_{w=1}^W \mathbbm{1}[(s_h^{(w)}, a_h^{(w)}, s_{h+1}^{(w)}) = (s, a, s')]}{\sum_{w=1}^W \mathbbm{1}[(s_h^{(w)}, a_h^{(w)}) = (s, a)]} \end{aligned}$
- 10:
- 11:
- Define MDP $\tilde{M}^{h+1} = (S \cup \{s_{\text{absorb}}\}, A, \tilde{P}^{h+1}, R, H, s_0)$, where for each $h' \in [H]$, 12:

$$\tilde{P}_{h'}^{h+1}(s'\mid s, a) = \begin{cases}
\hat{P}_{h'}(s'\mid s, a) & h' \leq h, s \notin \hat{U}_{h'} \cup \{s_{\text{absorb}}\} \text{ and } s' \neq s_{\text{absorb}} \\
0 & h' \leq h, s \notin \hat{U}_{h'} \cup \{s_{\text{absorb}}\} \text{ and } s' = s_{\text{absorb}} \\
\mathbb{1}[s' = s_{\text{absorb}}] & h' > h \text{ or } s \in \hat{U}_{h'} \cup \{s_{\text{absorb}}\}
\end{cases}$$
(3)

- Set $\hat{U}_{h+1} = \{s \in S \mid d^*_{\tilde{M}^{h+1}}(s,h+1) \leq r_{\mathrm{trunc}}\}$ 13:
- for $s \in S \setminus \hat{U}_{h+1}$ do
- Define MDP $\tilde{M}^{s,h+1} = (S \cup \{s_{\text{absorb}}\}, A, \tilde{P}^{h+1}, R^{s,h+1}, H, s_0)$, where \tilde{P}^{h+1} is as defined in (3) and 15: $R_{h'}^{s,h+1}(s',a) = \mathbb{1}[h'=h+1,s'=s]$
- Invoke Algorithm 1 with input $\tilde{M}^{s,h+1}$ and r_{action} , and set $\hat{\pi}^{s,h+1}$ to be the returned policy
- end for
- 18: **end for**
- 19: Invoke Algorithm 1 with input \tilde{M}^{H-1} and $r_{\rm action}$, and set π to be the returned policy
- 20: return π

EXPERIMENTS

In this section, we show that our new planning strategy can be incorporated into empirical RL frameworks to enhance their stability. In our experiments, we use three different environments in Gymnasium (Towers et al.,

Figure 1: Different threhold

Figure 2: Namethisgame (BTR)

2024): Cartpole-v1, Acrobot-v1 and MountainCar-v0. For each environment, we use a different empirical RL algorithms: DQN (Mnih et al., 2015), Double DQN (Van Hasselt et al., 2016) and tabular Q-learning based on discretization. We combine our robust planner in Section 5 with the above empirical RL algorithm by replacing the planning algorithm with Algorithm 1. Unlike our theoretical analysis, we treat the tolerance parameter $r_{\rm action}$ as a hyperparameter and experiment with different choices of $r_{\rm action}$. Note that when $r_{\rm action} = 0$, Algorithm 1 is equivalent to picking actions that maximize the estimated Q-value as in the original empirical RL algorithms (DQN, Double DQN and tabular Q-learning). The results are presented in Figure 1. Here we repeat each experiment by 25 times. The x-axis is the number of training episodes, the y-axis is the average award of the trained policy, \pm standard deviation across 25 runs. More details can be found in Appendix G.

Our experiments show that by choosing a larger tolerance parameter $r_{\rm action}$, the performance of the algorithm becomes more stable at the cost of worse accuracy. Therefore, by choosing a suitable hyperparameter $r_{\rm action}$, we could achieve a balance between stability and accuracy.

We further use our new planning strategy in more challenging Atari environments, such as NameThisGame. Using the BTR algorithm ((Clark et al., 2024)) as the baseline, we find that simply augmenting it with the robust planner leads to a substantial improvement. In particular, the performance on NameThisGame increases by more than 10%, demonstrating that even this lightweight modification can yield significant gains in practice. The results are presented in Figure 2.

8 CONCLUSION

We conclude the paper by several interesting directions for future work. Theoretically, our results show that even under a seemingly stringent definition of replicability (strong list replicability), efficient RL is still possible in the tabular setting. An interesting future direction is to develop replicable RL algorithms under more practical definitions of replicability and/or with function approximation schemes using our new techniques. Empirically, it would be interesting to incorporate our robust planner with other practical RL algorithms to see whether their stability could be improved. Currently, our robust planner can only work with discrete action spaces, and it remains to develop new techniques to overcome this limitation.

REFERENCES

- Alekh Agarwal, Sham Kakade, and Lin F Yang. Model-based reinforcement learning with a generative model is minimax optimal. In *Conference on Learning Theory*, pages 67–83, 2020.
- Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-case regret bounds. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems 30*, pages 1184–1194. Curran Associates, Inc., 2017.
- P Auer. Finite-time analysis of the multiarmed bandit problem, 2002.
- Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax PAC bounds on the sample complexity of reinforcement learning with a generative model. *Machine learning*, 91(3):325–349, 2013.
- Monya Baker. 1,500 scientists lift the lid on reproducibility. *Nature*, 533(7604), 2016.
- Peter L Bartlett and Ambuj Tewari. Regal: a regularization based algorithm for reinforcement learning in weakly communicating mdps. In *Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI 2009)*), 2009.
- Carolyn L Beck and Rayadurgam Srikant. Error bounds for constant step-size Q-learning. *Systems & control letters*, 61(12):1203–1208, 2012.
- C Glenn Begley and Lee M Ellis. Raise standards for preclinical cancer research. *Nature*, 483(7391):531–533, 2012.
- Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-optimal reinforcement learning. *Journal of Machine Learning Research*, 3(Oct):213–231, 2002.
- Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimization. *arXiv* preprint arXiv:1912.05830, 2019.
- Michael Chen, A. Pavan, N. V. Vinodchandran, Ruosong Wang, and Lin Yang. Regret-optimal list replicable bandit learning: Matching upper and lower bounds. In *International Conference on Learning Representations (ICLR)*, 2025. URL https://openreview.net/forum?id=0T49QbSOho.
- Tyler Clark, Mark Towers, Christine Evers, and Jonathon Hare. Beyond the rainbow: High performance deep reinforcement learning on a desktop pc. *arXiv preprint arXiv:2411.03820*, 2024.
- Qiwen Cui and Lin F Yang. Minimax sample complexity for turn-based stochastic game. In *Uncertainty in Artificial Intelligence*, pages 1496–1504, 2021.
- Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon reinforcement learning. In *Advances in Neural Information Processing Systems*, pages 2818–2826, 2015.
- Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying PAC and regret: Uniform PAC bounds for episodic reinforcement learning. *Advances in Neural Information Processing Systems*, 30, 2017.
- Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran. List and certificate complexities in replicable learning. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, *Advances in Neural Information Processing Systems*, volume 36, pages 30784–30806. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/61d0a96d4a73b626367310b3ad32579d-Paper-Conference.pdf.
- Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal Valko. Episodic reinforcement learning in finite mdps: Minimax lower bounds revisited. In *Algorithmic Learning Theory*, pages 578–598, 2021.
- Kefan Dong, Yuanhao Wang, Xiaoyu Chen, and Liwei Wang. Q-learning with UCB exploration is sample efficient for infinite-horizon MDP. *arXiv preprint arXiv:1901.09311*, 2019.
- Eric Eaton, Marcel Hussing, Michael Kearns, and Jessica Sorrell. Replicable reinforcement learning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 16, 2023, 2023.

- Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, and Shie Mannor. Tight regret bounds for model-based reinforcement learning with greedy policies. *Advances in Neural Information Processing Systems*, 32, 2019.
 - Hossein Esfandiari, Alkis Kalavasis, Amin Karbasi, Andreas Krause, Vahab Mirrokni, and Grigoris Velegkas. Replicable bandits. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=qcD2UtCGMc2.
 - Eyal Even-Dar and Yishay Mansour. Learning rates for Q-learning. *Journal of Machine Learning Research*, 5 (Dec):1–25, 2003.
 - Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Ronald Ortner. Efficient bias-span-constrained exploration-exploitation in reinforcement learning. In *ICML 2018-The 35th International Conference on Machine Learning*, volume 80, pages 1578–1586, 2018.
 - Russell Impagliazzo, Rex Lei, Toniann Pitassi, and Jessica Sorrell. Reproducibility in learning. In *Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing*, pages 818–831, 2022.
 - John PA Ioannidis. Why most published research findings are false. PLoS medicine, 2(8):e124, 2005.
 - Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. *Journal of Machine Learning Research*, 11(Apr):1563–1600, 2010.
 - Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably efficient? In *Advances in Neural Information Processing Systems*, pages 4863–4873, 2018.
 - Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for reinforcement learning. *International Conference on Machine Learning*, 2020.
 - Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In *International Conference on Machine Learning*, pages 267–274, 2002.
 - Sham M Kakade. On the sample complexity of reinforcement learning. PhD thesis, University of London London, England, 2003.
 - Amin Karbasi, Grigoris Velegkas, Lin Yang, and Felix Zhou. Replicability in reinforcement learning. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Michael Kearns and Satinder Singh. Finite-sample convergence rates for Q-learning and indirect algorithms. *Advances in neural information processing systems*, 11, 1998a.
 - Michael J Kearns and Satinder P Singh. Near-optimal reinforcement learning in polynominal time. In *Proceedings* of the Fifteenth International Conference on Machine Learning, pages 260–268, 1998b.
 - J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In *Proceedings of the 26th annual international conference on machine learning*, pages 513–520, 2009.
 - Tor Lattimore and Marcus Hutter. PAC bounds for discounted MDPs. In *International Conference on Algorithmic Learning Theory*, pages 320–334. Springer, 2012.
 - Gen Li, Laixi Shi, Yuxin Chen, Yuantao Gu, and Yuejie Chi. Breaking the sample complexity barrier to regretoptimal model-free reinforcement learning. *Advances in Neural Information Processing Systems*, 34, 2021a.
 - Gen Li, Yuejie Chi, Yuting Wei, and Yuxin Chen. Minimax-optimal multi-agent RL in Markov games with a generative model. *Advances in Neural Information Processing Systems*, 35:15353–15367, 2022.
 - Gen Li, Changxiao Cai, Yuxin Chen, Yuting Wei, and Yuejie Chi. Is Q-learning minimax optimal? a tight sample complexity analysis. *Operations Research*, 72(1):222–236, 2024a.
 - Gen Li, Yuting Wei, Yuejie Chi, and Yuxin Chen. Breaking the sample size barrier in model-based reinforcement learning with a generative model. *Operations Research*, 72(1):203–221, 2024b.
 - Yuanzhi Li, Ruosong Wang, and Lin F Yang. Settling the horizon-dependence of sample complexity in reinforcement learning. In *IEEE Symposium on Foundations of Computer Science*, 2021b.

- Pierre Ménard, Omar Darwiche Domingues, Xuedong Shang, and Michal Valko. UCB momentum Q-learning: Correcting the bias without forgetting. In *International Conference on Machine Learning*, pages 7609–7618, 2021.
 - Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.
 - Gergely Neu and Ciara Pike-Burke. A unifying view of optimism in episodic reinforcement learning. *arXiv* preprint *arXiv*:2007.01891, 2020.
 - National Academies of Sciences, Policy, Global Affairs, Board on Research Data, Information, Division on Engineering, Physical Sciences, Committee on Applied, Theoretical Statistics, Board on Mathematical Sciences, et al. *Reproducibility and replicability in science*. National Academies Press, 2019.
 - Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via posterior sampling. In *Advances in Neural Information Processing Systems*, pages 3003–3011, 2013.
 - Ashwin Pananjady and Martin J Wainwright. Instance-dependent ℓ_{∞} -bounds for policy evaluation in tabular reinforcement learning. *IEEE Transactions on Information Theory*, 67(1):566–585, 2020.
 - Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. In *Advances in Neural Information Processing Systems*, pages 14433–14443, 2019.
 - Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, Matthieu Geist, and Yuejie Chi. The curious price of distributional robustness in reinforcement learning with a generative model. *Advances in Neural Information Processing Systems*, 2023.
 - Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye. Near-optimal time and sample complexities for solving Markov decision processes with a generative model. In *Advances in Neural Information Processing Systems*, pages 5186–5196, 2018a.
 - Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance reduced value iteration and faster algorithms for solving Markov decision processes. In *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 770–787. Society for Industrial and Applied Mathematics, 2018b.
 - Koustuv Sinha, Jessica Zosa Forde, Mandana Samiei, Arna Ghosh, Lintang Sutawika, and Siba Smarak Panigrahi. Machine learning reproducibility challenge 2023https://reproml.org/, 2023. URL https://reproml.org/.
 - Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for markov decision processes. *Journal of Computer and System Sciences*, 74(8):1309–1331, 2008.
 - Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. PAC model-free reinforcement learning. In *Proceedings of the 23rd international conference on Machine learning*, pages 881–888. ACM, 2006.
 - Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement learning in finite mdps: Pac analysis. *Journal of Machine Learning Research*, 10(11), 2009.
 - István Szita and Csaba Szepesvári. Model-based reinforcement learning with nearly tight exploration complexity bounds. In *ICML*, 2010.
 - Jean Tarbouriech, Runlong Zhou, Simon S Du, Matteo Pirotta, Michal Valko, and Alessandro Lazaric. Stochastic shortest path: Minimax, parameter-free and towards horizon-free regret. *Advances in Neural Information Processing Systems*, 34, 2021.
 - Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu, Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard interface for reinforcement learning environments. *arXiv preprint arXiv:2407.17032*, 2024.
 - Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.

 Martin J Wainwright. Stochastic approximation with cone-contractive operators: Sharp ℓ_{∞} -bounds for Q-learning. *arXiv preprint arXiv:1905.06265*, 2019a.

Martin J Wainwright. Variance-reduced Q-learning is minimax optimal. arXiv preprint arXiv:1906.04697, 2019b.

Ruosong Wang, Simon S Du, Lin F Yang, and Sham M Kakade. Is long horizon reinforcement learning more difficult than short horizon reinforcement learning? In *Advances in Neural Information Processing Systems*, 2020.

Zhihan Xiong, Ruoqi Shen, Qiwen Cui, Maryam Fazel, and Simon S Du. Near-optimal randomized exploration for tabular markov decision processes. *Advances in Neural Information Processing Systems*, 35:6358–6371, 2022.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement learning without domain knowledge using value function bounds. In *International Conference on Machine Learning*, pages 7304–7312, 2019.

Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learning via reference-advantage decomposition. In *Advances in Neural Information Processing Systems*, 2020.

Zihan Zhang, Xiangyang Ji, and Simon Du. Is reinforcement learning more difficult than bandits? a near-optimal algorithm escaping the curse of horizon. In *Conference on Learning Theory*, pages 4528–4531, 2021.

Zihan Zhang, Xiangyang Ji, and Simon Du. Horizon-free reinforcement learning in polynomial time: the power of stationary policies. In *Conference on Learning Theory*, pages 3858–3904, 2022.

A MISSING PROOFS IN SECTION 5

Lemma A.1. Suppose that two MDPs M and \hat{M} are ϵ_0 -related. For the policy $\hat{\pi}$ returned by Algorithm 1, it holds that

$$0 \le V_{\hat{M}}^* - V_{\hat{M}}^{\hat{\pi}} \le r_{\text{action}} H.$$

Proof. The lower bound, i.e., $0 \le V_{\hat{M}}^* - V_{\hat{M}}^{\hat{\pi}}$, is immediate from the definition of $V_{\hat{M}}^*$.

We now prove the upper bound by induction on the time step h.

For $0 \le h \le H - 1$, we have

$$\begin{split} V_{h,\hat{M}}^*(s) - V_{h,\hat{M}}^{\hat{\pi}}(s) &= V_{h,\hat{M}}^*(s) - Q_{h,\hat{M}}^*(s,\hat{\pi}_h(s)) + Q_{h,\hat{M}}^*(s,\hat{\pi}_h(s)) - Q_{h,\hat{M}}^{\hat{\pi}}(s,\hat{\pi}_h(s)) \\ &\stackrel{(1)}{\leq} r_{\text{action}} + \sum_{s'} \hat{P}_h(s'|s,\hat{\pi}_h(s)) \cdot V_{h+1,\hat{M}}^*(s') - \sum_{s'} \hat{P}_h(s'|s,\hat{\pi}_h(s)) \cdot V_{h+1,\hat{M}}^{\hat{\pi}}(s') \\ &= r_{\text{action}} + \sum_{s'} \hat{P}_h(s'|s,\hat{\pi}_h(s)) \cdot \left(V_{h+1,\hat{M}}^*(s') - V_{h+1,\hat{M}}^{\hat{\pi}}(s')\right) \\ &\leq r_{\text{action}} + \max_{s} \left(V_{h+1,\hat{M}}^*(s) - V_{h+1,\hat{M}}^{\hat{\pi}}(s)\right). \end{split}$$

Inequality (1) follows from the definition of $\hat{\pi}$, which guarantees that

$$V_{h,\hat{M}}^*(s) - Q_{h,\hat{M}}^*(s,\hat{\pi}_h(s)) \le r_{\text{action}}.$$

When h=H, we have $V^*_{H,\hat{M}}(s)=V^{\hat{\pi}}_{H,\hat{M}}(s)=0$. By induction, we have

$$V_{\hat{M}}^* - V_{\hat{M}}^{\hat{\pi}} \le r_{\text{action}} H.$$

This completes the proof.

Proof of Lemma 5.1. From Lemma A.1, we have:

$$V_{\hat{M}}^* - V_{\hat{M}}^{\hat{\pi}} \le r_{\text{action}} H.$$

By Lemma E.1, it follows that:

$$\left|V_M^* - V_{\hat{M}}^*\right| \le H^2 \epsilon_0.$$

Similarly, from Lemma E.2, we obtain:

$$\left|V_M^{\hat{\pi}} - V_M^{\hat{\pi}}\right| \le H^2 \epsilon_0.$$

By combining these inequalities, we have

$$\begin{split} V_M^* - V_M^{\hat{\pi}} &= V_M^* - V_{\hat{M}}^* + V_{\hat{M}}^* - V_{\hat{M}}^{\hat{\pi}} + V_{\hat{M}}^{\hat{\pi}} - V_M^{\hat{\pi}} \\ &\leq 2H^2 \epsilon_0 + r_{\text{action}} H. \end{split}$$

Proof of Lemma 5.2. By Lemma E.1,

For any $(h, s, a) \in [H - 1] \times S \times A$

$$\begin{split} \left| V_{h,M}^*(s) - V_{h,\hat{M}}^*(s) \right| &\leq H^2 \epsilon_0, \\ \left| Q_{h,M}^*(s,a) - Q_{h,\hat{M}}^*(s,a) \right| &\leq H^2 \epsilon_0. \end{split}$$

Hence.

$$\begin{split} & \left| \left(V_{h,\hat{M}}^*(s) - Q_{h,\hat{M}}^*(s,a) \right) - \left(V_{h,M}^*(s) - Q_{h,M}^*(s,a) \right) \right| \\ & \leq \left| V_{h,M}^*(s) - V_{h,\hat{M}}^*(s) \right| + \left| Q_{h,M}^*(s,a) - Q_{h,\hat{M}}^*(s,a) \right| \\ & \leq 2H^2 \epsilon_0. \end{split}$$

For any $g \in \operatorname{Gap}_M$, where $g = V_h^*(s) - Q_h^*(s,a)$, if $g < r_{\operatorname{action}}^1 < r_{\operatorname{action}}^2$, then, because $r_{\operatorname{action}}^1 \notin \bigcup_{g \in \operatorname{Gap}_M} \operatorname{Ball}(g, 2H^2\epsilon_0)$, we have

$$\left(V_{h,M}^*(s) - Q_{h,M}^*(s,a)\right) + 2H^2\epsilon_0 < r_{\mathrm{action}}^1 < r_{\mathrm{action}}^2.$$

Using the previous bound, we conclude that

$$V_{h,\hat{M}}^*(s) - Q_{h,\hat{M}}^*(s,a) < r_{\text{action}}^1 < r_{\text{action}}^2.$$

Similarly, if $r_{\text{action}}^1 < r_{\text{action}}^2 < g$, we also have:

$$r_{\mathrm{action}}^1 < r_{\mathrm{action}}^2 < V_{h,\hat{M}}^*(s) - Q_{h,\hat{M}}^*(s,a).$$

Therefore, for both tolerance parameters r_{action}^1 and r_{action}^2 , the chosen action $\hat{\pi}_h(s)$ remains the same for all $(s,h) \in S \times [H]$. As a result, the policy $\hat{\pi}$ depends only on M and r_{action} . Moreover, for both tolerance parameters r_{action}^1 , and r_{action}^2 , the policy $\hat{\pi}$ returned would be identical.

Corollary A.2. In the generative model setting, there is an algorithm with sample complexity polynomial in |S|, |A|, $1/\epsilon$ and $1/\delta$, such that with probability at least $1-\delta$, the returned policy is ϵ -optimal and always lies in a list $\Pi(M)$ where $\Pi(M)$ is a list of policies that depend only on the unknown underlying MDP M with $|\Pi(M)| = O(|S||A|H)$.

Proof. We collect N samples for each $(s,a) \in S \times A$ and $h \in [H]$ where N is polynomial in |S|, |A|, H, $1/\epsilon$ and $1/\delta$, and use the samples to build an empirical transition model \hat{P} to form an MDP \hat{M} . We then invoke Algorithm 1 with MDP \hat{M} and $r_{\rm action} \sim {\rm Unif}(0,\epsilon/(5H))$ and return its output. Standard analysis shows tha M and \hat{M} are ϵ_0 -related with $\epsilon_0 = \delta\epsilon/(20H^3)$ with probability at least $1 - \delta/2$. Moreover, $r_{\rm action} \notin \bigcup_{g \in {\rm Gap}_M} {\rm Ball}(g, 2H^2\epsilon_0)$ with probability at least $1 - \delta/2$. We condition on the intersection of the above two events which holds with probability at least $1 - \delta$ by union bound. By Lemma 5.1, the returned policy is ϵ -optimal. By Lemma 5.2, the returned policy lies in a list $\Pi(M)$ with size at most |S||A|H + 1 since $|{\rm Gap}_M| \le |S||A|H$.

B STRUCTURAL CHARACTERIZATIONS OF REACHING PROBABILITIES IN TRUNCATED MDPs

In this section, we prove several properties of reaching probabilities in MDPs with truncation which will be used later in the analysis Given a reaching probability threshold $r \in [0, 1]$, we first define the set of unreachable states $U_h(r)$ for each $h \in [H]$.

Definition B.1. For the underlying MDP $M = (S, A, P, R, H, s_0)$, given a real number $r \in [0, 1]$, we define $U_h(r) \subseteq S$ inductively for each $h \in [H]$ as follows:

- $U_0(r) = \{s \in S \mid \Pr[s_0 = s] \le r\};$
- Suppose $U_{h'}(r) \subseteq S$ is defined for all $0 \le h' < h$, define

$$U_h(r) = \{ s \in S \mid \max_{\pi} \Pr[s_h = s, s_0 \notin U_0(r), s_1 \notin U_1(r), \dots, s_{h-1} \notin U_{h-1}(r) \mid M, \pi] \le r \}.$$

We also write $U(r) = (U_0(r), U_1(r), \dots, U_{H-1}(r)).$

Intuitively, the set of unreachable states $U_h(r)$ at level $h \in [H]$ includes all those states that can not be reached with probability larger than a threshold r for any policy π , where we ignore those unreachable states included in $U_{h'}(r)$ for all levels h' < h when calculating the reaching probabilities. Also note that $U_h(1) = S$.

The main observation is that $U_h(r)$ satisfies the following monotonicity property.

Lemma B.2. Given $0 \le r_1 \le r_2 \le 1$, for any $h \in [H]$, we have $U_h(r_1) \subseteq U_h(r_2)$.

Proof. We prove the above claim by induction on h. The claim is clearly true when h=0. Suppose the above claim is true for all $0 \le h' < h$, now we prove that $U_h(r_2) \subseteq U_h(r_1)$. Considering a fixed state $s \in S$, for any fixed policy π , we have

$$\Pr[s_h = s, s_0 \notin U_0(r_1), s_1 \notin U_1(r_1), \dots, s_{h-1} \notin U_{h-1}(r_1) \mid M, \pi]$$

$$\geq \Pr[s_h = s, s_0 \notin U_0(r_2), s_1 \notin U_1(r_2), \dots, s_{h-1} \notin U_{h-1}(r_2) \mid M, \pi],$$

since $U_{h'}(r_1) \subseteq U_{h'}(r_2)$ for all h' < h under the induction hypothesis. Therefore,

$$\max_{\pi} \Pr[s_h = s, s_0 \notin U_0(r_1), s_1 \notin U_1(r_1), \dots, s_{h-1} \notin U_{h-1}(r_1) \mid M, \pi]$$

$$\geq \max_{\pi} \Pr[s_h = s, s_0 \notin U_0(r_2), s_1 \notin U_1(r_2), \dots, s_{h-1} \notin U_{h-1}(r_2) \mid M, \pi]$$

which implies $U_h(r_1) \subseteq U_h(r_2)$.

An important corollary of Lemma B.2, is that the total number of distinct U(r) for all $r \in [0,1]$ is upper bounded by |S|H+1.

Corollary B.3. For all $r \in [0,1]$, there are at most of |S|H+1 unique sequences of sets U(r).

Proof. Assume for the sake of contradiction that there are more than |S|H+1 unique sequences of sets U(r). Note that $0 \leq \sum_{h \in [H]} |U(r)| \leq |S|H$ for all $r \in [0,1]$. By the pigeonhole principle, there exists $0 \leq r_1 < r_2 \leq 1$ such that $U(r_1) \neq U(r_2)$ while $\sum_{h \in [H]} |U(r_1)| = \sum_{h \in [H]} |U(r_2)|$. By Lemma B.2, for all $h \in [H]$, we have $U_h(r_1) \subseteq U_h(r_2)$ and thus $|U_h(r_1)| \leq |U_h(r_2)|$. This implies that $|U_h(r_1)| = |U_h(r_2)|$ for all $h \in [H]$. For any $h \in [H]$, we have $U_h(r_1) \subseteq U_h(r_2)$ and $|U_h(r_1)| = |U_h(r_2)|$ which implies $U_h(r_1) = U_h(r_2)$, contradicting the assumption that $U(r_1) \neq U(r_2)$.

For each $(s,h) \in S \times [H]$, we define $\operatorname{Crit}(s,h)$ to be the infimum of those reaching probability threshold $r \in [0,1]$ so that s would be unreachable under r.

Definition B.4. For each $(s,h) \in S \times [H]$, define $Crit(s,h) = \inf\{r \in [0,1] \mid s \in U_h(r)\}$.

Note that $\{r \in [0,1] \mid s \in U_h(r)\}$ is never an empty set since $U_h(1) = S$.

Lemma B.2 implies that Crit(s, h) is the critical reaching probability threshold for (s, h), formalized as follows.

Corollary B.5. For any $(s,h) \in S \times [H]$, we have

- for any $1 \ge r > \operatorname{Crit}(s, h)$, $s \in U_h(r)$;
- for any $0 \le r < \text{Crit}(s, h)$, $s \notin U_h(r)$.

Given the definition of unreachable states $U_h(r)$, for each $r \in [0, 1]$, we now formally define the truncated MDP M^r where we direct the transition probabilities of all unreachable states to an absorbing state $s_{\rm absorb}$.

Definition B.6. For the underlying MDP $M = (S, A, P, R, H, s_0)$, given a real number $r \in [0, 1]$, define $M^r = (S \cup \{s_{absorb}\}, A, P^r, R, H, s_0)$, where

$$P_h^r(s'\mid s, a) = \begin{cases} P_h(s'\mid s, a) & s \notin U_h(r) \cup \{s_{\text{absorb}}\}, s' \neq s_{\text{absorb}} \\ 0 & s \notin U_h(r) \cup \{s_{\text{absorb}}\}, s' = s_{\text{absorb}} \\ \mathbb{1}[s' = s_{\text{absorb}}] & s \in U_h(r) \cup \{s_{\text{absorb}}\} \end{cases}$$
(4)

The following lemma builds a connection between the occupancy function in M^r and the set of unreachable states $U_h(r)$.

Lemma B.7. For any $r \in [0, 1]$, for any $(s, h) \in S \times [H]$

$$d_{M^r}^*(s,h) = \max_{\pi} \Pr[s_h = s, s_0 \notin U_0(r), s_1 \notin U_1(r), \dots, s_{h-1} \notin U_{h-1}(r) \mid M, \pi],$$

and therefore $s \in U_h(r)$ if and only if $d_{M^r}^*(s,h) \leq r$.

Proof. By the construction of M^r ,

$$d_{Mr}^{\pi}(s,h) = \Pr[s_h = s, s_0 \notin U_0(r), s_1 \notin U_1(r), \dots, s_{h-1} \notin U_{h-1}(r) \mid M, \pi],$$

and therefore,

$$d_{M^r}^*(s,h) = \max_{s} \Pr[s_h = s, s_0 \notin U_0(r), s_1 \notin U_1(r), \dots, s_{h-1} \notin U_{h-1}(r) \mid M, \pi],$$

which also implies that $s \in U_h(r)$ if and only if $d_{M^r}^*(s,h) \le r$ by Definition B.1.

Combining Lemma B.7 and Lemma B.2, we have the following corollary which shows that $d_{M^r}^*(s,h)$ is monotonically non-increasing as we increase r.

Corollary B.8. For the underlying MDP $M = (S, A, P, R, H, s_0)$, for any $0 \le r_1 \le r_2 \le 1$ and any $(s, h) \in S \times [H]$, we have $d_{M^{r_1}}^*(s, h) \ge d_{M^{r_2}}^*(s, h)$. Moreover, $d_M^*(s, h) \ge d_{M^r}^*(s, h)$ for any $(s, h) \in S \times [H]$ and $r \in [0, 1]$.

As illustrated in the following lemma, $d_{M^r}^*(s,h) \leq \operatorname{Crit}(s,h)$ whenever $r > \operatorname{Crit}(s,h)$, and $d_{M^r}^*(s,h) \geq \operatorname{Crit}(s,h)$ if $r < \operatorname{Crit}(s,h)$.

Lemma B.9. For any $r \in [0, 1]$ and $(s, h) \in S \times [H]$,

- if $r > \operatorname{Crit}(s, h), d_{Mr}^*(s, h) < \operatorname{Crit}(s, h);$
- if $r < \operatorname{Crit}(s, h), d_{Mr}^*(s, h) \ge \operatorname{Crit}(s, h)$.

Proof. We only consider the case r > Crit(s, h) in the proof, and the case r < Crit(s, h) can be handled using exactly the same argument.

Since $r > \operatorname{Crit}(s,h)$, by Corollary B.5, we have $s \in U_h(r)$, which implies $d_{M^r}^*(s,h) \leq r$ by Lemma B.7. Assume for the sake of contradiction that $d_{M^r}^*(s,h) > \operatorname{Crit}(s,h)$. Let r' be an arbitrary real number satisfying $\operatorname{Crit}(s,h) < r' < d_{M^r}^*(s,h) \leq r$. By Corollary B.8, we have $d_{M^{r'}}^*(s,h) \geq d_{M^r}^*(s,h) > r'$, which implies $s \notin U_h(r')$ by Lemma B.7. On the other hand, since $r' > \operatorname{Crit}(s,h)$, we must have $s \in U_h(r')$ by Corollary B.5 which leads to a contradiction.

For each $(s,h) \in S \times [H]$ and $r \in [0,1]$, we also define an auxiliary MDP $M^{r,s,h}$ based on M^r , which will be later used in the analysis of our algorithm.

 Definition B.10. For each $(s,h) \in S \times [H]$ and $r \in [0,1]$, define $M^{r,s,h}$ to be the MDP that has the same state space, action space, horizon length and initial state as M^r . The reward function of $M^{r,s,h}$ is $R^{s,h}_{h'}(s',a) = \mathbb{1}[h' = h, s' = s]$ for all $h' \in [H]$ and $(s',a) \in (S \cup \{s_{absorb}\}) \times A$, and the transition model of $M^{r,s,h}$ is

$$P_{h'}^{r,h}(s'' \mid s', a) = \begin{cases} P_{h'}^{r}(s'' \mid s', a) & h' < h \\ \mathbb{1}[s'' = s_{\text{absorb}}] & h' \ge h \end{cases}, \tag{5}$$

where P^r is the transition model of M^r define in (6).

A direct observation is that for any $(s,h) \in S \times [H]$ and $r \in [0,1]$, for any policy π , $d_{M^r}^{\pi}(s,h) = V_{M^{r,s,h}}^{\pi}$, which also implies $d_{M^r}^*(s,h) = V_{M^{r,s,h}}^*$.

C Missing Proofs in Section 6

In this section, we give the formal proof of Theorem 6.1 based on the tools developed in Section B.

Lemma C.1. Consider a pair of fixed choices of r_{trunc} and r_{action} in Algorithm 2. For a fixed $h \in [H-1]$, if for all $s \in S \setminus \hat{U}_h$ we have $d_M^{\hat{\pi}^{s,h}} \geq \eta_0$ whenever h > 0, then with probability $1 - \frac{\delta}{2H}$, for all $(s, a) \in (S \setminus \hat{U}_h) \times A$,

$$\sum_{s' \in S} |P_h(s' \mid s, a) - \hat{P}_h(s' \mid s, a)| \le \epsilon_0.$$

Proof. We divide the proof into two parts. First, we demonstrate that we have a sufficient number of effective samples. Second, we show that the estimation error is small.

For a given $(s,a) \in (S \setminus \hat{U}_h) \times A$, we first prove that with probability at least $1 - \frac{\delta}{4H|S||A|}$, the number of effective samples is greater than $\frac{W\eta_0}{2}$, where the number of effective samples is defined as

$$W_{\text{effective}} = \sum_{w=1}^{W} \mathbb{1}[(s_h^{(w)}, a_h^{(w)}) = (s, a)].$$

Given that $d_M^{\hat{\pi}^{s,h}} \geq \eta_0$, we have

$$\frac{\mathbb{E}[W_{\text{effective}}]}{W} = \frac{W \cdot d_M^{\hat{\pi}^{s,h}}}{W} = d_M^{\hat{\pi}^{s,h}} \ge \eta_0,$$

and therefore by Chernoff bound,

$$\mathbb{P}\left(W_{\text{effective}} < \frac{\eta_0}{2}W\right) \leq \mathbb{P}\left(d_M^{\hat{\pi}^{s,h}} - \frac{W_{\text{effective}}}{W} > \frac{\eta_0}{2}\right) < 2e^{-2\left(\frac{\eta_0}{2}\right)^2W} < \frac{\delta}{4H|S||A|}.$$

Thus, with probability at least $1 - \frac{\delta}{4H|S||A|}$, the number of effective samples is at least $\frac{W\eta_0}{2}$.

Next, we show that if the number of effective samples is greater than $\frac{W\eta_0}{2}$, then with probability at least $1 - \frac{\delta}{4H|S||A|}$,

$$\sum_{s' \in S} |P_h(s' \mid s, a) - \hat{P}_h(s' \mid s, a)| \le \epsilon_0.$$

To establish this, we first prove that for any specific s', with probability at least $1 - \frac{\delta}{4H|S|^2|A|}$, we have

$$|P_h(s' \mid s, a) - \hat{P}_h(s' \mid s, a)| \le \frac{\epsilon_0}{|S|}.$$

Using the Chernoff bound,

$$\mathbb{P}\left(|P_h(s'\mid s,a) - \hat{P}_h(s'\mid s,a)| \ge \frac{\epsilon_0}{|S|}\right) < 2e^{-2\left(\frac{\epsilon_0}{S}\right)^2 W_{\text{effective}}} < \frac{\delta}{4H|S|^2|A|}.$$

Therefore, by the union bound, with probability at least $1 - \frac{\delta}{4H|S||A|}$, we have for all $s' \in S$,

$$|P_h(s' \mid s, a) - \hat{P}_h(s' \mid s, a)| \le \frac{\epsilon_0}{|S|}.$$

Summing over all s' gives

$$\sum_{s' \in S} |P_h(s' \mid s, a) - \hat{P}_h(s' \mid s, a)| \le \epsilon_0.$$

Combining these results, we conclude that for a specific (s, a), with probability at least $1 - \frac{\delta}{2H|S||A|}$,

$$\sum_{s' \in S} |P_h(s' \mid s, a) - \hat{P}_h(s' \mid s, a)| \le \epsilon_0.$$

Thus, for a fixed $h \in [H-1]$, if for all $s \in S \setminus \hat{U}_h$ we have $d_M^{\hat{\pi}^{s,h}} \ge \eta_0$ whenever h > 0, then with probability $1 - \frac{\delta}{2H}$, for all $(s,a) \in (S \setminus \hat{U}_h) \times A$,

$$\sum_{s' \in S} |P_h(s' \mid s, a) - \hat{P}_h(s' \mid s, a)| \le \epsilon_0.$$

Lemma C.2. Consider a pair of fixed choices of $r_{\text{trunc}} < 1$ and r_{action} in Algorithm 2. For any $h \in [H-1]$, if for all $h' \leq h$, we have

- $\hat{U}_{h'} = U_{h'}(r_{\text{trunc}});$
- $\sum_{s'} |\hat{P}_{h'}(s' \mid s, a) P_{h'}(s' \mid s, a)| \le \epsilon_0 \text{ for all } (s, a) \in (S \setminus \hat{U}_{h'}) \times A$

then for any $s \in S$, $|d^*_{M^r_{\text{trunc}}}(s,h+1) - d^*_{\tilde{M}^h}(s,h+1)| \le H^2 \epsilon_0$.

Proof. Consider a fixed level $h \in [H-1]$ and state $s \in S$. Note that $d^*_{M^{r_{\text{trunc}}}}(s,h+1) = V^*_{M^{r_{\text{trunc}},s,h+1}}$ and $d^*_{\tilde{M}^h}(s,h+1) = V^*_{\tilde{M}^{s,h+1}}$.

Note that $M^{r_{\mathrm{trunc}},s,h+1}$ and $\tilde{M}^{s,h+1}$ share the same state space, action space, reward function and initial state. Moreover, we have $\hat{U}_{h'} = U_{h'}(r_{\mathrm{trunc}})$ for all $h' \leq h$ and $\sum_{s'} |\hat{P}_{h'}(s' \mid s,a) - P_{h'}(s' \mid s,a)| \leq \epsilon_0$ for all $h' \leq h$ and $(s,a) \in (S \setminus \hat{U}_{h'}) \times A$. Let $P^{r_{\mathrm{trunc}},h+1}$ be the transition model of $M^{r_{\mathrm{trunc}},s,h+1}$ defined in (5), and \tilde{P}^{h+1} be the transition model of $\tilde{M}^{s,h+1}$ defined in (3). For all $h' \in [H]$, for any $(s,a) \in (S \cup \{s_{\mathrm{absorb}}\}) \times A$, we have

$$\sum_{s' \in S \cup \{s_{\text{absorb}}\}} |P_{h'}^{r_{\text{trunc}}, h+1}(s' \mid s, a) - \tilde{P}_{h'}^{h+1}(s' \mid s, a)| \le \epsilon_0.$$

By Lemma E.1, we have $|V^*_{M^{r_{\text{trunc}},s,h+1}} - V^*_{\tilde{M}^{s,h+1}}| \leq H^2 \epsilon_0$, which implies the desired result.

Lemma C.3. Consider a pair of fixed choices of $r_{\text{trunc}} \in (\eta_1, 2\eta_1)$ and r_{action} in Algorithm 2. For any $h \in [H-1]$, if for all $h' \leq h$, we have

- $\hat{U}_{h'} = U_{h'}(r_{\text{trunc}});$
- $\sum_{s'} |\hat{P}_{h'}(s' \mid s, a) P_{h'}(s' \mid s, a)| \le \epsilon_0 \text{ for all } (s, a) \in (S \setminus \hat{U}_{h'}) \times A$,

then for any $s \in (S \setminus \hat{U}_{h+1})$, $d_M^{\hat{\pi}^{s,h+1}}(s,h+1) \ge \eta_0$.

Proof. Consider a fixed level $h \in [H-1]$ and $s \in (S \setminus \hat{U}_{h+1})$. Since $s \in (S \setminus \hat{U}_{h+1})$, we have

$$d_{\tilde{M}h}^*(s, h+1) > r_{\text{trunc}}.$$

By Lemma C.2,

$$d_{M^{r_{\text{trunc}}}}^*(s, h+1) \ge r_{\text{trunc}} - H^2 \epsilon_0 \ge \eta_1 - \eta_0.$$

Notice that $2H^2\epsilon_0 + r_{\rm action}H \le 2H^2\epsilon_0 + 2\epsilon_1H \le 3\epsilon_1H \le \eta_0$. By the same analysis as in Lemma C.2, for the returned policy $\hat{\pi}^{s,h+1}$, by Lemma 5.1,

$$V_{M^{r_{\text{trunc}},s,h+1}}^{\hat{\pi}^{s,h+1}} \geq V_{M^{r_{\text{trunc}},s,h+1}}^* - \eta_0 = d_{M^{r_{\text{trunc}}}}^*(s,h+1) - \eta_0 \geq \eta_1 - 2\eta_0 \geq \eta_0,$$

and therefore $d_{M^{r_{\text{trunc}}}}^{\hat{\pi}^{s,h+1}}(s,h+1) \geq \eta_0$. By Lemma B.8, this implies $d_M^{\hat{\pi}^{s,h+1}}(s,h+1) \geq \eta_0$.

Definition C.4. *Define*

$$Bad_{trunc} = \bigcup_{(s,h)\in S\times [H]} Ball(Crit(s,h), H^{2}\epsilon_{0}),$$

where Crit(s, h) is as defined in Definition **B.4**

Lemma C.5. Consider a pair of fixed choices of $r_{\text{trunc}} \in (\eta_1, 2\eta_1)$ and r_{action} in Algorithm 2 such that $r_{\text{trunc}} \notin \text{Bad}_{\text{trunc}}$. For any $h \in [H-1]$, if for all $h' \leq h$, we have

- $\hat{U}_{h'} = U_{h'}(r_{\text{trunc}});$
- $\sum_{s'} |\hat{P}_{h'}(s' \mid s, a) P_{h'}(s' \mid s, a)| \le \epsilon_0 \text{ for all } (s, a) \in (S \setminus \hat{U}_{h'}) \times A$

then $\hat{U}_{h+1} = U_{h+1}(r_{\text{trunc}}).$

Proof. By Lemma C.2, for any $s \in S$ we have

$$|d_{M^{r_{\text{trunc}}}}^*(s, h+1) - d_{\tilde{M}h}^*(s, h+1)| \le H^2 \epsilon_0.$$

Therefore, for any $s \in U_{h+1}(r_{\text{trunc}})$, we have

$$d_{\tilde{M}h}^*(s, h+1) \le d_{M_{\text{rtrunc}}}^*(s, h+1) + H^2 \epsilon_0.$$

By Corollary B.5, we have $r_{\text{trunc}} > \text{Crit}(s, h+1)$. Moreover, since $r_{\text{trunc}} \notin \text{Bad}_{\text{trunc}}$, it holds that

$$r_{\text{trunc}} \notin [\text{Crit}(s, h+1) - H^2 \epsilon_0, \text{Crit}(s, h+1) + H^2 \epsilon_0],$$

which further implies that

$$r_{\text{trunc}} > \text{Crit}(s, h+1) + H^2 \epsilon_0.$$

Combining the above inequality with Lemma B.9, we have

$$r_{\text{trunc}} > \text{Crit}(s, h+1) + H^2 \epsilon_0 \ge d_{M^{r_{\text{trunc}}}}^*(s, h+1) + H^2 \epsilon_0 \ge d_{\tilde{M}^h}^*(s, h+1),$$

which implies $s \in \hat{U}_{h+1}$.

For those $s \notin U_{h+1}(r_{\text{trunc}})$, it can be shown that $s \notin \hat{U}_{h+1}$ using the same argument. Therefore, $\hat{U}_{h+1} = U_{h+1}(r_{\text{trunc}})$.

Lemma C.6. Consider a pair of fixed choices of $r_{\rm trunc} \in (\eta_1, 2\eta_1)$ and $r_{\rm action}$ in Algorithm 2 such that $r_{\rm trunc} \notin {\rm Bad}_{\rm trunc}$. With probability at least $1 - \delta/2$, we have

- $\hat{U}_h = U_h(r_{\text{trunc}})$ for all $h \in [H]$;
- $\sum_{s'} |\hat{P}_h(s' \mid s, a) P_h(s' \mid s, a)| \le \epsilon_0 \text{ for all } h \in [H-1] \text{ and } (s, a) \in (S \setminus \hat{U}_{h'}) \times A.$

Proof. For each $h \in [H]$, let \mathcal{E}_h be the event that

- $\hat{U}_h = U_h(r_{\text{trunc}});$
- if h > 0, $d_M^{\hat{\pi}^{s,h}}(s,h) \ge \eta_0$ for all $s \in S \setminus \hat{U}_h$;

• if
$$h > 0$$
, $\sum_{s' \in S} |\hat{P}_{h-1}(s' \mid s, a) - P_{h-1}(s' \mid s, a)| \le \epsilon_0$ for all $(s, a) \in (S \setminus \hat{U}_{h-1}) \times A$.

Note that \mathcal{E}_0 holds deterministically, since we always have $r_{\mathrm{trunc}} < 1$ which implies $U_0(r_{\mathrm{trunc}}) = S \setminus \{s_0\}$. For each h < H, conditioned on $\bigcap_{h' \leq h} \mathcal{E}_{h'}$, by Lemma C.5 and Lemma C.3, we have $\hat{U}_{h+1} = U_{h+1}(r_{\mathrm{trunc}})$, and for all $s \in S \setminus \hat{U}_{h+1}$, $d_M^{\hat{\pi}^{s,h+1}}(s,h+1) \geq \eta_0$. Moreover, by Lemma C.1, with probability at least $1 - \delta/(2H)$,

$$\sum_{s' \in S} |\hat{P}_h(s' \mid s, a) - P_h(s' \mid s, a)| \le \epsilon_0$$

for all $(s,a) \in (S \setminus \hat{U}_h) \times A$. Therefore, conditioned on $\bigcap_{h' \leq h} \mathcal{E}_{h'}$, \mathcal{E}_{h+1} holds with probability at least $1 - \delta/(2H)$. By the chain rule, $P\left(\bigcap_{h \in [H]} \mathcal{E}_h\right) \geq (1 - \delta/(2H))^{H-1} \geq 1 - \delta/2$.

Definition C.7. For a real number $r \in [0, 1]$, define

$$\operatorname{Gap}(r) = \left(\bigcup_{h \in [H], s \in S \setminus U_h(r)} \operatorname{Gap}_{M^{r,s,h}} \right) \cup \operatorname{Gap}_{M^r}.$$

Moreover, define

$$\operatorname{Bad}_{\operatorname{action}}(r) = \bigcup_{g \in \operatorname{Gap}(r)} \operatorname{Ball}(g, 2H^2 \epsilon_0).$$

Clearly, for any $r \in [0,1]$, $|\operatorname{Gap}(r)| \leq 2|S|^2H^2|A|$. Moreover, since M^r and $M^{r,s,h}$ depends only on U(r) (cf. Definition B.6 and Definition B.10), for $r_1, r_2 \in [0,1]$ with $U(r_1) = U(r_2)$, we would have $\operatorname{Gap}(r_1) = \operatorname{Gap}(r_2)$ and $\operatorname{Bad}_{\operatorname{action}}(r_1) = \operatorname{Bad}_{\operatorname{action}}(r_2)$.

Lemma C.8. Given $r_{\text{trunc}}^1, r_{\text{trunc}}^2 \in (\eta_1, 2\eta_1) \setminus \text{Bad}_{\text{trunc}}$ and $r_{\text{action}}^1, r_{\text{action}}^2 \in (\epsilon_1, 2\epsilon_1)$, suppose

- $U(r_{\text{trunc}}^1) = U(r_{\text{trunc}}^2);$
- $r_{\text{action}}^1 \notin \text{Bad}_{\text{action}}(r_{\text{trunc}}^1)$, and $r_{\text{action}}^2 \notin \text{Bad}_{\text{action}}(r_{\text{trunc}}^1)$;
- for any $g \in \operatorname{Gap}(r^1_{\operatorname{trunc}})$, either $g < r^1_{\operatorname{action}} < r^2_{\operatorname{action}}$ or $r^1_{\operatorname{action}} < r^2_{\operatorname{action}} < g$,

conditioned on the event in Lemma C.6, in Algorithm 2, the returned policy π and $\hat{\pi}^{s,h+1,a}$ will be identical for all $h \in [H-1]$, $(s,a) \in (S \setminus \hat{U}_{h+1}) \times A$, for all $(r_{action}, r_{trunc}) \in \{r_{action}^1, r_{action}^2\} \times \{r_{trunc}^1, r_{trunc}^2\}$.

Proof. Consider a fixed $h \in [H-1]$ and $(s,a) \in \left(S \setminus \hat{U}_{h+1}\right) \times A$. Since $U(r^1_{\text{trunc}}) = U(r^2_{\text{trunc}})$, we write

- $U(r_{\text{trunc}}) = U(r_{\text{trunc}}^1) = U(r_{\text{trunc}}^2);$
- $\operatorname{Bad}_{\operatorname{action}}(r_{\operatorname{trunc}}) = \operatorname{Bad}_{\operatorname{action}}(r_{\operatorname{trunc}}^1) = \operatorname{Bad}_{\operatorname{action}}(r_{\operatorname{trunc}}^2);$
- $\operatorname{Gap}(r_{\operatorname{trunc}}) = \operatorname{Gap}(r_{\operatorname{trunc}}^1) = \operatorname{Gap}(r_{\operatorname{trunc}}^2)$; and
- $M^{r_{\text{trunc}},s,h+1} = M^{r_{\text{trunc}}^1,s,h+1} = M^{r_{\text{trunc}}^2,s,h+1}$

in the remaining part of the proof.

Let $P^{r_{\text{trunc}}}$ be the transition model of $M^{r_{\text{trunc}},s,h+1}$ defined in (6), and \tilde{P}^{h+1} be the transition model of $\tilde{M}^{s,h+1}$ defined in (3). Note that conditioned on the event in Lemma C.6, $\hat{U}_{h+1} = U_{h+1}(r_{\text{trunc}})$, and therefore, for all $h' \in [H]$, for any $(s,a) \in (S \cup \{s_{\text{absorb}}\}) \times A$, we have

$$\sum_{s' \in S \cup \{s_{\text{absorb}}\}} |P_{h'}^{r_{\text{trunc}},h+1}(s' \mid s, a) - \tilde{P}_{h'}^{h+1}(s' \mid s, a)| \le \epsilon_0.$$

By Definition C.7, for any $g \in \operatorname{Gap}_{M^{r_{\text{trunc}},s,h+1}}$, we have

- $r_{\text{action}}^1, r_{\text{action}}^2 \notin \text{Ball}(g, 2H^2 \epsilon_0);$
- either $g < r_{\text{action}}^1 < r_{\text{action}}^2$ or $r_{\text{action}}^1 < r_{\text{action}}^2 < g$,

which implies $\hat{\pi}^{s,h+1}$ in Algorithm 2 will be identical for all $(r_{\rm action}, r_{\rm trunc}) \in \{r_{\rm action}^1, r_{\rm action}^2\} \times \{r_{\rm trunc}^1, r_{\rm trunc}^2\}$ by Lemma 5.2. This also implies that $\hat{\pi}^{s,h+1,a}$ will be identical for all $(r_{\rm action}, r_{\rm trunc}) \in \{r_{\rm action}^1, r_{\rm action}^2\} \times \{r_{\rm trunc}^1, r_{\rm trunc}^2\}$. Similarly, the desired property holds also for the returned policy π .

Proof of Theorem 6.1. Note that

$$\Pr[r_{\text{trunc}} \notin \text{Bad}_{\text{trunc}}] \ge 1 - \delta/4.$$

For any fixed choice of r_{trunc} ,

$$\Pr[r_{\text{action}} \notin \text{Bad}_{\text{action}}(r_{\text{trunc}})] \ge 1 - \delta/4.$$

Combining these with Lemma C.6, with probability at least $1 - \delta$, we have

- $r_{\text{trunc}} \notin \text{Bad}_{\text{trunc}}$;
- $r_{\text{action}} \notin \text{Bad}_{\text{action}}(r_{\text{trunc}});$
- $\hat{U}_h = U_h(r_{\text{trunc}})$ for all $h \in [H]$;
- $\sum_{s'} |\hat{P}_h(s' \mid s, a) P_h(s' \mid s, a)| \le \epsilon_0$ for all $h \in [H-1]$ and $(s, a) \in (S \setminus \hat{U}_{h'}) \times A$.

We condition on the above event in the remaining part of the proof.

Conditioned on the above event, for the returned policy π , we have

$$V_M^{\pi} \ge V_{M^{r_{\text{trunc}}}}^{\pi} \ge V_{M^{r_{\text{trunc}}}}^{*} - 2H^2\epsilon_0 - r_{\text{action}}H \ge V_M^{*} - 2H^2\epsilon_0 - r_{\text{action}}H - H^2|S|r_{\text{trunc}} \ge V_M^{*} - \epsilon,$$

where the first inequality is due to Lemma E.3, the second inequality is due to Lemma 5.1, the third inequality is due to Lemma E.3, and the last inequality is due to $r_{\rm trunc} \leq 2\eta_1$ and $r_{\rm action} \leq 2\epsilon_1$. Therefore, the returned policy π is ϵ -optimal.

By Lemma B.3, there are at most of SH+1 unique sequences of sets U(r). Moreover, for each r, $|\mathrm{Gap}(r)| \leq 2|S|^2H^2|A|$. By Lemma C.6, the sequence of policies executed by Algorithm 2 and the policy returned by Algorithm 2 lie in a list $\mathrm{Trace}(M)$ with size $|\mathrm{Trace}(M)| \leq (SH+1)(2|S|^2H^2|A|+1)$.

D WEAKLY k-LIST REPLICABLE RL ALGORITHM

In this section, we present our RL algorithm with weakly k-list replicability guarantees. See Algorithm 3 for the formal description of the algorithm. In Algorithm 3, it is assumed that we have access to a black-box algorithm $\mathbb{A}(\epsilon_0, \delta_0)$, so that after interacting with the underlying MDP, with probability at least $1 - \delta_0$, \mathbb{A} returns an ϵ_0 -optimal policy.

In Algorithm 3, for each $(s,h) \in S \times H$, we first invoke $\mathbb A$ on the underlying MDP with modified reward function $R_{h'}^{s,h}(s',a) = \mathbb 1[h'=h,s'=s]$ for all $h' \in [H]$ and $(s',a) \in S \times A$. The returned policy $\hat{\pi}^{s,h}$ is supposed to reach state s at level h with probability close to $d^*(s,h)$, and therefore we use $\hat{\pi}^{s,h}$ to collect samples and calculate $\hat{d}(s,h)$ which is our estimate of $d^*(s,h)$. For each action $a \in A$, we also construct a policy $\hat{\pi}^{s,h,a}$ based on $\hat{\pi}^{s,h}$ to collect samples for $(s,a) \in S \times A$ at level $h \in [H]$, and we calculate $\hat{P}_h(s,a)$ which is our estimate of $P_h(s,a)$ based the obtained samples.

For those $(s,h) \in S \times [H]$ with $\hat{d}(s,h) \leq r_{\text{trunc}}$, we remove state s from level h by including s in \hat{T}_h . Here r_{trunc} is a randomly chosen reaching probability threshold drawn from the uniform distribution.

Finally, based on \hat{P} and \hat{T} , we build an MDP \hat{M} which is our estimate of the underlying MDP M. For each (s,h), if $s \in \hat{T}_h$, then we always transit s to an absorbing state $s_{\rm absorb}$. Otherwise, we directly use our estimated transition model $\hat{P}_h(s,a)$. We then invoke Algorithm 1 with MDP \hat{M} and tolerance parameter $r_{\rm action}$, where $r_{\rm action}$ is also drawn from the uniform distribution .

The formal guarantee of Algorithm 3 is summarized in the following theorem.

1113 **Theorem D.1.** Suppose \mathbb{A} is an algorithm such that with probability at least $1-\delta_0$, \mathbb{A} returns an ϵ_0 -optimal policy. 1114 Then with probability at least $1 - \delta$, Algorithm 3 return a policy π , such that 1115

- π is ϵ -optimal;
- $\pi \in \Pi(M)$, where $\Pi(M)$ is a list of policies that depend only on the unknown underlying MDP M with $size |\Pi(M)| \le (H|S||A|+1)(H|S|+1).$

In the remaining part of this section, we give the full proof of Theorem D.1.

Algorithm 3 Weakly k-list Replicable RL Algorithm

- 1: **Input:** RL algorithm $\mathbb{A}(\epsilon_0, \delta_0)$, error tolerance ϵ , failure probability δ
- 2: Output: near-optimal policy π
- 1125 3: **Initialization:** 1126

1116

1117

1118

1119 1120

1121 1122

1123

1124

1129

1130

1131

1132

1137 1138

1140 1141

1142 1143

1144

1145

1146

1147 1148

1149 1150

1154

1155 1156

- 4: Initialize constants $C_1 = \frac{4|A||S|H}{\delta}$, $\epsilon_0 = \frac{\epsilon \delta}{100|S|H^5|A|}$, $\epsilon_1 = 5C_1H^2\epsilon_0$ 5: Generate random numbers $r_{\rm action} \sim {\rm Unif}(\epsilon_1, 2\epsilon_1)$, $r_{\rm trunc} \sim {\rm Unif}(2\epsilon_1, 3\epsilon_1)$
- 1127 1128
 - 6: **for** $h \in [H-1]$ **do**
 - 7: for each $s \in S$ do
 - 8: Invoke A with $\epsilon_0 = \epsilon_0$ and $\delta_0 = \delta/(8|S|H)$ on the underlying MDP with modified reward function $R_{h'}^{s,h}(s',a) = \mathbb{1}[h' = h, s' = s] \text{ for all } h' \in [H] \text{ and } (s',a) \in S \times A$
 - 9:
- Set $\hat{\pi}^{s,h}$ to be the policy returned in the previous step $\text{Collect } W = \frac{|S|^2}{\epsilon_0^2 \epsilon_1} \log \frac{16|S|^2 AH}{\delta} \text{ trajectories } \{(s_0^{(w)}, a_0^{(w)}, \dots, s_{H-1}^{(w)}, a_{H-1}^{(w)})\}_{w=1}^W \text{ by executing } \hat{\pi}^{s,h} \text{ for } \mathbf{a}^{s,h}$ 1133 10: 1134 1135
- Set 11: 1136

$$\hat{d}(s,h) = \frac{\sum_{w=1}^{W} \mathbb{1}[s_h^{(w)} = s]}{W}$$

- 12: for each $a \in A$ do 1139
 - Define policy $\hat{\pi}^{s,h,a}$, where for each $h' \in [H]$ and $s' \in S$, 13:

$$\hat{\pi}_{h'}^{s,h,a}(s') = \begin{cases} a & h' = h, s' = s \\ \hat{\pi}_{h'}^{s,h}(s') & h' \neq h \text{ or } s' \neq s \end{cases}$$

- Collect $W = \frac{|S|^2}{\epsilon_0^2 \epsilon_1} \log \frac{16|S|^2 AH}{\delta}$ trajectories $\{(s_0^{(w)}, a_0^{(w)}, \dots, s_{H-1}^{(w)}, a_{H-1}^{(w)})\}_{w=1}^W$ by executing $\hat{\pi}^{s,h,a}$ 14: for W times
- For each $s' \in S$, set 15:

$$\hat{P}_h(s' \mid s, a) \leftarrow \frac{\sum_{w=1}^{W} \mathbb{1}[(s_h^{(w)}, a_h^{(w)}, s_{h+1}^{(w)}) = (s, a, s')]}{\sum_{w=1}^{W} \mathbb{1}[(s_h^{(w)}, a_h^{(w)}) = (s, a)]}$$

- 1151 16: end for
- 1152 17: end for
- 1153
 - 19: For each $h \in [H-1]$, set $\hat{T}_h = \{s \in S \mid \hat{d}(s,h) \le r_{\text{trunc}}\}$.
 - 20: Define MDP $\hat{M} = (S \cup \{s_{absorb}\}, A, \tilde{P}, R, H, s_0)$, where for each $h \in [H-1]$,

$$\tilde{P}_h(s'\mid s,a) = \begin{cases} \hat{P}_h(s'\mid s,a) & s\notin \hat{T}_h \\ \mathbb{1}\{s'=s_{\text{absorb}}\} & s\in \hat{T}_h \end{cases}$$

- 21: Invoke Algorithm 1 with MDP \hat{M} and tolerance parameter $r_{\rm action}$, and set π to be the returned policy
- 22: return π 1161
- 1163 Following the definition of $U_h(r)$ in Definition B.1, we define $T_h(r)$.
- 1164 **Definition D.2.** For the underlying MDP $M = (S, A, P, R, H, s_0)$, given a real number $r \in [0, 1]$, we define 1165 $T_h(r) \subseteq S$ for each $h \in [H]$ as follows:

• $T_0(r) = \{s \in S \mid \Pr[s_0 = s] \le r\};$

 • $T_h(r) = \{ s \in S \mid \max_{\pi} \Pr[s_h = s \mid M, \pi] < r \}.$

1170 We also write $T(r) = (T_0(r), T_1(r), \dots, T_{H-1}(r))$.

Lemma D.3. For all $r \in [0,1]$, there are at most of |S|H + 1 unique sequences of sets T(r).

Proof. By the same analysis as in Lemma B.2, we know that given $0 \le r_1 \le r_2 \le 1$, for any $h \in [H]$, we have $T_h(r_1) \subseteq T_h(r_2)$. Moreover, by the same analysis as in Corollary B.3, for all $r \in [0,1]$, there are at most of |S|H + 1 unique sequences of sets T(r).

Definition D.4. For the underlying MDP $M=(S,A,P,R,H,s_0)$, given a real number $r\in[0,1]$, define $\overline{M}^r=(S\cup\{s_{\mathrm{absorb}}\},A,\overline{P}^r,R,H,s_0)$, where

$$\overline{P}_{h}^{r}(s' \mid s, a) = \begin{cases}
P_{h}(s' \mid s, a) & s \notin T_{h}(r), s' \neq s_{\text{absorb}} \\
0 & s \notin T_{h}(r), s' = s_{\text{absorb}} \\
\mathbb{1}[s' = s_{\text{absorb}}] & s \in T_{h}(r) \cup \{s_{\text{absorb}}\}
\end{cases}$$
(6)

Definition D.5. For each $(s,h) \in S \times [H]$, define $Crit'(s,h) = \inf\{r \in [0,1] \mid s \in T_h(r)\}$.

Note that $\{r \in [0,1] \mid s \in T_h(r)\}$ is never an empty set since $T_h(1) = S$.

Lemma D.6. Consider a pair of fixed choices of r_{trunc} and r_{action} in Algorithm 3. For all $h \in [H-1]$, if for all $s \in S \setminus \hat{T}_h$ we have $d_{\hat{M}}^{\hat{\pi}^{s,h}} \geq \epsilon_1$ whenever h > 0, then with probability $1 - \frac{\delta}{4}$, for all $(s, a, h) \in (S \setminus \hat{T}_h) \times A \times [H-1]$,

$$\sum_{s' \in S} |P_h(s' \mid s, a) - \hat{P}_h(s' \mid s, a)| \le \epsilon_0.$$

Proof. By the same analysis as Lemma C.1, for a fixed $h \in [H-1]$, if for all $s \in S \setminus \hat{T}_h$ we have $d_M^{\hat{\pi}^{s,h}} \geq \epsilon_1$ whenever h > 0, then with probability $1 - \frac{\delta}{4H}$, for all $(s,a) \in (S \setminus \hat{T}_h) \times A$,

$$\sum_{s' \in S} |P_h(s' \mid s, a) - \hat{P}_h(s' \mid s, a)| \le \epsilon_0.$$

By union bound, we know that with probability $1 - \frac{\delta}{4}$, for all $h \in [H-1]$, the inequality holds.

Lemma D.7. With probability at least $1 - \frac{\delta}{4}$, for all $s, h \in S \times [H-1]$,

$$|\hat{d}(s,h) - d_M^*(s,h)| \le 2\epsilon_0,$$

 $|d_M^{\hat{\pi}^{s,h}} - \hat{d}(s,h)| \le \epsilon_0.$

Proof. For a specific pair (s,h), for the policy returned by \mathbb{A} , with probability at least $1-\frac{\delta}{8|S|H}$, we have

$$\left| d_M^*(s,h) - d_M^{\hat{\pi}^{s,h}}(s,h) \right| \le \epsilon_0.$$

Thus, by Chernoff bound, with probability at least $1 - \frac{\delta}{8|S|H}$, we have

$$\left| d_M^{\hat{\pi}^{s,h}}(s,h) - \hat{d}(s,h) \right| \le \epsilon_0.$$

Combining the above two inequalities, with probability at least $1 - \frac{\delta}{4|S|H}$,

$$|\hat{d}(s,h) - d_M^*(s,h)| \le 2\epsilon_0.$$

Using the union bound, we know that with probability at least $1-\frac{\delta}{4}$, for all $s,h\in S\times [H-1]$

$$|\hat{d}(s,h) - d_M^*(s,h)| \le 2\epsilon_0,$$

$$|d_M^{\hat{\pi}^{s,h}} - \hat{d}(s,h)| \le \epsilon_0.$$

Definition D.8. Define

$$\operatorname{Bad}'_{\operatorname{trunc}} = \bigcup_{(s,h)\in S\times [H]} \operatorname{Ball}(\operatorname{Crit}'(s,h), 2\epsilon_0),$$

where Crit'(s, h) is as defined in Definition D.5.

Lemma D.9. Consider a pair of fixed choices of $r_{\text{trunc}} \in (\eta_1, 2\eta_1)$ and r_{action} in Algorithm 2 such that $r_{\text{trunc}} \notin \text{Bad}'_{\text{trunc}}$. With probability at least $1 - \delta/2$, we have

- $\hat{T}_h = T_h(r_{\text{trunc}})$ for all $h \in [H-1]$;
- $\sum_{s'} |\hat{P}_h(s' \mid s, a) P_h(s' \mid s, a)| \le \epsilon_0 \text{ for all } h \in [H-1] \text{ and } (s, a) \in (S \setminus \hat{T}_{h'}) \times A.$

Proof. Let \mathcal{E}_1 denote the event that for all (s,h), the following two conditions hold:

- $|\hat{d}(s,h) d_M^*(s,h)| \le 2\epsilon_0$
- $|d_M^{\hat{\pi}^{s,h}} \hat{d}(s,h)| \le \epsilon_0$

By Lemma D.7, we know that with probability at least $1 - \frac{\delta}{4}$, event \mathcal{E}_1 occurs.

Let \mathcal{E}_2 denote the event that for all $(s, a, s', h) \in S \times A \times S \times [H-1]$, the following conditions are satisfied:

- $\hat{T}_h = T_h(r_{\text{trunc}});$
- $d_M^{\hat{\pi}^{s,h}}(s,h) \geq \epsilon_1$ for all $s \in S \setminus \hat{T}_h$;
- $d_M^*(s,h) \le 4\epsilon_1$ for all $s \in \hat{T}_h$;
- $\sum_{s' \in S} \left| \hat{P}_h(s' \mid s, a) P_h(s' \mid s, a) \right| \le \epsilon_0 \text{ for all } (s, a) \in (S \setminus \hat{T}_h) \times A.$

When \mathcal{E}_1 occurs, we know that $|\hat{d}(s,h) - d_M^*(s,h)| \leq 2\epsilon_0$. Therefore, when $r_{\text{trunc}} \notin \text{Bad}_{\text{trunc}}$, if $r_{\text{trunc}} > d_M^*(s,h)$, it follows that $r_{\text{trunc}} > \hat{d}(s,h)$, if $r_{\text{trunc}} < d_M^*(s,h)$, it follows that $r_{\text{trunc}} < \hat{d}(s,h)$. Hence, we conclude that $\hat{T}_h = T_h(r_{\text{trunc}})$.

For the second condition, when \mathcal{E}_1 occurs, we know that $|d_M^{\hat{\pi}^{s,h}} - \hat{d}(s,h)| \leq \epsilon_0$, and by definition, $\hat{d}(s,h) > 2\epsilon_1$. Thus, we obtain that

$$d_M^{\hat{\pi}^{s,h}} > 2\epsilon_1 - \epsilon_0 > \epsilon_1.$$

For the third condition, when \mathcal{E}_1 occurs, we know that $|\hat{d}(s,h) - d_M^*(s,h)| \leq 2\epsilon_0$, and by definition, $\hat{d}(s,h) < 3\epsilon_1$. Thus, we have

$$d_M^*(s,h) < 3\epsilon_1 + 2\epsilon_0 < 4\epsilon_1.$$

For the forth condition, combining the second condition with Lemma D.6, we conclude that with probability at least $\left(1-\frac{\delta}{4}\right)^2 \leq 1-\frac{\delta}{2}$, the fourth condition holds.

Therefore, with probability at least $1 - \frac{\delta}{2}$, event \mathcal{E}_2 occurs, which implies the desired result.

Definition D.10. For a real number $r \in [0, 1]$, define

$$\operatorname{Bad}'_{\operatorname{action}}(r) = \bigcup_{g \in \operatorname{Gap}_{\overline{M}^r}} \operatorname{Ball}(g, 2H^2 \epsilon_0).$$

Clearly, for any $r \in [0,1]$, $|\operatorname{Gap}(r)| \leq |S|HA$. Moreover, since \overline{M}^r depends only on T(r) (cf. Definition D.4), for $r_1, r_2 \in [0,1]$ with $T(r_1) = T(r_2)$, we would have $\operatorname{Gap}(r_1) = \operatorname{Gap}(r_2)$ and $\operatorname{Bad}'_{\operatorname{action}}(r_1) = \operatorname{Bad}'_{\operatorname{action}}(r_2)$.

Lemma D.11. Given $r_{\text{trunc}}^1, r_{\text{trunc}}^2 \in (2\epsilon_1, 3\epsilon_1) \setminus \text{Bad}_{\text{trunc}}$ and $r_{\text{action}}^1, r_{\text{action}}^2 \in (\epsilon_1, 2\epsilon_1)$, suppose

- $T(r_{\text{trunc}}^1) = T(r_{\text{trunc}}^2);$
- $r_{\text{action}}^1 \notin \text{Bad}'_{\text{action}}(r_{\text{trunc}}^1)$, and $r_{\text{action}}^2 \notin \text{Bad}'_{\text{action}}(r_{\text{trunc}}^1)$;
- for any $g \in \operatorname{Gap}(r^1_{\operatorname{trunc}})$, either $g < r^1_{\operatorname{action}} < r^2_{\operatorname{action}}$ or $r^1_{\operatorname{action}} < r^2_{\operatorname{action}} < g$,

conditioned on the event in Lemma D.9, the returned policy π in Algorithm 3 will always be the same for all $(r_{\rm action}, r_{\rm trunc}) \in \{r_{\rm action}^1, r_{\rm action}^2\} \times \{r_{\rm trunc}^1, r_{\rm trunc}^2\}$.

Proof. The proof of the lemma follows the same reasoning as in the proof of Lemma C.8.

Lemma D.12. Conditioned on the event in Lemma D.9, the returned policy π is ϵ -optimal.

Proof.

$$V_M^{\pi} \ge V_{Mr_{\text{trunc}}}^{\pi} \ge V_{Mr_{\text{trunc}}}^{\pi} - 2H^2 \epsilon_0 - r_{\text{action}}H \ge V_M^* - 2H^2 \epsilon_0 - r_{\text{action}}H - H^2 |S| r_{\text{trunc}} \ge V_M^* - \epsilon.$$

where the first inequality is due to Lemma E.3, the second inequality is due to Lemma 5.1, the third inequality is due to Lemma E.3, and the last inequality is due to $r_{\rm trunc} \leq 3\epsilon_1$ and $r_{\rm action} \leq 2\epsilon_1$. Therefore, the returned policy π is ϵ -optimal.

Lemma D.13. Conditioned on the event in Lemma D.9, with probability at least $1 - \frac{\delta}{2}$, the returned policy π belongs to the set $\Pi(M)$, where $\Pi(M)$ is a list of policies that depend only on the unknown underlying MDP M, and the size of $\Pi(M)$ satisfies $|\Pi(M)| \leq (H|S||A|+1)(H|S|+1)$.

Proof. First, we have $\Pr[r_{\text{trunc}} \in \text{Bad}'_{\text{trunc}}] \leq \frac{5|S|H\epsilon_0}{\epsilon_1} < \frac{\delta}{4}$. Moreover, for a fixed $r_{\text{trunc}} \notin \text{Bad}'_{\text{trunc}}$, we have $\Pr[r_{\text{action}} \in \text{Bad}'_{\text{action}}(r_{\text{trunc}})] \leq \frac{5H^2\epsilon_0*|S||A|H}{\epsilon_1} < \frac{\delta}{4}$. Thus, with probability at least $1 - \frac{\delta}{2}$, it is satisfied that $r_{\text{action}} \notin \text{Bad}'_{\text{action}}(r_{\text{trunc}})$ and $r_{\text{trunc}} \notin \text{Bad}'_{\text{trunc}}$.

By Lemma D.11, and applying similar reasoning as in the proof of Theorem 6.1, we conclude that conditioned on the event in Lemma D.9, with probability at least $1-\frac{\delta}{2}$, the policy π belongs to the set $\Pi(M)$, where $\Pi(M)$ is a list of policies that depend only on the unknown underlying MDP M. Moreover, the size of $\Pi(M)$ is bounded by $|\Pi(M)| \leq (H|S||A|+1)(H|S|+1)$.

Proof of Theorem D.1. The proof follows by combining Lemma D.9, Lemma D.12 and Lemma D.13 □

E PERTURBATION ANALYSIS IN MDPS

Lemma E.1. Consider two MDP M_1 and M_2 that are ϵ_0 -related. Let P' and P'' denote the transition models of M_1 and M_2 , respectively. It holds that

$$|V_{h,M_1}^*(s) - V_{h,M_2}^*(s)| \le H^2 \epsilon_0,$$

$$|Q_{h,M_1}^*(s,a) - Q_{h,M_2}^*(s,a)| \le H^2 \epsilon_0,$$

where H is the horizon length.

Specifically, for the value function at the initial state s_0 , it holds that

$$|V_{M_1}^* - V_{M_2}^*| \le H^2 \epsilon_0.$$

1325 Proof. We denote π_1^* as the optimal policy of M_1 and π_2^* as the optimal policy of M_2 . For $0 \le i \le H-1$, we have

$$\begin{split} \left| V_{i,M_{1}}^{\pi_{1}^{*}}(s) - V_{i,M_{2}}^{\pi_{2}^{*}}(s) \right| & \leq \max_{a} \left| Q_{i,M_{1}}^{\pi_{1}^{*}}(s,a) - Q_{i,M_{2}}^{\pi_{2}^{*}}(s,a) \right| \\ & \leq \max_{a} \left(\left| \sum_{s'} P_{i}'(s' \mid s,a) \cdot V_{i+1,M_{1}}^{\pi_{1}^{*}}(s') - \sum_{s'} P_{i}''(s' \mid s,a) \cdot V_{i+1,M_{2}}^{\pi_{2}^{*}}(s') \right| \right) \\ & \leq \max_{a} \left(\left| \sum_{s'} P_{i}'(s' \mid s,a) \cdot \left(V_{i+1,M_{1}}^{\pi_{1}^{*}}(s') - V_{i+1,M_{2}}^{\pi_{2}^{*}}(s') \right) \right| \\ & + \left| \sum_{s'} \left(P_{i}'(s' \mid s,a) - P_{i}''(s' \mid s,a) \right) \cdot V_{i+1,M_{2}}^{\pi_{2}^{*}}(s') \right| \right) \\ & \leq H\epsilon_{0} + \max_{s} \left| V_{i+1,M_{1}}^{\pi_{1}^{*}}(s) - V_{i+1,M_{2}}^{\pi_{2}^{*}}(s) \right|. \end{split}$$

Inequality (1): This follows from selecting a^* as the optimal action and \hat{a} as the action selected by the policy, which ensures $Q_{i,M_2}^{\pi_1^*}(s,a) \leq Q_{i,M_2}^{\pi_2^*}(s,a)$.

Inequality (2): This holds because $V_{i+1}^{\pi^*}(s') \leq H$, the total variation bound $\sum_{s' \in S} |P_i'(s' \mid s, a) - P_i''(s' \mid s, a)| \leq \epsilon_0$, and the fact that $\sum_{s'} P_i'(s' \mid s, a) = 1$.

At layer H, it is given that $V_{H,M_1}^{\pi_1^*}=V_{H,M_2}^{\pi_2^*}=0$. Applying the above inequality recursively, we obtain

$$\left| V_{i,M_1}^{\pi_1^*}(s) - V_{i,M_2}^{\pi_2^*}(s) \right| \le H(H - i)\epsilon_0 \le H^2 \epsilon_0,$$

$$\left| Q_{i,M_1}^{\pi_1^*}(s,a) - Q_{i,M_2}^{\pi_2^*}(s,a) \right| \le H\epsilon_0 + \max_{s} \left| V_{i+1,M_1}^{\pi_1^*}(s) - V_{i+1,M_2}^{\pi_2^*}(s) \right| \le H\epsilon_0 + H(H - 1)\epsilon_0 \le H^2 \epsilon_0.$$

In particular, for the initial layer,

$$\left| V_{M_1}^* - V_{M_2}^* \right| = \left| V_{0,M_1}^{\pi_1^*}(s_0) - V_{0,M_2}^{\pi_2^*}(s_0) \right| \le H^2 \epsilon_0.$$

Lemma E.2. Consider two MDP M_1 and M_2 that are ϵ_0 -related. Let P' and P'' denote the transition models of M_1 and M_2 , respectively. For any policy π , it holds that

$$|V_{M_1}^{\pi} - V_{M_2}^{\pi}| \le H^2 \epsilon_0,$$

where H is the horizon length.

Proof. For $0 \le i \le H - 1$, we have

$$\begin{split} \left| V_{i,M_{1}}^{\pi}(s) - V_{i,M_{2}}^{\pi}(s) \right| &= \left| Q_{i,M_{1}}^{\pi}(s,\pi_{i}(s)) - Q_{i,M_{2}}^{\pi}(s,\pi_{i}(s)) \right| \\ &\leq \max_{a} \left(\left| \sum_{s'} P_{i}'(s' \mid s,a) \cdot V_{i+1,M_{1}}^{\pi}(s') - \sum_{s'} P_{i}''(s' \mid s,a) \cdot V_{i+1,M_{2}}^{\pi}(s') \right| \right) \\ &\leq \max_{a} \left(\left| \sum_{s'} P_{i}'(s' \mid s,a) \cdot \left(V_{i+1,M_{1}}^{\pi}(s') - V_{i+1,M_{2}}^{\pi}(s') \right) \right| \\ &+ \left| \sum_{s'} \left(P_{i}'(s' \mid s,a) - P_{i}''(s' \mid s,a) \right) \cdot V_{i+1,M_{2}}^{\pi}(s') \right| \right) \\ &\leq H\epsilon_{0} + \max_{a} \left| V_{i+1,M_{1}}^{\pi}(s) - V_{i+1,M_{2}}^{\pi}(s) \right|. \end{split}$$

Inequality (1): This holds because $V_{i+1}^{\pi^*}(s') \leq H$, the total variation bound $\sum_{s' \in S} |P_i'(s' \mid s, a) - P_i''(s' \mid s, a)| \leq \epsilon_0$, and the fact that $\sum_{s'} \hat{P}_i(s' \mid s, a) = 1$.

At layer H, it is given that $V_{H,M_1}^{\pi} = V_{H,M_2}^{\pi} = 0$.

Applying the above inequality recursively, we obtain

$$|V_{i,M_1}^{\pi}(s) - V_{i,M_2}^{\pi}(s)| \le H^2 \epsilon_0,$$

In particular, for the initial layer,

$$\left|V_{0,M_1}^{\pi}(s_0) - V_{0,M_2}^{\pi}(s_0)\right| \le H^2 \epsilon_0,$$

Lemma E.3. For any policy π , we have

$$0 \le V_M^{\pi} - V_{M^r}^{\pi} \le H^2 |S| r,$$

where M^r is defined as in Definition B.6 and |S| is the size of the state space.

Proof. Clearly, $V_M^{\pi} - V_{Mr}^{\pi} \geq 0$.

We observe that for any h and $s_h \in S$, the following holds:

$$\begin{split} \sum_{s_{h} \in S} d_{M^{r}}^{\pi}(s_{h}, h) \left(V_{h,M}^{\pi}(s_{h}) - V_{h,M^{r}}^{\pi}(s_{h}) \right) \\ &\stackrel{(1)}{=} \sum_{s_{h} \in U_{h}(r)} d_{M^{r}}^{\pi}(s_{h}, h) V_{h,M}^{\pi}(s_{h}) + \sum_{s_{h} \notin U_{h}(r)} d_{M^{r}}^{\pi}(s_{h}, h) \left(V_{h,M}^{\pi}(s_{h}, h) \left(V_{h,M}^{\pi}(s_{h}) - V_{h,M^{r}}^{\pi}(s_{h}) \right) \right) \\ &\stackrel{(2)}{\leq} |S| \cdot r \cdot H + \sum_{s_{h} \notin U_{h}(r)} d_{M^{r}}^{\pi}(s_{h}, h) \left(V_{h,M}^{\pi}(s_{h}) - V_{h,M^{r}}^{\pi}(s_{h}) \right) \\ &\stackrel{(3)}{=} |S| \cdot r \cdot H + \sum_{s_{h} \notin U_{h}(r)} d_{M^{r}}^{\pi}(s_{0}, h) \left(r_{h}(s_{h}, \pi(s_{h})) + \sum_{s_{h+1} \in S} P_{h}(s_{h+1}|s_{h}, \pi(s_{h})) V_{h+1,M}^{\pi}(s_{h+1}) \right) \\ &- r_{h}(s_{h}, \pi(s_{h})) - \sum_{s_{h+1} \in S} P_{h}(s_{h+1}|s_{h}, \pi(s_{h})) V_{h+1,M^{r}}^{\pi}(s_{h+1}) \right) \\ &= |S| \cdot r \cdot H + \sum_{s_{h} \notin U_{h}(r)} d_{M^{r}}^{\pi}(s_{h+1}, h+1) \left(V_{h+1,M}^{\pi}(s_{h+1}) - V_{h+1,M^{r}}^{\pi}(s_{h+1}) \right) \\ &\stackrel{(4)}{=} |S| \cdot r \cdot H + \sum_{s_{h+1} \in S} d_{M^{r}}^{\pi}(s_{h+1}, h+1) \left(V_{h+1,M}^{\pi}(s_{h+1}) - V_{h+1,M^{r}}^{\pi}(s_{h+1}) \right) \end{split}$$

- Step (1): The first equality arises because for all $s_h \in U_h(r)$, the value function $V_{h,M^r}^{\pi}(s_h) = 0$.
- Step (2): The inequality follows from the definition of $d_{M^r}^{\pi}(s_h, h) \leq r$ and the fact that $V_{h,M}^{\pi}(s_h) \leq H$. This ensures that the first term in the sum is bounded by $|S| \cdot r \cdot H$.
- Step (3): The equality holds because for all $s_h \notin U_h(r)$, the transition probability $P_h(s_{h+1}|s_h, \pi(s_h))$ under the original model M is identical to that under the modified model M^r , i.e., $P_h(s_{h+1}|s_h, \pi(s_h)) = P_h^r(s_{h+1}|s_h, \pi(s_h))$. Thus, the only difference in the value functions is the difference in the values at the next time step.
- Step (4): The final equality follows from interchanging the order of summation, allowing us to express the sum over s_h as a sum over s_{h+1} .

Next, we observe that

$$V_{0,M}^{\pi}(s_0) - V_{0,M^r}^{\pi}(s_0) \stackrel{\text{(5)}}{=} \sum_{s_1 \in S} d_{M^r}^{\pi}(s_1, 1) \left(V_{1,M}^{\pi}(s_1) - V_{1,M^r}^{\pi}(s_1) \right),$$

where **Step (5):** holds because s_0 is the fixed initial state, and by definition, $d_{Mr}^{\pi}(s_1, 1) = d_M^{\pi}(s_1, 1) = P_0(s_1|s_0, \pi(s_0))$.

By recursively applying the same reasoning for each time step h, we obtain the following upper bound:

$$V_{0,M}^{\pi}(s_0) - V_{0,M^r}^{\pi}(s_0) \le |S| \cdot r \cdot H^2.$$

Thus, we conclude that

$$0 \le V_M^{\pi} - V_{M^r}^{\pi} \le H^2 |S| r.$$

Lemma E.4. For any policy π , we have

$$0 \le V_M^{\pi} - V_{\overline{M}^r}^{\pi} \le H^2 |S| r,$$

where \overline{M}^r is defined as in Definition D.4 and |S| is the size of the state space.

Proof. Clearly, $V_M^{\pi} - V_{\overline{M}^r}^{\pi} \geq 0$.

By the similar analysis as above, we observe that for any h and $s_h \in S$, the following holds:

$$\begin{split} &\sum_{s_{h} \in S} d_{M^{r}}^{\pi}(s_{h}, h) \left(V_{h,M}^{\pi}(s_{h}) - V_{h,\overline{M}^{r}}^{\pi}(s_{h}) \right) \\ &= \sum_{s_{h} \in T_{h}(r)} d_{\overline{M}^{r}}^{\pi}(s_{h}, h) V_{h,M}^{\pi}(s_{h}) + \sum_{s_{h} \notin T_{h}(r)} d_{\overline{M}^{r}}^{\pi}(s_{h}, h) \left(V_{h,M}^{\pi}(s_{h}) - V_{h,\overline{M}^{r}}^{\pi}(s_{h}) \right) \\ &\stackrel{(1)}{\leq} |S| \cdot r \cdot H + \sum_{s_{h} \notin T_{h}(r)} d_{\overline{M}^{r}}^{\pi}(s_{h}, h) \left(V_{h,M}^{\pi}(s_{h}) - V_{h,\overline{M}^{r}}^{\pi}(s_{h}) \right) \\ &= |S| \cdot r \cdot H + \sum_{s_{h} \notin T_{h}(r)} d_{\overline{M}^{r}}^{\pi}(s_{0}, h) \left(r_{h}(s_{h}, \pi(s_{h})) + \sum_{s_{h+1} \in S} P_{h}(s_{h+1}|s_{h}, \pi(s_{h})) V_{h+1,M}^{\pi}(s_{h+1}) \right) \\ &- r_{h}(s_{h}, \pi(s_{h})) - \sum_{s_{h+1} \in S} P_{h}(s_{h+1}|s_{h}, \pi(s_{h})) V_{h+1,\overline{M}^{r}}^{\pi}(s_{h+1}) \right) \\ &= |S| \cdot r \cdot H + \sum_{s_{h} \in S} d_{\overline{M}^{r}}^{\pi}(s_{h+1}, h+1) \left(V_{h+1,M}^{\pi}(s_{h+1}) - V_{h+1,\overline{M}^{r}}^{\pi}(s_{h+1}) \right) \end{split}$$

• Step (1): The inequality follows from the definition of $d_{\overline{M}^r}^{\pi}(s_h,h) \leq \max_{\pi} \Pr[s_h = s \mid M,\pi] \leq r$ and the fact that $V_{h,M}^{\pi}(s_h) \leq H$. This ensures that the first term in the sum is bounded by $|S| \cdot r \cdot H$.

Next, we observe that

$$V_{0,M}^{\pi}(s_0) - V_{0,\overline{M}^r}^{\pi}(s_0) = \sum_{s_1 \in S} d_{\overline{M}^r}^{\pi}(s_1, 1) \left(V_{1,M}^{\pi}(s_1) - V_{1,\overline{M}^r}^{\pi}(s_1) \right),$$

By recursively applying the same reasoning for each time step h, we obtain the following upper bound:

$$V_{0,M}^{\pi}(s_0) - V_{0,\overline{M}^r}^{\pi}(s_0) \le |S| \cdot r \cdot H^2.$$

Thus, we conclude that

$$0 \le V_M^{\pi} - V_{\overline{M}^r}^{\pi} \le H^2 |S| r.$$

Figure 3: MDP to solve BESTARM.

F HARDNESS RESULT

Definition F.1 (BESTARM Problem). Consider a k-armed bandit problem. Let k be the number of arms, and fix parameters $\epsilon > 0$ and $\delta \in (0,1)$. The (k,ϵ,δ) -BESTARM problem is defined as follows: given access to k arms, each associated with an unknown distribution (e.g., Bernoulli), the goal for an algorithm is to identify an arm whose mean reward is within ϵ of the best arm's mean, with probability at least $1-\delta$.

Lemma F.2 ((Chen et al., 2025)). Consider a k-armed bandit problem. Let $\epsilon \leq \frac{1}{2k}$ and $\delta \leq \frac{1}{k+1}$. Then, there exists no (k-1)-list replicable algorithm for the (k,ϵ,δ) -BESTARM problem, even when each arm follows a Bernoulli distribution and an unbounded number of samples is allowed.

Theorem F.3. Suppose there exists a weakly ℓ -list replicable RL algorithm that interacts with an MDP M with state space S, action space A, and horizon length H, such that there is a list of policies $\Pi(M)$ with cardinality at most ℓ that depend only on M, so that with probability at least $1-\delta$, π is ϵ -optimal and $\pi \in \Pi(M)$, where π is the near-optimal policy returned by the algorithm when interacting with M. Suppose $\epsilon \leq \frac{1}{2|S||A|H}$ and $\delta \leq \frac{1}{|S||A|H+1}$. Then it must hold that

$$\ell \geq \frac{|S||A|\left(H - \lceil \log_{|A|} |S| \rceil - 3\right)}{3}.$$

Proof. Assume for contradiction that there exists an RL algorithm that satisfies the conditions of the theorem, with

$$\ell < \frac{|S||A|\left(H - \lceil \log_{|A|} |S| \rceil - 3\right)}{3}.$$

We will show that this assumption leads to a contradiction with Lemma F.2.

Without loss of generality, assume |S| is divisible by 3. Let m = |S|/3, n = |A|, $z = H - \lceil \log_n m \rceil - 3$, and define k = mnz. We now construct a reduction from the k-armed bandit problem (with Bernoulli rewards) to an MDP instance.

 We index the k arms by triplets (i, j, ℓ) , where $i \in [z]$, $j \in [m]$, and $\ell \in [n]$. Each arm is associated with a Bernoulli distribution $D_{i,j,\ell}$ with mean $p_{i,j,\ell}$. We will design an MDP M such that interacting with it corresponds to querying these k arms.

Key Layer Construction. Let $\{q_1, \ldots, q_m\} \subset S$ denote a set of m designated key-layer states (illustrated in Figure 3). We will construct the MDP such that for each $i \in [z]$ and $j \in [m]$, there exists a unique deterministic policy that reaches state q_i precisely at time step $h_i = d + i$, where $d = \lceil \log_n m \rceil$.

Once in state q_j at time h_i , the agent can choose action $a_\ell \in A$ to simulate pulling arm (i, j, ℓ) . Let $s_H, s_T \in S$ denote two absorbing states. We define

$$\forall (i, j, \ell), P_{h_i}(s_H \mid q_j, a_\ell) = p_{i,j,\ell}, P_{h_i}(s_T \mid q_j, a_\ell) = 1 - p_{i,j,\ell}.$$

and for all h, a: $r_h(s_H, a) = \mathbb{1}[h = H - 1]$ and $r_h(s_T, a) = 0$. Both s_H and s_T are absorbing: $P(s' \mid s_H, a) = \mathbb{1}[s' = s_H]$ and similarly for s_T .

Auxiliary Structure. We now describe the deterministic routing structure that reaches each q_j in exactly d steps. We construct a complete n-ary tree rooted at a state $w_1 \in S$. Every non-leaf state in the tree has n children, one for each action in A, and transitions deterministically based on the action played.

The final layer connects to key-layer states q_1, \ldots, q_m . There may be more than m leaf actions; any excess actions simply self-loop. The tree has depth d, requires at most 2m states, and all transitions have reward zero. Transitions are time-homogeneous.

Initial State and Entry Mechanism. Let $s_0 \in S$ be the initial state. Define its transitions as follows:

- 1. Playing a designated action $a_0 \in A$ transitions to the root w_1 of the n-ary tree;
- 2. Playing a designated action $a_1 \in A$ causes the agent to remain in s_0 ;
- 3. All other actions lead to s_T .

To reach a key-layer state q_j at time $h_i = d + i$, a policy selects a_1 for i time steps in s_0 , followed by action a_0 to enter the tree, and then a sequence of d actions that leads to q_j . From there, it plays a_ℓ to simulate arm (i, j, ℓ) .

Correctness of the Reduction. This construction yields a one-to-one correspondence between bandit arms and deterministic policies in the MDP that reach q_j at h_i and play a_ℓ . Thus, any ϵ -optimal policy in the MDP induces an ϵ -optimal arm in the bandit problem. Note also that all non-rewarding policies cannot match the optimal value due to the delayed structure and reward placement.

Contradiction. Now suppose we run the assumed RL algorithm on this MDP. By hypothesis, the algorithm returns a ϵ -optimal policy that lies in a list of ℓ policies with $\ell < k = mnz$, with probability at least $1 - \delta$, where $\epsilon \le \frac{1}{2k}$ and $\delta \le \frac{1}{k+1}$. Since each policy corresponds to a unique arm, this implies the existence of a (k-1)-list replicable algorithm for the (k, ϵ, δ) -BESTARM problem. This contradicts Lemma F.2, completing the proof. \square

G EXPERIMENTS

All our experiments are performed based on environments in the Gymnasium (Towers et al., 2024) package, and we use the PyTorch 2.1.2 for training neural networks. We use fixed random seeds in our experiments for better reproducibility.

G.1 CARTPOLE-V1 WITH DQN

We evaluate the performance of the DQN algorithm (Mnih et al., 2015) on CartPole-v1, where we replace the planning algorithm with our robust planner (Algorithm 1) in Section 5.

Network Architecture:

We use a feedforward neural network to approximate the Q-function.

• Input layer: 4-dimensional state vector

• Hidden layer 1: Fully connected, 64 units, ReLU

• Hidden layer 2: Fully connected, 64 units, ReLU

• Output layer: Fully connected, 2 units (Q-values)

Experience Replay:

• Buffer capacity: 10^5 transitions stored in a FIFO deque

• Batch size: B = 256

• Learning begins once buffer size $\geq B$

Target Network Updates:

• Two networks: local (θ) and target (θ^{-})

• We use soft target updates to stabilize learning. After every Q-network update (which occurs every step once the buffer contains ≥ 256 transitions), the target network parameters are softly updated using $\theta_{\text{target}} \leftarrow \tau \theta_{\text{online}} + (1 - \tau) \theta_{\text{target}}$ with $\tau = 0.001$.

Hyperparameters:

Parameter	Symbol	Value(s)	Description
Learning rate	α	2.5×10^{-3}	Adam optimizer step size
Discount factor	γ	0.99	Future reward discount
Replay batch size	\dot{B}	256	Transitions per learning update
Replay buffer capacity	N	10^{5}	Max number of stored transitions
Soft update factor	au	10^{-3}	Target network mixing coefficient
Exploration start	ϵ_0	1.0	Initial exploration probability
Exploration end	$\epsilon_{ m min}$	0.01	Minimum exploration probability
Exploration decay	$\epsilon_{ m decay}$	0.997	Multiplicative decay per episode
Training episodes	_	400	Total training episodes
Max steps per episode	_	500	Episode length limit
Evaluation episodes	_	100	Used to compute mean returns
Independent runs	_	50	Used to report mean/std

Training Procedure:

- 1. Initialize local and target networks; create empty replay buffer.
- 2. For each episode:
 - Reset environment; compute $\epsilon_t = \max(\epsilon_{\min}, \epsilon_0 \cdot \epsilon_{\text{decav}}^t)$
 - For each step t:
 - Select action using ϵ -greedy or Algorithm 1
 - Store transition (s, a, r, s') in the replay buffer
 - If buffer size $\geq B$, sample mini-batch and update Q-network
 - Update target network using soft update rule

When invoking Algorithm 1, we use the Q-network as our estimate of $Q_{h,\hat{M}}^*$, and select actions using Algorithm 1 with $r_{\rm action} \in \{0.0, 0.05, 0.1, 0.5\}$. Note that when $r_{\rm action} = 0$, Algorithm 1 is equivalent to picking actions that maximize the estimated Q-value as in the original DQN algorithm.

Evaluation Protocol:

Every 10 training episodes, we evaluate the policy over 100 test episodes, where each episode is initialized using a fixed random seed for reproducibility. During the evaluation, we disable ϵ -greedy but still use Algorithm 1 to choose actions. In Figure 1(a), we report the average award of the trained policy, \pm standard deviation, across different runs.

G.2 ACROBOT-V1 WITH DOUBLE DQN

We evaluate the performance of the Double DQN algorithm (Van Hasselt et al., 2016) on Acrobot-v1, where we replace the planning algorithm with our robust planner (Algorithm 1) in Section 5.

Network Architecture: We use a feedforward neural network to approximate the Q-function.

- Input layer: state vector ($\dim = 6$)
- Hidden layers: $256 \rightarrow 512 \rightarrow 512$ units, ReLU activations
- Output layer: Q-values for each action ($\dim = 3$)

Hyperparameters:

Parameter	Symbol	Value(s)	Description
Learning rate	α	1×10^{-5}	Adam step size
Discount factor	γ	0.99	Future reward discount
Batch size	B	8192	Samples per update
Replay capacity	N	5×10^{4}	Max transitions stored
Target update freq.	_	100 steps	Hard copy interval
Initial ε	ε_0	1.0	Exploration start
$Min\ \varepsilon$	$arepsilon_{\min}$	0.01	Exploration floor
ε -decay	δ	5×10^{-4}	Exploration decay per episode
Training epochs	_	90	Total learning epochs
Eval interval	_	10 episodes	Test frequency
Eval episodes	_	100 runs	Used to compute mean returns
Independent runs	_	25	Used to report mean/std

Replay Buffer:

Capacity: 50,000 transitions
Batch size: B = 8192

Training Procedure:

- 1. Initialize networks, replay buffer, and seeds.
- 2. For each episode *t*:
 - Reset environment; compute $\varepsilon_t = \max(\varepsilon_{\min}, \, \varepsilon_0 t\delta)$
 - For each step:
 - Select action using ϵ -greedy or Algorithm 1
 - Store transition (s, a, r, s') in the replay buffer.
 - If buffer size $\geq B$, sample mini-batch and update Q-network using double Q-learning
 - Every 100 learning steps, replace target weights

When invoking Algorithm 1, we use the Q-network as our estimate of $Q_{h,\hat{M}}^*$, and select actions using Algorithm 1 with $r_{\rm action} \in \{0, 0.05, 0.1, 0.2\}$. Note that when $r_{\rm action} = 0$, Algorithm 1 is equivalent to picking actions that maximize the estimated Q-value as in the original Double DQN algorithm.

Evaluation Protocol:

Same as Section G.1.

G.3 MOUNTAINCAR-VO WITH TABULAR Q-LEARNING

We evaluate the performance of the Q-Learning on MountainCar-v0, where we replace the planning algorithm with our robust planner (Algorithm 1) in Section 5.

State Discretization:

- Discretized into a 20 × 20 grid
- · Bin size computed from environment bounds
- Discrete state: $\mathrm{tuple}((s-s_{\min})/\Delta s)$

Q-table:

- Shape: (20, 20, 3)
- Initialized uniformly in [-2, 0]

Hyperparameters:

Parameter	Symbol	Value(s)	Description
Learning rate	α	0.1	Q-learning update step
Discount factor	γ	0.95	Discount for future rewards
Exploration schedule	ϵ	$\max(0.01, 1 - t/500)$	Episode-based decay
State bins	_	20×20	For discretization
Training episodes	_	10,000	Total learning episodes
Evaluation interval	-	200	Test policy every 200 episodes
Test episodes	_	100	Used to compute mean returns
Independent runs	_	25	Used to report mean/std

Training Procedure:

For each episode t:

- Reset environment; discretize initial state; compute $\epsilon_t = \max(0.01, 1 t/500)$
- Select actions using ϵ -greedy or Algorithm 1
- Update Q-table with learning rate $\alpha = 0.1$ and discount factor $\gamma = 0.95$:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a')\right]$$

• If terminal state is reached and the goal is achieved, set $Q(s, a) \leftarrow 0$

When invoking Algorithm 1, we use the Q-table as our estimate of $Q_{h,\hat{M}}^*$, and select actions using Algorithm 1 with $r_{\rm action} \in \{0, 0.001, 0.005, 0.02\}$. Note that when $r_{\rm action} = 0$, Algorithm 1 is equivalent to picking actions that maximize the estimated Q-value as in the original Q-learning algorithm.

Evaluation Protocol: Same as Section G.1.

G.4 NAMETHISGAME WITH BEYOND THE RAINBOW

We evaluate the performance of the Beyond The Rainbow on Namethisgame, where we replace the planning algorithm with our robust planner (Algorithm 1) in Section 5.

Environment:

- Domain: Atari 2600, evaluated on NameThisGame
- Simulator: ALE with frame skip = 4
- Observations: grayscale 84×84 stacked frames
- Actions: discrete Atari action set

Baseline:

1749

1750

1751 1752

17531754

1755

17561757

1758

17591760

1761

1762

1763

1764

17651766

• Algorithm: BTR (Bootstrapped Transformer Reinforcement learning)

• Training budget: 100M Atari frames

Threshold Strategy:

- Planner augmented with a decaying action-threshold rule
- At each decision point, we select

$$a = \arg\max_{a'} Q(s,a') \quad \text{subject to} \quad Q(s,a) \geq \max_{a'} Q(s,a') - r_{\text{action}}(t),$$

where $r_{action}(t)$ is a step-dependent threshold

• Decay schedule:

$$r_{\text{action}}(t) = 0.4 \times (0.98)^{\lfloor t/5000 \rfloor},$$

with t denoting the training step index

ullet When $r_{
m action}(t)
ightarrow 0$, the method reduces to the vanilla BTR algorithm

Parameter	Symbol	Value(s)	Description
Learning rate	lr	1×10^{-4}	Optimizer step size (Adam/AdamW)
Discount factor	γ	0.997	Discount for future rewards
Batch size	B	256	Mini-batch size for updates
Replay buffer size	_	10^{6}	PER capacity
PER coefficient	α	0.2	Priority exponent
PER annealing	β	$0.45 \to 1.0$	Importance weight schedule
Gradient clipping	_	10.0	Norm clipping for stability
Target update	_	500 steps	Replace target network
Slow net update	_	5000 steps	Replace slow network
Optimizer	_	Adam/AdamW	With $\epsilon = 0.005/B$
Loss function	_	Huber	Temporal difference loss
Replay ratio	_	1.0	Grad updates per env step
Exploration schedule	ϵ	$1.0 \rightarrow 0.01 \text{ (2M steps)}$	ϵ -greedy decay
Noisy layers	_	Enabled	Factorized Gaussian noise
Network arch.	_	Impala-IQN / C51	Conv backbone + distributional head
Model size	_	2	Scale factor for Impala CNN
Linear hidden size	_	512	Fully-connected layer width
Cosine embeddings	n_{\cos}	64	IQN quantile embedding size
Number of quantiles	au	8	Quantile samples for IQN
Frame stack	_	4	History frames per state
Image size	_	84×84	Input resolution
Trust-region	_	Disabled	Optional stabilizer
EMA stabilizer	au	0.001	Soft target update (if enabled)
Munchausen	α	0.9	Entropy regularization (if enabled)
Distributional	_	C51/IQN	Distributional RL variants
Threshold start	D_{start}	0.4	Initial threshold ratio
Threshold decay	$D_{ m decay}$	0.98	Multiplicative decay factor
Threshold interval	_	5000 steps	Decay period
D-strategy	_	none / minnumber / lastact / slownet	Action selection rule
Training frames	_	200M	Total Atari interaction budget
Evaluation freq.	_	250k frames	Eval episodes per checkpoint
Independent runs	_	5 seeds	Reported mean/std

Training Procedure:

1799

1800 1801

• Interact with the environment for 100M frames using ϵ -greedy exploration

- Store transitions into a replay buffer and update the Q-network with Adam optimizer
- Report mean and standard deviation over 5 independent seeds

We observe that augmenting BTR with the threshold strategy improves performance in NameThisGame by over 10% compared to the baseline.

H LLM USAGE

We used large language models (LLMs) only for minor language polishing and for assistance in generating plotting scripts. No LLMs were involved in the research ideation, theoretical derivations, experiment design, or analysis. All scientific contributions of this work are entirely our own.