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ABSTRACT

Replicability is a fundamental challenge in reinforcement learning (RL), as RL algorithms are
empirically observed to be unstable and sensitive to variations in training conditions. To for-
mally address this issue, we study list replicability in the Probably Approximately Correct (PAC)
RL framework, where an algorithm must return a near-optimal policy that lies in a small list of
policies across different runs, with high probability. The size of this list defines the list complex-
ity. We introduce both weak and strong forms of list replicability: the weak form ensures that
the final learned policy belongs to a small list, while the strong form further requires that the
entire sequence of executed policies remains constrained. These objectives are challenging, as
existing RL algorithms exhibit exponential list complexity due to their instability. Our main the-
oretical contribution is a provably efficient tabular RL algorithm that guarantees list replicability
by ensuring the list complexity remains polynomial in the number of states, actions, and the hori-
zon length. We further extend our techniques to achieve strong list replicability, bounding the
number of possible policy execution traces polynomially with high probability. Our theoretical
result is made possible by key innovations including (i) a novel planning strategy that selects
actions based on lexicographic order among near-optimal choices within a randomly chosen tol-
erance threshold, and (ii) a mechanism for testing state reachability in stochastic environments
while preserving replicability. Finally, we demonstrate that our theoretical investigation sheds
light on resolving the instability issue of RL algorithms used in practice. In particular, we show
that empirically, our new planning strategy can be incorporated into practical RL frameworks to
enhance their stability.

1 INTRODUCTION

The issue of replicability (or lack thereof) has been a major concern in many scientific areas (Begley and Ellis,
2012; Ioannidis, 2005; Baker, 2016; of Sciences et al., 2019). In machine learning, a common strategy to ensure
replicability and reproducibility is to publicly share datasets and code. Indeed, several prominent machine learning
conferences have hosted reproducibility challenges to promote best practices (Sinha et al., 2023). However, this
approach may not be sufficient, as machine learning algorithms rely on sampling from data distributions and
often incorporate randomness. This inherent stochasticity leads to non-replicability. A more effective solution
is to design replicable algorithms ideally algorithms that consistently produce the same output across multiple
runs, even when each run processes a different sample from the data distribution. This approach has recently
spurred theoretical investigations, resulting in formal definitions of replicability and the development of various
replicability frameworks (Impagliazzo et al., 2022; Dixon et al., 2023). In this paper, we focus on the notion of
list replicability (Dixon et al., 2023). Informally, a learning algorithm is k-list replicable if there is a list L of
cardinality k of good hypotheses so that the algorithm always outputs a hypothesis in L with high probability. & is
called the list complexity of the algorithm. List replicability generalizes perfect replicability, which corresponds
to the special case where k = 1. However, as noted in Dixon et al. (2023), perfect replicability is unattainable
even for simple problems. List replicability provides a natural relaxation, allowing meaningful guarantees while
still ensuring controlled variability in algorithm outputs.

We investigate list replicability in the context of reinforcement learning (RL), or more specifically, probably ap-
proximately correct (PAC) RL in the tabular setting. In RL, an agent interacts with an unknown environment
modeled as a Markov decision process (MDP) in which there is a set of states .S with bounded size that describes
all possible status of the environment. At a state s € .S, the agent interacts with the environment by taking an ac-
tion a from an action space A, receives an immediate reward and transits to the next state. The agent interacts with
the environment episodically, where each episode consists of H steps. The goal of the agent is to interact with the
environment by executing a series a policies, so that after a certain number of interactions, sufficient information
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is collected so that the agent could find a policy that performs nearly optimally. Replicability is a well-known
challenge in RL, as RL algorithms are empirically observed to be unstable and sensitive to variations in training
conditions. Our work aims to address this issue by introducing and analyzing list replicability in the PAC-RL
framework. Moreover, by studying the replicability of RL from a theoretical point of view, we could build a
clearer understanding of the instability issue of RL algorithms, and finally make progress towards enhancing the
stability of empirical RL algorithms.

Theoretically, there are multiple ways to define the notion of list replicability in the context of RL. We may say
an RL algorithm is k-list replicable, if there is a list L of policies with cardinality k, so that the near-optimal
policy found by the agent always lies in L with high probability, where the list L depends only on the unknown
MDP instance. Under this definition of list replicability, it is only guaranteed that the returned policy lies in a list
with small size: there is no limit on the sequence of policies executed by the agent (the trace). We call such RL
algorithms to be weakly k-list replicable.

In certain applications, the above weak notion of list replicability may not suffice, and a more desirable notion
of list replicability is to require both the returned policy and the trace (i.e., sequence of policies executed by the
agent) lies in a list of small-size. This stronger notion of list replicability has been studied in multi-armed bandit
(MAB) (Chen et al., 2025), and similar definition of replicability has been studied by Esfandiari et al. (2023) in
MAB under p-replicability (Impagliazzo et al., 2022). In these works, it has been argued that limiting the number
of possible traces (in terms of actions) of an MAB algorithm is more desirable in scenarios including clinical trials
and social experiments. Therefore, the stronger notion of list replicability for RL mentioned above is a natural
generalization of existing replicability definitions in MAB, and in this work, we say an RL algorithm to be strongly
k-list replicable if such stronger notion (in terms of traces of policies) of list replicability holds.

The central theoretical question studied in this work is whether we can design list replicable PAC RL algorithms in
the tabular setting. We give an affirmative answer to this question. We note that existing algorithms can potentially
generate an exponentially large number of policies (and their execution traces) for the same problem instance, and
hence, new techniques are needed to achieve our goal.

Interestingly, our theoretical investigation offers insights into addressing the instability commonly observed in
practical RL algorithms. In particular, the new technical tools developed through our analysis can be integrated
into existing RL frameworks to enhance their stability.

Below we give a more detailed description of our theoretical and empirical contributions.

Theoretical Contributions. Our first theoretical result is a black-box reduction which converts any PAC RL
algorithm in the tabular setting to one that is weakly k-list replicable with k& = O(|S|?|A|H?). Here, |S]| is the
number of states, |A| is the number of actions and H is the horizon length. Due to space limitation, the description
of the reduction and its analysis is deferred to Appendix F.

Theorem 1.1 (Informal version of Theorem F.1). Given a RL algorithm A(ey, do) that interacts with an unknown
MDP and returns an eg-optimal policy with probability at least 1 — 0. There is a weakly k-list replicable algorithm
(Algorithm 3) with k = O(|S|?| A|H?) that makes |S|H calls to A with ey = W‘M and 69 = 6/(8|S||H|).
For any unknown MDP instance M, with probability at least 1 — §, the algorithm returns an e-optimal policy
m € II(M), where II(M) is a list of policies that depends only on the underlying MDP M with size |II(M)| = k.

Using PAC RL algorithms in the tabular setting (e.g. the algorithm by Kearns and Singh (1998a)) with sample
complexity polynomial in | S|, |A|, H, 1/€g and log(1/do)) as A, the final sample complexity of our weakly k-list
replicable algorithm in Theorem 1.1 would be polynomial in |S|, |A|, H, 1/e and 1/§. Compared to existing
algorithms in the tabular setting, the sample complexity of our algorithm has much worse dependence on 1/
(polynomial dependence instead of logarithm dependence), which is common for algorithms with list replicability
guarantees (Dixon et al., 2023). On the other hand, the list complexity & of our algorithm has no dependence on

J.
Our second result is a new RL algorithm that is strongly k-list replicable with k = O(|S|3|A|H3).

Theorem 1.2 (Informal version of Theorem 6.1). There is a strongly k-list replicable algorithm (Algorithm 2) with
k = O(|S|3|A|H?), such that for any unknown MDP instance M, with probability at least 1 — 6, the algorithm
returns an e-optimal policy, and the sequence of policies executed by the algorithm and the returned policy lies in
a list with size k that depends only on M. Moreover, the sample complexity of the algorithm is polynomial in | S
|A|, H, 1/¢, 1/6.

B
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Our second result shows that, perhaps surprisingly, even under the more stringent definition of list replicability,
designing RL algorithm in the tabular setting with polynomial sample complexity and polynomial list complexity
is still possible. The description of Algorithm 2 is given in Section 6.

Finally, we prove a hardness result on the list complexity of weakly replicable RL algorithm in the tabular setting,
completing our new algorithms.

Theorem 1.3 (Informal version of Theorem H.3). For any weakly k-list replicable RL algorithm that returns an
e-optimal policy with probability at least 1 — 0, we have k > lSHA‘(Hfﬂgg‘A‘ I511-3)

1
o< |S||A|[H+1"

1
as long as € < STATH and

Theorem 1.3 shows that the list complexity of any weakly k-list replicable algorithm is Q2(SAH), provided that
its suboptimality and failure probability are both at most O(1/(SAH)). Theorem 1.3 is proved by a reduction
from RL to the MAB and known list complexity lower bound for MAB (Chen et al., 2025). Its formal proof can
be found in Appendix H.

Empirical Contributions. We further show that our robust planner (presented in Section 5), one of our new
technical tools for establishing Theorem 1.1 and Theorem 1.2, can be incorporated into practical RL frameworks
to enhance their stability. The empirical findings are presented in Section 7.

2 RELATED WORK

There is a long line of research dedicated to understanding the complexity of reinforcement learning by studying
learning in a Markov Decision Process (MDP). One well-established setting is the generative model, which ab-
stracts away exploration challenges by assuming access to a simulator that allows sampling from any state-action
pair. A number of works (Kearns and Singh, 1998a; Pananjady and Wainwright, 2020; Kakade, 2003; Azar et al.,
2013; Agarwal et al., 2020; Wainwright, 2019b;a; Sidford et al., 2018a;b; Li et al., 2024b;a; 2022; Even-Dar and
Mansour, 2003; Shi et al., 2023; Beck and Srikant, 2012; Cui and Yang, 2021; Sidford et al., 2018b; Wainwright,
2019b; Azar et al., 2013; Agarwal et al., 2020) have established near-optimal sample complexity bounds for learn-
ing a policy in this regime. Specifically, to learn an e-optimal policy with high probability, the statistically optimal
sample complexity is of the order poly(|S|, |A|, H, 1/€), where H denotes the horizon or the effective horizon of
the environment. These algorithms generally fall into two categories: those that estimate the probability transition
model and those that directly estimate the optimal Q-function. However, due to the inherent randomness in sam-
pling, these approaches do not guarantee list-replicable policieseach independent execution of the algorithm may
return a different policy, potentially leading to an exponentially large set of output policies.

In contrast, the online RL settingwhere there is no access to a generative modelhas seen significant progress
over the past decades in optimizing sample complexity. Notable contributions include (Kearns and Singh, 1998b;
Brafman and Tennenholtz, 2002; Kakade, 2003; Strehl et al., 2009; Auer, 2002; Strehl et al., 2006; Strehl and
Littman, 2008; Kolter and Ng, 2009; Bartlett and Tewari, 2009; Jaksch et al., 2010; Szita and Szepesvari, 2010;
Lattimore and Hutter, 2012; Osband et al., 2013; Dann and Brunskill, 2015; Agrawal and Jia, 2017; Dann et al.,
2017; Jin et al., 2018; Efroni et al., 2019; Fruit et al., 2018; Zanette and Brunskill, 2019; Cai et al., 2019; Dong
et al., 2019; Russo, 2019; Neu and Pike-Burke, 2020; Zhang et al., 2020; 2021; Tarbouriech et al., 2021; Xiong
et al., 2022; Ménard et al., 2021; Wang et al., 2020; Li et al., 2021b;a; Domingues et al., 2021; Zhang et al., 2022).
These works typically evaluate algorithmic performance within the regret framework, comparing the accumulated
reward of an algorithm against that of an optimal policy. When adapted to the Probably Approximately Correct
(PAC) RL framework, these results imply a sample complexity of poly(|S|, |A|, H,1/¢) to learn an e-optimal
policy with high probability. To achieve a balance between exploration and exploitation, the aforementioned
algorithms generally follow a common iterative frameworkmaintaining a policy and refining it as new data is
collected. For example, UCB-type algorithms (e.g., Jin et al. (2018)) maintain an approximate @)-function and
leverage an upper-confidence bound to guide data collection. However, due to the iterative updates of these
algorithms, they inherently fail to achieve polynomial complexity in either the strong or the weak notion of list
replicability, as policies are likely to change at each iteration, and small stochastic error could have significant
impact on the policies executed by the algorithm.

Recent studies have begun exploring replicable reinforcement learning. (Karbasi et al., 2024; Eaton et al., 2023)
examined p-replicability, as defined in (Impagliazzo et al., 2022). Intuitively, p-replicability ensures that two exe-
cutions of the same algorithm, when initialized with the same random seed, yield the same policy with probability
at least 1 — p. Meanwhile, (k, §)-weak list replicability requires that an algorithm consistently outputs a policy
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from a fixed list of at most & policies with probability at least 1 — §. However, a p-replicable algorithm may still
generate an exponentially large number of distinct policies, as each seed may correspond to a different output
policy. Thus, such algorithms may still suffer from exponential weak (or strong) list complexity. (Esfandiari et al.,
2023) further studied the Multi-Armed Bandit (MAB) problem under p-replicability, where two independent ex-
ecutions of a p-replicable MAB algorithm, sharing the same random string, must follow the same sequence of
actions with probability at least 1 — p.

Beyond the above frameworks, there is a growing body of work studying replicability and closely related stability
notions in classical learning theory. Chase et al. (2023) introduce global stability, a seed-independent variant of
replicability, and clarify its relationship to classical notions of algorithmic stability. Bun et al. (2023) further show
that several such stability notions are essentially equivalent and develop general “stability booster” constructions
that yield replicable algorithms from non-replicable ones, revealing tight connections to differential privacy and
adaptive data analysis. More recently, Kalavasis et al. (2024) investigate the computational landscape of replicable
learning, identifying settings where efficient replicable algorithms provably do not exist, while Blondal et al.
(2025) study stability and list replicability in the agnostic PAC setting and prove sharp trade-offs between excess
risk, stability, and list size. Our results are complementary to this line of work: we focus on control problems
rather than supervised learning, and we explicitly track the list complexity of both output policies and execution
traces in tabular RL, showing that nontrivial list-replicability guarantees are achievable with polynomial sample
complexity.

In the online learning setting, the only known work addressing list replicability is by Chen et al. (2025), who
studied the concept in the context of Multi-Armed Bandits (MAB). The authors define an MAB algorithm as
(k, 6)-list replicable if, for any MAB instance, there exists a list of at most k action traces such that the algorithm
selects one of these traces with probability at least 1 — §. Our definition of strong list replicability for RL naturally
extends this notion to RL. However, due to the long-horizon nature of RL, achieving list replicability in RL
presents significantly greater challenges.

Concurrent to our work, Hopkins et al. (2025) study sample-efficient replicable RL in the tabular setting. Their
algorithms also stably identify a set of ignorable states and then perform backward induction using data collected
from the remaining states, which is conceptually similar to our use of robust planning on non-ignorable states.
However, they focus on fully replicable algorithms (a single policy that reappears with high probability), with-
out explicitly analyzing the induced list size, whereas we design algorithms with explicit (k, ¢)-list-replicability
guarantees while retaining near-optimal sample complexity.

3 PRELIMINARIES

Notations. For a positive integer N, we use [N] to denote {0, 1,..., N — 1}. For a condition £, we use 1[£] to
denote the indicator function, i.e., 1[€] = 1 if £ holds and 1[€] = 0 otherwise. For a real number x and ¢ > 0,
we use Ball(z, €) to denote [ — €,z + €|. For two real numbers a < b, we use Unif(a, b) to denote the uniform
distribution over (a, b).

Markov Decision Process. Let M = (S, A, P, R, H, s¢) be a Markov Decision Process (MDP). Here, S is the
state space, and A = {1,2,...,|Al} is the action space. P = (P},)pe[n]. Where foreach h € [H], P, : S x A —
A(S) is the transition model at level & which maps a state-action pair to a distribution over states. R = (Rp)pe[#]
where for each h € [H]|, Ry, : S x A — [0,1] is the deterministic reward function at level h. H € Z7T is the
horizon length, and 5o € S is the initial state. We further assume that the reward functions R = (Rp,)nes) are

known. !

A (non-stationary) policy 7 chooses an action a € A based on the current state s € S and the time step h € [H].
Formally, 7 = {m;,};; where for each h € [H], 7, : S — A maps a given state to an action. The policy 7
induces a (random) trajectory sg, Gg, 7o, S1, @1, 71, - - -y SH—1, GH—1,TH—1, Where foreach h € [H], ap, = 7x(sp),
Ty = Rh(sh, ah) and Sha1 ™~ Ph(sh,ah) when h < H — 1.

Interacting with the MDP. In RL, an agent interacts with an unknown MDP. In the online setting, in each episode,
the agent decides a policy 7, observes the induced trajectory, and proceeds to the next episode. In the generative

"For simplicity, we assume deterministic rewards and the initial state, and known reward function. Our algorithms can be
easily extended to handle stochastic rewards and initial state, and unknown rewards distributions.
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model setting, in each round, the agent is allowed to choose a state-action pair (s,a) € S x A and alevel h € [H],
and receives a sample drawn from P}, (s, a) as feedback.

Value Functions and Q)-Functions. For an MDP M, given a policy 7, a level h € [H| and (s,a) € S x A, the
Q-function is defined as Q7 )/(s,a) = E [Zg;i Th | $n = s,ap, = a, M, 7|, and the value function is defined

as V}:M(s) =E [Z,{{;}L T | $p =8, M, ’/T:|. We denote Q;‘L)M(s, a) = QZTM(S, a) and V,:‘)M(s) = Vhff;w(s)
where 7* is the optimal policy. We also write Vy; = V"), (s0) and Vyj; = V{7, (so) for a policy m. We may omit
M from the subscript of value functions and ()-functions when M is clear from the context (e.g., when M is the
underlying MDP that the agent interacts with). We say a policy 7 to be e-optimal if V™ > V* —e.

The goal of the agent is to return a near-optimal policy 7 after interacting with the unknown MDP M by executing
a sequence of policies (or by querying the transition model in the generative model).

Further Notations. For an MDP M, define the occupancy function df,(s,h) = Pr[s, = s | M,n] and
dh; (s, h) = max, Prls, = s | M, n]. We may omit M from the subscript of d7, (s, h) and d}, (s, h) when M is
clear from the context. For an MDP M, we write

Ga‘pM = {VI:M(S) - QZ,M(&O’) | (Sva’) €5 x Avh € [H]} (1)

Two MDPs M, and Ms are said to be e-related if M and My share the same state space S, action space A, reward
function and initial state, and for all (s,a) € S x Aand h € [H — 1],

> ’P}fwl(s’ | s,a) — PM2(s' | s,a)| < ¢ )
s'eS

where P}]LV[ ! is the transition model of M at level A and P}]Luz is that of M5 at the same level.

List Replicability in RL. We now formally define the notion of list replicability of RL algorithms in the online
setting. For an RL algorithm A, we say A to be weakly (k, 0)-list replicable, if for any MDP instance M, there is
a list of policies II(M) with cardinality at most k, so that Pr[r € II(M)] > 1 — §, where 7 is the (supposedly)
near-optimal policy returned by A when interacting with M.

For an RL algorithm A, we say A to be strongly (k, §)-list replicable, if for any MDP instance M, there is a list
Trace(M) with cardinality at most k, so that Pr[((mo,71,...),7) € Trace(M)] > 1 — §, where (7, 71, ...) is
the (random) sequence of policies executed by A when interacting with M and 7 is the (supposedly) near-optimal
policy returned by A when interacting with M.

4 OVERVIEW OF NEW TECHNIQUES

In this section, we discuss the techniques for establishing Theorem 1.1 and Theorem 1.2.

The Robust Planner. To motivate our new approach, consider the following simple MDP instance for which
most existing RL algorithms would fail to achieve polynomial list complexity. There is a state s at each level
h € [H], and the action space is {a1,a2}. At level h, if a; is chosen, s, transitions to sp1 with an unknown
probability py, ;, otherwise sy, transitions to an absorbing state. The agent receives a reward of 1 at the last level.
For this instance, if |pj,,1 — pn,2| = exp(—H), then for all h € [H], no RL algorithm could differentiate pj, ; and
Dh,2 unless we draw an exponential number of samples. Therefore, if the RL algorithm simply returns a policy
by maximizing the estimated optimal ()-values for each sj, then we would choose either a; or as, and hence,
there could be 27 different policies returned by the algorithm. As most existing RL algorithms choose actions by
maximizing the estimated ()-values, they would all fail to achieve polynomial list complexity even for this simple
instance. This also explains why existing RL algorithms tend to be unstable and sensitive to noise.

To better understand our new approach, let us first consider the simpler generative model setting. Standard analysis
shows that by taking sufficient samples for all (s,a) € S x A and h € [H] to build the empirical model M, we
would have |Qp(s,a) —Q} 5/(s,a)| < o forall (s,a) € Sx Aand h € [H]. Here, Qp(s,a) = QZ,M(S’ a) is the
estimated ()-value, and ¢ is a statistical error that can be made arbitrarily small by drawing more samples. Now,
for a given state s and level h, instead of choosing an action by maximizing @), (s, a), we go through all actions in a

fixed order 1, 2, ... |Al, and choose the lexicographically first action a so that Qp (s, a) > max, Qr (S, @) —Factions
where 7,cti0n 1S @ tolerance parameter drawn from the uniform distribution.
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Now we show that our new approach achieves small list complexity. The main observation is the that, for a
fixed tolerance parameter r,ction, if difference between raciion and Gapy(s,a) = Vi*(s) — Qi (s, a) satisfies
Taction & Ball(Gapy,(s,a),2¢g) for all (s,a) € S x A and h € [H], then the returned policy will always be
the same regardless of the estimation errors. To see this, for an action a, if raetion ¢ Ball(Gapy, (s, a), 2€p),

then whether Qh(s, a) > Vh(s) — Taction OF not will always be the same regardless of the stochastic noise as
long as |Qn(s,a) — @ (s,a)| < €. Since we always choose the lexicographically first action a satisfying

Qh(s, a) > Vi (8)—Traction, the action chosen for s will always be the same. Equivalently, by defining Badction =
Uh7s)a Ball(Gapy, (s, a), 2¢g), the returned policy will always be the same so long as raction ¢ Badaction. BY
drawing 7,ction from the uniform distribution over (0,2H S Aey/d), we would have Pr[raction ¢ Badaction] >
1 — 6. Moreover, for two tolerance parameters 7. ., ., 72 ;.. & Badaction, if for all (s,a) € S x Aand h € [H]
we have either 71 ;. < 7200 < Gapy(s,a) or Gap,(s,a) < 7l 0. < 72.i0ns then the returned policy will
also be the same no Matter Taction = T'ction OF Taction = Toetion- SiNce there are at most |S||A|H + 1 different
values for Gapy, (s, a) for the underlying MDP M, there could be at most |S||A|H + 1 different policies returned
by our algorithm as long as raction ¢ Badaction- Finally, the suboptimality of the returned policy can be easily

shown to be O(H - r'action) -

Weakly k-list Replicable Algorithm in the Online Setting. Our algorithm in the online setting with weakly
k-list replicable guarantee is based on building a policy cover (Jin et al., 2020). Given a black-box RL algorithm,
for each (s, h) € S x [H], we set the reward function to be RZ}h(s’, a) = 1[s’ = s, h = k'], invoke the black-box
RL algorithm with the modified reward function, and set the returned policy to be 7. Since %" is an e-optimal
policy, we have d*" (s,h) > d*(s,h) — €. At this point, one could use 7*" to collect samples and estimate the
transition model P, (s, a), and return a policy by invoking the robust planning algorithm mentioned above. The
issue is that there could be some (s, h) € S x [H] unreachable for any policy =, i.e., d*(s, h) is small. For those
(s, h), it is impossible to estimate the transition model P}, (s, a) accurately. On the other hand, our robust planning

algorithm requires | Q5 (s, a) — Q7 (s,a)| < ¢ forall (s,a) € S x Aand h € [H].

To tackle the above issue, we use an additional truncation step to remove unreachable states. For each (s, h) €
S x [H], we first use the roll-in policy 7*" to estimate the probability of reaching s at level h. If the estimated

probability is small, it would be clear that d* (s, h) is also small as a=" (s,h) > d*(s,h) — €, so that (s, h) can be
removed from the MDP. On the other hand, implementing the above truncation step naively would significantly
increase the list complexity of our algorithm as the returned policy depends on the set of (s,h) € S x [H|
being removed. Here, we use an approach similar to the robust planning algorithm mentioned earlier. We use
a randomly chosen reaching probability truncation threshold 7y, drawn from the uniform distribution, and
for each (s,h) € S x [H], we declare (s,h) to be unreachable iff the estimated reaching probability (using
#%") does not exceed runc. Similar to the analysis in the robust planning algorithm, for a reaching probability
truncation threshold 7¢.unc, the set of (s, k) being removed would be the same as long as the difference 7 ync
and d* (s, h) is large enough for all (s, h) € S x [H]. Moreover, two reaching probability truncation thresholds
riune and 72 will result in the same set of (s, k) being removed if for all (s,h) € S x [H| we have either
Teune < Teune < d*(s,h) or d*(s,h) < rl .. < ri ... Therefore, the total number of different sets of (s, h)
being removed is at most O(|S|H).

Strongly £-list Replicable Algorithm in the Online Setting. Unlike the case of weak list replicability where
we can use a black-box RL algorithm to determine the set of unreachable states independently at each level, for
strongly list replicable RL, such a method would not suffice due to the potentially large list complexity of the
black-box algorithm. Our algorithm with strongly k-list replicable guarantees employs a level-by-level approach:
for each level h, we find a policy 7% to reach s at level h for each s € S, build an empirical transition model
for level h, and proceed to the next level h + 1. To ensure list replicability guarantees, for each (s, h) € S x [H],
we use the same robust planning algorithm to find 7#°". As mentioned ealier, for any level h, there could be
unreachable states, and the estimated transition model for those states could be inaccurate. To handle this, for
each level h, based on the estimated transition models of previous levels, we test the reachability of all states
in level h by using the same mechanism as in our previous algorithm, and remove those unreachable states by
transitioning them to an absorbing state Sapsorh in the estimated model.

Although the algorithm is conceptually straightforward given existing components, the analysis is not. For the
new algorithm, states removed at level h have significant impact on the reaching probabilities of later levels,
which also affect the planned roll-in policies of later levels. Such dependency issue must be handled carefully to
have a polynomial list complexity. To handle this, we prove several structural properties of reaching probabilities
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in truncated MDPs in Section D. For the time being we assume that in our algorithm, for each level h, instead
of using estimated reaching probabilities, the algorithm has access to the true reaching probabilities, and those
reaching probabilities have taken unreachable states removed in previous levels into consideration. Le., for a
reaching probability truncation threshold 7y, We first remove all states in the first level that cannot be reached
with probability higher than r,.nc, recalculate the reaching probability in the second level after truncating the
first level, remove unreachable states in the second level (again using the same threshold 7y, ), an so on. We use
U, (Ttrunc) to denote the set of states removed in level h during the above process, and see Definition D.1 for a
formal definition. We show that for different r,unc, Up (trunc) could not be an arbitrary subset of the state space,
and the main observation is that Uy, (r;unc) satisfies certain monotonicity property, i.e., given r1,79 € [0, 1], if
r1 < ro then we have Uy, (r1) C Uy (r2). This observation can be proved by induction on h, and see Lemma D.2
and its proof for more details.

As an implication, if we write U(r) = (Up(r),U1(r),...,Un—_1(r)), then there could be at most |S|H + 1
different choices of U(r) for all » € [0,1] by the pigeonhole principle. Therefore, after fixing the reaching
probability truncation threshold, the set of states that will be removed at each level will be fixed, and for all
different reaching probability truncation thresholds, there could be at most |S|H + 1 different ways to remove
states even if we consider all levels simultaneously.

The above discussion heavily relies on the true reaching probabilities. As another implication of the monotonicity
property, there is a critical reaching probability threshold Crit(s, k) for each (s,h), and s € Up(r) iff r <
Crit(s, h) (cf. Corollary D.5). Therefore, for a fixed reaching probability truncation threshold ¢y, as long as
the distance between ¢y, and Crit(s, i) is much larger than the statistical errors, the set of states being removed
will still be the same as U(7unc) even with statistical errors. In particular, if we draw 7¢;yn from a uniform
distribution as in previous algorithms, with high probability 7¢,un. and Crit(s, k) would have a large distance for
all (s,h) € S x [H], in which case the set of removed states will be one of those |S|H + 1 different choices of
U(r).

5 ROBUST PLANNING

In this section, we formally describe our robust planning algorithm (Algorithm 1). Here, it is assumed that there is
an unknown underlying MDP M. Algorithm 1 receives an MDP M and a tolerance parameter 7,ction as input, and

it is assumed that M and M are ey-related (see (2) for the definition). In Algorithm 1, for each (s, h) € S x [H],
we go through all actions in the action space A in a fixed order 1,2, ..., |A|, and choose the first action a so that

QZ M(S’ CL) > V:N[(S) — Taction-

Algorithm 1 Robust Planning

: Input: MDP M , tolerance parameter 7action-
: Output: near-optimal policy 7

. Define 75,(s) = min{a € A | Q} ,(5,a) > V" 1 — raction } for each (s, h) € S x [H]

B WO =

. return 7

Our first lemma characterizes the suboptimality of the returned policy. Its formal proof is based on the performance
difference lemma (Kakade and Langford, 2002) and can be found in Section C.

Lemma 5.1. Suppose M and M are eg-related. The policy 7 returned by Algorithm 1 satisfies Vﬁ > Vi —
2H260 - ractionH-

Our second lemma shows that if 7,ction is chosen to be far from Gapy, 5/ (s, a) = V,:M(s) — Q;‘LM(S7 a) for all
(s,a) € Sx Aandh € [H], then the returned policy 7 depends only on M and 7,¢tion. Moreover, for two choices
7l ion and 72, of the tolerance parameter 7,ction, the returned policy will be the same if rl ;. and 72

always lie on the same side of Gapy, 5(s,a) for all (s,a) € S x A and h € [H]. Full proof of the lemma and
corollary can be found in Section C.

and 2

. ) )
Lemma 5.2. Suppose M and M are €y-related. For two tolerance parameters r 2 etions I

action

o Tl ions Toction & Ugecap,, Ball(g, 2H?¢y) where Gap,, is as defined in (1);

: 1 2 1 2
* for any g € Gap]ﬂ) eztherg < Taction < Taction O Taction < Taction < 9
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and 12

then the returned policy % depends only on M and 1uction, and for both tolerance parameters r} 2 ction’

action
the returned policy ™ would be identical for the same underlying MDP M.

As a corollary of Lemma 5.1 and Lemma 5.2, we show how to design a list-replicable RL algorithm in the
generative model setting by invoking Algorithm 1 with a randomly chosen parameter 7,ction -

Corollary 5.3. In the generative model setting, there is an algorithm with sample complexity polynomial in |S|,
|A|, 1/e and 1/, such that with probability at least 1 — 0, the returned policy is e-optimal and always lies
in a list II(M) where TI(M) is a list of policies that depend only on the unknown underlying MDP M with
[I(M)[ = O(|S||A[H).

6 STRONGLY k-LIST REPLICABLE RLL ALGORITHM

In this section, we present our strongly k-list replicable algorithm (Algorithm 2). As mentioned in Section 4,
Algorithm 2 employs a layer-by-layer approach. In Algorithm 2, for each h € [H]|, Uy is the set of states
estimated to be unreachable at level h, and we initialize Uy = S\ {so} where s is the fixed initial state. For each

iteration h, we assume that U, 1 has been calculated, and for all s ¢ Uh, we assume that a roll-in policy #5" has
been determined (except for A = 0, since any policy would suffice for reaching the initial state). Now we describe
how to proceed to the next iteration h + 1.

For each s ¢ Up and a € A, we build a policy ™% based on #*", and execute 7% to collect samples
and calculate Ph(s, a) as our estimate of Py, (s,a). Based on {th (s,a)}n<p and {Uh/}h/gh, we build an MDP
M"+1 (cf. (3)). Foreach i/ < hand s € S, if s ¢ Uy the transition model of s in M"+1 at level &’ would be
the same as Ph/ (s,)). If s € Uh/, we always transit s to an absorbing state sapsorh i M"+1 at level h'. Given

M"+1, for each s € S, we calculate dynia (8, h + 1) as our estimate of d*(s, h + 1), and we include s in Uy

if dj\;[ it (s,h + 1) < Ttrunc- Here, ryrune is a reaching probability truncation threshold drawn from the uniform
distribution. For each s ¢ U n+1. we further find a roll-in policy #*/*1 by invoking Algorithm 1 on M"*! with a

modified reward function R,S,’,h+1 (s',a) = 1[W = h + 1, s’ = s] and tolerance parameter raction, Where raction 18

also drawn from the uniform distribution. After finishing all these steps, we proceed to the next iteration.

Finally, after finishing all iterations, we invoke Algorithm 1 again with MDP M¥~1 and the same tolerance
parameter 7,ction, and return the output of Algorithm 1 as the final output. The formal guarantee of Algorithm 2
is stated in the following theorem. Its proof can be found in Section E.

Theorem 6.1. For any unknown MDP instance M, there is a list Trace(M) with size at most k = O(|S|3|A|H?)
that depends only on M, and with probability at least 1 — 6, the policy m returned by Algorithm 2 is e-optimal,
and ((mwo, 71, ...),m) € Trace(M), where (7o, 71, .. .) is the sequence of policies executed by Algorithm 2 when
interacting with M .

7 EXPERIMENTS

In this section, we show that our new planning strategy can be incorporated into empirical RL frameworks to
enhance their stability. In our experiments, we use three different environments in Gymnasium (Towers et al.,
2024): Cartpole-v1, Acrobot-vl and MountainCar-v0. For each environment, we use a different empirical RL
algorithms: DQN (Mnih et al., 2015), Double DQN (Van Hasselt et al., 2016) and tabular Q-learning based on
discretization. We combine our robust planner in Section 5 with the above empirical RL algorithm by replacing
the planning algorithm with Algorithm 1. Unlike our theoretical analysis, we treat the tolerance parameter 7ction
as a hyperparameter and experiment with different choices of 7,¢ti0n. Note that when r,cti0n = 0, Algorithm 1
is equivalent to picking actions that maximize the estimated (-value as in the original empirical RL algorithms
(DQN, Double DQN and tabular Q-learning). The results are presented in Figure 1. Here we repeat each exper-
iment by 25 times. The z-axis is the number of training episodes, the y-axis is the average award of the trained
policy, & standard deviation across 25 runs. More details can be found in Appendix 1.

Our experiments show that by choosing a larger tolerance parameter 7,ction, the performance of the algorithm
becomes more stable at the cost of worse accuracy. Therefore, by choosing a suitable hyperparameter 7,ction, We
could achieve a balance between stability and accuracy.

We further use our new planning strategy in more challenging Atari environments, such as NameThisGame. Using
the BTR algorithm ( (Clark et al., 2024)) as the baseline, we find that simply augmenting it with the robust planner



Algorithm 2 Strongly k-list Replicable RL Algorithm

1.

2:
3:
4:
5:
6:
7

8:

11:
12:

13:

14:
15:

16:
17:
18:
19:
20:

Input: error tolerance e, failure probability §
QOutput: near-optimal policy 7

8AS?H? _ 2 _ 2 _ _ S%log(8HS%A/5)
5 , €0 — m,el —501H 6(),77()—3€1H,W— W

Generate random numbers 7 action ~ Unif(eq, 2€1), 7trune ~ Unif (319, 61)
Initialize Uy = S \ {s0}
for h € [H — 1] do

for (s,a) € (S\ Up) x Ado

Initialize C7 =

Define policy 57, where for each b’ € [H], 75" (s') = “ nzh
’ W ol B <h
Collect W trajectories {(séw), aéw), o sg}”ll, a;}”z)l W_, by executing 7@ for W times
Zyzl ]l[(sglw),a;lw),sgl?l):(s,a,s')]
W1y a0y ) =(s,0)]

w=1

For each s’ € S, set Py (s' | s,a) =

end for
Define MDP M+ = (S U {sapsorb }, 4, PP, R, H, s), where for each b/ € [H],

Ph’ (3/ ‘ Saa) I < h7 S §é ﬁh’ U {Sabsorb} and s/ 7é Sabsorb

]5;;,“(3' | s,a) =<0 B < hys ¢ Up U{Sabsorb} and s’ = Sapsorb -

]1[3/ = Sabsorb] h' >hors € Uh/ U {Sabsorb}

Set ﬁh+1 ={se S| d}lhﬂ(s, h+1) < Ttrunc}
for s € S\ Upq do

3

Define MDP M*/*1 = (S U {sapsorp }, A, PPT1, RS"1 H s4), where P+ is as defined in (3) and

RIS a) = 1[0 =h+ 1,5 = ¢
Invoke Algorithm 1 with input M "+ and r,c4ion, and set 75" %1 to be the returned policy
end for
end for _
Invoke Algorithm 1 with input M H=1 and 7,etion, and set 7 to be the returned policy
return
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leads to a substantial improvement. In particular, the performance on NameThisGame increases by more than
10%, demonstrating that even this lightweight modification can yield significant gains in practice. The results are

presented in Figure 9.

8 CONCLUSION

We conclude the paper by several interesting directions for future work. Theoretically, our results show that even
under a seemingly stringent definition of replicability (strong list replicability), efficient RL is still possible in
the tabular setting. An interesting future direction is to develop replicable RL algorithms under more practical
definitions of replicability and/or with function approximation schemes using our new techniques. Empirically,
it would be interesting to incorporate our robust planner with other practical RL algorithms to see whether their
stability could be improved. Currently, our robust planner can only work with discrete action spaces, and it

remains to develop new techniques to overcome this limitation.

10
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J LLM Usage 52

A OVERLINE OF THE PROOFS

A.1 DEFINATIONS

PAC RL and sample complexity. We work in the standard Probably Approximately Correct (PAC) framework
for episodic reinforcement learning. Let M be a finite-horizon Markov decision process with state space S, action
space A, horizon H, and a fixed initial-state distribution. Consider a (possibly randomized) learning algorithm
Alg that interacts with M (either via a generative model or by running episodes). Denote by majg, s the final policy
output by Alg, and by V7 the value of a policy 7 in M.

PAC RL. Given accuracy € > 0 and confidence 6 € (0, 1), we say that Alg is an (e, §)-PAC RL algorithm for a
class of MDPs M if, for every M € M,

P(Vyf®™ > Vip—e€) > 1 -4,

where the probability is over all randomness of Alg and the environment, and V73 is the value of an optimal policy
in M.

Sample complexity. The sample complexity of Alg in this PAC RL setting is the worst-case (over M € M)
expected number of environment samples used by Alg before it outputs its final policy and stops. In the episodic
setting this is the total number of state—action—next-state transitions (equivalently, time steps across all episodes);
in the generative-model setting this is the total number of generative queries. We are interested in algorithms
whose sample complexity is polynomial in |S|, |A|, H, 1/e, and 1/4.

A.2 APPENDIX ROADMAP

We begin with a concise guide to the appendix materials.

Appendix A provides an outline of the appendix, high-level proof blueprints for strong and weak list replicability,

and several schematic figures for intuition.

Appendices B and I contain experiments:

» Appendix B presents a direct toy experiment in the generative model with |A| = 2 that compares the
robust planner with the greedy planner by measuring the size of returned policies;

* Appendix I documents the implementation details for the experiments reported in the main text.

Appendix G gathers perturbation tools used across proofs, split into two parts: (i) when two MDPs have close
transition kernels, their value functions are close; and (ii) after truncation, the resulting value functions remain
close to those of the original MDP.

Appendices C— E develop the theory for strong list replicability.

* Appendix C analyzes the robust planner: it proves a small sub-optimality gap, establishes the mapping
between the tolerance parameter r,;,, and the selected actions, and derives the generative-model list-size
result.

16
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» Appendix D proves structural properties used by the strong resultmost notably, that the number of distinct
truncated MDPs (as a function of the reachability threshold) is finite and instance-dependent.

* Appendix E then combines the above ingredients into the complete proof of strong list replicability.

Appendix F presents the algorithm and proof for weak list replicability, which is technically simpler than the
strong case.

Appendix H establishes the hardness (lower-bound) result on list complexity.

A.3 PROOF OUTLINE OF ROBUST PLANNER

This part introduces the following scenario: when we have obtained estimates of all transition probabilities with
small errors (M and M are €-related as defined in Equation 2) , the returned policy satisfies both list replicability
(Lemma 5.2) and approximate optimality (Lemma 5.1) .

Lemma 5.1: We obtain approximate optimality through the following decomposition:

Vi = Vi =V = Ve, + Ve —VE+VE -V
M M M M

Lemma 5.1 Lemma G.1 Lemma C.1 Lemma G.2

< 2‘E[QGO + TactionH'
Lemma 5.2:
We use Qj,(s,a) — Vi (s) as an estimate of Gapy, (s, a) = V;*(s) — Q% (s, a) .

|Qn(s,a) = Vi(s) = Gapy, (s,a)| < [Qn(s,a) = Qfar(s,@)| + Vi) = Vi (s)]
=1Qp y(s,0) = Qp (s, @) + Vil a(s) = V7 ()]

Lemma G.1 Lemma G.1

S 2H260

Note that there are |S||A|H elements in the set Gap,y, = {V; )/ (s) — Q} p(s,a) | (s,a) € S x A, h € [H]}
which is defined in Equation 1 .

and 72

1
From the figure above, we observe that for the r; ction

Setion not in the shaded regions

U g€Gap,y, Ball(g,2H?¢) , if they lie in the same blank region between the two shaded regions, the policies
7 they return are identical.

When ¢ is sufficiently small, the proportion of the shaded area, as well as the failure probability, becomes suffi-
ciently small.

Corollary 5.3: Naturally, for the generative model, the length of the listis |S||A|H + 1.

17
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Illustration of robust planner: 'bad' intervals around gaps

0.12 0.35 0.65

Faction

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Faction @aNd Gapy =V (5) —Q " (s, a)

Figure 3: Robust planner

Illustration of reachability truncation: 'bad' intervals around Crity(s, h)

0.12 0.35 0.65

60 01 02 03 04 05 06 07 08 09

rtrunc @and Critp(s, h)

Figure 4: rtrunc illustration

A.4 PROOF OUTLINE OF WEAKLY REPLICABLE RL

For weak replicability, introduced in Algorithm 3, we first estimate the reachability probabilities using a black-box
algorithm, and then remove the states with low reachability probabilities.

We use d(s, h) defined in Algorithm 3 to estimate d%, (s, h)|. When the sample size is sufficiently large, their
values are very close:

* s 7 * ool
|d($7 h) - dM(57 h)| - ‘dM (Sa h) - d(s’ h)‘ + |dM(Sa h) - dM (57 h)|
Lemma F.7 chernoff bound properties of the Algorithm A

< 2¢g.

Lemma F.13: Following the above approach, we define the shaded regions similarly for r¢ync:

Badérunc - U Bau(d}kW(sv h)a 260)3
(s,h)eSx[H]

There are |S|H elements in the set {d},(s, h)} , also note that the 7¢;unc values lying in the same blank region
correspond to the same truncated MDP; thus, there are a total of |S|H + 1 truncated MDPs M.

Based on the proof of the robust planner above (Lemma 5.2), each truncated MDP M corresponds to at most
|S||A|H + 1 policies; thus, the total list length for weak replicability is (|S|H + 1)(|S||A|H + 1)

Lemma F.12: The returned policy 7 is e-optimal.

18
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* T _ /% * * % T T
VM - VM - V]\/[ - VM"trunc + VI\/[Ttrunc - VM"‘trunc + V]\lrtrunc - V]\/[

Lemma G.3 Lemma 5.1 Lemma G.3
2 2

=H |S‘rtrun0 +2H € + TactionH +0

<e€

A.5 PROOF OUTLINE OF STRONG REPLICABLE RL

The key difference of strong list replicability lies in that we do not eliminate all the states to be removed at once;

instead, we estimate the reachability probabilities using replicable policies layer by layer to remove the states.
(Algorithm 2)

Due to the dependency between the states removed across layers, the shaded regions we defined earlier are also
interdependent; therefore, we must rely on structured information to control the number of truncated MDPs. (This
is shown in Appendix D)

Specifically, this property manifests as a form of monotonicity: the more states are removed in a given layer, the
smaller the estimated reachability probabilities for the next layer, thereby leading to the removal of more states in
the subsequent layer. Thus, each state corresponds to a critical 7, that determines whether the state is removed,
this is defined in Defination D.4:

For each (s, h) € S x [H], define Crit(s, h) = inf{r € [0,1] | s € Up(r)}.
Therefore, it is easy to know that there are at most |S|H + 1 truncated MDPs.

We note that for each truncated MDP, when selecting policies for arbitrary states via layer-wise estimation, the
policies lie within the list of length |S||A|H + 1 (Lemma 5.2). Since we perform this operation for all |S|H states,
the length of the returned trajectory list for each truncated MDP is |S|H (|S||A|H + 1).

Combining with there are at most |S|H + 1 truncated MDPs, the strong list size is O(|S|3| A|H?).

Note that we use d-, (s, h+1) to estimate d}j /vy, (5, h+1) thenforany s € S, [d}/rounc (5, h+1) —d3, (s, h+
1)] < H?¢p (Lemma E.2).

So we just need 1o to be big enough and the failure probability will be small.

The same as weak replicability, we have the returned policy 7 is e-optimal.

* T * * * ™ e gy
VM - VM = VM - VMrmmc + VMmunc - VMmunc + VMmunc - VM

Lemma G.3 Lemma 5.1 Lemma G.3
2 2

= H*|S|rtrunc + 2H €0 + Taction H + 0

<e
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B EXPERIMENTS DEMONSTRATING LISTREPLICABILITY

B.1 MINIMAL CHAINMDP

We conduct preliminary numerical experiments to validate our theoretical predictions.

It directly validates our key claim for the robust planner (Algorithm 1): replacing strict argmax planning with the
tolerance and lexicographic rule collapses the set of policies observed across independent runs from many (often
exponential in the horizon on neartie instances) to a small list, consistent with our theory for the generative model

B.1.1 SETUP

We consider the following the Chain MDP with horizon H = 8; at each level h € {0,...,H — 1} there is a
single state and two actions a € {0, 1}. Choosing a either advances to the next level (success) or transitions to an
absorbing failure state (no reward). Only success at the last level yields reward 1. We make the two actions nearly
tied:

Pho=05+A4, pr1=05-A, A=0.02

This is the standard near-tie chain where small estimation noise can flip action choices at many levels, yielding up
to 2 distinct greedy policies, exactly the pathology highlighted in Section 4.

For each levelaction pair (h, a), we draw n = 40 i.i.d. next-state samples from the simulator, form an empirical
MDP M, and compute @, 1% by backward DP. We notice this is exactly the generative model case.

We compared the following two planners.

* Greedy: 7, = argmax, @h('» a).

* Robust planner (Alg. 1): with a fixed tolerance 7,.tion, select the first action in a fixed lexicographic order
(action O before 1) among those satisfying

Qh('v a) > H}za’JX Qh('7 al) — Taction-
When 7,i0n = 0, this reduces exactly to greedy.
Over R = 500 independent runs with fresh samples, we count the number of distinct final deterministic policies
produced by each planner, denoted distinct policies. This is the empirical analogue of the weak list size.

B.1.2 RESULT

Figure 5 shows that when using the greedy algorithm, policies are more dispersed, whereas when using the robust
planner, policies are more concentrated, demonstrating stronger replicability and stability.

Figure 6 shows that the list size monotonically decreases with threshold.

B.1.3 ANALYZE

(1) We observed from Figure 6 that the list size monotonically decreases with threshold. The line plot shows that
when 7,i0n increases from 0 to 0.03, the number of distinct policies drops from 168 to 12, almost monotonically.

This is completely consistent with the core criterion of Lemma 5.2.
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(2) We observed that Greedy (7aion = 0) is extremely unstable, which matches the exponential policy count of
the chain counter example . The line plot shows 168 policies at raeion = 0 (over 500 runs), while theoretically,
the greedy policy in the chain MDP can have up to ~ 2% outputs under multi-level tiny gaps. The observation
is entirely isomorphic to the chain example in Section 4 of the paper: strict arg max () amplifies tiny statistical
fluctuations at each level layer by layer, leading to discontinuous jumps across exponentially many policies across

runs.

(3) Robust Planner Turns Exponential into Polynomial: Under the generative model setting, Corollary 5.3 proves
that if r,rion is chosen randomly and avoids bad gaps, the number of possible output policies is at most | S|| A| H +1.
Our chain environment satisfies |S| = H, |A| = 2, so the upper bound is 2H? + 1. For H = 8, the upper bound
is 129; our list size (1257) for ryeion € [0.005,0.03] is significantly below the worst-case upper bound. This is
consistent with the theoretical expectation that the upper bound is for the worst case, and specific instances are

often smaller.

B.2 AN GRIDWORLD EXPERIMENT

Given that the experimental setup described earlier is overly simplistic, we have conducted analogous experiments
in the more complex discrete GridWorld environment. Since the analytical process is analogous to that presented
previously, we only elaborate on the experimental setup and report the corresponding results herein.

B.2.1 SETUP

* Environment: An N x N grid (default 5 x 5), with the start state (0,0) and the terminal state (N —
1, N — 1). The action set is {R, U}.

* Transition: Executing R/U succeeds in moving forward with probability pye (s, @); otherwise, the agent
enters a failure absorbing state. Reaching the terminal state yields a reward of 1 and terminates the
episode. To create nearly tied action values, a checkerboard-style minor advantage is introduced:

Diue($,R) = 0.5 £ 8,  puue(s, U) = 0.5 F 6 (opposite signs for adjacent grids)
* Learning/Planning: Generative sampling is used to estimate p(s,a) (With nper pair Samples per state-

action pair), followed by dynamic programming to obtain Q

— Ordinary: Greedily select actions via argmax@ for each grid.

— Robust: Select actions lexicographically (R < U) within max, Q(s7 @) — Taction (a simplified imple-
mentation of Algorithm 1).

e Metrics:

1. Policy: Count the number of distinct output policies across the entire table.

2. Trajectory-level (Strong List): Follow the learned policy from the start state to the terminal state,
count the number of distinct action sequences, and report the minimum k required to cover 90% of

runs.

B.2.2 RESULT

Result 1: List Size Shrinks Significantly with Increasing 7racon (Policy-level) We extend 7.on to
[0,0.001,0.002,0.0035, 0.005,0.01,0.02].

22



Under review as a conference paper at ICLR 2026

GridWorld 5x5: list size vs larger r_action
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r_action

Figure 7:

Number of distinct output policies (over 500 runs):

Taction 0.0000 0.0010 0.0020 0.0035 0.0050 0.01 0.02

List Size 465 442 415 362 290 160 56

A monotonic and rapid decrease is also observable in the figure: when 7 increases from 0 to 0.01, the list size
drops from ~465 to ~160; further increasing to 0.02, only 56 policies remain. (Upper line chart: GridWorld 5 x 5:
list size vs larger 7,cgion)

Result 2: Trace Collapses to Very Few Trajectories under Large r For r,.;,, = 0.02, the number of distinct

action sequences from start to terminal state and the minimum k required to cover 90% of runs are as follows:

* Greedy: 64 distinct trajectories, k9o = 40, and Top-1 coverage is only 9.2%.

* Robust: 5 distinct trajectories, kg9 = 2, and Top-1 coverage is 89.0%.

C MISSING PROOFS IN SECTION 5
Lemma C.1. Suppose that two MDPs M and M are eq-related. For the policy 7 returned by Algorithm 1, it

holds that
0 S V]E[ - V]\Z S TactionH~

Proof. The lower bound, i.e., 0 < VA’Z — VA’::[, is immediate from the definition of VA’Z.

We now prove the upper bound by induction on the time step h.
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For0 < h < H — 1, we have
Vi i (8) = Vil (8) = Vi i (s) = @ (s, 7n(s)) + QZ,M(S»fTh(S)) n (870 (s))
1) .
< Taction + Y _ Pa(s']5,7n(s5)) - V, ot 5t ZP;L "|s, 7t (s)) -V,

= Taction + Z Pu(s'|s, 7n(s)) - (V;H u (s = V}:rl (s ))
S Taction  max (V;*+1 wr(s) — Vhﬂ+1 (s ))
Inequality (1) follows from the definition of 7r, which guarantees that
V}:M(S) - QZ,M(S’ 7h(5)) < Taction-
When h = H, we have V! . (s) = VgM(s) = 0. By induction, we have
VJE[ — V]\Z < Taction .

This completes the proof.

Proof of Lemma 5.1. From Lemma C.1, we have:

VJEI - V]g[ S TactionH~

By Lemma G.1, it follows that:
Vir = Vi | < H2e.

Similarly, from Lemma G.2, we obtain:
\Var = Vi | < He.

By combining these inequalities, we have

Vir =V =V =V + V5, —VE+VE -V
S 21_1-260 +ractionH-

Proof of Lemma 5.2. By Lemma G.1,
For any (h,s,a) € [H—1] xS x A

!
h+1 JV[< )
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Hence,
(Vi () = @5y (5,0)) = (Vi (5) = Qi e (5, ) |
< |Virar(9) = Vi ()] + @i a5, 0) = @) (5.)]
< 2H?%.
For any g € Gap,,, where g = Vi (s) — Q(s,a), if ¢ < 7lion < T2tions then, because 7l .. =~ ¢

Uyecap,, Ball(g, 2H%¢y) and r2 ;.. ¢ Uyecap,, Ball(g, 2H?¢), we have
(Vh*,M(S) - QZ,M(‘S? a’)) + 2H260 < riction < Tgction’

Using the previous bound, we conclude that
* * 1 2
Vh’M(S) - Qh,lﬂ[(sa a) < Taction < Taction
. . . 1 2 .
Similarly, if 7, ;00 < TZction < g» We also have:
1 2 * *
Taction < Taction < Vh,M(S) - Q;hM(Sv a)'

1

2
action and r

Therefore, for both tolerance parameters r < ctions

the chosen action 7, (s) remains the same for all
(s,h) € S x [H]. As a result, the policy 7 depends only on M and 7,ction. Moreover, for both tolerance

and r2

< tion» the policy 7 returned would be identical. O

1
parameters 7, ;i

Corollary C.2. In the generative model setting, there is an algorithm with sample complexity polynomial in
|S|, |Al|, 1/€ and 1/6, such that with probability at least 1 — 6, the returned policy is e-optimal and always lies
in a list IL(M) where II(M) is a list of policies that depend only on the unknown underlying MDP M with
[I(M)[ = O(|S||A[H).

Proof. We collect N samples for each (s,a) € S x A and h € [H] where N is polynomial in | S|, |A|, H, 1/e and
1/4, and use the samples to build an empirical transition model P to form an MDP M. We then invoke Algorithm 1
with MDP M and 7ction ~ Unif(0,¢/(5H)) and return its output. Standard analysis shows tha M and M are
eo-related with ey = de/(20H?) with probability at least 1 — 6/2. Moreover, Taction ¢ UgeGapM Ball(g, 2H?¢)
with probability at least 1 — /2. We condition on the intersection of the above two events which holds with
probability at least 1 — § by union bound. By Lemma 5.1, the returned policy is e-optimal. By Lemma 5.2, the
returned policy lies in a list II(M) with size at most |S||A|H + 1 since |Gap,,| < |S||A|H. O

D STRUCTURAL CHARACTERIZATIONS OF REACHING PROBABILITIES IN TRUNCATED
MDPs

In this section, we prove several properties of reaching probabilities in MDPs with truncation which will be used
later in the analysis Given a reaching probability threshold r € [0, 1], we first define the set of unreachable states
U (r) for each h € [H].

Definition D.1. For the underlying MDP M = (S, A, P, R, H, sg), given a real number r € [0, 1], we define
Ui (r) C S inductively for each h € [H] as follows:
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e Up(r)={se S|Pr[sg=s] <r}s
o Suppose Uy (r) C S is defined for all 0 < b/ < h, define

Un(r)={s eS| Hl;iXPI‘[Sh =s,80 ¢ Up(r),s1 € UL(r),...,8n—1 € Up_1(r) | M, 7] < r}.

We also write U(r) = (U (1), Ur(r), ..., Un—1(r)).

Intuitively, the set of unreachable states U, (r) at level h € [H] includes all those states that can not be reached
with probability larger than a threshold r for any policy m, where we ignore those unreachable states included in
Uy (r) for all levels A’ < h when calculating the reaching probabilities. Also note that Uy, (1) = S.

The main observation is that Uy, (r) satisfies the following monotonicity property.

Lemma D.2. Given 0 <1y <1y <1, forany h € [H], we have Up,(r1) C Up(r2).

Proof. We prove the above claim by induction on h. The claim is clearly true when h = 0. Suppose the above
claim is true for all 0 < b’ < h, now we prove that Uy (r2) C Up(r1). Considering a fixed state s € S, for any
fixed policy m, we have

PI"[Sh = 5,50 ¢ Uo(Tl),Sl ¢ Ul(’l"l),. .-y Sh—1 ¢ Uh—l(rl) | M,T(']
ZPI’[Sh = 8,80 ¢ Uo(T'Q),Sl ¢ Ul(r2)7. ey Sh—1 ¢ Uh_l(’f'g) | M,ﬂ'],
since U/ (r1) C Uy (r2) for all b < h under the induction hypothesis. Therefore,
mﬂ?_LXPI“[S}L =S5,50 ¢ UQ(’I“l),Sl ¢ U1(’I‘1),...,Sh_1 ¢ Uh_1(’/‘1) | M,?T]

Zm‘?XPI"[Sh = S5,80 ¢ U()(’I“g),sl ¢ Ul(’l"g),...,Sh,1 ¢ Uh,1(7“2) | M,?T]

which implies Uy, (1) C Up(r2). O

An important corollary of Lemma D.2, is that the total number of distinct U (r) for all r € [0, 1] is upper bounded
by |S|H + 1.

Corollary D.3. Forall r € [0,1], there are at most of |S|H + 1 unique sequences of sets U (r).

Proof. Assume for the sake of contradiction that there are more than |S|H + 1 unique sequences of sets U(r).
Note that 0 < 3, 7 [U(r)| < |S|H forall r € [0, 1]. By the pigeonhole principle, there exists 0 < 7y <7y <1
such that U(ry) # U(rz) while 32, c 1 [U(r1)| = >2pep) [U(r2)]. By Lemma D.2, for all h € [H], we have
Un(r1) C Up(re) and thus |Up(r1)| < |Ux(r2)|. This implies that |Up,(r1)| = |Up(r2)| for all h € [H]. For any
h € [H], we have Up,(r1) C Up(r2) and |Uy(r1)| = |Up(r2)| which implies Uy, (1) = Up(r2), contradicting the
assumption that U (1) # U(ra). O

For each (s, h) € Sx[H]|, we define Crit(s, h) to be the infimum of those reaching probability threshold r € [0, 1]
so that s would be unreachable under .

Definition D.4. For each (s,h) € S x [H], define Crit(s,h) = inf{r € [0,1] | s € Up(r)}.

Note that {r € [0, 1] | s € Up(r)} is never an empty set since Up, (1) = S.

Lemma D.2 implies that Crit(s, h) is the critical reaching probability threshold for (s, h), formalized as follows.
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Corollary D.5. For any (s,h) € S x [H|, we have
 forany 1 > r > Crit(s, h), s € Up(r);
e forany 0 < r < Crit(s, h), s & Up(r).

Given the definition of unreachable states Uy, (r), for each r € [0, 1], we now formally define the truncated MDP
M7 where we direct the transition probabilities of all unreachable states to an absorbing state Sabsorb-

Definition D.6. For the underlying MDP M = (S, A, P, R, H, s¢), given a real number r € [0, 1], define M" =
(S U {sabsorb}s 4, P", R, H, s0), where

Ph(sl | S, CL) S ¢ Uh(r) U {sabsorb}a 3/ 7& Sabsorb
P;;(S/ | S7a) = 0 S ¢ Uh(?") U {Sabsorb}a 5, = Sabsorb * (4)

]].[5/ = Sabsorb] s € Uh(r) U {Sabsorb}

The following lemma builds a connection between the occupancy function in M" and the set of unreachable states
Uh (7‘)
Lemma D.7. Foranyr € [0,1], for any (s,h) € S x [H]

(s, h) = mgxPr[sh =s,50 ¢ Up(r),51 € Ur(r),...,8n—1 & Up_1(r) | M, 7],

and therefore s € Uy (r) if and only if d};. (s, h) < r.

Proof. By the construction of M",
dir(s,h) =Prlsp = s,80 ¢ Up(r),81 € Ui (), ..., 81 € Up_1(r) | M, 7],
and therefore,
dyr (s, h) = IIl;%XPI‘[Sh =38,50 ¢ Up(r),s1 ¢ Ur(r),...,Sh—1 ¢ Up_1(r) | M, 7],
which also implies that s € U, (r) if and only if d},. (s, k) < r by Definition D.1. O

Combining Lemma D.7 and Lemma D.2, we have the following corollary which shows that d} . (s, k) is mono-

tonically non-increasing as we increase 7.

Corollary D.8. For the underlying MDP M = (S, A, P,R, H, sy), for any 0 < 11 < ro < l and any (s,h) €
S x [H], we have d;r, (s,h) > dir (8, h). Moreover, d;(s,h) > dy(s,h) for any (s,h) € S x [H] and
r € [0,1].

As illustrated in the following lemma, d3,.(s,h) < Crit(s,h) whenever r > Crit(s, h), and d};-(s,h) >
Crit(s, h) if r < Crit(s, h).

Lemma D.9. Foranyr € [0,1] and (s,h) € S x [H],
 ifr > Crit(s, h), d;- (s, h) < Crit(s, h);

o ifr < Crit(s, h), di;-(s, h) > Crit(s, h).
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Proof. We only consider the case r > Crit(s, h) in the proof, and the case r < Crit(s, h) can be handled using
exactly the same argument.

Since r > Crit(s, h), by Corollary D.5, we have s € Up(r), which implies d},,(s,h) < r by Lemma D.7.
Assume for the sake of contradiction that d3,. (s, h) > Crit(s, h). Let 7/ be an arbitrary real number satisfying
Crit(s,h) < r’ < dj;(s,h) < r. By Corollary D.8, we have d} .. (s,h) > dj.(s,h) > r', which implies
s ¢ Up(r") by Lemma D.7. On the other hand, since 7' > Crit(s, k), we must have s € U (r") by Corollary D.5

which leads to a contradiction. O

For each (s,h) € S x [H] and r € [0, 1], we also define an auxiliary MDP M"*" based on M", which will be
later used in the analysis of our algorithm.

Definition D.10. For each (s,h) € S x [H] and r € [0,1], define M"*" to be the MDP that has the same
state space, action space, horizon length and initial state as M". The reward function of M"*" is RZ’,h(s’ ,a) =
1[h' = h,s’ = s]forall b € [H] and (s',a) € (S U {Sabsorb}) X A, and the transition model of M"*" is

Pr(s"|s,a) K <h

PT,h(S// | 8/ CL) —
h/
7 ]1[5// = sabsorb] n > h ’

&)

where PT is the transition model of M" define in (6).

A direct observation is that for any (s, h) € S x [H] and r € [0, 1], for any policy 7, d7;. (s, h) = V.. », which

also implies d} ;. (s, h) = V1. .,

E MISSING PROOFS IN SECTION 6

In this section, we give the formal proof of Theorem 6.1 based on the tools developed in Section D.
Lemma E.1. Consider a pair of fixed choices of Ttyunc and Taction in Algorithm 2. For a fixed h € [H — 1], if for
all s € S\ Uy, we have d}};h > 1o whenever h > 0, then with probability 1 — 5>, for all (s,a) € (S'\ Un) x A,

Z |Po(s" | s,a) — Pu(s" | s,0)| < eo.
s'eS

Proof. We divide the proof into two parts. First, we demonstrate that we have a sufficient number of effective
samples. Second, we show that the estimation error is small.

For a given (s,a) € (S\Up) x A, we first prove that with probability at least 1 — m, the number of effective
samples is greater than WQ"O , where the number of effective samples is defined as
w
Weffective = Z ]]-[(Sglw), agw)) = (S, CL)]
w=1

Given that d?{/‘;‘h > 1o, we have

~s,h

E[Weffeclive} _ w- dK4
w w

~s,h
= dT]{/[ Z To,
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and therefore by Chernoff bound,

Mo FSh Weffective 7o -2 ( a0 ) *w g
. n < -_—— > = TIICIAlL
P (Weffectlve < D) W) = P (dM W > 2 ) <2 ’ < 4H‘S||A|
Thus, with probability at least 1 — m, the number of effective samples is at least %

5%, then with probability at least 1 —
s
ZH|STIA]’

Next, we show that if the number of effective samples is greater than Y70

> IPu(s' | s,0) = Pu(s' | 5,0)| < €.

s'eS
To establish this, we first prove that for any specific s’, with probability at least 1 — m, we have

|Pu(s" | 5,a) — Pu(s" | s,a)] < S‘
Using the Chernoff bound,

R c 0
PP (s _P.(s < €0 2 ~2(2)* Weteotve )
(| h(s | s,a) w(s | s,a)] > 5] < 2e < THISA]

Therefore, by the union bound, with probability at least 1 — m, we have for all s’ € S,

IPu(s' | s,a) — Pu(s' | s,0)] < —

Summing over all s’ gives

Y 1P’ | s,a) = Buls' | 5,0)] < o

s'eS
Combining these results, we conclude that for a specific (s, a), with probability at least 1 — m,

Z |Py(s" | 5,a) — Pu(s" | s,0)| < eo.
s'eS

Thus, for a fixed h € [H — 1], if forall s € S\ Uh we have dﬂ'h > mp whenever h > 0, then with probability
1— 2 forall (s,a) € (S\ Up) x A,

> P8 | s.a) = Pu(s' | s,a)] < eo.

s'eS

O
Lemma E.2. Consider a pair of fixed choices of Trunc < 1 and 7action in Algorithm 2. For any h € [H — 1], if
Sforall h' < h, we have
° Uh/ = Uh’ (rtrunc);

« S |Pu(s' | s,a) — Pu(s' | s,a)| < e forall (s,a) € (S\ Up) x A,

then for any s € S,

i frivane (8, 1+ 1) —di, (s, h + 1) < H?eo.
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Proof. Consider a fixed level h € [H — 1] and state s € S. Note that d};r,,,. (s, h +1) = V5, ., and
d?\Zh (s;h+1)= V];[.s,h«i»l'

Note that M7trunc:$:h+1 and Mf$:h+1 ghare the same state space, action space, reward function and initial state.
Moreover, we have Uy = Ups (Firunc) forall B’ < hand 3., | Py (s’ | 5,a) — Pu(s' | s,a)] < e forall b’ < h
and (s,a) € (S\ Up/) x A. Let Preune:+1 pe the transition model of M7erune:5:m+1 defined in (5), and P! be
the transition model of M %"+ defined in (3). For all ’ € [H], for any (s,a) € (S U {Sabsorb}) X A4, we have

S Pt sa) = PiN(S | s,0)| < eo.
s'€SU{sabsorb }

Ve | < H?¢g, which implies the desired result. [

Ttrunc:s b+l T Ms h+1

By Lemma G.1, we have |V},

Lemma E.3. Consider a pair of fixed choices of Ttyunc € (01, 211) and 7 action in Algorithm 2. For any h € [H—1],
if for all k' < h, we have

° Uh/ = Uh’ (Ttrunc);
« S |Pu(s' | s,a) — Pu(s' | 5,a)| < e forall (s,a) € (S\ Up) x A,

then for any s € (S \ Upy1), d’;{;'hﬂ(s, h+1)>mno.

Proof. Consider a fixed level h € [H — 1] and s € (S \ Up11). Since s € (S \ Upy1), we have

d S, h 4+ 1) > Ttrunc.

*]\;[h (
By Lemma E.2,
d*];/frtrunc (5; h + 1) Z Ttrunc — H2€0 Z m —T"o-

Notice that 2H?% €y + Taciion H < 2H?¢p + 261 H < 361 H < 1o. By the same analysis as in Lemma E.2, for the

s,h+1

returned policy 7 , by Lemma 5.1,

s htl

M Ttrunc,s:h+1 Z V]\anm,s,thl — Mo = d}‘w"‘trunc (87 h + 1) — 1o Z m — 2770 2 Mo,

and therefore d}TWTulL (s,h +1) > no. By Lemma D.8, this implies d?{;’h“ (s,h+1) > no. O
Definition E.4. Define
Badyune = ) Ball(Crit(s, h), H?¢),
(s,h)ESX[H]

where Crit(s, h) is as defined in Definition D.4.

Lemma E.5. Consider a pair of fixed choices of riyunc € (11, 211) and Taction in Algorithm 2 such that rieune ¢
Badiyyne. Forany h € [H — 1], if for all b’ < h, we have

* ﬁh' =Up (Ttrunc);

o S |Pw (s | s,a) — Pu(s' | s,a)| < e forall (s,a) € (S\ Up) x A4
then Uh+1 = Uh+1(rtrunc>~
Proof. By Lemma E.2, for any s € S we have

‘d}kVI'"trunc (Sa h+ 1) - dhh (S, h+ 1)‘ < HZEQ.
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Therefore, for any s € Up11(Ttrunc), We have
d*Mh (37 h + ]-) S d?\/["trunc (87 h + ]-) + H260~
By Corollary D.5, we have 7yn. > Crit(s, h + 1). Moreover, since 7tyunc ¢ Badirune, it holds that
Perune & [Crit(s, h + 1) — H?eg, Crit(s, h 4+ 1) + H?e],

which further implies that
Ttrunc > Crit(s,h + 1) + H?¢.

Combining the above inequality with Lemma D.9, we have

Trune > Crit(s, h+ 1) + H?€o > diypriune (5, + 1) + H?eg > d,. (s, h + 1),
which implies s € U ht1-

For those s ¢ Upt1(Ttrunc)s it can be shown that s ¢ ﬁh+1 using the same argument. Therefore, Uh+1 =

Uh+1 (Ttrunc ) .

O

Lemma E.6. Consider a pair of fixed choices of Ttyunc € (11,2n01) and raction in Algorithm 2 such that riyunc ¢
Badiune. With probability at least 1 — §/2, we have

o Uy = Up(Ttrunc) for all h € [H];

* > |Pu(s' | s,a) — Pu(s' | s,a)| < eo forall h € [H — 1] and (s, a) € (S \ Up) x A.
Proof. Foreach h € [H], let &}, be the event that

* Up = Un(Ttrunc);

«if h>0,d%" (s,h) > no forall s € S\ Up;

cifh>0,) g |Py_1(s" | s,a) — Pa_1(s" | s,a)| < e forall (s,a) € (S\ Up_1) x A.

Note that & holds deterministically, since we always have r;une < 1 which implies Up(7runc) = S \ {so}. For

each h < H, conditioned on (.}, £n/, by Lemma E.5 and Lemma E.3, we have Uhﬂ = Up+1(Ttrunc ), and for
s ht1 =

alls € S\ Upy1,di;" (s,h+1) > no. Moreover, by Lemma E.1, with probability at least 1 — §/(2H),

D P8 | s,0) = Pa(s' | s,0)] < g
s'es

forall (s,a) € (S\Up) x A. Therefore, conditioned on (i <n Enrs Ent1 holds with probability at least 1—6/(2H ).
By the chain rule, P (mhe[H] Eh) >(1—6/(2H)H-1>1-6/2.

O

Definition E.7. For a real number r € [0, 1], define

Gap(r) = U Gapsrsn | UGapy-.
he[H],s€S\Un(r)
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Moreover, define

Badaction (T) - U Bau(g, QHQEO) .
g€Gap(r)

Clearly, for any r € [0,1], |Gap(r)| < 2|S|?H?|A|. Moreover, since M and M™*" depends only on U (r)
(cf. Definition D.6 and Definition D.10), for r1,73 € [0,1] with U(r1) = U(r2), we would have Gap(ry) =
Gap(rqe) and Badaction (1) = Badaction (72)-

(n1,2m) \ Badgrune and r} r2 € (e1,2¢1), suppose

. 1 2
Lemma E.8. Given ri.,., actions Taction

rtrunc
1 _ 2 .
¢ U(Ttrunc) - U(rtrunc)’
1 R 1 2 . 1 .
* Taction ¢ BadaCtlon(rtrunc)’ and Taction ¢ BadaCthIl(rtrunc)’
s forany g € Gap(riune), either g < r} <r? orr! <r? <
Y g P\ ¢runc g action action action action 9

conditioned on the event in Lemma E.6, in Algorithm 2 , the returned policy m and 75"+ 1-%will be identical for

all h € [ - 1]’ ( 5, ) (S \ Uh+1> X 4, for all (rdCthH’ Ttrunc) € {ractlorn riCtIOIl} {Ttrunm r‘?runc
Proof. Consider a fixed h € [H — 1] and (s,a) € (S \ ﬁh+1) x A. Since U(rlyne) = U(rdne)> We write

* U(rtrunC) = U(Ttlrunc) = U(T‘?runc);
® Badaction(rtrunc) - Badaction(rtlrunc) Badactlon (Ttrunc).

* Gap(rtrunc) Ga‘p(rtrunc> Gap(rtrunc) and

o [ Ttrunc,S,h+1 — Mrtlrunc,s,h+1 — Mrfrunc,s,h+1

in the remaining part of the proof.

Let P"trune be the transition model of M erune:s:h+1 defined in (6), and P! be the transition model of M :h+1
defined in (3). Note that conditioned on the event in Lemma E.6, Uh+1 = Up+t1(Ttrunc)> and therefore, for all
K’ € [H], for any (s,a) € (S U {Sabsorb}) X A, we have

S|Pt | s,a) — PR | 5,0)] < eo-

S,GSU{Sabsorb}

By Definition E.7, for any g € Gap;rqunc.s.h+1 , We have

* riction7 T action ¢ Bau(ga2H 60)

1
* either g < Tactlon < Tactlon or Taction < Tactlon < g,

ht1 2 2
" +1 in Algorithm 2 will be identical for all (Taction, Ttrunc) € {7 Ltions oetion | X {Ttruncs Torunc -

~s,h+1,a

which implies 7
by Lemma 5.2. This also implies that 7 will be identical for all (Taction, Ttrunc) € {Tietions " oction X

{rtunes T2eunc }- Similarly, the desired property holds also for the returned policy 7. O

Proof of Theorem 6.1. Note that
Pr[Ttrunc §é Badtrunc] >1- 5/4
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For any fixed choice of r;ync,

Pr[raction ¢ Badaction({rtrunc)] 2 1-—- 5/4

Combining these with Lemma E.6, with probability at least 1 — §, we have

® Ttrunc ¢ Badtrunc;

® Taction ¢ Badaction(rtrunc);
« Uy = Uy (Ttrunc) for all b € [H];

* > |Py(s" | s,a) — Pu(s' | s,a)| < € forall h € [H — 1] and (s,a) € (S\ Up/) x A.

We condition on the above event in the remaining part of the proof.

Conditioned on the above event, for the returned policy 7, we have
2 2 2
V]\Z 2 V;\}Ttrunc 2 V;f"trunc - 2H €0 — TactionH 2 Vj\t[ - 2H €0 — ractionH - H |S‘Ttrunc Z V]C} — €,

where the first inequality is due to Lemma G.3, the second inequality is due to Lemma 5.1, the third inequality is

due to Lemma G.3, and the last inequality is due to T¢rune < 271 and raction < 2€1. Therefore, the returned policy
T is e-optimal.

By Lemma D.3, there are at most of SH + 1 unique sequences of sets U (r). Moreover, for each r, |Gap(r)| <
2|S|2H?|A|. By Lemma E.6, the sequence of policies executed by Algorithm 2 and the policy returned by Algo-
rithm 2 lie in a list Trace(M) with size |Trace(M)| < (SH + 1)(2|S|?H?|A| + 1). O

F WEAKLY k-LIST REPLICABLE RL ALGORITHM

In this section, we present our RL algorithm with weakly k-list replicability guarantees. See Algorithm 3 for the
formal description of the algorithm. In Algorithm 3, it is assumed that we have access to a black-box algorithm
A(eo, dp), so that after interacting with the underlying MDP, with probability at least 1—d¢, A returns an eg-optimal
policy.

In Algorithm 3, for each (s, h) € S x H, we first invoke A on the underlying MDP with modified reward function
RyM(s',a) = 1[I = h,s' = s] forall i’ € [H] and (s',a) € S x A. The returned policy #*" is supposed
to reach state s at level i with probability close to d*(s, k), and therefore we use #*" to collect samples and
calculate d(s, h) which is our estimate of d* (s, h). For each action a € A, we also construct a policy 75/ based
on %" to collect samples for (s, a) € S x A atlevel h € [H], and we calculate P, (s, a) which is our estimate of
Py, (s, a) based the obtained samples.

For those (s,h) € S x [H] with d(s,h) < rirune, We remove state s from level h by including s in T},. Here
Ttrunc 1S @ randomly chosen reaching probability threshold drawn from the uniform distribution.

Finally, based on P and T, we build an MDP M which is our estimate of the underlying MDP M. For each
(s,h),if s € Th, then we always transit s to an absorbing state S,psorh. Otherwise, we directly use our estimated
transition model Ph(s, a). We then invoke Algorithm 1 with MDP M and tolerance parameter 7action, Where

T'action 18 also drawn from the uniform distribution .

The formal guarantee of Algorithm 3 is summarized in the following theorem.
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Theorem F.1. Suppose A is an algorithm such that with probability at least 1 — 0y, A returns an ey-optimal policy.
Then with probability at least 1 — 0, Algorithm 3 return a policy w, such that

* T is e-optimal;
o m € II(M), where II(M) is a list of policies that depend only on the unknown underlying MDP M with
size [IL(M)| < (H|S||A] + 1)(H|S| +1).
In the remaining part of this section, we give the full proof of Theorem F.1.
Following the definition of Up, (r) in Definition D.1, we define T}, ().
Definition F.2. For the underlying MDP M = (S, A, P, R, H, s¢), given a real number r € [0, 1], we define
Ty (r) C S for each h € [H] as follows:
e To(r)={s €S |Pr[sg =s] <r}
o Th(r)={s €S |max, Prsp =s | M,7] <r}.

We also write T(r) = (To(r), T1(r), ..., Tr—_1(r)).

Lemma F.3. Forallr € [0, 1], there are at most of |S|H + 1 unique sequences of sets T(r).

Proof. By the same analysis as in Lemma D.2 , we know that given 0 < r; < ry < 1, for any h € [H], we have
Th(r1) C Tp(r2). Moreover, by the same analysis as in Corollary D.3 , for all » € [0, 1], there are at most of
|S|H + 1 unique sequences of sets T'(r).

O

Definition F.4. For the underlying MDP M = (S, A, P, R, H, s¢), given a real number r € [0, 1], define M =
(S U {sabsorb } AP . R,H, S0), where

Ph(sl | S, a) S ¢ Th(r)a S/ # Sabsorb
Pi(s' | s,a) =140 s ¢ Tu(r),s' = Sabsorh ©)
]]-[SI = Sabsorb] seTy (’/‘) U {Sabsorb}

Definition F.5. For each (s, h) € S x [H], define Crit/(s,h) = inf{r € [0,1] | s € Tp(r)}.

Note that {r € [0,1] | s € T, (r)} is never an empty set since Tj,(1) = S.
Lemma F.6. Consider a pair of fixed choices of Ttrune and Taction in Algorithm 3. For all h € [H — 1), if for all
s € S\Tj, we have dﬁ;’h > €1 whenever h > 0, then with probability 1 -2, for all (s, a, h) € (S\T3,)x Ax[H-1],

Z |Py(s" | s,a) — Pu(s" | s,0)| < eo.
s'eS

Proof. By the same analysis as Lemma E.1, for a fixed h € [H — 1], if forall s € S\ T;L we have d’}vjh > e
whenever i > 0, then with probability 1 — 3%, for all (s, a) € (S \ Th) x A,

> P8 | s,a) = Pu(s' | 5,a)] < eo.
s’eS

By union bound, we know that with probability 1 — g, for all h € [H — 1], the inequality holds.

35



36

Algorithm 3 Weakly k-list Replicable RL Algorithm
1: Input: RL algorithm A (e, do), error tolerance ¢, failure probability 0

2: Output: near-optimal policy 7
3: Initialization:
4: Initialize constants C; = 4‘A‘(|5S|H, €0 = 100‘56“;{%4‘ , €1 = 5C1 H?¢
5: Generate random numbers 7,ction ~ Unif(ey, 2€1), rtrunc ~ Unif(2€7, 3¢)
6: for h € [H — 1] do
7. foreach s € Sdo
8: Invoke A with ¢y = €y and 9 = ¢/(8|S|H) on the underlying MDP with modified reward function
R3M(s',a) = 1[0 = h,s' = s] forall W’ € [H] and (s',a) € S x A
9: Set %" to be the policy returned in the previous step
10: Collect W = L‘g—lj log w trajectories {(s("),al"”, ..., 5%, a%%) )W by executing 7" for
W times
11: Set
ooty = St 17 =
’ w
12: for eacha € A do
13: Define policy 7%, where for each b’ € [H] and s’ € S,
! ! __
ﬁ'i’,’“a(s’) _ Cfs ) h=h,s =s
770 (s") W #hors #s
14: Collect W = g—lj log w trajectories { (s, a{", ..., s%) | al") )IW_| by executing 75"
for W times
15: For each s’ € S, set
Buls! | .0) o ozt O 50 = (s 0,')
S 1y a") = (5,0)
16: end for
17:  end for
18: end for

19: Foreach h € [H — 1], setT), = {s € S | d(s,h) < T'runc}
20: Define MDP M = (S U {Sabsorb }» A, P, R, H, 5, where for each h € [H — 1],

- Py(s' | s,a s T
P £ PR
1{5/ = Sabsorb} s € Th

21: Invoke Algorithm 1 with MDP M and tolerance parameter r,.tion, and set 7 to be the returned policy

22: return
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O
Lemma F.7. With probability at least 1 — %,for all s,h € S x [H — 1],
ld(s, h) — di; (s, h)| < 2e0,
diy" = d(s, )| < eo.
Proof. For a specific pair (s, h), for the policy returned by A, with probability at least 1 — ﬁ, we have
~s,h
dig(s.h) = 3" (s,)] < o
Thus, by Chernoff bound, with probability at least 1 — ﬁ, we have
4%y (s, h) — d(s, h)‘ < e
Combining the above two inequalities, with probability at least 1 — 1 g‘ 7>
|d(s, h) — dj;(s,h)| < 2¢0.
Using the union bound, we know that with probability at least 1 — %, forall s,h € S x [H — 1]
|d(s, h) — dj;(s,h)| < 2e0,
5" — d(s,h)| < €.
O
Definition F.8. Define
Bad{, e = )  Ball(Crit/(s, h),260),
(s,h)€Sx[H]

where Crit/(s, h) is as defined in Definition F.5.

Lemma F.9. Consider a pair of fixed choices of Ttrunc € (1,2 ) and Taction in Algorithm 2 such that rerunc ¢
Bad, With probability at least 1 — §/2, we have

trunc*
 Th = Th(Torunc) for all h € [H — 1);

« S |Pu(s' | s,a) — Pu(s' | s,a)| < eo forallh € [H —1] and (s,a) € (S \ Tir) x A.

Proof. Let & denote the event that for all (s, h), the following two conditions hold:

o |d(s,h) — di;(s,h)| < 2¢

s,k

« |}y —d(s,h)| < e

By Lemma F.7, we know that with probability at least 1 — %, event £ occurs.

Let &; denote the event that for all (s, a,s’,h) € S x A x S x [H — 1], the following conditions are satisfied:

37



Under review as a conference paper at ICLR 2026

* Th = Th(rtrunc);
* dﬁ;h(s’h) > e foralls € S\ Th;
« di;(s,h) < 4e; forall s € T,;

© Sues |Pu(s' | s,a) — Pu(s' | 5,a0)| < e forall (s,a) € (S\Ty) x A

When £; occurs, we know that |J(s, h) — di;(s,h)| < 2¢p. Therefore, when riune ¢ Badiruncs if Torune >
dh;(s, h), it follows that riyne > cZ(s, h), if riyune < dj; (s, h), it follows that T4ryne < (f(s, h). Hence, we
conclude that T}, = Th(Ttrunc)-

For the second condition, when £; occurs, we know that |d§(;’h — d(s, h)| < €, and by definition, d(s, h) > 2e;.
Thus, we obtain that
~s,h
dg\% > 2€1 — €9 > €7.

For the third condition, when &; occurs, we know that |d(s, h) —d?%, (s, h)| < 2e, and by definition, d(s, h) < 3e;.
Thus, we have
dy(s, h) < 3er + 2¢ < 4dey.

For the forth condition, combining the second condition with Lemma F.6, we conclude that with probability at
least (1 — é)z < 1— 2, the fourth condition holds.

Therefore, with probability at least 1 — 5, event & occurs, which implies the desired result.

Definition F.10. For a real number r € [0, 1], define

Bad/actlon( ) = U Ball(g, 2H260).

g€Gapy;r

Clearly, for any r € [0,1], |Gap(r)| < |S|HA. Moreover, since M depends only on T'(r) (cf. Definition F.4),
for r1,r9 € [0,1] with T'(r1) = T(r2), we would have Gap(r1) = Gap(rz2) and Bad,, ;.. (r1) = Bad,iion(72)-

; 1 2 2
Lemma F.11. Givenrl. ., 72, € (2¢1,3¢1) \ Badgrune and 7l m20i0n € (€1,2€1), suppose

* T(rbune) = T(Fune):

Ttrunc Ttrunc

¢ Bad and 2 ¢ Bad

actlon actlon(rtrunc) action actlon(rtrunc) )

07'7’1 <7"

action

e forany g € Gap(rtlmnc) either g < 7l <7r? 2etion < 9>

action action

conditioned on the event in Lemma F.9, the returned policy © in Algorithm 3 will always be the same for all

(TaCtiOH? Ttrunc) € {Tiction7 rgction} X {Ttlruncv 7"t21runc}'

Proof. The proof of the lemma follows the same reasoning as in the proof of Lemma E.8. O

Lemma F.12. Conditioned on the event in Lemma F.9, the returned policy T is e-optimal.
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Proof.
T T * 2 * 2 2 *
VM 2 VMTtrunc 2 VIMTtrunc —2H €0 — TactionH 2 VM —2H €0 — TactionH -H |S‘7ntrunc Z VM — €.

where the first inequality is due to Lemma G.3, the second inequality is due to Lemma 5.1, the third inequality is

due to Lemma G.3, and the last inequality is due to 7y unc < 3€1 and raction < 2€1. Therefore, the returned policy
7 is e-optimal. O

Lemma F.13. Conditioned on the event in Lemma F.9, with probability at least 1 — g, the returned policy
belongs to the set II(M ), where II(M) is a list of policies that depend only on the unknown underlying MDP M,
and the size of IL(M) satisfies |IL(M)| < (H|S||A| + 1)(H|S| + 1).

/

truncs W€ have

truncl —
’ 5HZ%eo*|S||A|H
Pr[raction S Badaction(rtrunc)] < €1

Taction ¢ Bad/ (Ttrunc) and Ttrunc ¢ Bad/

action trunc

Proof. First, we have Pr[riunc € Bad{, ] < % < g. Moreover, for a fixed run. ¢ Bad

< g. Thus, with probability at least 1 — %, it is satisfied that

By Lemma F.11, and applying similar reasoning as in the proof of Theorem 6.1, we conclude that conditioned on
the event in Lemma F.9, with probability at least 1 — g, the policy 7 belongs to the set II(M), where II(M) is a
list of policies that depend only on the unknown underlying MDP M. Moreover, the size of II(M) is bounded by
[I(M)| < (HIS||A]+ 1)(H|S[ +1). O

Proof of Theorem F.1. The proof follows by combining Lemma F.9, Lemma F.12 and Lemma F.13 O

G PERTURBATION ANALYSIS IN MDPs

Lemma G.1. Consider two MDP M and My that are ey-related. Let P' and P" denote the transition models of
My and M, respectively. It holds that

|Vh*,M1(3) - V;7M2(3)| < H2€07

|QZ,M1 (87 a’) - QZ,M2 (87 a‘)| S H2607
where H is the horizon length.

Specifically, for the value function at the initial state s, it holds that

V]\Tfl - VJ\Z2 S H2€0.
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Proof. We denote 7] as the optimal policy of M; and 73 as the optimal policy of M. For 0 <7 < H — 1, we

)

have
Vi () = Vi ()| < max| QT (s,0) = QT3 (s, a>\

<max<ZP/8 | s,a) -V, H»lMl ZPHS |s,a)- z+11\42(/)
6/

<m3x< ZP’ (s'] s,a) ( 111M1( /)_‘/;121M2( /))’

> (P/(s'| s,a) — P/'(s' | 5,a)) - Vfﬁ (8

, )

Inequality (1): This follows from selecting a* as the optimal action and a as the action selected by the policy,

* ‘ (1)

+

S

(2)
< Hep + max

‘@111,M1 (s) — V;-El M2( )’

which ensures Q:j\b (s,a) < Qf;}% (s,a).

Inequality (2): This holds because V;",(s') < H, the total variation bound Y, ¢ |P/(s' | s,a) — P/'(s' |
s,a)| < €, and the fact that ), P/(s" | s,a) = 1.

At layer H, it is given that Vg’fMl = Vg?MZ = 0. Applying the above inequality recursively, we obtain

*

Vi (s) = Vif]@z(s)‘ < H(H —i)eo < H?e,

QZ‘Ml(s, a) — QZ"}Vb(s,a)’ < Hey + max 1/‘2,1117Ml(s) — 1/;121’M2 (s)’ < Hey+ H(H — 1)eg < H?e.

In particular, for the initial layer,

‘V;Cfl - VZ\Z2| = ‘Vozl\ﬁ (80) - V;)Tr?\/b (80)’ S H2€0'

Lemma G.2. Consider two MDP M, and My that are €qy-related . Let P' and P" denote the transition models
of My and Mo, respectively. For any policy 7, it holds that

|VJ\721 - VJ\Z2| § ];."2607

where H is the horizon length.
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Proof. For0 <i < H — 1, we have
Vi, () = Vi, (8)| = |QF ar, (5, mi(s)) — QF ag, (5, mi(s))]

< max ( Y Pls 1 sia) Vigian(8) = D P8 s,0) - Vil g, ()
S/

Y (Pi(s' | s,a) = P'(s"| 5,)) - Viiy an, (5)

s/

)

ZP;(SI | s,a)- (ViTJrrl,Ml (5/) - ‘@11,1»12(5/))‘

)

Inequality (1): This holds because V[j:l(s’ ) < H, the total variation bound
Y oes|Pi(s'|s,a) = P/(s"| s,a)| < €, and the fact that ), Pi(s' | s,a) = 1.

+

(1)
< Hep + max "/ij—LMl (s) — i:—l,Mz(SM .

At layer H, it is given that V;}, M, = V;}, My = 0.
Applying the above inequality recursively, we obtain

’VZMI(S) - V‘TFM2<S>‘ < H260a

In particular, for the initial layer,
[Vorar, (s0) — Viar, (so)| < H?ey,

Lemma G.3. For any policy w, we have
0 <V — Vi < H?|S|r,

where M is defined as in Definition D.6 and |S| is the size of the state space.

Proof. Clearly, Vj; — Vi > 0.
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We observe that for any & and s;, € .S, the following holds:

Z dyrr (Sny h) (Vl:M(sh) - Vf:Mr(sh))

spES

1) 7 7r

= Z dyyr Shah)VhM Sh) Z dyrr (s h (Vh,M(Sh) - Vh,]bﬂ(sh))
sp€UR (1) sn@&Un(r)

(2)

<|SIr-HA+ > dipe(snh) (Vi a(sn) = Vilae (sn))

Sh ¢Uh (’l‘)

3
DS H A+ > dipe(so.h) | ra(snom(sn) + D Pa(sngalsn, m(sn)) Vit ar(sni1)
sngUn(r) Shy1ES

—rn(snsm(sn) = D Palsnarlsn m(sn))Vilir e (sn41)

Sh4+1€S
=|S|-r-H+ Z A (Sher, b+ 1) (Vg ar (shet) = Vilenare (shg))
sthh(r)
) 7r ™ 7r
= |S[-r-H+ Z i (S, h+ 1) (Viter ar (8n1) — Vites aae (8541)
spy1€S

* Step (1): The first equality arises because for all s;, € Uy, (r), the value function Vit e (sn) =0.

* Step (2): The inequality follows from the definition of d7. (s5, h) < r and the fact that V', (sp) < H.
This ensures that the first term in the sum is bounded by |S| - r - H.

* Step (3): The equality holds because for all s, ¢ Up(r), the transition probability Py (sp+1|sn, 7(sh))
under the original model M is identical to that under the modified model M, i.e., Py (sp+1|8n,7(sp)) =
Pl (sh+1l|sh,m(sr)). Thus, the only difference in the value functions is the difference in the values at the

next time step.

* Step (4): The final equality follows from interchanging the order of summation, allowing us to express

the sum over sj, as a sum over sy 1.

Next, we observe that

VOTM(SO) Vb M (50) Z dyrr (51,1 V1 M(Sl) ijw(sl))’
s1E€S

where Step (5): holds because so is the fixed initial state, and by definition, d7,.(s1,1) = df,(s1,1) =
P0(51|So, W(So)).

By recursively applying the same reasoning for each time step h, we obtain the following upper bound:

Vs (50) = Viar(so) < [S] v - H?.

Thus, we conclude that
0 <V — Vi < H?S|r.
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Lemma G.4. For any policy w, we have
0 < Vip — Vi < H?|S|r,

where M is defined as in Definition F4 and |S| is the size of the state space.

Proof. Clearly, Vi, — Vﬁr > 0.

By the similar analysis as above, we observe that for any h and s;, € S, the following holds:

3" i (snoh (VhM(sh) vhﬂﬂr(sh))

s

spE€S
= Z d 8]—“ Vh M Sh Z d Sh, (Vhﬂ]\/j(sh) - V]:Mr(sh)>
Sh ETh_(’l‘) ShgTh( )
1)
<USlr-H 43 A (on k) (Vimar(sn) = Vg (sn)
sp&Th(r)
=S| r-H+ > di(so,h) | ralsnm(sn) + Y Pulsngalsn m(sn)Viy ar(sns)
sngTh(r) shy1€S

—rn(sn,m(sn) — Y Pu(snyilsn, m(sn)) Vi) 57 (Sne1)

Shy1ES

= ISl Ht > A (snnh+ 1) (Vi (sni1) = Vit e (o))

spy1€S

* Step (1): The inequality follows from the definition of d7_(sp, h) < max, Pr[s, = s | M, 7] < r and
the fact that V;';/(s5) < H. This ensures that the first term in the sum is bounded by [S| -7 - H.

Next, we observe that

Vit (s0) — Zd (s1,1 (Vl m(s1) — Vfﬁr(ﬁ)),
s1€S

By recursively applying the same reasoning for each time step h, we obtain the following upper bound:
Viar(50) = Vg (s0) < [S]-r- H?.

0,

Thus, we conclude that
0 < Vyp — Vo < H?[S|r.

H HARDNESS RESULT

Definition H.1 (BESTARM Problem). Consider a k-armed bandit problem. Let k be the number of arms, and fix
parameters € > 0 and 6 € (0,1). The (k,e¢,0)-BESTARM problem is defined as follows: given access to k arms,

43



Under review as a conference paper at ICLR 2026

\\\\ . Tl N Key Layer 1 Key Layer ¢ Key Layer ¢ + 1 Key Layer =

O/ O, O,

®

®

©®

h=0 h=d+1 h=d+i h=d+i+1 h=d+z h=d+z+1

Figure 10: MDP to solve BESTARM.

each associated with an unknown distribution (e.g., Bernoulli), the goal for an algorithm is to identify an arm
whose mean reward is within € of the best arms mean, with probability at least 1 — 6.

Lemma H.2 ((Chen et al., 2025)). Consider a k-armed bandit problem. Let € < 2—116 and § < k%i-l Then, there
exists no (k — 1)-list replicable algorithm for the (k,e€,§)-BESTARM problem, even when each arm follows a

Bernoulli distribution and an unbounded number of samples is allowed.

Theorem H.3. Suppose there exists a weakly (-list replicable RL algorithm that interacts with an MDP M with
state space S, action space A, and horizon length H, such that there is a list of policies IL(M ) with cardinality
at most £ that depend only on M, so that with probability at least 1 — 0, 7 is e-optimal and = € TI(M), where
7 is the near-optimal policy returned by the algorithm when interacting with M. Suppose ¢ < m and
0 < m. Then it must hold that
ISI1A] (H = log 4/ 1S1] - 3)
{> 3 :

Proof. Assume for contradiction that there exists an RL algorithm that satisfies the conditions of the theorem, with

ISI1A] (H — Tlog 4/ 1S1] - 3)
< 3 .

We will show that this assumption leads to a contradiction with Lemma H.2.

Without loss of generality, assume |S| is divisible by 3. Let m = |S|/3, n = |A|, z = H — [log,, m] — 3, and
define £ = mnz. We now construct a reduction from the k-armed bandit problem (with Bernoulli rewards) to an
MDP instance.
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We index the k arms by triplets (i, j,¢), where i € [z], j € [m], and £ € [n]. Each arm is associated with a
Bernoulli distribution D; ; , with mean p; ; .. We will design an MDP M such that interacting with it corresponds
to querying these k arms.

Key Layer Construction. Let {q1,...,¢,,} C S denote a set of m designated key-layer states (illustrated in
Figure 10). We will construct the MDP such that for each 7 € [z] and j € [m)], there exists a unique deterministic
policy that reaches state g; precisely at time step h; = d + 4, where d = [log,, m].

Once in state g; at time h;, the agent can choose action a, € A to simulate pulling arm (i,4,0). Let sy, s7 € S
denote two absorbing states. We define

V(i,5,¢), Pn,(su|qj,a0) =pije, Pn(s7]|q,a0)=1—pije.

and for all h, a: rp(sp,a) = 1[h = H — 1] and r,(s7,a) = 0. Both sy and st are absorbing: P(s' | sg,a) =
1[s’ = sy and similarly for sy.

Auxiliary Structure. 'We now describe the deterministic routing structure that reaches each ¢; in exactly d steps.
We construct a complete n-ary tree rooted at a state w; € S. Every non-leaf state in the tree has n children, one
for each action in A, and transitions deterministically based on the action played.

The final layer connects to key-layer states q1, . . . , ¢,,. There may be more than m leaf actions; any excess actions
simply self-loop. The tree has depth d, requires at most 2m states, and all transitions have reward zero. Transitions
are time-homogeneous.

Initial State and Entry Mechanism. Let sy € S be the initial state. Define its transitions as follows:

1. Playing a designated action ag € A transitions to the root wy of the n-ary tree;
2. Playing a designated action a; € A causes the agent to remain in So;

3. All other actions lead to s7.

To reach a key-layer state g; at time h; = d + 1, a policy selects a; for ¢ time steps in sq, followed by action ag to
enter the tree, and then a sequence of d actions that leads to ¢;. From there, it plays a, to simulate arm (¢, 7, £).

Correctness of the Reduction. This construction yields a one-to-one correspondence between bandit arms and
deterministic policies in the MDP that reach g; at h; and play a,. Thus, any e-optimal policy in the MDP induces
an e-optimal arm in the bandit problem. Note also that all non-rewarding policies cannot match the optimal value
due to the delayed structure and reward placement.

Contradiction. Now suppose we run the assumed RL algorithm on this MDP. By hypothesis, the algorithm
returns a e-optimal policy that lies in a list of £ policies with ¢ < k = mnz, with probability at least 1 — J, where
€< i and 6§ < %ﬂ Since each policy corresponds to a unique arm, this implies the existence of a (k — 1)-list
replicable algorithm for the (k, ¢, d)-BESTARM problem. This contradicts Lemma H.2, completing the proof. [J
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I EXPERIMENTS OF MORE COMPLEX ENVIRONMENT

All our experiments are performed based on environments in the Gymnasium (Towers et al., 2024) package, and
we use the PyTorch 2.1.2 for training neural networks. We use fixed random seeds in our experiments for better
reproducibility.

I.1 CARTPOLE-v1 WITH DQN

We evaluate the performance of the DQN algorithm (Mnih et al., 2015) on CartPole~-v1, where we replace the
planning algorithm with our robust planner (Algorithm 1) in Section 5.

Network Architecture:

We use a feedforward neural network to approximate the Q-function.

* Input layer: 4-dimensional state vector

* Hidden layer 1: Fully connected, 64 units, ReLU

» Hidden layer 2: Fully connected, 64 units, ReLU

e Qutput layer: Fully connected, 2 units (Q-values)

Experience Replay:

* Buffer capacity: 10° transitions stored in a FIFO deque

e Batch size: B = 256

* Learning begins once buffer size > B
Target Network Updates:
* Two networks: local () and target (67)

* We use soft target updates to stabilize learning. After every Q-network update (which occurs every
step once the buffer contains > 256 transitions), the target network parameters are softly updated using
Brarget <= TOontine + (1 — 7)barger With 7 = 0.001.

Hyperparameters:
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Parameter Symbol Value(s) Description

Learning rate o 2.5 x 1073  Adam optimizer step size
Discount factor vy 0.99 Future reward discount

Replay batch size B 256 Transitions per learning update
Replay buffer capacity N 10° Max number of stored transitions
Soft update factor T 1073 Target network mixing coefficient
Exploration start €0 1.0 Initial exploration probability
Exploration end €min 0.01 Minimum exploration probability
Exploration decay €decay 0.997 Multiplicative decay per episode
Training episodes - 400 Total training episodes

Max steps per episode  — 500 Episode length limit

Evaluation episodes - 100 Used to compute mean returns
Independent runs - 50 Used to report mean/std

Training Procedure:

1. Initialize local and target networks; create empty replay buffer.
2. For each episode:

* Reset environment; compute ¢; = max(€min, €0 etdecay)

* For each step ¢:

Select action using e-greedy or Algorithm 1

Store transition (s, a, 7, s’) in the replay buffer

If buffer size > B, sample mini-batch and update Q-network

Update target network using soft update rule

h,M’
with 7action € {0.0,0.05,0.1,0.5}. Note that when 7,¢tion = 0, Algorithm 1 is equivalent to picking actions that

When invoking Algorithm 1, we use the Q-network as our estimate of @) and select actions using Algorithm 1

maximize the estimated ()-value as in the original DQN algorithm.
Evaluation Protocol:

Every 10 training episodes, we evaluate the policy over 100 test episodes, where each episode is initialized using
a fixed random seed for reproducibility. During the evaluation, we disable e-greedy but still use Algorithm 1 to
choose actions. In Figure 1(a), we report the average award of the trained policy, & standard deviation, across
different runs.

1.2 ACROBOT-V1 WITH DOUBLE DQN

We evaluate the performance of the Double DQN algorithm (Van Hasselt et al., 2016) on Acrobot-v1, where
we replace the planning algorithm with our robust planner (Algorithm 1) in Section 5.

Network Architecture: We use a feedforward neural network to approximate the Q-function.

¢ Input layer: state vector (dim = 6)
* Hidden layers: 256 512 512 units, ReL.U activations

* Output layer: Q-values for each action (dim = 3)
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Hyperparameters:
Parameter Symbol Value(s) Description
Learning rate a 1x107° Adam step size
Discount factor ¥ 0.99 Future reward discount
Batch size B 8192 Samples per update
Replay capacity N 5x10% Max transitions stored
Target update freq. - 100 steps Hard copy interval
Initial € €0 1.0 Exploration start
Min e €min 0.01 Exploration floor
e-decay 1) 5x 1074 Exploration decay per episode
Training epochs - 90 Total learning epochs
Eval interval - 10 episodes  Test frequency
Eval episodes - 100 runs Used to compute mean returns
Independent runs - 25 Used to report mean/std

Replay Buffer:

* Capacity: 50,000 transitions

e Batch size: B = 8192

Training Procedure:

1. Initialize networks, replay buffer, and seeds.
2. For each episode t:

* Reset environment; compute £; = max(&min, €o — t0)
* For each step:

— Select action using e-greedy or Algorithm 1
— Store transition (s, a, r, s') in the replay buffer.
— If buffer size > B, sample mini-batch and update Q-network using double Q-learning

— Every 100 learning steps, replace target weights

When invoking Algorithm 1, we use the Q-network as our estimate of Q; x> and select actions using Algorithm 1
with 7,cti0n € {0,0.05,0.1,0.2}. Note that when 7,¢tion = 0, Algorithm 1 is equivalent to picking actions that
maximize the estimated ()-value as in the original Double DQN algorithm.

Evaluation Protocol:
Same as Section I.1.

.3 MOUNTAINCAR-VO WITH TABULAR Q-LEARNING

We evaluate the performance of the Q-Learning on MountainCar—-v0, where we replace the planning algorithm
with our robust planner (Algorithm 1) in Section 5.
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State Discretization:

* Discretized into a 20 x 20 grid
* Bin size computed from environment bounds

* Discrete state: tuple((s — Smin)/AS)

Q-table:

* Shape: (20,20, 3)

* Initialized uniformly in [—2, 0]

Hyperparameters:
Parameter Symbol Value(s) Description
Learning rate o} 0.1 Q-learning update step
Discount factor vy 0.95 Discount for future rewards
Exploration schedule ¢ max(0.01,1 —¢/500) Episode-based decay
State bins - 20 x 20 For discretization
Training episodes - 10,000 Total learning episodes
Evaluation interval - 200 Test policy every 200 episodes
Test episodes - 100 Used to compute mean returns
Independent runs - 25 Used to report mean/std

Training Procedure:

For each episode ¢:

* Reset environment; discretize initial state; compute €; = max(0.01,1 — ¢/500)
* Select actions using e-greedy or Algorithm 1

» Update Q-table with learning rate o = 0.1 and discount factor v = 0.95:
Qs,0) ¢ (1= a)Q(s,a) + a [r + ymax Q(s', )
* If terminal state is reached and the goal is achieved, set Q(s, a) < 0

When invoking Algorithm 1, we use the Q-table as our estimate of Q: i and select actions using Algorithm 1
with 7,ction € {0,0.001,0.005,0.02}. Note that when 7,cti0n = 0, Algorithm 1 is equivalent to picking actions
that maximize the estimated ()-value as in the original Q-learning algorithm.

Evaluation Protocol: Same as Section I.1.

1.4 NAMETHISGAME WITH BEYOND THE RAINBOW

We evaluate the performance of the Beyond The Rainbow on Namethisgame, where we replace the planning
algorithm with our robust planner (Algorithm 1) in Section 5.
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Environment:

e Domain: Atari 2600, evaluated on NameThisGame

e Simulator: ALE with frame skip = 4

* Observations: grayscale 84 x 84 stacked frames

e Actions: discrete Atari action set

Baseline:

* Algorithm: BTR (Bootstrapped Transformer Reinforcement learning)

* Training budget: 100M Atari frames

Threshold Strategy:

* Planner augmented with a decaying action-threshold rule

* At each decision point, we select
a = argmax Q(s,a’) subjectto Q(s,a) > maxQ(s,a’) — racton(t),
a’ a’

where 7,ci0n (1) is a step-dependent threshold

* Decay schedule:
Taction(t) =04 x (098) Lt/E)OOOJ7

with ¢ denoting the training step index

* When 7yiion(t) — 0, the method reduces to the vanilla BTR algorithm
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Parameter Symbol Value(s) Description

Learning rate lr 1x1074 Optimizer step size (Adam/AdamW)
Discount factor ¥ 0.997 Discount for future rewards
Batch size B 256 Mini-batch size for updates
Replay buffer size - 106 PER capacity

PER coefficient «a 0.2 Priority exponent

PER annealing B 045—1.0 Importance weight schedule
Gradient clipping - 10.0 Norm clipping for stability
Target update - 500 steps Replace target network

Slow net update - 5000 steps Replace slow network
Optimizer - Adam/AdamW With e = 0.005/B

Loss function - Huber Temporal difference loss
Replay ratio - 1.0 Grad updates per env step
Exploration schedule € 1.0 — 0.01 (2M steps) e-greedy decay

Noisy layers - Enabled Factorized Gaussian noise
Network arch. - Impala-IQN / C51 Conv backbone + distributional head
Model size - 2 Scale factor for Impala CNN
Linear hidden size - 512 Fully-connected layer width
Cosine embeddings Neos 64 IQN quantile embedding size
Number of quantiles 7 8 Quantile samples for IQN
Frame stack - 4 History frames per state
Image size - 84 x 84 Input resolution

Trust-region - Disabled Optional stabilizer

EMA stabilizer T 0.001 Soft target update (if enabled)
Munchausen 0.9 Entropy regularization (if enabled)
Distributional - C51/IQN Distributional RL variants
Threshold start Digtart 0.4 Initial threshold ratio
Threshold decay Dagecay 0.98 Multiplicative decay factor
Threshold interval - 5000 steps Decay period

D-strategy - none / minnumber / lastact / slownet ~ Action selection rule
Training frames - 200M Total Atari interaction budget
Evaluation freq. - 250k frames Eval episodes per checkpoint
Independent runs - 5 seeds Reported mean/std

Training Procedure:

* Interact with the environment for 100M frames using e-greedy exploration

* Store transitions into a replay buffer and update the Q-network with Adam optimizer

* Report mean and standard deviation over 5 independent seeds

We observe that augmenting BTR with the threshold strategy improves performance in NameThisGame by over

10% compared to the baseline.

51



Under review as a conference paper at ICLR 2026

J LLM USAGE
We used large language models (LLMs) only for minor language polishing and for assistance in generating plotting

scripts. No LLMs were involved in the research ideation, theoretical derivations, experiment design, or analysis.
All scientific contributions of this work are entirely our own.
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