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ABSTRACT

Scheduling is an important component in Semiconductor Manufacturing systems,
where decisions must be made as to how to prioritize the use of finite machine
resources to complete operations on parts in a timely manner. Traditionally, Oper-
ations Research methods have been used for simple, less complex systems. How-
ever, due to the complexity of this scheduling problem, simple dispatching rules
such as Critical Ratio, and First-In-First-Out, are often used in practice in the in-
dustry for these more complex factories. This paper proposes a novel method
based on Deep Reinforcement Learning for developing dynamic scheduling poli-
cies through interaction with simulated stochastic manufacturing systems. We
experiment with simulated systems based on a complex Western Digital semicon-
ductor plant. Our method builds upon DeepMind’s Deep Q-network, and pre-
dictron methods to create a novel algorithm, Predictron Deep Q-network, which
utilizes a predictron model as a trained planning model to create training tar-
gets for a Deep Q-Network based policy. In recent years, Deep Reinforcement
Learning methods have shown state of the art performance on sequential decision-
making processes in complex games such as Go. Semiconductor manufacturing
systems, however, provide significant additional challenges due to complex dy-
namics, stochastic transitions, and long time horizons with the associated delayed
rewards. In addition, dynamic decision policies need to account for uncertain-
ties such as machine downtimes. Experimental results demonstrate that, in our
simulated environments, the Predictron Deep Q-network outperforms the Deep
Q-network, Critical Ratio, and First-In-First-Out dispatching policies on the task
of minimizing lateness of parts.

1 INTRODUCTION

This paper proposes a method based on Deep Reinforcement Learning for automated production
scheduling in semiconductor manufacturing systems. In such systems, scheduling decisions must
be made for processing operations. These systems involve machines that each perform operations
to process a variety of different semiconductor devices. Each type of device requires a specific set
of operations to be performed which varies depending on the type of device. These systems also
include re-entrant connections, and the machines may be subject to machine failures, in which ma-
chines break down during processing and need to be repaired before resuming operations. In the
industry, static dispatching policies such as Critical Ratio (CR) or First-In-First-Out (FIFO) are of-
ten used, together with manual adjustments at failing machines. Obtaining efficient scheduling and
dispatch policies at every machine, especially in a system with machine failures, is a challenging and
complex task. There are multiple key productivity indicators that are considered in manufacturing
systems. Included in these are throughput, cycle time, and lateness with respect to due dates. Op-
timizing weighted combinations of these productivity indicators is a challenging task. In this paper
we introduce a novel Reinforcement Learning algorithm for planning in such environments. Due
to the complexity of the issue, in this paper we focus specifically on the task of reducing lateness
with respect to due dates. It should be noted that this objective function, in itself, and in isolation,
is a measure that manufacturing system researchers have studied for decades, with less than desired
success. In each factory system modeled in this paper, there is a set of machines that are used to
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process boxes of semiconductor devices on sheets of silicon wafers. These boxes are referred to as
parts. At each point in time that a machine becomes available, a dynamic scheduling decision (dis-
patching decision) must be made as to what that machine should do next. In this paper, this decision
is modeled as a choice of which part to process next from the queue at that machine group. Here,
this process is modeled as a Markov Decision Process (MDP). An MDP includes a state, action,
and reward where the state is the information describing the system, the action is a choice of which
decision to make, and the reward is a signal returned after an action is taken which indicates the
quality of that action. In the factory systems being modeled, the semiconductor devices produced
are hard drive head chips which are used to read from and write to hard drives. There is a range of
different head types produced in the facility. In our experiments, we simulate the first 20 processing
steps for each head type to model the front of line in the facility.

In recent years Deep Reinforcement Learning (RL) techniques have been demonstrated to show
remarkable performance in a number of previously challenging domains such as complex games
(Mnih et al., 2015; Silver et al., 2016a;b; Berner et al., 2019; Vinyals et al., 2019; Schrittwieser et al.,
2020). In addition, some work has been done in applying such techniques to manufacturing systems,
e.g. Waschneck et al. (2018). One of the main difficulties in this domain is delayed rewards with
particularly long delays; other domains with this feature include medical interventions in healthcare.
Consequently, our focus in this paper is to develop a planning method that can account for extra long
delays in rewards, together with highly stochastic dynamics.

So, this paper presents the Predictron Deep Q-Network (PDQN), a novel Deep RL technique that
combines the Deep Q-Network (DQN) (Mnih et al., 2015) and predictron (Silver et al., 2017) meth-
ods to learn a policy for dispatching of parts in a simulated system modeled after a semiconductor
manufacturing facility. The DQN is a model-free RL optimization algorithm that trains through ex-
perience to estimate Q-values which can be used to form a policy. The predictron is a model-based
policy evaluation algorithm that can be rolled forward multiple ”imagined” planning steps to predict
future rewards and values. The PDQN uses the predictron as a trained background planning model
to generate value estimates for use in fine-tuning a pre-trained DQN. By doing this, it is possible to
incorporate background planning as part of the training process. This combination helps the algo-
rithm account for the highly delayed rewards encountered in these factory systems. Inspiration for
this setup comes in part from Dyna (Sutton, 1990) in which a model is used to train a policy, the
main difference is that the PDQN uses an abstract model to perform its planning. The PDQN is also
closely related to methods such as Value Prediction Network (VPN) (Oh et al., 2017) and MuZero
(Schrittwieser et al., 2020), but is different from these papers and approaches by using background
planning instead of decision time planning and by using an arbitrary number of steps in between
each abstract state representation. Background planning has recently been shown to be the largest
contributor to policy improvement when using planning in model-based RL (Hamrick et al., 2021).
We compare the PDQN with both DQN and two standard factory dispatching policies, CR and FIFO.

2 RELATED WORK

2.1 DEEP REINFORCEMENT LEARNING IN PRODUCTION SCHEDULING

In recent years, work has been done in applying deep reinforcement learning to production schedul-
ing tasks (Cadavid et al., 2019). Stricker et al. (2018) presents a Q-learning with artificial neural
network function approximation dispatching method. This method was demonstrated to outperform
a First-In-First-Out on the task of maximizing utilization and minimizing lead time on a small sim-
ulated semiconductor manufacturing system.

In Zhang et al. (2020) a method is similarly proposed to automatically generate priority dispatch
rules using a deep reinforcement learning agent. Here, a Graph Neural Network-based scheme is
used to embed the states. This work, however, only applies to job shop problems in which there
are a fixed number of jobs to be completed. Therefore this approach would be inapplicable to the
more realistic production scheduling problem encountered in semi-conductor manufacturing where
new jobs are repeatedly being added into the system and production can continue indefinitely. In
addition, the work in Zhang et al. (2020) only considers deterministic systems which don’t account
for uncertainties such as machine failures.
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In Katsikopoulos & Engelbrecht (2003) an approach to addressing Markov decision processes with
delays and asynchronous cost collection is considered. However that work assumes fixed or deter-
ministic delays or stochastic delays which are independent of the state. In the systems considered
in this paper the delays are dependent upon the policy so this approach may not be applicable. In
Derman et al. (2021) they consider MDPs in which there are action delays such that actions are
executed some number of steps after they are chosen. This is a separate issue than the one we are
addressing with PDQN. In our case actions are executed immediately, the challenge in our case is
that actions affect the return over many time steps. In Campbell et al. (2016) they consider the prob-
lem of applying Q-learning with stochastic time delays in the reward signal. This is again different
from the issue we are addressing as in our problem. It is not that specific reward values are not
received immediately it is that the effects of each action impact the return over ong horizons which
makes learning and credit assignment difficult. Delayed feedback is also considered in Walsh et al.
(2008). However it is limited to fixed, constant delays, which is not applicable for our case.

2.2 DEEP Q-NETWORK

DQN Mnih et al. (2015) is a Q-learning method, which works by estimating the expected discounted
future return for a given state and action pair. For DQNs this is accomplished by using a Neural
Network function approximator. DQN uses mini-batch stochastic gradient descent to update the
weights of the neural network based on the gradient of a loss function to minimize the expected
value of the loss. For DQNs the Mean Squared Error (MSE) loss is used as seen in Equation 1.

L(θ) = E[(r + γmax
a′

Q(s′, a′; θ̄)−Q(s, a; θ))2] (1)

where θ represents the weight parameters of the neural network. θ̄ represents an earlier copy of
θ, which is used to form a target network. The purpose of the target network is to estimate the
expected value of the next state. The training is stabilized by only updating θ̄ after a number of
training iterations, thereby giving the online network a stable target. An alternative to this is to use
a soft update technique where the target is gradually updated towards the online network.

Q-learning is considered an off-policy method, as it can train on data collected by a different policy.
To get the best result, however, exploration and exploitation should be tuned according to the prob-
lem. A common solution is to use the ε-greedy policy on the Q-function, where ε is slowly decayed
over time. Experienced data is stored as a set of {state, action, reward, next state} in an experience
replay buffer and sampled according to some distribution, originally uniformly.

2.3 PREDICTRON

The predictron (Silver et al., 2017) is an architecture for model-based value estimation and pol-
icy evaluation. It consists of a fully abstract model which works by ”imagining” a sequence of
waypoints, each simultaneously describing an arbitrary number of steps into the future and an esti-
mation of the value from the abstract waypoint state. It is strongly related to methods such as n-step
TD-learning (Watkins, 1989) and eligibility traces (Sutton & Barto, 2018). The predictron learns
a representation function f which outputs the first abstract state. Furthermore, it learns K sets of
functions, where each set includes a value function vk, a next abstract state function sk, a reward
function for the transition to the next abstract state rk, a discount value function γk and an eligibility
trace function λk.

The predictron has two outputs describing the predicted returns (preturns), g0:K and gλ. Here g0:K
is the set of K preturns, with one k-preturn gk for each abstract step k, as seen in Equation 2. The
λ-preturn gλ, seen in Equation 3, is the weighted average of the k-preturns, where the λ-weights are
determined using the learned eligibility trace parameters.

gk = r1 + γ1(r2 + γ2(. . .+ γk−1(rk + γkvk) . . . )) (2)

gλ =

K∑
k=0

wkgk (3)
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where

wk =


(1− λk)

∏k−1
j=0 λ

j if k < K

∏K−1
j=0 λ

j otherwise
(4)

The predictron is trained by minimizing the MSE loss for both g0:K and gλ, as defined in Equations
5 and 6.

L0:K =
1

2K

K∑
k=0

‖Ep[g|s]− Em[gk|s]‖2 (5)

Lλ =
1

2
‖Ep[g|s]− Em[gλ|s]‖2 (6)

where Ep is the sampled sum of discounted rewards gained in the episode, and Em is the predicted
value from the model.

Thirdly, an optional loss is minimized, the consistency loss, improving the consistency between the
k-preturns and the λ-preturn, as seen in Equation 7.

L =
1

2

K∑
k=0

‖Em[gλ|s]− Em[gk|s]‖2 (7)

The predictron is the inspiration for both the VPN (Oh et al., 2017) and MuZero (Schrittwieser et al.,
2020), in the sense that they all use abstract state-space representations. The main difference is that
VPN and MuZero also train a policy for control, whereas the predictron is purely policy evaluation.
VPN and MuZero both use tree searches to conduct their planning, whereas the predictron uses an
estimation of eligibility traces to different depths of its abstract version of the expected future.

3 METHODS

This chapter describes the general setup of the methods used in this paper. Section 3.1 describes how
the simulated factory is modeled as an MDP. Section 3.2 describes the CR and FIFO dispatching
policies. Section 3.3 describes the proposed new PDQN method while the Neural Network architec-
ture and hyperparameter setup for both the DQN and PDQN are described in the Appendix section
A.1.

3.1 MDP MODELLING

3.1.1 STATE SPACE REPRESENTATION

The state-space representation consists of the set of variables S = Shs∪Shd∪Shp∪Sm representing
the number of parts of each type at each sequence step, the number of parts due for each head type,
the number of parts that are past due, and the machine that the dispatch decision corresponds to.

First, information about the work in process (WIP) is included in the state space. Let Nht,j be the
number of parts in the factory of head type ht at step j of production. Included in the state space are
the values ofNht,j for all combinations of head type ht ∈ H , whereH is the set of all head types and
sequence step j ∈ Jht, where Jht is the set of sequence steps of head type ht, Jht = {1, 2, ...,Mht},
where Mht is the number of sequence steps for head type ht. Let this set of state variables be Shs,
then Shs = {Nht,j |(ht ∈ H) ∧ (j ∈ Jht)}.
Second, information about the number of parts that are due for each head type is included in the state
space. Let Dht be the number of parts due for head type ht. Let the set of due part state variables
be Shd, then Shd = {Dht|ht ∈ H}
Third, information about the parts which are past due are included as well. As such the values Pht
representing the number of parts past due for each head type ht are included as well. Let this set of
state variables be Shp, then Shp = {Pht|ht ∈ H}
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Lastly, the state space includes the machine variables where Sm is a one-hot vector indicating the
machine that the dispatching decision for that time step corresponded to.

3.1.2 ACTION SPACE

An action is made every time a machine is ready to process a new part and a part is in its queue. The
action determines which part to process next, and consists of selecting a head type and a sequence
step. Let Hm be the head types present in the queue for the affected machine m, then A = (ht ∈
Hm, j ∈ Jht)

3.1.3 REWARD SIGNAL

The reward signal is designed to penalize the agent for being late on parts with respect to their due
dates. To accomplish this the reward at each time step is made to be negative and proportional to the
amount of time that has elapsed during the time step and the number of parts that are past due. This
can be represented as an integral over the time between two time steps. Let ti be the time at which
time step i occurs in the MDP representing the factory. Let Ri be the reward for time step i.

Ri = −
∫ ti

ti−1

Nd(t) dt (8)

where Nd(t) is the number of parts that are past due at time t. This way the agent will be repeatedly
penalized each time step at a rate which is proportional to the number of parts that are past due. This
serves as a heuristic that will encourage the agent to complete parts before their due dates.

3.2 CRITICAL RATIO AND FIRST-IN-FIRST-OUT DISPATCHING POLICIES

CR dispatching is a part priority rule based on the ratio between remaining time until due and the
remaining time needed to complete processing of a part. The CR dispatching policy proceeds by
selecting the part from the queue with the smallest critical ratio value. This will prioritize the parts
which are most late and should therefore reduce the lateness of parts.

FIFO dispatching is done by selecting the part to process which was added to the queue first. When
considering a single queue, FIFO may reduce max waiting time at that queue by always processing
the part that has been waiting for the longest. However, this policy may not be optimal for the whole
system as it does not take into account the state of other queues.

3.3 PDQN

Presented here is the PDQN algorithm. PDQN addresses the need for learning from highly delayed
rewards and dynamic uncertainty due to machine downtimes by including abstract planning for a
large number of steps. PDQN consists of two parts, an optimal decision policy determining compo-
nent based on DQN, and an abstract planning trajectory-based value estimation component based on
the predictron; this latter value estimate function of the predictron is fed to the DQN during training.
In a traditional DQN, the model trains by minimizing the difference between its Q value estimate and
a target value, as seen in Equation 1. This target is formed by sampling the reward for one step and
then estimating the discounted return from the subsequent state using the same DQN architecture
but with older weights, referred to as the target model. In the PDQN, we instead train the predictron
part to estimate the value of states under the DQN policy, and use this value estimate as the target
for the DQN, effectively substituting maxa′ Q(s′, a′; θ̄) with Em[gλ|s′], as seen in Equation 9.

L(θ) = E[(r + γEm[gλ|s′]−Q(s, a; θ))2] (9)
where Em[gλ|s′] is the predictron estimate for the discounted return from the subsequent state s′
and r is the reward given by the environment.

By using the predictron as target, the policy is trained using background planning. This is because
the predictron part is trained to estimate the actual return from running the policy. By incorporating
background planning, the policy can be trained towards better targets, which can take much more
delayed rewards into account, and by using learned eligibility trace weights, it can learn to better
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assign the right weight to late rewards. As the policy converges towards a better policy, the predictron
will have to be updated to fit the policy again. Where, in traditional DQN, the target model is updated
by simply copying the weights of the online model, we here update the target from the predictron
by training it on new samples collected by the policy. This is done by fixing the policy for a number
of steps and collecting samples of states along with the following h rewards and the value of the hth

state as estimated by the policy. It is important to note, that the predictron is trained in a supervised
manner, where the data is collected using the policy. With i as the time step, the target for the
predictron Ep[gi|si] is defined as

Ep[gi|si] =

h−1∑
n=0

(γn ∗Ri+n) + γh ∗max(Q(si+h, a; θi)) (10)

where R is the actual return from the following h steps and max(Q(si+h, a; θi)) is the expected
value of the hth state, estimated by the policy. Therefore the target for the predictron is biased by
the estimate of the policy. When using a long horizon the policy will have a small effect on the total
discounted return target, while the actual return from within the horizon will increase the variance
of the target. Shorter horizon lengths, however, would be more biased by the policy and have lower
variance. Consequently, there is a trade-off between these that may lead to different horizon lengths
being optimal for different scenarios. The tested PDQN here uses a horizon higher than the estimated
number of steps needed to complete on average more than two batches of parts at any given time of
the environment. The loss for the predictron is then calculated using Equations 11 and 12 and the
consistency update loss from Equation 7.

L0:K =
1

2K

K∑
k=0

‖Ep[gi|si]− Em[gk|s]‖2 (11)

Lλ =
1

2
‖Ep[gi|si]− Em[gλ|s]‖2 (12)

As a policy evaluation method, the expectation is that the predictron model can provide better es-
timates of long-term returns than the DQN based Q-value estimator itself. Better return estimates
will then create stronger targets for learning when used to train the policy. We expect the target
to be better as the predictron architecture can create an abstract planning model, including abstract
states which are rolled forward to predict future returns weighed by a learned eligibility trace. The
desirable features of the algorithm derive from the predictron and Eligibility Traces properties in
incorporating: 1. The true delayed rewards, rather than inaccurate surrogates and 2. The most
effective bias-variance trade-off, with the associated dimensional reduction. We hypothesize that
these characterizes would enable it to firstly perform very well. Secondly, it would likely dominate
stand-alone Q-learning approaches such as DQN and variants.

The choice of using the predictron for planning instead of using decision time planning methods,
such as tree search, was based on the nature of the environment. Due to the large delays between
when actions are taken and the completion of the parts those actions relate to, actions generally have
very little effect on the expected return over the next few states. Therefore if a tree search should
be used, it would need to be traversed to a high depth before seeing the outcome of the immediate
action taken. By using the predictron with an external control policy, effectively using background
planning, the policy can get an estimate of the long-term state value directly on the state. It is
therefore the target for the policy that is trained using background training, and through this, the
policy is indirectly trained through background training as well. The PDQN training algorithm is
summarized in Algorithm 1 along with a detailed hyperparameter setup in the appendix section A.1.
The predictron architecture used is shown in Figure 1. It is an alternation of the original architecture
from Silver et al. (2017). The main change is that all convolutional layers are replaced with fully
connected layers. This alternation is made as the state representation in our environment is not
spatially related in the same manner as the environments used in the original paper, making local
convolutional filters less meaningful.

4 EXPERIMENT

To evaluate the PDQN method, two different factory systems are used; a balanced factory system,
which was a balanced version of a real factory system, and a randomly generated factory system,
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Figure 1: The fully connected version of the original predictron implemented with 16 depth layers
with individual weights. Each fully connected layer has 128 neurons, except for the output layers
which have 1. s is the input state while s0:K are the abstract states. V 0:K are the estimated values
for each abstract state. r0:K−1 are the expected abstract rewards received for transitioning from
one abstract state to the next. γ0:K−1 is the expected abstract discount factors to apply for each
abstract step. λ0:K−1 is the expected eligibility assigned to each abstract step. As the abstract steps
is arbitrarily long, γ and λ can vary as well.

which was made publicly available. We compared the mean lateness and the sum of lateness, which
was the return received by the agent during an episode. We compared the performance against the
CR, FIFO, and DQN policies1. For the evaluation, the DQN and PDQN policies were fixed, meaning
that they were not allowed to train on the data from the test set.

4.1 ENVIRONMENT SETUP

Two environments are considered, a balanced 20 sequence steps (B20) factory system and a gener-
ated 20 sequence steps (G20) factory system.

The B20 factory setup was based on a subset of a real semiconductor manufacturing facility owned
by Western Digital Corporation.

The G20 factory setup was based on additional data from Western Digital Corporation. However
these sets were randomly generated in order to match the distributions of the data without including
proprietary information. Details about factory settings are included in the appendix in Section A.2,
and all the factory files needed to run the simulations for the generated systems are included in the
supplemental materials.

4.2 TRAINING AND MODEL SELECTION

Initial experiments showed that when comparing the performance of the trained models of the same
type, large variations were seen between the models, but a low variation was seen on the individual
models. This was expected to come from the random initialization of the policies, as well as from
the randomness used for exploration. To account for the variation seen between models, multiple
models were trained for both DQN and PDQN. For each factory system, 10 different DQNs were
trained. Each of these DQN models was then used to initialize a PDQN model training session. The
PDQN models were trained for 5 iterations, each resulting in a separate model. The best models, in
terms of lateness, were selected through validation simulations. Further training details, architecture,
and hyperparameter setup are explained in detail in Section A.1.

4.3 MAIN TEST RESULTS

The best performing DQN and PDQN model from each environment was tested on 50 simulations
with different sample paths. Each sample path was initialized with a seed to ensure a reproducible

1Initial experiments did not show an improved performance of the DQN by applying the extensions pro-
posed in Hessel et al. (2018). Furthermore, MuZero was considered, as according to Hamrick et al. (2021) this
method incorporates planning. However, the results from the implementation did not converge. This method
was prohibitively computationally heavy to run on this complex environment. This type of online planning
which incorporates MCTS may not be appropriate for such complex stochastic environments.
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behavior from the environment when used to compare the performance of different policies. For
comparison, the mean sum of lateness for the completed parts2 is used.
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Figure 2: Here, the results from the objective function used to train the RL based policies are
compared. The results are based on 50 test runs for each setup of each tested environment.

Figure 2 shows the results from the 50 test runs on all the tested environments. It is seen that for
both factory systems, DQN and PDQN outperform CR and FIFO in terms of the mean sum of the
lateness, which is the objective function used. Furthermore, PDQN outperform DQN on the same
metric in all systems except the B20 system with MTTF of 10,000. The results seem to indicate that
either DQN and PDQN perform similarly well, with very small difference in performance in the one
case that DQN is superior, or the PDQN typically significantly outperforms DQN; we observe this
in B20 with MTTF of 100,000 and G20 with MTTF of 10,000.

Overall, the results indicate that PDQN succeeds in improving the performance over the DQN policy,
which again improves upon the standard factory dispatching policies, on the given lateness objective
function in the tested environment. From a smart factory perspective, choosing PDQN with the
correct parameters from the validation step appears to provide a robust close-to-optimal performance
for the given objective function.

This performance improvement validates our initial hypothesis that incorporating the long delay
reward data from the planning simulation, and the bias-variance features of the predictron, should
together provide a powerful approach to addressing very long delays in highly dynamic, stochastic,
and large-dimensional systems.

4.4 ADDITIONAL OBSERVATIONS TOWARDS FUTURE RESEARCH

In this sub-section, we provide some additional results to motivate a second objective function, in-
tegrating lateness and throughput. To be clear, we do not consider this objective function in this
paper. An interesting observation is that for both DQN and PDQN, the sum of lateness often in-
creases when the MTTF is increased for the two systems. By measuring the mean lateness and the
number of completed parts from the 50 test runs, as seen in Figure 3, some additional insights to this
increase, are made. The results can be seen in Tables 3 and 4 in the appendix section A.1.

PDQN outperforms the DQN in terms of mean lateness except in the B20 system with MTTF of
10,000. However, it is interesting to see how the number of completed parts, in general, is lower for
the RL methods compared to the CR and FIFO policies. This result indicates that the used objective
function of reducing the lateness of parts might result in unwanted behavior in terms of throughput,
which is not part of the current objective function. Future work might need to consider an objective
combining lateness and throughput. However, we do note that in the G20 system with an MTTF of
10,000, the PDQN throughput outperformed CR.

The G20 system has also been tested with WIP level of 15. The results from this test is shown
in Table 4 in the appendix. The PDQN and DQN performance on those systems indicated that

2The initial 2× the WIP × the release batchsize number of parts are discarded from the results to only
consider the steady-state system after a burn in period.
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the learned policies favors higher WIP levels. This is possibly because higher WIP levels allow
the policy to have greater flexibility, as more parts will line up at the machine queues, effectively
increasing the number of allowed actions. It is interesting, however unexpected, that FIFO is better
than CR on almost all parameters in the G20 setup, and also achieves lower mean lateness in the
B20 setup. We suspect this result to be caused by the use of the CONWIP release policy and the
high rate of machine failures. For example, CONWIP applied only to bottleneck machines would
be more efficient. Future work should consider experimenting with a wide range of release policies.
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Figure 3: Additional observations regarding mean lateness (Top) and the number of completed parts
(Bottom) are shown here. The data is shown with the inner quartiles (colored boxes), the median
(black lines), the mean (white dots), and the min and max values (whiskers). Both the mean lateness
and the number of completed parts is reported for all parts completed after the initial two full system
runs, which are removed to align the observation with the objective function.

We observe that the validation step is fairly effective in the choice of hyperparameters including
model parameters and iterations. Future research should experiment with hyperparameter optimiza-
tion of the PDQN method to avoid this excess amount of training.

5 CONCLUSIONS

In this paper, we approach the problem of dispatching in simulated Semiconductor Manufacturing
systems by using Deep RL techniques. We present the PDQN, a novel Deep RL approach combining
DQN with value estimates from the predictron. We evaluate the use of both DQN and PDQN on two
factory systems. The Deep RL methods are compared against CR and FIFO dispatching policies.
The results show that PDQN outperforms CR, FIFO, and DQN in terms of lateness of part in the
systems and that both Deep RL methods outperform CR and FIFO on this task.

From these results, we see that our hypothesis holds true, in that using the predictron architecture
to better predict target values with very large delays, and provide powerful bias-variance trade-offs,
can indeed increase the performance of a DQN based policy. That is, by incorporating this trained
abstract planning model, the policy seems to better learn from delayed rewards in systems such as
the dynamic manufacturing systems described here. Currently, however, there is a large variance
in the performance of models after training, so carefully choosing a trained model by validating its
performance is recommended.

Scheduling in semiconductor manufacturing facilities is a complex task that has a significant effect
on the efficiency of production. Estimation of long-term values in this domain is especially difficult
due to the nature of the factory systems. By including predictron methods, which have improved
predictive ability, we were able to train models that outperform the DQN, CR, and FIFO on our
chosen objective of reducing lateness of parts. The methods presented in this paper progress the
application of Deep RL to scheduling algorithms in this domain.

9
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REPRODUCIBILITY STATEMENT

All the code and the factory setting files are included in the supplementary material. To generate new
factory systems use the fact file gen.py file, to reproduce the G20 system use seed=0. The PDQN
algorithm is described in Algorithm 1.
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A APPENDIX

A.1 ARCHITECTURE AND HYPERPARAMETER SETUP

Here we present the environment-dependent DQN and PDQN hyperparameter settings for the ex-
periments. We used the same hyperparameter settings for all experiments. The hyperparameters
were tuned based on experiments on the B20 system.
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The architecture of the DQN was implemented as a 4 layer fully connected neural network, where
the first three layers had 400, 250, and 125 neurons respectively, and used the ReLU activation
function. The last layer was the output layer, which had Na number of neurons, where Na was the
number of actions in the environment. The DQN was trained using the MSE loss with the Adam
optimizer. The DQN was trained with a batch size of 32 and a learning rate of 0.005 using a discount
factor γ of 0.99. The target network was softly updated with τ = 0.125. Actions were chosen using
the ε-greedy policy on the Q-function with ε starting at 1.0 and decaying with 0.999 at each step. A
summary of the DQN hyperparameters is shown in Table 1.

The architecture of the predictron part, seen in Figure 1, is a fully connected version of the original
predictron architecture (Silver et al., 2017), i.e., all convolution layers have been replaced with fully
connected layers. All layers in the architecture, except for the output layers, have 128 neurons and
use ReLU activations. The number of neurons for each abstract state-space representation serves
as an encoding mechanism, where fewer neurons will result in a more compressed representation.
Initial results show that using 128 neurons had a small positive effect on the performance when
comparing to using 8, 16, 32, 64, and 256 neurons.

The depth of the predictron was set to 16, where each depth layer used its own weights. This
configuration was chosen, as it was the best performing configuration in Silver et al. (2017). L2
regularization was used to counter overfitting. The training was conducted using the MSE loss with
the Adam optimizer. The batch size of the predictron was set to 128, and the number of training
batches per iteration was 128. The PDQN had the same discount rate as the DQN, γ = 0.99, and
a horizon of 500, meaning that the target for the predictron was the sum of the actual discounted
return of the following 500 steps and the discounted DQN value estimate for state si+500. With this
setting we weighed the actual discounted return by 0.993, while weighing the remaining estimated
value by 0.007. ∫ h

0
γxdx∫ inf

0
γxdx

=

∫ 500

0
0.99xdx∫ inf

0
0.99xdx

= 0.993

The horizon of 500 was found as 2.5 times the number of steps required to complete one batch on
an empty system.

The policy part of the PDQN was initialized to be a copy of a pre-trained DQN. It was trained in
the same manner as the DQN, with the only difference being that the target was estimated by the
predictron part and that it was trained for 50,000 steps per iteration. A summary of the PDQN
hyperparameters is shown in Table 2. The environment is set to run for an initial burn-in period
using the greedy policy on the Q-function to skip the initial part of the environment before initiating
the training.

First the predictron is trained for an initial number of steps, to allow it to learn a good estimate for
the value of the policy. Then the policy is updated with the predictron value estimate as the target
for an initial number of steps. Then the number of steps for training the predictron and the policy is
set to a fixed value, and the alternation between training the two parts is continued for a number of
iterations. During training, the Q function is updated after every step using the Adam optimizer on a
small batch of data. The actions for the policy are sampled using epsilon greedy with a fixed epsilon.
When training the predictron, the actions are sampled using the greedy policy on the Q function. The
predictron is updated after all samples in that sequence have been collected in a supervised learning
manner.

A.2 SETTINGS AND GENERATION OF FACTORY SYSTEMS

The balanced 20 sequence steps (B20) factory system was based on a subset of a real semiconductor
manufacturing facility owned by Western Digital Corporation. In this system, the first 20 processing
steps for each head type were simulated. The machine groups, process routings, and processing
times in the simulated system were set to match the real system. Other factory parameters were
set based on simulation results under the CR dispatch policy. Some machines were added to the
simulated system to reduce bottle-necking at stations with high utilization. The system was tested
with two machine failure rates to experiment with the robustness to changes in this parameter. The
Mean Time To Failure (MTTF) was therefore set to either 100,000 minutes and 10,000 minutes,
while the Mean Time To Repair (MTTR) was set to 120 minutes, and the WIP level was set to 30
release batches where each batch contained one part of each head type. The due date lead times and
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Table 1: Hyperparameter setup for DQN

Hyperparameter Value

Learning rate 0.005
Batch size 32
Discount factor γ 0.99
Exploration rate ε 1.0 −→ 0.02
ε decay rate 0.999
Soft update coefficient τ 0.125
Training steps 500, 000
Replay buffer size 10, 000

Table 2: Hyperparameter setup for PDQN

Predictron part Policy part

Learning rate 0.01 Learning rate 0.005
L2 weight 0.01 Batch size 32
Batch size 128 Discount factor γ 0.99
Batches per iteration 128 Exploration rate ε 0.1
Horizon h 500 Steps per iteration 50, 000
Depth k 16 Replay buffer size 10, 000

WIP levels were set to ensure a mix of on-time and past due part completions. For each sample path
in validation and testing, the environment was executed for 100,000 simulation minutes.

The generated 20 sequence steps (G20) factory systems were based upon data shared by Western
Digital for a real factory system. These systems were designed to resemble real systems while
being partially randomly generated to allow for sharing of the factory settings without divulging
proprietary data. The G20 systems have the same (MTTF) and WIP levels as the B20 systems. The
generation of the G20 system factory files is described in the appendix. In all setups, the release
of parts into the system was controlled by a CONWIP based policy to maintain relatively constant
levels of WIP in the system by releasing each batch of parts when another completes. Due dates were
set using a set due date lead time for each head type, which specifies the time between when a part
was released and when it was due. Machine failure and repair times were sampled from exponential
distributions with specified mean times based on data from Western Digital.

Each G20 system included 10 head types. The process routings for each head type were sampled
with replacement from a set of 24 stations. The processing times were sampled from a gamma
distribution which was set to match the distribution of the balanced factory system. The number of
machines in each station was selected to match the level of demand at each station. The MTTF was
again set to 100,000 minutes and 10,000 minutes with an MTTR of 102 minutes. The level of WIP
was set to 30 release batches, where each released batch contained one part of each head type. For
each sample path in validation and testing, the environment was executed for 500,000 simulation
minutes. The longer execution times for these setups were set to account for a lower throughput
compared to the B20 system.

In all setups, the release of parts into the system was controlled by a CONWIP based policy to
maintain relatively constant levels of WIP in the system by releasing each batch of parts when
another completes. Due dates were set using a set due date lead time for each head type, which
specifies the time between when a part was released and when it was due. Machine failure and
repair times were sampled from exponential distributions with specified mean times based on data
from Western Digital.
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Algorithm 1: PDQN training
Q = Load pretrained DQN;
Start and run environment for an initial burn-in period, using the greedy policy on the Q

function;
predictron train steps = predictron batch size ∗ batches per iteration;
TrainPolicy = False;
i = 0;
while training do

Update state: ŝ = ŝ′;
Update allowed actions: ĉ = ĉ′;
Use greedy policy on Q function to find action: â = argmax(Q(ŝ, ε)|ĉ);
Take step: ŝ′, r̂, ĉ′ = step(â);
Save to replay buffer: ReplayBuffer.add(ŝ, â, r̂, ŝ′, ĉ′);
Increase step counter: i+ = 1;
if TrainPolicy then

Sample batch: s, a, r, s′, c′ = samplebatch(ReplayBuffer);
Calculate loss from Equation 9;
Use Adam optimizer on batch loss;
if i >= policy steps per iteration then

TrainPolicy = False;
i = 0;

end
else

Si = ŝ;
Ri = r̂;
if step >= h then

Ep[g|Si−h] =
∑h
n=0(γn ∗Ri−h+n) + γh ∗max(Q(ŝ′)|ĉ′);

Append Si−h,Ep[g|Si−h] to train data;
if step >= predictron train steps then

while train data is not empty do
s,Ep[g|s] = getbatch(train datapredictron);
Calculate k loss from Equation 5;
Calculate λ loss from Equation 6;
Use Adam optimizer on k loss and λ loss;
To use consistency updates do:
Calculate cu loss from Equation 7;
Use Adam optimizer on cu loss;

end
TrainPolicy = True;
i = 0;

end
end

end
end

A.3 ADDITIONAL OBSERVATIONS

Here, more results from running the dispatching methods on the two factory systems introduced in
section 4, are presented. The mean lateness and the number of completed parts are reported for the
entire length of the simulation, except for the initial 2×WIP× the release batchsize number of parts,
from which the results are discarded. The general trend is that the RL-based methods outperform
CR and FIFO in terms of mean lateness, where PDQN outperforms DQN in 4 of 6 setups. CR and
FIFO have the highest number of parts completed in the 15 and 30 WIP level experiments. Note
that the number of completed parts is low while the mean lateness is also low for both the DQN and
PDQN methods. The reason for this might be that the objective function used penalizes the agent
from completing parts later than their due time. As the CONWIP release policy is used, the agents
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might learn to delay the completion of batches as much as possible to delay the introduction of new
parts for as long as possible. This way, the mean lateness can be low if the majority of parts get
completed fast, and the number of completed parts will be low, due to the delayed completion of the
last part of the batch, which would match the results seen.

Table 3: Test results for balanced 20 step factory, B20, on 100,000 simulation minutes. The results
are averaged over 50 different test runs and shown with ± standard deviation of the sample mean
over the different test runs.

CR FIFO DQN PDQN

30 WIP BATCHES
MTTF 10,000
Sum of Lateness 2.83e6±3.92e3 2.67e6±3.68e3 1.14e6±8.00e3 1.25e6±4.61e3
Mean Lateness 191.3±0.30 180.7±0.28 80.9±0.62 91.3±0.39
Completed parts 14798.7±3.90 14774.2±3.18 14146.8±12.52 13680.6±10.78

MTTF 100,000
Sum of Lateness 2.76e6±1.97e3 2.67e6±1.74e3 1.41e6±2.68e3 1.05e6±7.92e3
Mean Lateness 184.1±0.13 178.4±0.12 104.7±0.28 73.1±0.39
Completed parts 14968.9±1.26 14943.7±1.12 13491.3±7.16 14437.5±12.97

Table 4: Test results for generated 20 step factory, G20, on 500,000 simulation minutes. The results
are averaged over 50 different test runs and shown with ± standard deviation of the sample mean
over the different test runs. 2 different failure rates and 2 different WIP levels are compared.

CR FIFO DQN PDQN

15 WIP BATCHES
MTTF 10,000
Sum of Lateness 19.3e6±27.1e3 18.4e6±16.5e3 13.2e6±24.8e3 14.9e6±24.2e3
Mean Lateness 561.4±0.74 533.4±0.47 489.9±1.29 464.6±0.96
Completed parts 34417.2±9.20 34540.5±7.01 26919.6±28.99 32060.0±38.26

MTTF 100,000
Sum of Lateness 18.6e6±16.7e3 17.9e6±10.5e3 13.4e6±22.5e3 13.0e6±20.4e3
Mean Lateness 532.7±0.45 512.4±0.30 428.5±0.68 449.3±0.82
Completed parts 34926.1±3.72 34902.6±2.07 31311.7±18.01 28828.8±24.01

30 WIP BATCHES
MTTF 10,000
Sum of Lateness 58.5e6±115.2e3 58.2e6±48.0e3 41.8e6±99.2e3 26.2e6±399.2e3
Mean Lateness 1730.8±2.55 1698.9±1.45 1501.6±3.68 774.6±12.65
Completed parts 33798.6±25.51 34265.2±5.32 27831.6±27.91 33895.5±44.15

MTTF 100,000
Sum of Lateness 58.9e6±102.5e3 57.0e6±35.8e3 43.5e6±87.7e3 42.2e6±94.4e3
Mean Lateness 1707.9±2.45 1647.9±1.05 1400.2±2.64 1390.7±2.95
Completed parts 34508.6±16.75 34587.8±2.22 31057.7±26.64 30336.1±25.41
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